| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. |
| * All Rights Reserved. |
| */ |
| #include "xfs.h" |
| #include "xfs_fs.h" |
| #include "xfs_format.h" |
| #include "xfs_log_format.h" |
| #include "xfs_shared.h" |
| #include "xfs_trans_resv.h" |
| #include "xfs_bit.h" |
| #include "xfs_mount.h" |
| #include "xfs_defer.h" |
| #include "xfs_btree.h" |
| #include "xfs_rmap.h" |
| #include "xfs_alloc_btree.h" |
| #include "xfs_alloc.h" |
| #include "xfs_extent_busy.h" |
| #include "xfs_errortag.h" |
| #include "xfs_error.h" |
| #include "xfs_trace.h" |
| #include "xfs_trans.h" |
| #include "xfs_buf_item.h" |
| #include "xfs_log.h" |
| #include "xfs_ag.h" |
| #include "xfs_ag_resv.h" |
| #include "xfs_bmap.h" |
| #include "xfs_health.h" |
| #include "xfs_extfree_item.h" |
| |
| struct kmem_cache *xfs_extfree_item_cache; |
| |
| struct workqueue_struct *xfs_alloc_wq; |
| |
| #define XFS_ABSDIFF(a,b) (((a) <= (b)) ? ((b) - (a)) : ((a) - (b))) |
| |
| #define XFSA_FIXUP_BNO_OK 1 |
| #define XFSA_FIXUP_CNT_OK 2 |
| |
| /* |
| * Size of the AGFL. For CRC-enabled filesystes we steal a couple of slots in |
| * the beginning of the block for a proper header with the location information |
| * and CRC. |
| */ |
| unsigned int |
| xfs_agfl_size( |
| struct xfs_mount *mp) |
| { |
| unsigned int size = mp->m_sb.sb_sectsize; |
| |
| if (xfs_has_crc(mp)) |
| size -= sizeof(struct xfs_agfl); |
| |
| return size / sizeof(xfs_agblock_t); |
| } |
| |
| unsigned int |
| xfs_refc_block( |
| struct xfs_mount *mp) |
| { |
| if (xfs_has_rmapbt(mp)) |
| return XFS_RMAP_BLOCK(mp) + 1; |
| if (xfs_has_finobt(mp)) |
| return XFS_FIBT_BLOCK(mp) + 1; |
| return XFS_IBT_BLOCK(mp) + 1; |
| } |
| |
| xfs_extlen_t |
| xfs_prealloc_blocks( |
| struct xfs_mount *mp) |
| { |
| if (xfs_has_reflink(mp)) |
| return xfs_refc_block(mp) + 1; |
| if (xfs_has_rmapbt(mp)) |
| return XFS_RMAP_BLOCK(mp) + 1; |
| if (xfs_has_finobt(mp)) |
| return XFS_FIBT_BLOCK(mp) + 1; |
| return XFS_IBT_BLOCK(mp) + 1; |
| } |
| |
| /* |
| * The number of blocks per AG that we withhold from xfs_dec_fdblocks to |
| * guarantee that we can refill the AGFL prior to allocating space in a nearly |
| * full AG. Although the space described by the free space btrees, the |
| * blocks used by the freesp btrees themselves, and the blocks owned by the |
| * AGFL are counted in the ondisk fdblocks, it's a mistake to let the ondisk |
| * free space in the AG drop so low that the free space btrees cannot refill an |
| * empty AGFL up to the minimum level. Rather than grind through empty AGs |
| * until the fs goes down, we subtract this many AG blocks from the incore |
| * fdblocks to ensure user allocation does not overcommit the space the |
| * filesystem needs for the AGFLs. The rmap btree uses a per-AG reservation to |
| * withhold space from xfs_dec_fdblocks, so we do not account for that here. |
| */ |
| #define XFS_ALLOCBT_AGFL_RESERVE 4 |
| |
| /* |
| * Compute the number of blocks that we set aside to guarantee the ability to |
| * refill the AGFL and handle a full bmap btree split. |
| * |
| * In order to avoid ENOSPC-related deadlock caused by out-of-order locking of |
| * AGF buffer (PV 947395), we place constraints on the relationship among |
| * actual allocations for data blocks, freelist blocks, and potential file data |
| * bmap btree blocks. However, these restrictions may result in no actual space |
| * allocated for a delayed extent, for example, a data block in a certain AG is |
| * allocated but there is no additional block for the additional bmap btree |
| * block due to a split of the bmap btree of the file. The result of this may |
| * lead to an infinite loop when the file gets flushed to disk and all delayed |
| * extents need to be actually allocated. To get around this, we explicitly set |
| * aside a few blocks which will not be reserved in delayed allocation. |
| * |
| * For each AG, we need to reserve enough blocks to replenish a totally empty |
| * AGFL and 4 more to handle a potential split of the file's bmap btree. |
| */ |
| unsigned int |
| xfs_alloc_set_aside( |
| struct xfs_mount *mp) |
| { |
| return mp->m_sb.sb_agcount * (XFS_ALLOCBT_AGFL_RESERVE + 4); |
| } |
| |
| /* |
| * When deciding how much space to allocate out of an AG, we limit the |
| * allocation maximum size to the size the AG. However, we cannot use all the |
| * blocks in the AG - some are permanently used by metadata. These |
| * blocks are generally: |
| * - the AG superblock, AGF, AGI and AGFL |
| * - the AGF (bno and cnt) and AGI btree root blocks, and optionally |
| * the AGI free inode and rmap btree root blocks. |
| * - blocks on the AGFL according to xfs_alloc_set_aside() limits |
| * - the rmapbt root block |
| * |
| * The AG headers are sector sized, so the amount of space they take up is |
| * dependent on filesystem geometry. The others are all single blocks. |
| */ |
| unsigned int |
| xfs_alloc_ag_max_usable( |
| struct xfs_mount *mp) |
| { |
| unsigned int blocks; |
| |
| blocks = XFS_BB_TO_FSB(mp, XFS_FSS_TO_BB(mp, 4)); /* ag headers */ |
| blocks += XFS_ALLOCBT_AGFL_RESERVE; |
| blocks += 3; /* AGF, AGI btree root blocks */ |
| if (xfs_has_finobt(mp)) |
| blocks++; /* finobt root block */ |
| if (xfs_has_rmapbt(mp)) |
| blocks++; /* rmap root block */ |
| if (xfs_has_reflink(mp)) |
| blocks++; /* refcount root block */ |
| |
| return mp->m_sb.sb_agblocks - blocks; |
| } |
| |
| |
| static int |
| xfs_alloc_lookup( |
| struct xfs_btree_cur *cur, |
| xfs_lookup_t dir, |
| xfs_agblock_t bno, |
| xfs_extlen_t len, |
| int *stat) |
| { |
| int error; |
| |
| cur->bc_rec.a.ar_startblock = bno; |
| cur->bc_rec.a.ar_blockcount = len; |
| error = xfs_btree_lookup(cur, dir, stat); |
| if (*stat == 1) |
| cur->bc_flags |= XFS_BTREE_ALLOCBT_ACTIVE; |
| else |
| cur->bc_flags &= ~XFS_BTREE_ALLOCBT_ACTIVE; |
| return error; |
| } |
| |
| /* |
| * Lookup the record equal to [bno, len] in the btree given by cur. |
| */ |
| static inline int /* error */ |
| xfs_alloc_lookup_eq( |
| struct xfs_btree_cur *cur, /* btree cursor */ |
| xfs_agblock_t bno, /* starting block of extent */ |
| xfs_extlen_t len, /* length of extent */ |
| int *stat) /* success/failure */ |
| { |
| return xfs_alloc_lookup(cur, XFS_LOOKUP_EQ, bno, len, stat); |
| } |
| |
| /* |
| * Lookup the first record greater than or equal to [bno, len] |
| * in the btree given by cur. |
| */ |
| int /* error */ |
| xfs_alloc_lookup_ge( |
| struct xfs_btree_cur *cur, /* btree cursor */ |
| xfs_agblock_t bno, /* starting block of extent */ |
| xfs_extlen_t len, /* length of extent */ |
| int *stat) /* success/failure */ |
| { |
| return xfs_alloc_lookup(cur, XFS_LOOKUP_GE, bno, len, stat); |
| } |
| |
| /* |
| * Lookup the first record less than or equal to [bno, len] |
| * in the btree given by cur. |
| */ |
| int /* error */ |
| xfs_alloc_lookup_le( |
| struct xfs_btree_cur *cur, /* btree cursor */ |
| xfs_agblock_t bno, /* starting block of extent */ |
| xfs_extlen_t len, /* length of extent */ |
| int *stat) /* success/failure */ |
| { |
| return xfs_alloc_lookup(cur, XFS_LOOKUP_LE, bno, len, stat); |
| } |
| |
| static inline bool |
| xfs_alloc_cur_active( |
| struct xfs_btree_cur *cur) |
| { |
| return cur && (cur->bc_flags & XFS_BTREE_ALLOCBT_ACTIVE); |
| } |
| |
| /* |
| * Update the record referred to by cur to the value given |
| * by [bno, len]. |
| * This either works (return 0) or gets an EFSCORRUPTED error. |
| */ |
| STATIC int /* error */ |
| xfs_alloc_update( |
| struct xfs_btree_cur *cur, /* btree cursor */ |
| xfs_agblock_t bno, /* starting block of extent */ |
| xfs_extlen_t len) /* length of extent */ |
| { |
| union xfs_btree_rec rec; |
| |
| rec.alloc.ar_startblock = cpu_to_be32(bno); |
| rec.alloc.ar_blockcount = cpu_to_be32(len); |
| return xfs_btree_update(cur, &rec); |
| } |
| |
| /* Convert the ondisk btree record to its incore representation. */ |
| void |
| xfs_alloc_btrec_to_irec( |
