| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Longest prefix match list implementation |
| * |
| * Copyright (c) 2016,2017 Daniel Mack |
| * Copyright (c) 2016 David Herrmann |
| */ |
| |
| #include <linux/bpf.h> |
| #include <linux/btf.h> |
| #include <linux/err.h> |
| #include <linux/slab.h> |
| #include <linux/spinlock.h> |
| #include <linux/vmalloc.h> |
| #include <net/ipv6.h> |
| #include <uapi/linux/btf.h> |
| #include <linux/btf_ids.h> |
| |
| /* Intermediate node */ |
| #define LPM_TREE_NODE_FLAG_IM BIT(0) |
| |
| struct lpm_trie_node; |
| |
| struct lpm_trie_node { |
| struct rcu_head rcu; |
| struct lpm_trie_node __rcu *child[2]; |
| u32 prefixlen; |
| u32 flags; |
| u8 data[]; |
| }; |
| |
| struct lpm_trie { |
| struct bpf_map map; |
| struct lpm_trie_node __rcu *root; |
| size_t n_entries; |
| size_t max_prefixlen; |
| size_t data_size; |
| spinlock_t lock; |
| }; |
| |
| /* This trie implements a longest prefix match algorithm that can be used to |
| * match IP addresses to a stored set of ranges. |
| * |
| * Data stored in @data of struct bpf_lpm_key and struct lpm_trie_node is |
| * interpreted as big endian, so data[0] stores the most significant byte. |
| * |
| * Match ranges are internally stored in instances of struct lpm_trie_node |
| * which each contain their prefix length as well as two pointers that may |
| * lead to more nodes containing more specific matches. Each node also stores |
| * a value that is defined by and returned to userspace via the update_elem |
| * and lookup functions. |
| * |
| * For instance, let's start with a trie that was created with a prefix length |
| * of 32, so it can be used for IPv4 addresses, and one single element that |
| * matches 192.168.0.0/16. The data array would hence contain |
| * [0xc0, 0xa8, 0x00, 0x00] in big-endian notation. This documentation will |
| * stick to IP-address notation for readability though. |
| * |
| * As the trie is empty initially, the new node (1) will be places as root |
| * node, denoted as (R) in the example below. As there are no other node, both |
| * child pointers are %NULL. |
| * |
| * +----------------+ |
| * | (1) (R) | |
| * | 192.168.0.0/16 | |
| * | value: 1 | |
| * | [0] [1] | |
| * +----------------+ |
| * |
| * Next, let's add a new node (2) matching 192.168.0.0/24. As there is already |
| * a node with the same data and a smaller prefix (ie, a less specific one), |
| * node (2) will become a child of (1). In child index depends on the next bit |
| * that is outside of what (1) matches, and that bit is 0, so (2) will be |
| * child[0] of (1): |
| * |
| * +----------------+ |
| * | (1) (R) | |
| * | 192.168.0.0/16 | |
| * | value: 1 | |
| * | [0] [1] | |
| * +----------------+ |
| * | |
| * +----------------+ |
| * | (2) | |
| * | 192.168.0.0/24 | |
| * | value: 2 | |
| * | [0] [1] | |
| * +----------------+ |
| * |
| * The child[1] slot of (1) could be filled with another node which has bit #17 |
| * (the next bit after the ones that (1) matches on) set to 1. For instance, |
| * 192.168.128.0/24: |
| * |
| * +----------------+ |
| * | (1) (R) | |
| * | 192.168.0.0/16 | |
| * | value: 1 | |
| * | [0] [1] | |
| * +----------------+ |
| * | | |