| const union xfs_btree_rec *rec, |
| struct xfs_alloc_rec_incore *irec) |
| { |
| irec->ar_startblock = be32_to_cpu(rec->alloc.ar_startblock); |
| irec->ar_blockcount = be32_to_cpu(rec->alloc.ar_blockcount); |
| } |
| |
| /* Simple checks for free space records. */ |
| xfs_failaddr_t |
| xfs_alloc_check_irec( |
| struct xfs_perag *pag, |
| const struct xfs_alloc_rec_incore *irec) |
| { |
| if (irec->ar_blockcount == 0) |
| return __this_address; |
| |
| /* check for valid extent range, including overflow */ |
| if (!xfs_verify_agbext(pag, irec->ar_startblock, irec->ar_blockcount)) |
| return __this_address; |
| |
| return NULL; |
| } |
| |
| static inline int |
| xfs_alloc_complain_bad_rec( |
| struct xfs_btree_cur *cur, |
| xfs_failaddr_t fa, |
| const struct xfs_alloc_rec_incore *irec) |
| { |
| struct xfs_mount *mp = cur->bc_mp; |
| |
| xfs_warn(mp, |
| "%sbt record corruption in AG %d detected at %pS!", |
| cur->bc_ops->name, cur->bc_ag.pag->pag_agno, fa); |
| xfs_warn(mp, |
| "start block 0x%x block count 0x%x", irec->ar_startblock, |
| irec->ar_blockcount); |
| xfs_btree_mark_sick(cur); |
| return -EFSCORRUPTED; |
| } |
| |
| /* |
| * Get the data from the pointed-to record. |
| */ |
| int /* error */ |
| xfs_alloc_get_rec( |
| struct xfs_btree_cur *cur, /* btree cursor */ |
| xfs_agblock_t *bno, /* output: starting block of extent */ |
| xfs_extlen_t *len, /* output: length of extent */ |
| int *stat) /* output: success/failure */ |
| { |
| struct xfs_alloc_rec_incore irec; |
| union xfs_btree_rec *rec; |
| xfs_failaddr_t fa; |
| int error; |
| |
| error = xfs_btree_get_rec(cur, &rec, stat); |
| if (error || !(*stat)) |
| return error; |
| |
| xfs_alloc_btrec_to_irec(rec, &irec); |
| fa = xfs_alloc_check_irec(cur->bc_ag.pag, &irec); |
| if (fa) |
| return xfs_alloc_complain_bad_rec(cur, fa, &irec); |
| |
| *bno = irec.ar_startblock; |
| *len = irec.ar_blockcount; |
| return 0; |
| } |
| |
| /* |
| * Compute aligned version of the found extent. |
| * Takes alignment and min length into account. |
| */ |
| STATIC bool |
| xfs_alloc_compute_aligned( |
| xfs_alloc_arg_t *args, /* allocation argument structure */ |
| xfs_agblock_t foundbno, /* starting block in found extent */ |
| xfs_extlen_t foundlen, /* length in found extent */ |
| xfs_agblock_t *resbno, /* result block number */ |
| xfs_extlen_t *reslen, /* result length */ |
| unsigned *busy_gen) |
| { |
| xfs_agblock_t bno = foundbno; |
| xfs_extlen_t len = foundlen; |
| xfs_extlen_t diff; |
| bool busy; |
| |
| /* Trim busy sections out of found extent */ |
| busy = xfs_extent_busy_trim(args, &bno, &len, busy_gen); |
| |
| /* |
| * If we have a largish extent that happens to start before min_agbno, |
| * see if we can shift it into range... |
| */ |
| if (bno < args->min_agbno && bno + len > args->min_agbno) { |
| diff = args->min_agbno - bno; |
| if (len > diff) { |
| bno += diff; |
| len -= diff; |
| } |
| } |
| |
| if (args->alignment > 1 && len >= args->minlen) { |
| xfs_agblock_t aligned_bno = roundup(bno, args->alignment); |
| |
| diff = aligned_bno - bno; |
| |
| *resbno = aligned_bno; |
| *reslen = diff >= len ? 0 : len - diff; |
| } else { |
| *resbno = bno; |
| *reslen = len; |
| } |
| |
| return busy; |
| } |
| |
| /* |
| * Compute best start block and diff for "near" allocations. |
| * freelen >= wantlen already checked by caller. |
| */ |
| STATIC xfs_extlen_t /* difference value (absolute) */ |
| xfs_alloc_compute_diff( |
| xfs_agblock_t wantbno, /* target starting block */ |
| xfs_extlen_t wantlen, /* target length */ |
| xfs_extlen_t alignment, /* target alignment */ |
| int datatype, /* are we allocating data? */ |
| xfs_agblock_t freebno, /* freespace's starting block */ |
| xfs_extlen_t freelen, /* freespace's length */ |
| xfs_agblock_t *newbnop) /* result: best start block from free */ |
| { |
| xfs_agblock_t freeend; /* end of freespace extent */ |
| xfs_agblock_t newbno1; /* return block number */ |
| xfs_agblock_t newbno2; /* other new block number */ |
| xfs_extlen_t newlen1=0; /* length with newbno1 */ |
| xfs_extlen_t newlen2=0; /* length with newbno2 */ |
| xfs_agblock_t wantend; /* end of target extent */ |
| bool userdata = datatype & XFS_ALLOC_USERDATA; |
| |
| ASSERT(freelen >= wantlen); |
| freeend = freebno + freelen; |
| wantend = wantbno + wantlen; |
| /* |
| * We want to allocate from the start of a free extent if it is past |
| * the desired block or if we are allocating user data and the free |
| * extent is before desired block. The second case is there to allow |
| * for contiguous allocation from the remaining free space if the file |
| * grows in the short term. |
| */ |
| if (freebno >= wantbno || (userdata && freeend < wantend)) { |
| if ((newbno1 = roundup(freebno, alignment)) >= freeend) |
| newbno1 = NULLAGBLOCK; |
| } else if (freeend >= wantend && alignment > 1) { |
| newbno1 = roundup(wantbno, alignment); |
| newbno2 = newbno1 - alignment; |
| if (newbno1 >= freeend) |
| newbno1 = NULLAGBLOCK; |
| else |
| newlen1 = XFS_EXTLEN_MIN(wantlen, freeend - newbno1); |
| if (newbno2 < freebno) |
| newbno2 = NULLAGBLOCK; |
| else |
| newlen2 = XFS_EXTLEN_MIN(wantlen, freeend - newbno2); |
| if (newbno1 != NULLAGBLOCK && newbno2 != NULLAGBLOCK) { |
| if (newlen1 < newlen2 || |
| (newlen1 == newlen2 && |
| XFS_ABSDIFF(newbno1, wantbno) > |
| XFS_ABSDIFF(newbno2, wantbno))) |
| newbno1 = newbno2; |
| } else if (newbno2 != NULLAGBLOCK) |
| newbno1 = newbno2; |
| } else if (freeend >= wantend) { |
| newbno1 = wantbno; |
| } else if (alignment > 1) { |
| newbno1 = roundup(freeend - wantlen, alignment); |
| if (newbno1 > freeend - wantlen && |
| newbno1 - alignment >= freebno) |
| newbno1 -= alignment; |
| else if (newbno1 >= freeend) |
| newbno1 = NULLAGBLOCK; |
| } else |
| newbno1 = freeend - wantlen; |
| *newbnop = newbno1; |
| return newbno1 == NULLAGBLOCK ? 0 : XFS_ABSDIFF(newbno1, wantbno); |
| } |
| |
| /* |
| * Fix up the length, based on mod and prod. |
| * len should be k * prod + mod for some k. |
| * If len is too small it is returned unchanged. |
| * If len hits maxlen it is left alone. |
| */ |
| STATIC void |
| xfs_alloc_fix_len( |
| xfs_alloc_arg_t *args) /* allocation argument structure */ |
| { |
| xfs_extlen_t k; |
| xfs_extlen_t rlen; |
| |
| ASSERT(args->mod < args->prod); |
| rlen = args->len; |
| ASSERT(rlen >= args->minlen); |
| ASSERT(rlen <= args->maxlen); |
| if (args->prod <= 1 || rlen < args->mod || rlen == args->maxlen || |
| (args->mod == 0 && rlen < args->prod)) |
| return; |
| k = rlen % args->prod; |
| if (k == args->mod) |
| return; |
| if (k > args->mod) |
| rlen = rlen - (k - args->mod); |
| else |
| rlen = rlen - args->prod + (args->mod - k); |
| /* casts to (int) catch length underflows */ |
| if ((int)rlen < (int)args->minlen) |
| return; |
| ASSERT(rlen >= args->minlen && rlen <= args->maxlen); |
| ASSERT(rlen % args->prod == args->mod); |
| ASSERT(args->pag->pagf_freeblks + args->pag->pagf_flcount >= |
| rlen + args->minleft); |
| args->len = rlen; |
| } |
| |
| /* |
| * Determine if the cursor points to the block that contains the right-most |
| * block of records in the by-count btree. This block contains the largest |
| * contiguous free extent in the AG, so if we modify a record in this block we |
| * need to call xfs_alloc_fixup_longest() once the modifications are done to |
| * ensure the agf->agf_longest field is kept up to date with the longest free |
| * extent tracked by the by-count btree. |
| */ |
| static bool |
| xfs_alloc_cursor_at_lastrec( |
| struct xfs_btree_cur *cnt_cur) |
| { |
| struct xfs_btree_block *block; |
| union xfs_btree_ptr ptr; |
| struct xfs_buf *bp; |
| |
| block = xfs_btree_get_block(cnt_cur, 0, &bp); |
| |
| xfs_btree_get_sibling(cnt_cur, block, &ptr, XFS_BB_RIGHTSIB); |
| return xfs_btree_ptr_is_null(cnt_cur, &ptr); |
| } |
| |
| /* |
| * Find the rightmost record of the cntbt, and return the longest free space |
| * recorded in it. Simply set both the block number and the length to their |
| * maximum values before searching. |
| */ |
| static int |
| xfs_cntbt_longest( |
| struct xfs_btree_cur *cnt_cur, |
| xfs_extlen_t *longest) |
| { |
| struct xfs_alloc_rec_incore irec; |
| union xfs_btree_rec *rec; |
| int stat = 0; |
| int error; |
| |
| memset(&cnt_cur->bc_rec, 0xFF, sizeof(cnt_cur->bc_rec)); |
| error = xfs_btree_lookup(cnt_cur, XFS_LOOKUP_LE, &stat); |
| if (error) |
| return error; |
| if (!stat) { |
| /* totally empty tree */ |
| *longest = 0; |
| return 0; |
| } |
| |
| error = xfs_btree_get_rec(cnt_cur, &rec, &stat); |
| if (error) |
| return error; |
| if (XFS_IS_CORRUPT(cnt_cur->bc_mp, !stat)) { |
| xfs_btree_mark_sick(cnt_cur); |
| return -EFSCORRUPTED; |
| } |
| |
| xfs_alloc_btrec_to_irec(rec, &irec); |
| *longest = irec.ar_blockcount; |
| return 0; |
| } |
| |
| /* |
| * Update the longest contiguous free extent in the AG from the by-count cursor |
| * that is passed to us. This should be done at the end of any allocation or |
| * freeing operation that touches the longest extent in the btree. |
| * |
| * Needing to update the longest extent can be determined by calling |
| * xfs_alloc_cursor_at_lastrec() after the cursor is positioned for record |
| * modification but before the modification begins. |
| */ |
| static int |
| xfs_alloc_fixup_longest( |
| struct xfs_btree_cur *cnt_cur) |
| { |
| struct xfs_perag *pag = cnt_cur->bc_ag.pag; |
| struct xfs_buf *bp = cnt_cur->bc_ag.agbp; |
| struct xfs_agf *agf = bp->b_addr; |
| xfs_extlen_t longest = 0; |
| int error; |
| |
| /* Lookup last rec in order to update AGF. */ |
| error = xfs_cntbt_longest(cnt_cur, &longest); |
| if (error) |
| return error; |
| |
| pag->pagf_longest = longest; |
| agf->agf_longest = cpu_to_be32(pag->pagf_longest); |
| xfs_alloc_log_agf(cnt_cur->bc_tp, bp, XFS_AGF_LONGEST); |
| |
| return 0; |
| } |
| |
| /* |
| * Update the two btrees, logically removing from freespace the extent |
| * starting at rbno, rlen blocks. The extent is contained within the |
| * actual (current) free extent fbno for flen blocks. |
| * Flags are passed in indicating whether the cursors are set to the |
| * relevant records. |
| */ |
| STATIC int /* error code */ |
| xfs_alloc_fixup_trees( |
| struct xfs_btree_cur *cnt_cur, /* cursor for by-size btree */ |
| struct xfs_btree_cur *bno_cur, /* cursor for by-block btree */ |
| xfs_agblock_t fbno, /* starting block of free extent */ |
| xfs_extlen_t flen, /* length of free extent */ |
| xfs_agblock_t rbno, /* starting block of returned extent */ |
| xfs_extlen_t rlen, /* length of returned extent */ |
| int flags) /* flags, XFSA_FIXUP_... */ |
| { |
| int error; /* error code */ |
| int i; /* operation results */ |
| xfs_agblock_t nfbno1; /* first new free startblock */ |
| xfs_agblock_t nfbno2; /* second new free startblock */ |
| xfs_extlen_t nflen1=0; /* first new free length */ |
| xfs_extlen_t nflen2=0; /* second new free length */ |
| struct xfs_mount *mp; |
| bool fixup_longest = false; |
| |
| mp = cnt_cur->bc_mp; |
| |
| /* |
| * Look up the record in the by-size tree if necessary. |
| */ |
| if (flags & XFSA_FIXUP_CNT_OK) { |
| #ifdef DEBUG |
| if ((error = xfs_alloc_get_rec(cnt_cur, &nfbno1, &nflen1, &i))) |
| return error; |
| if (XFS_IS_CORRUPT(mp, |
| i != 1 || |
| nfbno1 != fbno || |
| nflen1 != flen)) { |
| xfs_btree_mark_sick(cnt_cur); |
| return -EFSCORRUPTED; |
| } |
| #endif |
| } else { |
| if ((error = xfs_alloc_lookup_eq(cnt_cur, fbno, flen, &i))) |
| return error; |
| if (XFS_IS_CORRUPT(mp, i != 1)) { |
| xfs_btree_mark_sick(cnt_cur); |
| return -EFSCORRUPTED; |
| } |
| } |
| /* |
| * Look up the record in the by-block tree if necessary. |
| */ |
| if (flags & XFSA_FIXUP_BNO_OK) { |
| #ifdef DEBUG |
| if ((error = xfs_alloc_get_rec(bno_cur, &nfbno1, &nflen1, &i))) |
| return error; |
| if (XFS_IS_CORRUPT(mp, |
| i != 1 || |
| nfbno1 != fbno || |
| nflen1 != flen)) { |
| xfs_btree_mark_sick(bno_cur); |
| return -EFSCORRUPTED; |
| } |
| #endif |
| } else { |
| if ((error = xfs_alloc_lookup_eq(bno_cur, fbno, flen, &i))) |
| return error; |
| if (XFS_IS_CORRUPT(mp, i != 1)) { |
| xfs_btree_mark_sick(bno_cur); |
| return -EFSCORRUPTED; |
| } |
| } |
| |
| #ifdef DEBUG |
| if (bno_cur->bc_nlevels == 1 && cnt_cur->bc_nlevels == 1) { |
| struct xfs_btree_block *bnoblock; |
| struct xfs_btree_block *cntblock; |
| |
| bnoblock = XFS_BUF_TO_BLOCK(bno_cur->bc_levels[0].bp); |
| cntblock = XFS_BUF_TO_BLOCK(cnt_cur->bc_levels[0].bp); |
| |
| if (XFS_IS_CORRUPT(mp, |
| bnoblock->bb_numrecs != |
| cntblock->bb_numrecs)) { |
| xfs_btree_mark_sick(bno_cur); |
| return -EFSCORRUPTED; |
| } |
| } |
| #endif |
| |
| /* |
| * Deal with all four cases: the allocated record is contained |
| * within the freespace record, so we can have new freespace |
| * at either (or both) end, or no freespace remaining. |
| */ |
| if (rbno == fbno && rlen == flen) |
| nfbno1 = nfbno2 = NULLAGBLOCK; |
| else if (rbno == fbno) { |
| nfbno1 = rbno + rlen; |
| nflen1 = flen - rlen; |
| nfbno2 = NULLAGBLOCK; |
| } else if (rbno + rlen == fbno + flen) { |
| nfbno1 = fbno; |
| nflen1 = flen - rlen; |
| nfbno2 = NULLAGBLOCK; |
| } else { |
| nfbno1 = fbno; |
| nflen1 = rbno - fbno; |
| nfbno2 = rbno + rlen; |
| nflen2 = (fbno + flen) - nfbno2; |
| } |
| |
| if (xfs_alloc_cursor_at_lastrec(cnt_cur)) |
| fixup_longest = true; |
| |
| /* |
| * Delete the entry from the by-size btree. |
| */ |
| if ((error = xfs_btree_delete(cnt_cur, &i))) |
| return error; |
| if (XFS_IS_CORRUPT(mp, i != 1)) { |
| xfs_btree_mark_sick(cnt_cur); |
| return -EFSCORRUPTED; |
| } |
| /* |
| * Add new by-size btree entry(s). |
| */ |
| if (nfbno1 != NULLAGBLOCK) { |
| if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno1, nflen1, &i))) |
| return error; |
| if (XFS_IS_CORRUPT(mp, i != 0)) { |
| xfs_btree_mark_sick(cnt_cur); |
| return -EFSCORRUPTED; |
| } |
| if ((error = xfs_btree_insert(cnt_cur, &i))) |
| return error; |
| if (XFS_IS_CORRUPT(mp, i != 1)) { |
| xfs_btree_mark_sick(cnt_cur); |
| return -EFSCORRUPTED; |
| } |
| } |
| if (nfbno2 != NULLAGBLOCK) { |
| if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno2, nflen2, &i))) |
| return error; |
| if (XFS_IS_CORRUPT(mp, i != 0)) { |
| xfs_btree_mark_sick(cnt_cur); |
| return -EFSCORRUPTED; |
| } |
| if ((error = xfs_btree_insert(cnt_cur, &i))) |
| return error; |
| if (XFS_IS_CORRUPT(mp, i != 1)) { |
| xfs_btree_mark_sick(cnt_cur); |
| return -EFSCORRUPTED; |
| } |
| } |
| /* |
| * Fix up the by-block btree entry(s). |
| */ |
| if (nfbno1 == NULLAGBLOCK) { |
| /* |
| * No remaining freespace, just delete the by-block tree entry. |
| */ |
| if ((error = xfs_btree_delete(bno_cur, &i))) |
| return error; |
| if (XFS_IS_CORRUPT(mp, i != 1)) { |
| xfs_btree_mark_sick(bno_cur); |
| return -EFSCORRUPTED; |
| } |
| } else { |
| /* |
| * Update the by-block entry to start later|be shorter. |
| */ |
| if ((error = xfs_alloc_update(bno_cur, nfbno1, nflen1))) |
| return error; |
| } |
| if (nfbno2 != NULLAGBLOCK) { |
| /* |
| * 2 resulting free entries, need to add one. |
| */ |
| if ((error = xfs_alloc_lookup_eq(bno_cur, nfbno2, nflen2, &i))) |
| return error; |
| if (XFS_IS_CORRUPT(mp, i != 0)) { |
| xfs_btree_mark_sick(bno_cur); |
| return -EFSCORRUPTED; |
| } |
| if ((error = xfs_btree_insert(bno_cur, &i))) |
| return error; |
| if (XFS_IS_CORRUPT(mp, i != 1)) { |
| xfs_btree_mark_sick(bno_cur); |
| return -EFSCORRUPTED; |
| } |
| } |
| |
| if (fixup_longest) |
| return xfs_alloc_fixup_longest(cnt_cur); |
| |
| return 0; |
| } |
| |
| /* |
| * We do not verify the AGFL contents against AGF-based index counters here, |
| * even though we may have access to the perag that contains shadow copies. We |
| * don't know if the AGF based counters have been checked, and if they have they |
| * still may be inconsistent because they haven't yet been reset on the first |
| * allocation after the AGF has been read in. |
| * |