| * +----------------+ +------------------+ |
| * | (2) | | (3) | |
| * | 192.168.0.0/24 | | 192.168.128.0/24 | |
| * | value: 2 | | value: 3 | |
| * | [0] [1] | | [0] [1] | |
| * +----------------+ +------------------+ |
| * |
| * Let's add another node (4) to the game for 192.168.1.0/24. In order to place |
| * it, node (1) is looked at first, and because (4) of the semantics laid out |
| * above (bit #17 is 0), it would normally be attached to (1) as child[0]. |
| * However, that slot is already allocated, so a new node is needed in between. |
| * That node does not have a value attached to it and it will never be |
| * returned to users as result of a lookup. It is only there to differentiate |
| * the traversal further. It will get a prefix as wide as necessary to |
| * distinguish its two children: |
| * |
| * +----------------+ |
| * | (1) (R) | |
| * | 192.168.0.0/16 | |
| * | value: 1 | |
| * | [0] [1] | |
| * +----------------+ |
| * | | |
| * +----------------+ +------------------+ |
| * | (4) (I) | | (3) | |
| * | 192.168.0.0/23 | | 192.168.128.0/24 | |
| * | value: --- | | value: 3 | |
| * | [0] [1] | | [0] [1] | |
| * +----------------+ +------------------+ |
| * | | |
| * +----------------+ +----------------+ |
| * | (2) | | (5) | |
| * | 192.168.0.0/24 | | 192.168.1.0/24 | |
| * | value: 2 | | value: 5 | |
| * | [0] [1] | | [0] [1] | |
| * +----------------+ +----------------+ |
| * |
| * 192.168.1.1/32 would be a child of (5) etc. |
| * |
| * An intermediate node will be turned into a 'real' node on demand. In the |
| * example above, (4) would be re-used if 192.168.0.0/23 is added to the trie. |
| * |
| * A fully populated trie would have a height of 32 nodes, as the trie was |
| * created with a prefix length of 32. |
| * |
| * The lookup starts at the root node. If the current node matches and if there |
| * is a child that can be used to become more specific, the trie is traversed |
| * downwards. The last node in the traversal that is a non-intermediate one is |
| * returned. |
| */ |
| |
| static inline int extract_bit(const u8 *data, size_t index) |
| { |
| return !!(data[index / 8] & (1 << (7 - (index % 8)))); |
| } |
| |
| /** |
| * longest_prefix_match() - determine the longest prefix |
| * @trie: The trie to get internal sizes from |
| * @node: The node to operate on |
| * @key: The key to compare to @node |
| * |
| * Determine the longest prefix of @node that matches the bits in @key. |
| */ |
| static size_t longest_prefix_match(const struct lpm_trie *trie, |
| const struct lpm_trie_node *node, |
| const struct bpf_lpm_trie_key *key) |
| { |
| u32 limit = min(node->prefixlen, key->prefixlen); |
| u32 prefixlen = 0, i = 0; |
| |
| BUILD_BUG_ON(offsetof(struct lpm_trie_node, data) % sizeof(u32)); |
| BUILD_BUG_ON(offsetof(struct bpf_lpm_trie_key, data) % sizeof(u32)); |
| |
| #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && defined(CONFIG_64BIT) |
| |
| /* data_size >= 16 has very small probability. |
| * We do not use a loop for optimal code generation. |
| */ |
| if (trie->data_size >= 8) { |
| u64 diff = be64_to_cpu(*(__be64 *)node->data ^ |
| *(__be64 *)key->data); |
| |
| prefixlen = 64 - fls64(diff); |