| * This means we can only check that all agfl entries contain valid or null |
| * values because we can't reliably determine the active range to exclude |
| * NULLAGBNO as a valid value. |
| * |
| * However, we can't even do that for v4 format filesystems because there are |
| * old versions of mkfs out there that does not initialise the AGFL to known, |
| * verifiable values. HEnce we can't tell the difference between a AGFL block |
| * allocated by mkfs and a corrupted AGFL block here on v4 filesystems. |
| * |
| * As a result, we can only fully validate AGFL block numbers when we pull them |
| * from the freelist in xfs_alloc_get_freelist(). |
| */ |
| static xfs_failaddr_t |
| xfs_agfl_verify( |
| struct xfs_buf *bp) |
| { |
| struct xfs_mount *mp = bp->b_mount; |
| struct xfs_agfl *agfl = XFS_BUF_TO_AGFL(bp); |
| __be32 *agfl_bno = xfs_buf_to_agfl_bno(bp); |
| int i; |
| |
| if (!xfs_has_crc(mp)) |
| return NULL; |
| |
| if (!xfs_verify_magic(bp, agfl->agfl_magicnum)) |
| return __this_address; |
| if (!uuid_equal(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid)) |
| return __this_address; |
| /* |
| * during growfs operations, the perag is not fully initialised, |
| * so we can't use it for any useful checking. growfs ensures we can't |
| * use it by using uncached buffers that don't have the perag attached |
| * so we can detect and avoid this problem. |
| */ |
| if (bp->b_pag && be32_to_cpu(agfl->agfl_seqno) != bp->b_pag->pag_agno) |
| return __this_address; |
| |
| for (i = 0; i < xfs_agfl_size(mp); i++) { |
| if (be32_to_cpu(agfl_bno[i]) != NULLAGBLOCK && |
| be32_to_cpu(agfl_bno[i]) >= mp->m_sb.sb_agblocks) |
| return __this_address; |
| } |
| |
| if (!xfs_log_check_lsn(mp, be64_to_cpu(XFS_BUF_TO_AGFL(bp)->agfl_lsn))) |
| return __this_address; |
| return NULL; |
| } |
| |
| static void |
| xfs_agfl_read_verify( |
| struct xfs_buf *bp) |
| { |
| struct xfs_mount *mp = bp->b_mount; |
| xfs_failaddr_t fa; |
| |
| /* |
| * There is no verification of non-crc AGFLs because mkfs does not |
| * initialise the AGFL to zero or NULL. Hence the only valid part of the |
| * AGFL is what the AGF says is active. We can't get to the AGF, so we |
| * can't verify just those entries are valid. |
| */ |
| if (!xfs_has_crc(mp)) |
| return; |
| |
| if (!xfs_buf_verify_cksum(bp, XFS_AGFL_CRC_OFF)) |
| xfs_verifier_error(bp, -EFSBADCRC, __this_address); |
| else { |
| fa = xfs_agfl_verify(bp); |
| if (fa) |
| xfs_verifier_error(bp, -EFSCORRUPTED, fa); |
| } |
| } |
| |
| static void |
| xfs_agfl_write_verify( |
| struct xfs_buf *bp) |
| { |
| struct xfs_mount *mp = bp->b_mount; |
| struct xfs_buf_log_item *bip = bp->b_log_item; |
| xfs_failaddr_t fa; |
| |
| /* no verification of non-crc AGFLs */ |
| if (!xfs_has_crc(mp)) |
| return; |
| |
| fa = xfs_agfl_verify(bp); |
| if (fa) { |
| xfs_verifier_error(bp, -EFSCORRUPTED, fa); |
| return; |
| } |
| |
| if (bip) |
| XFS_BUF_TO_AGFL(bp)->agfl_lsn = cpu_to_be64(bip->bli_item.li_lsn); |
| |
| xfs_buf_update_cksum(bp, XFS_AGFL_CRC_OFF); |
| } |
| |
| const struct xfs_buf_ops xfs_agfl_buf_ops = { |
| .name = "xfs_agfl", |
| .magic = { cpu_to_be32(XFS_AGFL_MAGIC), cpu_to_be32(XFS_AGFL_MAGIC) }, |
| .verify_read = xfs_agfl_read_verify, |
| .verify_write = xfs_agfl_write_verify, |
| .verify_struct = xfs_agfl_verify, |
| }; |
| |
| /* |
| * Read in the allocation group free block array. |
| */ |
| int |
| xfs_alloc_read_agfl( |
| struct xfs_perag *pag, |
| struct xfs_trans *tp, |
| struct xfs_buf **bpp) |
| { |
| struct xfs_mount *mp = pag->pag_mount; |
| struct xfs_buf *bp; |
| int error; |
| |
| error = xfs_trans_read_buf( |
| mp, tp, mp->m_ddev_targp, |
| XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGFL_DADDR(mp)), |
| XFS_FSS_TO_BB(mp, 1), 0, &bp, &xfs_agfl_buf_ops); |
| if (xfs_metadata_is_sick(error)) |
| xfs_ag_mark_sick(pag, XFS_SICK_AG_AGFL); |
| if (error) |
| return error; |
| xfs_buf_set_ref(bp, XFS_AGFL_REF); |
| *bpp = bp; |
| return 0; |
| } |
| |
| STATIC int |
| xfs_alloc_update_counters( |
| struct xfs_trans *tp, |
| struct xfs_buf *agbp, |
| long len) |
| { |
| struct xfs_agf *agf = agbp->b_addr; |
| |
| agbp->b_pag->pagf_freeblks += len; |
| be32_add_cpu(&agf->agf_freeblks, len); |
| |
| if (unlikely(be32_to_cpu(agf->agf_freeblks) > |
| be32_to_cpu(agf->agf_length))) { |
| xfs_buf_mark_corrupt(agbp); |
| xfs_ag_mark_sick(agbp->b_pag, XFS_SICK_AG_AGF); |
| return -EFSCORRUPTED; |
| } |
| |
| xfs_alloc_log_agf(tp, agbp, XFS_AGF_FREEBLKS); |
| return 0; |
| } |
| |
| /* |
| * Block allocation algorithm and data structures. |
| */ |
| struct xfs_alloc_cur { |
| struct xfs_btree_cur *cnt; /* btree cursors */ |
| struct xfs_btree_cur *bnolt; |
| struct xfs_btree_cur *bnogt; |
| xfs_extlen_t cur_len;/* current search length */ |
| xfs_agblock_t rec_bno;/* extent startblock */ |
| xfs_extlen_t rec_len;/* extent length */ |
| xfs_agblock_t bno; /* alloc bno */ |
| xfs_extlen_t len; /* alloc len */ |
| xfs_extlen_t diff; /* diff from search bno */ |
| unsigned int busy_gen;/* busy state */ |
| bool busy; |
| }; |
| |
| /* |
| * Set up cursors, etc. in the extent allocation cursor. This function can be |
| * called multiple times to reset an initialized structure without having to |
| * reallocate cursors. |
| */ |
| static int |
| xfs_alloc_cur_setup( |
| struct xfs_alloc_arg *args, |
| struct xfs_alloc_cur *acur) |
| { |
| int error; |
| int i; |
| |
| acur->cur_len = args->maxlen; |
| acur->rec_bno = 0; |
| acur->rec_len = 0; |
| acur->bno = 0; |
| acur->len = 0; |
| acur->diff = -1; |
| acur->busy = false; |
| acur->busy_gen = 0; |
| |
| /* |
| * Perform an initial cntbt lookup to check for availability of maxlen |
| * extents. If this fails, we'll return -ENOSPC to signal the caller to |
| * attempt a small allocation. |
| */ |
| if (!acur->cnt) |
| acur->cnt = xfs_cntbt_init_cursor(args->mp, args->tp, |
| args->agbp, args->pag); |
| error = xfs_alloc_lookup_ge(acur->cnt, 0, args->maxlen, &i); |
| if (error) |
| return error; |
| |
| /* |
| * Allocate the bnobt left and right search cursors. |
| */ |
| if (!acur->bnolt) |
| acur->bnolt = xfs_bnobt_init_cursor(args->mp, args->tp, |
| args->agbp, args->pag); |
| if (!acur->bnogt) |
| acur->bnogt = xfs_bnobt_init_cursor(args->mp, args->tp, |
| args->agbp, args->pag); |
| return i == 1 ? 0 : -ENOSPC; |
| } |
| |
| static void |
| xfs_alloc_cur_close( |
| struct xfs_alloc_cur *acur, |
| bool error) |
| { |
| int cur_error = XFS_BTREE_NOERROR; |
| |
| if (error) |
| cur_error = XFS_BTREE_ERROR; |
| |
| if (acur->cnt) |
| xfs_btree_del_cursor(acur->cnt, cur_error); |
| if (acur->bnolt) |
| xfs_btree_del_cursor(acur->bnolt, cur_error); |
| if (acur->bnogt) |
| xfs_btree_del_cursor(acur->bnogt, cur_error); |
| acur->cnt = acur->bnolt = acur->bnogt = NULL; |
| } |
| |
| /* |
| * Check an extent for allocation and track the best available candidate in the |
| * allocation structure. The cursor is deactivated if it has entered an out of |
| * range state based on allocation arguments. Optionally return the extent |
| * extent geometry and allocation status if requested by the caller. |
| */ |
| static int |
| xfs_alloc_cur_check( |
| struct xfs_alloc_arg *args, |
| struct xfs_alloc_cur *acur, |
| struct xfs_btree_cur *cur, |
| int *new) |
| { |
| int error, i; |
| xfs_agblock_t bno, bnoa, bnew; |
| xfs_extlen_t len, lena, diff = -1; |
| bool busy; |
| unsigned busy_gen = 0; |
| bool deactivate = false; |
| bool isbnobt = xfs_btree_is_bno(cur->bc_ops); |
| |
| *new = 0; |
| |
| error = xfs_alloc_get_rec(cur, &bno, &len, &i); |
| if (error) |
| return error; |
| if (XFS_IS_CORRUPT(args->mp, i != 1)) { |
| xfs_btree_mark_sick(cur); |
| return -EFSCORRUPTED; |
| } |
| |
| /* |
| * Check minlen and deactivate a cntbt cursor if out of acceptable size |
| * range (i.e., walking backwards looking for a minlen extent). |
| */ |
| if (len < args->minlen) { |
| deactivate = !isbnobt; |
| goto out; |
| } |
| |
| busy = xfs_alloc_compute_aligned(args, bno, len, &bnoa, &lena, |
| &busy_gen); |
| acur->busy |= busy; |
| if (busy) |
| acur->busy_gen = busy_gen; |
| /* deactivate a bnobt cursor outside of locality range */ |
| if (bnoa < args->min_agbno || bnoa > args->max_agbno) { |
| deactivate = isbnobt; |
| goto out; |
| } |
| if (lena < args->minlen) |
| goto out; |
| |
| args->len = XFS_EXTLEN_MIN(lena, args->maxlen); |
| xfs_alloc_fix_len(args); |
| ASSERT(args->len >= args->minlen); |
| if (args->len < acur->len) |
| goto out; |
| |
| /* |
| * We have an aligned record that satisfies minlen and beats or matches |
| * the candidate extent size. Compare locality for near allocation mode. |
| */ |
| diff = xfs_alloc_compute_diff(args->agbno, args->len, |
| args->alignment, args->datatype, |
| bnoa, lena, &bnew); |
| if (bnew == NULLAGBLOCK) |
| goto out; |
| |
| /* |
| * Deactivate a bnobt cursor with worse locality than the current best. |
| */ |
| if (diff > acur->diff) { |
| deactivate = isbnobt; |
| goto out; |
| } |
| |
| ASSERT(args->len > acur->len || |
| (args->len == acur->len && diff <= acur->diff)); |
| acur->rec_bno = bno; |
| acur->rec_len = len; |
| acur->bno = bnew; |
| acur->len = args->len; |
| acur->diff = diff; |
| *new = 1; |
| |
| /* |
| * We're done if we found a perfect allocation. This only deactivates |
| * the current cursor, but this is just an optimization to terminate a |
| * cntbt search that otherwise runs to the edge of the tree. |
| */ |
| if (acur->diff == 0 && acur->len == args->maxlen) |
| deactivate = true; |
| out: |
| if (deactivate) |
| cur->bc_flags &= ~XFS_BTREE_ALLOCBT_ACTIVE; |
| trace_xfs_alloc_cur_check(cur, bno, len, diff, *new); |
| return 0; |
| } |
| |
| /* |
| * Complete an allocation of a candidate extent. Remove the extent from both |
| * trees and update the args structure. |
| */ |
| STATIC int |
| xfs_alloc_cur_finish( |
| struct xfs_alloc_arg *args, |
| struct xfs_alloc_cur *acur) |
| { |
| int error; |
| |
| ASSERT(acur->cnt && acur->bnolt); |
| ASSERT(acur->bno >= acur->rec_bno); |
| ASSERT(acur->bno + acur->len <= acur->rec_bno + acur->rec_len); |
| ASSERT(xfs_verify_agbext(args->pag, acur->rec_bno, acur->rec_len)); |
| |
| error = xfs_alloc_fixup_trees(acur->cnt, acur->bnolt, acur->rec_bno, |
| acur->rec_len, acur->bno, acur->len, 0); |
| if (error) |
| return error; |
| |
| args->agbno = acur->bno; |
| args->len = acur->len; |
| args->wasfromfl = 0; |
| |
| trace_xfs_alloc_cur(args); |
| return 0; |
| } |
| |
| /* |
| * Locality allocation lookup algorithm. This expects a cntbt cursor and uses |
| * bno optimized lookup to search for extents with ideal size and locality. |
| */ |
| STATIC int |
| xfs_alloc_cntbt_iter( |
| struct xfs_alloc_arg *args, |
| struct xfs_alloc_cur *acur) |
| { |
| struct xfs_btree_cur *cur = acur->cnt; |
| xfs_agblock_t bno; |
| xfs_extlen_t len, cur_len; |
| int error; |
| int i; |
| |
| if (!xfs_alloc_cur_active(cur)) |
| return 0; |
| |
| /* locality optimized lookup */ |
| cur_len = acur->cur_len; |
| error = xfs_alloc_lookup_ge(cur, args->agbno, cur_len, &i); |
| if (error) |
| return error; |
| if (i == 0) |
| return 0; |
| error = xfs_alloc_get_rec(cur, &bno, &len, &i); |
| if (error) |
| return error; |
| |
| /* check the current record and update search length from it */ |
| error = xfs_alloc_cur_check(args, acur, cur, &i); |
| if (error) |
| return error; |
| ASSERT(len >= acur->cur_len); |
| acur->cur_len = len; |
| |
| /* |
| * We looked up the first record >= [agbno, len] above. The agbno is a |
| * secondary key and so the current record may lie just before or after |
| * agbno. If it is past agbno, check the previous record too so long as |
| * the length matches as it may be closer. Don't check a smaller record |
| * because that could deactivate our cursor. |
| */ |
| if (bno > args->agbno) { |
| error = xfs_btree_decrement(cur, 0, &i); |
| if (!error && i) { |
| error = xfs_alloc_get_rec(cur, &bno, &len, &i); |
| if (!error && i && len == acur->cur_len) |
| error = xfs_alloc_cur_check(args, acur, cur, |
| &i); |
| } |
| if (error) |
| return error; |
| } |
| |
| /* |
| * Increment the search key until we find at least one allocation |
| * candidate or if the extent we found was larger. Otherwise, double the |
| * search key to optimize the search. Efficiency is more important here |
| * than absolute best locality. |
| */ |
| cur_len <<= 1; |
| if (!acur->len || acur->cur_len >= cur_len) |
| acur->cur_len++; |
| else |
| acur->cur_len = cur_len; |
| |
| return error; |
| } |
| |
| /* |
| * Deal with the case where only small freespaces remain. Either return the |
| * contents of the last freespace record, or allocate space from the freelist if |
| * there is nothing in the tree. |
| */ |
| STATIC int /* error */ |
| xfs_alloc_ag_vextent_small( |
| struct xfs_alloc_arg *args, /* allocation argument structure */ |
| struct xfs_btree_cur *ccur, /* optional by-size cursor */ |
| xfs_agblock_t *fbnop, /* result block number */ |
| xfs_extlen_t *flenp, /* result length */ |
| int *stat) /* status: 0-freelist, 1-normal/none */ |
| { |
| struct xfs_agf *agf = args->agbp->b_addr; |
| int error = 0; |
| xfs_agblock_t fbno = NULLAGBLOCK; |
| xfs_extlen_t flen = 0; |
| int i = 0; |
| |
| /* |
| * If a cntbt cursor is provided, try to allocate the largest record in |
| * the tree. Try the AGFL if the cntbt is empty, otherwise fail the |
| * allocation. Make sure to respect minleft even when pulling from the |
| * freelist. |
| */ |
| if (ccur) |
| error = xfs_btree_decrement(ccur, 0, &i); |
| if (error) |
| goto error; |
| if (i) { |
| error = xfs_alloc_get_rec(ccur, &fbno, &flen, &i); |
| if (error) |
| goto error; |
| if (XFS_IS_CORRUPT(args->mp, i != 1)) { |
| xfs_btree_mark_sick(ccur); |
| error = -EFSCORRUPTED; |
| goto error; |
| } |
| goto out; |
| } |
| |
| if (args->minlen != 1 || args->alignment != 1 || |
| args->resv == XFS_AG_RESV_AGFL || |
| be32_to_cpu(agf->agf_flcount) <= args->minleft) |
| goto out; |
| |
| error = xfs_alloc_get_freelist(args->pag, args->tp, args->agbp, |
| &fbno, 0); |
| if (error) |
| goto error; |
| if (fbno == NULLAGBLOCK) |
| goto out; |
| |
| xfs_extent_busy_reuse(args->mp, args->pag, fbno, 1, |
| (args->datatype & XFS_ALLOC_NOBUSY)); |
| |
| if (args->datatype & XFS_ALLOC_USERDATA) { |
| struct xfs_buf *bp; |
| |
| error = xfs_trans_get_buf(args->tp, args->mp->m_ddev_targp, |
| XFS_AGB_TO_DADDR(args->mp, args->agno, fbno), |
| args->mp->m_bsize, 0, &bp); |
| if (error) |
| goto error; |
| xfs_trans_binval(args->tp, bp); |
| } |
| *fbnop = args->agbno = fbno; |
| *flenp = args->len = 1; |
| if (XFS_IS_CORRUPT(args->mp, fbno >= be32_to_cpu(agf->agf_length))) { |
| xfs_btree_mark_sick(ccur); |
| error = -EFSCORRUPTED; |
| goto error; |
| } |
| args->wasfromfl = 1; |
| trace_xfs_alloc_small_freelist(args); |
| |
| /* |
| * If we're feeding an AGFL block to something that doesn't live in the |
| * free space, we need to clear out the OWN_AG rmap. |
| */ |
| error = xfs_rmap_free(args->tp, args->agbp, args->pag, fbno, 1, |
| &XFS_RMAP_OINFO_AG); |
| if (error) |
| goto error; |
| |
| *stat = 0; |
| return 0; |
| |
| out: |
| /* |
| * Can't do the allocation, give up. |
| */ |
| if (flen < args->minlen) { |
| args->agbno = NULLAGBLOCK; |
| trace_xfs_alloc_small_notenough(args); |
| flen = 0; |
| } |
| *fbnop = fbno; |
| *flenp = flen; |
| *stat = 1; |
| trace_xfs_alloc_small_done(args); |
| return 0; |
| |
| error: |
| trace_xfs_alloc_small_error(args); |
| return error; |
| } |
| |
| /* |
| * Allocate a variable extent at exactly agno/bno. |
| * Extent's length (returned in *len) will be between minlen and maxlen, |
| * and of the form k * prod + mod unless there's nothing that large. |
| * Return the starting a.g. block (bno), or NULLAGBLOCK if we can't do it. |
| */ |
| STATIC int /* error */ |
| xfs_alloc_ag_vextent_exact( |
| xfs_alloc_arg_t *args) /* allocation argument structure */ |
| { |
| struct xfs_btree_cur *bno_cur;/* by block-number btree cursor */ |