| if (prefixlen >= limit) |
| return limit; |
| if (diff) |
| return prefixlen; |
| i = 8; |
| } |
| #endif |
| |
| while (trie->data_size >= i + 4) { |
| u32 diff = be32_to_cpu(*(__be32 *)&node->data[i] ^ |
| *(__be32 *)&key->data[i]); |
| |
| prefixlen += 32 - fls(diff); |
| if (prefixlen >= limit) |
| return limit; |
| if (diff) |
| return prefixlen; |
| i += 4; |
| } |
| |
| if (trie->data_size >= i + 2) { |
| u16 diff = be16_to_cpu(*(__be16 *)&node->data[i] ^ |
| *(__be16 *)&key->data[i]); |
| |
| prefixlen += 16 - fls(diff); |
| if (prefixlen >= limit) |
| return limit; |
| if (diff) |
| return prefixlen; |
| i += 2; |
| } |
| |
| if (trie->data_size >= i + 1) { |
| prefixlen += 8 - fls(node->data[i] ^ key->data[i]); |
| |
| if (prefixlen >= limit) |
| return limit; |
| } |
| |
| return prefixlen; |
| } |
| |
| /* Called from syscall or from eBPF program */ |
| static void *trie_lookup_elem(struct bpf_map *map, void *_key) |
| { |
| struct lpm_trie *trie = container_of(map, struct lpm_trie, map); |
| struct lpm_trie_node *node, *found = NULL; |
| struct bpf_lpm_trie_key *key = _key; |
| |
| /* Start walking the trie from the root node ... */ |
| |
| for (node = rcu_dereference_check(trie->root, rcu_read_lock_bh_held()); |
| node;) { |
| unsigned int next_bit; |
| size_t matchlen; |
| |
| /* Determine the longest prefix of @node that matches @key. |
| * If it's the maximum possible prefix for this trie, we have |
| * an exact match and can return it directly. |
| */ |
| matchlen = longest_prefix_match(trie, node, key); |
| if (matchlen == trie->max_prefixlen) { |
| found = node; |
| break; |
| } |
| |
| /* If the number of bits that match is smaller than the prefix |
| * length of @node, bail out and return the node we have seen |
| * last in the traversal (ie, the parent). |
| */ |
| if (matchlen < node->prefixlen) |
| break; |
| |
| /* Consider this node as return candidate unless it is an |
| * artificially added intermediate one. |
| */ |
| if (!(node->flags & LPM_TREE_NODE_FLAG_IM)) |
| found = node; |
| |
| /* If the node match is fully satisfied, let's see if we can |
| * become more specific. Determine the next bit in the key and |
| * traverse down. |
| */ |
| next_bit = extract_bit(key->data, node->prefixlen); |
| node = rcu_dereference_check(node->child[next_bit], |
| rcu_read_lock_bh_held()); |
| } |
| |
| if (!found) |
| return NULL; |
| |
| return found->data + trie->data_size; |
| } |
| |
| static struct lpm_trie_node *lpm_trie_node_alloc(const struct lpm_trie *trie, |
| const void *value) |
| { |
| struct lpm_trie_node *node; |
| size_t size = sizeof(struct lpm_trie_node) + trie->data_size; |
| |
| if (value) |
| size += trie->map.value_size; |
| |
| node = bpf_map_kmalloc_node(&trie->map, size, GFP_ATOMIC | __GFP_NOWARN, |
| trie->map.numa_node); |
| if (!node) |
| return NULL; |
| |
| node->flags = 0; |
| |
| if (value) |
| memcpy(node->data + trie->data_size, value, |
| trie->map.value_size); |
| |
| return node; |
| } |
| |
| /* Called from syscall or from eBPF program */ |
| static int trie_update_elem(struct bpf_map *map, |
| void *_key, void *value, u64 flags) |
| { |
| struct lpm_trie *trie = container_of(map, struct lpm_trie, map); |