| struct xfs_btree_cur *cnt_cur;/* by count btree cursor */ |
| int error; |
| xfs_agblock_t fbno; /* start block of found extent */ |
| xfs_extlen_t flen; /* length of found extent */ |
| xfs_agblock_t tbno; /* start block of busy extent */ |
| xfs_extlen_t tlen; /* length of busy extent */ |
| xfs_agblock_t tend; /* end block of busy extent */ |
| int i; /* success/failure of operation */ |
| unsigned busy_gen; |
| |
| ASSERT(args->alignment == 1); |
| |
| /* |
| * Allocate/initialize a cursor for the by-number freespace btree. |
| */ |
| bno_cur = xfs_bnobt_init_cursor(args->mp, args->tp, args->agbp, |
| args->pag); |
| |
| /* |
| * Lookup bno and minlen in the btree (minlen is irrelevant, really). |
| * Look for the closest free block <= bno, it must contain bno |
| * if any free block does. |
| */ |
| error = xfs_alloc_lookup_le(bno_cur, args->agbno, args->minlen, &i); |
| if (error) |
| goto error0; |
| if (!i) |
| goto not_found; |
| |
| /* |
| * Grab the freespace record. |
| */ |
| error = xfs_alloc_get_rec(bno_cur, &fbno, &flen, &i); |
| if (error) |
| goto error0; |
| if (XFS_IS_CORRUPT(args->mp, i != 1)) { |
| xfs_btree_mark_sick(bno_cur); |
| error = -EFSCORRUPTED; |
| goto error0; |
| } |
| ASSERT(fbno <= args->agbno); |
| |
| /* |
| * Check for overlapping busy extents. |
| */ |
| tbno = fbno; |
| tlen = flen; |
| xfs_extent_busy_trim(args, &tbno, &tlen, &busy_gen); |
| |
| /* |
| * Give up if the start of the extent is busy, or the freespace isn't |
| * long enough for the minimum request. |
| */ |
| if (tbno > args->agbno) |
| goto not_found; |
| if (tlen < args->minlen) |
| goto not_found; |
| tend = tbno + tlen; |
| if (tend < args->agbno + args->minlen) |
| goto not_found; |
| |
| /* |
| * End of extent will be smaller of the freespace end and the |
| * maximal requested end. |
| * |
| * Fix the length according to mod and prod if given. |
| */ |
| args->len = XFS_AGBLOCK_MIN(tend, args->agbno + args->maxlen) |
| - args->agbno; |
| xfs_alloc_fix_len(args); |
| ASSERT(args->agbno + args->len <= tend); |
| |
| /* |
| * We are allocating agbno for args->len |
| * Allocate/initialize a cursor for the by-size btree. |
| */ |
| cnt_cur = xfs_cntbt_init_cursor(args->mp, args->tp, args->agbp, |
| args->pag); |
| ASSERT(xfs_verify_agbext(args->pag, args->agbno, args->len)); |
| error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen, args->agbno, |
| args->len, XFSA_FIXUP_BNO_OK); |
| if (error) { |
| xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR); |
| goto error0; |
| } |
| |
| xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR); |
| xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); |
| |
| args->wasfromfl = 0; |
| trace_xfs_alloc_exact_done(args); |
| return 0; |
| |
| not_found: |
| /* Didn't find it, return null. */ |
| xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR); |
| args->agbno = NULLAGBLOCK; |
| trace_xfs_alloc_exact_notfound(args); |
| return 0; |
| |
| error0: |
| xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR); |
| trace_xfs_alloc_exact_error(args); |
| return error; |
| } |
| |
| /* |
| * Search a given number of btree records in a given direction. Check each |
| * record against the good extent we've already found. |
| */ |
| STATIC int |
| xfs_alloc_walk_iter( |
| struct xfs_alloc_arg *args, |
| struct xfs_alloc_cur *acur, |
| struct xfs_btree_cur *cur, |
| bool increment, |
| bool find_one, /* quit on first candidate */ |
| int count, /* rec count (-1 for infinite) */ |
| int *stat) |
| { |
| int error; |
| int i; |
| |
| *stat = 0; |
| |
| /* |
| * Search so long as the cursor is active or we find a better extent. |
| * The cursor is deactivated if it extends beyond the range of the |
| * current allocation candidate. |
| */ |
| while (xfs_alloc_cur_active(cur) && count) { |
| error = xfs_alloc_cur_check(args, acur, cur, &i); |
| if (error) |
| return error; |
| if (i == 1) { |
| *stat = 1; |
| if (find_one) |
| break; |
| } |
| if (!xfs_alloc_cur_active(cur)) |
| break; |
| |
| if (increment) |
| error = xfs_btree_increment(cur, 0, &i); |
| else |
| error = xfs_btree_decrement(cur, 0, &i); |
| if (error) |
| return error; |
| if (i == 0) |
| cur->bc_flags &= ~XFS_BTREE_ALLOCBT_ACTIVE; |
| |
| if (count > 0) |
| count--; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Search the by-bno and by-size btrees in parallel in search of an extent with |
| * ideal locality based on the NEAR mode ->agbno locality hint. |
| */ |
| STATIC int |
| xfs_alloc_ag_vextent_locality( |
| struct xfs_alloc_arg *args, |
| struct xfs_alloc_cur *acur, |
| int *stat) |
| { |
| struct xfs_btree_cur *fbcur = NULL; |
| int error; |
| int i; |
| bool fbinc; |
| |
| ASSERT(acur->len == 0); |
| |
| *stat = 0; |
| |
| error = xfs_alloc_lookup_ge(acur->cnt, args->agbno, acur->cur_len, &i); |
| if (error) |
| return error; |
| error = xfs_alloc_lookup_le(acur->bnolt, args->agbno, 0, &i); |
| if (error) |
| return error; |
| error = xfs_alloc_lookup_ge(acur->bnogt, args->agbno, 0, &i); |
| if (error) |
| return error; |
| |
| /* |
| * Search the bnobt and cntbt in parallel. Search the bnobt left and |
| * right and lookup the closest extent to the locality hint for each |
| * extent size key in the cntbt. The entire search terminates |
| * immediately on a bnobt hit because that means we've found best case |
| * locality. Otherwise the search continues until the cntbt cursor runs |
| * off the end of the tree. If no allocation candidate is found at this |
| * point, give up on locality, walk backwards from the end of the cntbt |
| * and take the first available extent. |
| * |
| * The parallel tree searches balance each other out to provide fairly |
| * consistent performance for various situations. The bnobt search can |
| * have pathological behavior in the worst case scenario of larger |
| * allocation requests and fragmented free space. On the other hand, the |
| * bnobt is able to satisfy most smaller allocation requests much more |
| * quickly than the cntbt. The cntbt search can sift through fragmented |
| * free space and sets of free extents for larger allocation requests |
| * more quickly than the bnobt. Since the locality hint is just a hint |
| * and we don't want to scan the entire bnobt for perfect locality, the |
| * cntbt search essentially bounds the bnobt search such that we can |
| * find good enough locality at reasonable performance in most cases. |
| */ |
| while (xfs_alloc_cur_active(acur->bnolt) || |
| xfs_alloc_cur_active(acur->bnogt) || |
| xfs_alloc_cur_active(acur->cnt)) { |
| |
| trace_xfs_alloc_cur_lookup(args); |
| |
| /* |
| * Search the bnobt left and right. In the case of a hit, finish |
| * the search in the opposite direction and we're done. |
| */ |
| error = xfs_alloc_walk_iter(args, acur, acur->bnolt, false, |
| true, 1, &i); |
| if (error) |
| return error; |
| if (i == 1) { |
| trace_xfs_alloc_cur_left(args); |
| fbcur = acur->bnogt; |
| fbinc = true; |
| break; |
| } |
| error = xfs_alloc_walk_iter(args, acur, acur->bnogt, true, true, |
| 1, &i); |
| if (error) |
| return error; |
| if (i == 1) { |
| trace_xfs_alloc_cur_right(args); |
| fbcur = acur->bnolt; |
| fbinc = false; |
| break; |
| } |
| |
| /* |
| * Check the extent with best locality based on the current |
| * extent size search key and keep track of the best candidate. |
| */ |
| error = xfs_alloc_cntbt_iter(args, acur); |
| if (error) |
| return error; |
| if (!xfs_alloc_cur_active(acur->cnt)) { |
| trace_xfs_alloc_cur_lookup_done(args); |
| break; |
| } |
| } |
| |
| /* |
| * If we failed to find anything due to busy extents, return empty |
| * handed so the caller can flush and retry. If no busy extents were |
| * found, walk backwards from the end of the cntbt as a last resort. |
| */ |
| if (!xfs_alloc_cur_active(acur->cnt) && !acur->len && !acur->busy) { |
| error = xfs_btree_decrement(acur->cnt, 0, &i); |
| if (error) |
| return error; |
| if (i) { |