| struct lpm_trie_node *node, *im_node = NULL, *new_node = NULL; |
| struct lpm_trie_node __rcu **slot; |
| struct bpf_lpm_trie_key *key = _key; |
| unsigned long irq_flags; |
| unsigned int next_bit; |
| size_t matchlen = 0; |
| int ret = 0; |
| |
| if (unlikely(flags > BPF_EXIST)) |
| return -EINVAL; |
| |
| if (key->prefixlen > trie->max_prefixlen) |
| return -EINVAL; |
| |
| spin_lock_irqsave(&trie->lock, irq_flags); |
| |
| /* Allocate and fill a new node */ |
| |
| if (trie->n_entries == trie->map.max_entries) { |
| ret = -ENOSPC; |
| goto out; |
| } |
| |
| new_node = lpm_trie_node_alloc(trie, value); |
| if (!new_node) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| trie->n_entries++; |
| |
| new_node->prefixlen = key->prefixlen; |
| RCU_INIT_POINTER(new_node->child[0], NULL); |
| RCU_INIT_POINTER(new_node->child[1], NULL); |
| memcpy(new_node->data, key->data, trie->data_size); |
| |
| /* Now find a slot to attach the new node. To do that, walk the tree |
| * from the root and match as many bits as possible for each node until |
| * we either find an empty slot or a slot that needs to be replaced by |
| * an intermediate node. |
| */ |
| slot = &trie->root; |
| |
| while ((node = rcu_dereference_protected(*slot, |
| lockdep_is_held(&trie->lock)))) { |
| matchlen = longest_prefix_match(trie, node, key); |
| |
| if (node->prefixlen != matchlen || |
| node->prefixlen == key->prefixlen || |
| node->prefixlen == trie->max_prefixlen) |
| break; |
| |
| next_bit = extract_bit(key->data, node->prefixlen); |
| slot = &node->child[next_bit]; |
| } |
| |
| /* If the slot is empty (a free child pointer or an empty root), |
| * simply assign the @new_node to that slot and be done. |
| */ |
| if (!node) { |
| rcu_assign_pointer(*slot, new_node); |
| goto out; |
| } |
| |
| /* If the slot we picked already exists, replace it with @new_node |
| * which already has the correct data array set. |
| */ |
| if (node->prefixlen == matchlen) { |
| new_node->child[0] = node->child[0]; |
| new_node->child[1] = node->child[1]; |
| |
| if (!(node->flags & LPM_TREE_NODE_FLAG_IM)) |
| trie->n_entries--; |
| |
| rcu_assign_pointer(*slot, new_node); |
| kfree_rcu(node, rcu); |
| |
| goto out; |
| } |
| |
| /* If the new node matches the prefix completely, it must be inserted |
| * as an ancestor. Simply insert it between @node and *@slot. |
| */ |
| if (matchlen == key->prefixlen) { |
| next_bit = extract_bit(node->data, matchlen); |
| rcu_assign_pointer(new_node->child[next_bit], node); |
| rcu_assign_pointer(*slot, new_node); |
| goto out; |
| } |
| |
| im_node = lpm_trie_node_alloc(trie, NULL); |
| if (!im_node) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| im_node->prefixlen = matchlen; |
| im_node->flags |= LPM_TREE_NODE_FLAG_IM; |
| memcpy(im_node->data, node->data, trie->data_size); |
| |
| /* Now determine which child to install in which slot */ |
| if (extract_bit(key->data, matchlen)) { |
| rcu_assign_pointer(im_node->child[0], node); |
| rcu_assign_pointer(im_node->child[1], new_node); |
| } else { |
| rcu_assign_pointer(im_node->child[0], new_node); |
| rcu_assign_pointer(im_node->child[1], node); |
| } |
| |
| /* Finally, assign the intermediate node to the determined slot */ |