| acur->cnt->bc_flags |= XFS_BTREE_ALLOCBT_ACTIVE; |
| fbcur = acur->cnt; |
| fbinc = false; |
| } |
| } |
| |
| /* |
| * Search in the opposite direction for a better entry in the case of |
| * a bnobt hit or walk backwards from the end of the cntbt. |
| */ |
| if (fbcur) { |
| error = xfs_alloc_walk_iter(args, acur, fbcur, fbinc, true, -1, |
| &i); |
| if (error) |
| return error; |
| } |
| |
| if (acur->len) |
| *stat = 1; |
| |
| return 0; |
| } |
| |
| /* Check the last block of the cnt btree for allocations. */ |
| static int |
| xfs_alloc_ag_vextent_lastblock( |
| struct xfs_alloc_arg *args, |
| struct xfs_alloc_cur *acur, |
| xfs_agblock_t *bno, |
| xfs_extlen_t *len, |
| bool *allocated) |
| { |
| int error; |
| int i; |
| |
| #ifdef DEBUG |
| /* Randomly don't execute the first algorithm. */ |
| if (get_random_u32_below(2)) |
| return 0; |
| #endif |
| |
| /* |
| * Start from the entry that lookup found, sequence through all larger |
| * free blocks. If we're actually pointing at a record smaller than |
| * maxlen, go to the start of this block, and skip all those smaller |
| * than minlen. |
| */ |
| if (*len || args->alignment > 1) { |
| acur->cnt->bc_levels[0].ptr = 1; |
| do { |
| error = xfs_alloc_get_rec(acur->cnt, bno, len, &i); |
| if (error) |
| return error; |
| if (XFS_IS_CORRUPT(args->mp, i != 1)) { |
| xfs_btree_mark_sick(acur->cnt); |
| return -EFSCORRUPTED; |
| } |
| if (*len >= args->minlen) |
| break; |
| error = xfs_btree_increment(acur->cnt, 0, &i); |
| if (error) |
| return error; |
| } while (i); |
| ASSERT(*len >= args->minlen); |
| if (!i) |
| return 0; |
| } |
| |
| error = xfs_alloc_walk_iter(args, acur, acur->cnt, true, false, -1, &i); |
| if (error) |
| return error; |
| |
| /* |
| * It didn't work. We COULD be in a case where there's a good record |
| * somewhere, so try again. |
| */ |
| if (acur->len == 0) |
| return 0; |
| |
| trace_xfs_alloc_near_first(args); |
| *allocated = true; |
| return 0; |
| } |
| |
| /* |
| * Allocate a variable extent near bno in the allocation group agno. |
| * Extent's length (returned in len) will be between minlen and maxlen, |
| * and of the form k * prod + mod unless there's nothing that large. |
| * Return the starting a.g. block, or NULLAGBLOCK if we can't do it. |
| */ |
| STATIC int |
| xfs_alloc_ag_vextent_near( |
| struct xfs_alloc_arg *args, |
| uint32_t alloc_flags) |
| { |
| struct xfs_alloc_cur acur = {}; |
| int error; /* error code */ |
| int i; /* result code, temporary */ |
| xfs_agblock_t bno; |
| xfs_extlen_t len; |
| |
| /* handle uninitialized agbno range so caller doesn't have to */ |
| if (!args->min_agbno && !args->max_agbno) |
| args->max_agbno = args->mp->m_sb.sb_agblocks - 1; |
| ASSERT(args->min_agbno <= args->max_agbno); |
| |
| /* clamp agbno to the range if it's outside */ |
| if (args->agbno < args->min_agbno) |
| args->agbno = args->min_agbno; |
| if (args->agbno > args->max_agbno) |
| args->agbno = args->max_agbno; |
| |
| /* Retry once quickly if we find busy extents before blocking. */ |
| alloc_flags |= XFS_ALLOC_FLAG_TRYFLUSH; |
| restart: |
| len = 0; |
| |
| /* |
| * Set up cursors and see if there are any free extents as big as |
| * maxlen. If not, pick the last entry in the tree unless the tree is |
| * empty. |
| */ |
| error = xfs_alloc_cur_setup(args, &acur); |
| if (error == -ENOSPC) { |
| error = xfs_alloc_ag_vextent_small(args, acur.cnt, &bno, |
| &len, &i); |
| if (error) |
| goto out; |
| if (i == 0 || len == 0) { |
| trace_xfs_alloc_near_noentry(args); |
| goto out; |
| } |
| ASSERT(i == 1); |
| } else if (error) { |
| goto out; |
| } |
| |
| /* |
| * First algorithm. |
| * If the requested extent is large wrt the freespaces available |
| * in this a.g., then the cursor will be pointing to a btree entry |
| * near the right edge of the tree. If it's in the last btree leaf |
| * block, then we just examine all the entries in that block |
| * that are big enough, and pick the best one. |
| */ |
| if (xfs_btree_islastblock(acur.cnt, 0)) { |
| bool allocated = false; |
| |
| error = xfs_alloc_ag_vextent_lastblock(args, &acur, &bno, &len, |
| &allocated); |
| if (error) |
| goto out; |
| if (allocated) |
| goto alloc_finish; |
| } |
| |
| /* |
| * Second algorithm. Combined cntbt and bnobt search to find ideal |
| * locality. |
| */ |
| error = xfs_alloc_ag_vextent_locality(args, &acur, &i); |
| if (error) |
| goto out; |
| |
| /* |
| * If we couldn't get anything, give up. |
| */ |
| if (!acur.len) { |
| if (acur.busy) { |
| /* |
| * Our only valid extents must have been busy. Flush and |
| * retry the allocation again. If we get an -EAGAIN |
| * error, we're being told that a deadlock was avoided |
| * and the current transaction needs committing before |
| * the allocation can be retried. |
| */ |
| trace_xfs_alloc_near_busy(args); |
| error = xfs_extent_busy_flush(args->tp, args->pag, |
| acur.busy_gen, alloc_flags); |
| if (error) |
| goto out; |
| |
| alloc_flags &= ~XFS_ALLOC_FLAG_TRYFLUSH; |
| goto restart; |
| } |
| trace_xfs_alloc_size_neither(args); |
| args->agbno = NULLAGBLOCK; |
| goto out; |
| } |
| |
| alloc_finish: |
| /* fix up btrees on a successful allocation */ |
| error = xfs_alloc_cur_finish(args, &acur); |
| |
| out: |
| xfs_alloc_cur_close(&acur, error); |
| return error; |
| } |
| |
| /* |
| * Allocate a variable extent anywhere in the allocation group agno. |
| * Extent's length (returned in len) will be between minlen and maxlen, |
| * and of the form k * prod + mod unless there's nothing that large. |
| * Return the starting a.g. block, or NULLAGBLOCK if we can't do it. |
| */ |
| static int |
| xfs_alloc_ag_vextent_size( |
| struct xfs_alloc_arg *args, |
| uint32_t alloc_flags) |
| { |
| struct xfs_agf *agf = args->agbp->b_addr; |
| struct xfs_btree_cur *bno_cur; |
| struct xfs_btree_cur *cnt_cur; |
| xfs_agblock_t fbno; /* start of found freespace */ |
| xfs_extlen_t flen; /* length of found freespace */ |
| xfs_agblock_t rbno; /* returned block number */ |
| xfs_extlen_t rlen; /* length of returned extent */ |
| bool busy; |
| unsigned busy_gen; |
| int error; |
| int i; |
| |
| /* Retry once quickly if we find busy extents before blocking. */ |
| alloc_flags |= XFS_ALLOC_FLAG_TRYFLUSH; |
| restart: |
| /* |
| * Allocate and initialize a cursor for the by-size btree. |
| */ |
| cnt_cur = xfs_cntbt_init_cursor(args->mp, args->tp, args->agbp, |
| args->pag); |
| bno_cur = NULL; |
| |
| /* |
| * Look for an entry >= maxlen+alignment-1 blocks. |
| */ |
| if ((error = xfs_alloc_lookup_ge(cnt_cur, 0, |
| args->maxlen + args->alignment - 1, &i))) |
| goto error0; |
| |
| /* |
| * If none then we have to settle for a smaller extent. In the case that |
| * there are no large extents, this will return the last entry in the |
| * tree unless the tree is empty. In the case that there are only busy |
| * large extents, this will return the largest small extent unless there |
| * are no smaller extents available. |
| */ |
| if (!i) { |
| error = xfs_alloc_ag_vextent_small(args, cnt_cur, |
| &fbno, &flen, &i); |
| if (error) |
| goto error0; |
| if (i == 0 || flen == 0) { |
| xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); |
| trace_xfs_alloc_size_noentry(args); |
| return 0; |
| } |
| ASSERT(i == 1); |
| busy = xfs_alloc_compute_aligned(args, fbno, flen, &rbno, |
| &rlen, &busy_gen); |
| } else { |
| /* |
| * Search for a non-busy extent that is large enough. |
| */ |
| for (;;) { |
| error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, &i); |
| if (error) |
| goto error0; |
| if (XFS_IS_CORRUPT(args->mp, i != 1)) { |
| xfs_btree_mark_sick(cnt_cur); |
| error = -EFSCORRUPTED; |
| goto error0; |
| } |
| |
| busy = xfs_alloc_compute_aligned(args, fbno, flen, |
| &rbno, &rlen, &busy_gen); |
| |
| if (rlen >= args->maxlen) |
| break; |
| |
| error = xfs_btree_increment(cnt_cur, 0, &i); |
| if (error) |
| goto error0; |
| if (i) |
| continue; |
| |
| /* |