| rcu_assign_pointer(*slot, im_node); |
| |
| out: |
| if (ret) { |
| if (new_node) |
| trie->n_entries--; |
| |
| kfree(new_node); |
| kfree(im_node); |
| } |
| |
| spin_unlock_irqrestore(&trie->lock, irq_flags); |
| |
| return ret; |
| } |
| |
| /* Called from syscall or from eBPF program */ |
| static int trie_delete_elem(struct bpf_map *map, void *_key) |
| { |
| struct lpm_trie *trie = container_of(map, struct lpm_trie, map); |
| struct bpf_lpm_trie_key *key = _key; |
| struct lpm_trie_node __rcu **trim, **trim2; |
| struct lpm_trie_node *node, *parent; |
| unsigned long irq_flags; |
| unsigned int next_bit; |
| size_t matchlen = 0; |
| int ret = 0; |
| |
| if (key->prefixlen > trie->max_prefixlen) |
| return -EINVAL; |
| |
| spin_lock_irqsave(&trie->lock, irq_flags); |
| |
| /* Walk the tree looking for an exact key/length match and keeping |
| * track of the path we traverse. We will need to know the node |
| * we wish to delete, and the slot that points to the node we want |
| * to delete. We may also need to know the nodes parent and the |
| * slot that contains it. |
| */ |
| trim = &trie->root; |
| trim2 = trim; |
| parent = NULL; |
| while ((node = rcu_dereference_protected( |
| *trim, lockdep_is_held(&trie->lock)))) { |
| matchlen = longest_prefix_match(trie, node, key); |
| |
| if (node->prefixlen != matchlen || |
| node->prefixlen == key->prefixlen) |
| break; |
| |
| parent = node; |
| trim2 = trim; |
| next_bit = extract_bit(key->data, node->prefixlen); |
| trim = &node->child[next_bit]; |
| } |
| |
| if (!node || node->prefixlen != key->prefixlen || |
| node->prefixlen != matchlen || |
| (node->flags & LPM_TREE_NODE_FLAG_IM)) { |
| ret = -ENOENT; |
| goto out; |
| } |
| |
| trie->n_entries--; |
| |
| /* If the node we are removing has two children, simply mark it |
| * as intermediate and we are done. |
| */ |
| if (rcu_access_pointer(node->child[0]) && |
| rcu_access_pointer(node->child[1])) { |
| node->flags |= LPM_TREE_NODE_FLAG_IM; |
| goto out; |
| } |
| |
| /* If the parent of the node we are about to delete is an intermediate |
| * node, and the deleted node doesn't have any children, we can delete |
| * the intermediate parent as well and promote its other child |
| * up the tree. Doing this maintains the invariant that all |
| * intermediate nodes have exactly 2 children and that there are no |
| * unnecessary intermediate nodes in the tree. |
| */ |
| if (parent && (parent->flags & LPM_TREE_NODE_FLAG_IM) && |
| !node->child[0] && !node->child[1]) { |
| if (node == rcu_access_pointer(parent->child[0])) |
| rcu_assign_pointer( |
| *trim2, rcu_access_pointer(parent->child[1])); |
| else |
| rcu_assign_pointer( |
| *trim2, rcu_access_pointer(parent->child[0])); |
| kfree_rcu(parent, rcu); |
| kfree_rcu(node, rcu); |
| goto out; |
| } |
| |
| /* The node we are removing has either zero or one child. If there |
| * is a child, move it into the removed node's slot then delete |
| * the node. Otherwise just clear the slot and delete the node. |
| */ |
| if (node->child[0]) |
| rcu_assign_pointer(*trim, rcu_access_pointer(node->child[0])); |
| else if (node->child[1]) |
| rcu_assign_pointer(*trim, rcu_access_pointer(node->child[1])); |
| else |
| RCU_INIT_POINTER(*trim, NULL); |
| kfree_rcu(node, rcu); |
| |
| out: |
| spin_unlock_irqrestore(&trie->lock, irq_flags); |
| |
| return ret; |
| } |
| |
| #define LPM_DATA_SIZE_MAX 256 |
| #define LPM_DATA_SIZE_MIN 1 |
| |
| #define LPM_VAL_SIZE_MAX (KMALLOC_MAX_SIZE - LPM_DATA_SIZE_MAX - \ |
| sizeof(struct lpm_trie_node)) |
| #define LPM_VAL_SIZE_MIN 1 |
| |
| #define LPM_KEY_SIZE(X) (sizeof(struct bpf_lpm_trie_key) + (X)) |
| #define LPM_KEY_SIZE_MAX LPM_KEY_SIZE(LPM_DATA_SIZE_MAX) |
| #define LPM_KEY_SIZE_MIN LPM_KEY_SIZE(LPM_DATA_SIZE_MIN) |
| |
| #define LPM_CREATE_FLAG_MASK (BPF_F_NO_PREALLOC | BPF_F_NUMA_NODE | \ |
| BPF_F_ACCESS_MASK) |
| |
| static struct bpf_map *trie_alloc(union bpf_attr *attr) |
| { |
| struct lpm_trie *trie; |
| |
| if (!bpf_capable()) |
| return ERR_PTR(-EPERM); |
| |
| /* check sanity of attributes */ |
| if (attr->max_entries == 0 || |
| !(attr->map_flags & BPF_F_NO_PREALLOC) || |
| attr->map_flags & ~LPM_CREATE_FLAG_MASK || |
| !bpf_map_flags_access_ok(attr->map_flags) || |
| attr->key_size < LPM_KEY_SIZE_MIN || |
| attr->key_size > LPM_KEY_SIZE_MAX || |
| attr->value_size < LPM_VAL_SIZE_MIN || |
| attr->value_size > LPM_VAL_SIZE_MAX) |
| return ERR_PTR(-EINVAL); |
| |
| trie = kzalloc(sizeof(*trie), GFP_USER | __GFP_NOWARN | __GFP_ACCOUNT); |
| if (!trie) |
| return ERR_PTR(-ENOMEM); |
| |
| /* copy mandatory map attributes */ |
| bpf_map_init_from_attr(&trie->map, attr); |
| trie->data_size = attr->key_size - |
| offsetof(struct bpf_lpm_trie_key, data); |
| trie->max_prefixlen = trie->data_size * 8; |
| |
| spin_lock_init(&trie->lock); |
| |
| return &trie->map; |
| } |
| |
| static void trie_free(struct bpf_map *map) |
| { |
| struct lpm_trie *trie = container_of(map, struct lpm_trie, map); |
| struct lpm_trie_node __rcu **slot; |
| struct lpm_trie_node *node; |
| |
| /* Always start at the root and walk down to a node that has no |
| * children. Then free that node, nullify its reference in the parent |
| * and start over. |
| */ |
| |
| for (;;) { |
| slot = &trie->root; |
| |
| for (;;) { |
| node = rcu_dereference_protected(*slot, 1); |
| if (!node) |
| goto out; |
| |
| if (rcu_access_pointer(node->child[0])) { |
| slot = &node->child[0]; |
| continue; |
| } |
| |
| if (rcu_access_pointer(node->child[1])) { |
| slot = &node->child[1]; |
| continue; |
| } |
| |
| kfree(node); |
| RCU_INIT_POINTER(*slot, NULL); |
| break; |
| } |
| } |
| |
| out: |
| kfree(trie); |
| } |
| |
| static int trie_get_next_key(struct bpf_map *map, void *_key, void *_next_key) |
| { |
| struct lpm_trie_node *node, *next_node = NULL, *parent, *search_root; |
| struct lpm_trie *trie = container_of(map, struct lpm_trie, map); |
| struct bpf_lpm_trie_key *key = _key, *next_key = _next_key; |
| struct lpm_trie_node **node_stack = NULL; |
| int err = 0, stack_ptr = -1; |
| unsigned int next_bit; |
| size_t matchlen; |
| |
| /* The get_next_key follows postorder. For the 4 node example in |
| * the top of this file, the trie_get_next_key() returns the following |
| * one after another: |
| * 192.168.0.0/24 |
| * 192.168.1.0/24 |
| * 192.168.128.0/24 |
| * 192.168.0.0/16 |
| * |
| * The idea is to return more specific keys before less specific ones. |
| */ |
| |
| /* Empty trie */ |
| search_root = rcu_dereference(trie->root); |
| if (!search_root) |
| return -ENOENT; |
| |
| /* For invalid key, find the leftmost node in the trie */ |
| if (!key || key->prefixlen > trie->max_prefixlen) |
| goto find_leftmost; |
| |
| node_stack = kmalloc_array(trie->max_prefixlen, |
| sizeof(struct lpm_trie_node *), |
| GFP_ATOMIC | __GFP_NOWARN); |
| if (!node_stack) |
| return -ENOMEM; |
| |
| /* Try to find the exact node for the given key */ |
| for (node = search_root; node;) { |
| node_stack[++stack_ptr] = node; |
| matchlen = longest_prefix_match(trie, node, key); |
| if (node->prefixlen != matchlen || |
| node->prefixlen == key->prefixlen) |
| break; |
| |
| next_bit = extract_bit(key->data, node->prefixlen); |
| node = rcu_dereference(node->child[next_bit]); |
| } |
| if (!node || node->prefixlen != key->prefixlen || |
| (node->flags & LPM_TREE_NODE_FLAG_IM)) |
| goto find_leftmost; |
| |
| /* The node with the exactly-matching key has been found, |
| * find the first node in postorder after the matched node. |
| */ |
| node = node_stack[stack_ptr]; |
| while (stack_ptr > 0) { |
| parent = node_stack[stack_ptr - 1]; |
| if (rcu_dereference(parent->child[0]) == node) { |
| search_root = rcu_dereference(parent->child[1]); |
| if (search_root) |
| goto find_leftmost; |
| } |
| if (!(parent->flags & LPM_TREE_NODE_FLAG_IM)) { |
| next_node = parent; |
| goto do_copy; |
| } |
| |
| node = parent; |
| stack_ptr--; |
| } |
| |
| /* did not find anything */ |
| err = -ENOENT; |
| goto free_stack; |
| |
| find_leftmost: |
| /* Find the leftmost non-intermediate node, all intermediate nodes |
| * have exact two children, so this function will never return NULL. |
| */ |
| for (node = search_root; node;) { |
| if (node->flags & LPM_TREE_NODE_FLAG_IM) { |
| node = rcu_dereference(node->child[0]); |
| } else { |
| next_node = node; |
| node = rcu_dereference(node->child[0]); |
| if (!node) |
| node = rcu_dereference(next_node->child[1]); |
| } |
| } |
| do_copy: |
| next_key->prefixlen = next_node->prefixlen; |
| memcpy((void *)next_key + offsetof(struct bpf_lpm_trie_key, data), |
| next_node->data, trie->data_size); |
| free_stack: |
| kfree(node_stack); |
| return err; |
| } |
| |
| static int trie_check_btf(const struct bpf_map *map, |
| const struct btf *btf, |
| const struct btf_type *key_type, |
| const struct btf_type *value_type) |
| { |
| /* Keys must have struct bpf_lpm_trie_key embedded. */ |
| return BTF_INFO_KIND(key_type->info) != BTF_KIND_STRUCT ? |
| -EINVAL : 0; |
| } |
| |
| BTF_ID_LIST_SINGLE(trie_map_btf_ids, struct, lpm_trie) |
| const struct bpf_map_ops trie_map_ops = { |
| .map_meta_equal = bpf_map_meta_equal, |
| .map_alloc = trie_alloc, |
| .map_free = trie_free, |
| .map_get_next_key = trie_get_next_key, |
| .map_lookup_elem = trie_lookup_elem, |
| .map_update_elem = trie_update_elem, |
| .map_delete_elem = trie_delete_elem, |
| .map_lookup_batch = generic_map_lookup_batch, |
| .map_update_batch = generic_map_update_batch, |
| .map_delete_batch = generic_map_delete_batch, |
| .map_check_btf = trie_check_btf, |
| .map_btf_id = &trie_map_btf_ids[0], |
| }; |