| * Our only valid extents must have been busy. Flush and |
| * retry the allocation again. If we get an -EAGAIN |
| * error, we're being told that a deadlock was avoided |
| * and the current transaction needs committing before |
| * the allocation can be retried. |
| */ |
| trace_xfs_alloc_size_busy(args); |
| error = xfs_extent_busy_flush(args->tp, args->pag, |
| busy_gen, alloc_flags); |
| if (error) |
| goto error0; |
| |
| alloc_flags &= ~XFS_ALLOC_FLAG_TRYFLUSH; |
| xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); |
| goto restart; |
| } |
| } |
| |
| /* |
| * In the first case above, we got the last entry in the |
| * by-size btree. Now we check to see if the space hits maxlen |
| * once aligned; if not, we search left for something better. |
| * This can't happen in the second case above. |
| */ |
| rlen = XFS_EXTLEN_MIN(args->maxlen, rlen); |
| if (XFS_IS_CORRUPT(args->mp, |
| rlen != 0 && |
| (rlen > flen || |
| rbno + rlen > fbno + flen))) { |
| xfs_btree_mark_sick(cnt_cur); |
| error = -EFSCORRUPTED; |
| goto error0; |
| } |
| if (rlen < args->maxlen) { |
| xfs_agblock_t bestfbno; |
| xfs_extlen_t bestflen; |
| xfs_agblock_t bestrbno; |
| xfs_extlen_t bestrlen; |
| |
| bestrlen = rlen; |
| bestrbno = rbno; |
| bestflen = flen; |
| bestfbno = fbno; |
| for (;;) { |
| if ((error = xfs_btree_decrement(cnt_cur, 0, &i))) |
| goto error0; |
| if (i == 0) |
| break; |
| if ((error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, |
| &i))) |
| goto error0; |
| if (XFS_IS_CORRUPT(args->mp, i != 1)) { |
| xfs_btree_mark_sick(cnt_cur); |
| error = -EFSCORRUPTED; |
| goto error0; |
| } |
| if (flen <= bestrlen) |
| break; |
| busy = xfs_alloc_compute_aligned(args, fbno, flen, |
| &rbno, &rlen, &busy_gen); |
| rlen = XFS_EXTLEN_MIN(args->maxlen, rlen); |
| if (XFS_IS_CORRUPT(args->mp, |
| rlen != 0 && |
| (rlen > flen || |
| rbno + rlen > fbno + flen))) { |
| xfs_btree_mark_sick(cnt_cur); |
| error = -EFSCORRUPTED; |
| goto error0; |
| } |
| if (rlen > bestrlen) { |
| bestrlen = rlen; |
| bestrbno = rbno; |
| bestflen = flen; |
| bestfbno = fbno; |
| if (rlen == args->maxlen) |
| break; |
| } |
| } |
| if ((error = xfs_alloc_lookup_eq(cnt_cur, bestfbno, bestflen, |
| &i))) |
| goto error0; |
| if (XFS_IS_CORRUPT(args->mp, i != 1)) { |
| xfs_btree_mark_sick(cnt_cur); |
| error = -EFSCORRUPTED; |
| goto error0; |
| } |
| rlen = bestrlen; |
| rbno = bestrbno; |
| flen = bestflen; |
| fbno = bestfbno; |
| } |
| args->wasfromfl = 0; |
| /* |
| * Fix up the length. |
| */ |
| args->len = rlen; |
| if (rlen < args->minlen) { |
| if (busy) { |
| /* |
| * Our only valid extents must have been busy. Flush and |
| * retry the allocation again. If we get an -EAGAIN |
| * error, we're being told that a deadlock was avoided |
| * and the current transaction needs committing before |
| * the allocation can be retried. |
| */ |
| trace_xfs_alloc_size_busy(args); |
| error = xfs_extent_busy_flush(args->tp, args->pag, |
| busy_gen, alloc_flags); |
| if (error) |
| goto error0; |
| |
| alloc_flags &= ~XFS_ALLOC_FLAG_TRYFLUSH; |
| xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); |
| goto restart; |
| } |
| goto out_nominleft; |
| } |
| xfs_alloc_fix_len(args); |
| |
| rlen = args->len; |
| if (XFS_IS_CORRUPT(args->mp, rlen > flen)) { |
| xfs_btree_mark_sick(cnt_cur); |
| error = -EFSCORRUPTED; |
| goto error0; |
| } |
| /* |
| * Allocate and initialize a cursor for the by-block tree. |
| */ |
| bno_cur = xfs_bnobt_init_cursor(args->mp, args->tp, args->agbp, |
| args->pag); |
| if ((error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen, |
| rbno, rlen, XFSA_FIXUP_CNT_OK))) |
| goto error0; |
| xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); |
| xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR); |
| cnt_cur = bno_cur = NULL; |
| args->len = rlen; |
| args->agbno = rbno; |
| if (XFS_IS_CORRUPT(args->mp, |
| args->agbno + args->len > |
| be32_to_cpu(agf->agf_length))) { |
| xfs_ag_mark_sick(args->pag, XFS_SICK_AG_BNOBT); |
| error = -EFSCORRUPTED; |
| goto error0; |
| } |
| trace_xfs_alloc_size_done(args); |
| return 0; |
| |
| error0: |
| trace_xfs_alloc_size_error(args); |
| if (cnt_cur) |
| xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR); |
| if (bno_cur) |
| xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR); |
| return error; |
| |
| out_nominleft: |
| xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); |
| trace_xfs_alloc_size_nominleft(args); |
| args->agbno = NULLAGBLOCK; |
| return 0; |
| } |
| |
| /* |
| * Free the extent starting at agno/bno for length. |
| */ |
| int |
| xfs_free_ag_extent( |
| struct xfs_trans *tp, |
| struct xfs_buf *agbp, |
| xfs_agnumber_t agno, |
| xfs_agblock_t bno, |
| xfs_extlen_t len, |
| const struct xfs_owner_info *oinfo, |
| enum xfs_ag_resv_type type) |
| { |
| struct xfs_mount *mp; |
| struct xfs_btree_cur *bno_cur; |
| struct xfs_btree_cur *cnt_cur; |
| xfs_agblock_t gtbno; /* start of right neighbor */ |
| xfs_extlen_t gtlen; /* length of right neighbor */ |
| xfs_agblock_t ltbno; /* start of left neighbor */ |
| xfs_extlen_t ltlen; /* length of left neighbor */ |
| xfs_agblock_t nbno; /* new starting block of freesp */ |
| xfs_extlen_t nlen; /* new length of freespace */ |
| int haveleft; /* have a left neighbor */ |
| int haveright; /* have a right neighbor */ |
| int i; |
| int error; |
| struct xfs_perag *pag = agbp->b_pag; |
| bool fixup_longest = false; |
| |
| bno_cur = cnt_cur = NULL; |
| mp = tp->t_mountp; |
| |
| if (!xfs_rmap_should_skip_owner_update(oinfo)) { |
| error = xfs_rmap_free(tp, agbp, pag, bno, len, oinfo); |
| if (error) |
| goto error0; |
| } |
| |
| /* |
| * Allocate and initialize a cursor for the by-block btree. |
| */ |
| bno_cur = xfs_bnobt_init_cursor(mp, tp, agbp, pag); |
| /* |
| * Look for a neighboring block on the left (lower block numbers) |
| * that is contiguous with this space. |
| */ |
| if ((error = xfs_alloc_lookup_le(bno_cur, bno, len, &haveleft))) |
| goto error0; |
| if (haveleft) { |
| /* |
| * There is a block to our left. |
| */ |
| if ((error = xfs_alloc_get_rec(bno_cur, <bno, <len, &i))) |
| goto error0; |
| if (XFS_IS_CORRUPT(mp, i != 1)) { |
| xfs_btree_mark_sick(bno_cur); |
| error = -EFSCORRUPTED; |
| goto error0; |
| } |
| /* |
| * It's not contiguous, though. |
| */ |
| if (ltbno + ltlen < bno) |
| haveleft = 0; |
| else { |
| /* |
| * If this failure happens the request to free this |
| * space was invalid, it's (partly) already free. |
| * Very bad. |
| */ |
| if (XFS_IS_CORRUPT(mp, ltbno + ltlen > bno)) { |
| xfs_btree_mark_sick(bno_cur); |
| error = -EFSCORRUPTED; |
| goto error0; |
| } |
| } |
| } |
| /* |
| * Look for a neighboring block on the right (higher block numbers) |
| * that is contiguous with this space. |
| */ |
| if ((error = xfs_btree_increment(bno_cur, 0, &haveright))) |
| goto error0; |
| if (haveright) { |
| /* |
| * There is a block to our right. |
| */ |
| if ((error = xfs_alloc_get_rec(bno_cur, >bno, >len, &i))) |
| goto error0; |
| if (XFS_IS_CORRUPT(mp, i != 1)) { |
| xfs_btree_mark_sick(bno_cur); |
| error = -EFSCORRUPTED; |
| goto error0; |
| } |
| /* |
| * It's not contiguous, though. |
| */ |
| if (bno + len < gtbno) |
| haveright = 0; |
| else { |
| /* |
| * If this failure happens the request to free this |
| * space was invalid, it's (partly) already free. |
| * Very bad. |
| */ |
| if (XFS_IS_CORRUPT(mp, bno + len > gtbno)) { |
| xfs_btree_mark_sick(bno_cur); |
| error = -EFSCORRUPTED; |
| goto error0; |
| } |
| } |
| } |
| /* |
| * Now allocate and initialize a cursor for the by-size tree. |
| */ |
| cnt_cur = xfs_cntbt_init_cursor(mp, tp, agbp, pag); |
| /* |
| * Have both left and right contiguous neighbors. |
| * Merge all three into a single free block. |
| */ |
| if (haveleft && haveright) { |
| /* |
| * Delete the old by-size entry on the left. |
| */ |
| if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i))) |
| goto error0; |
| if (XFS_IS_CORRUPT(mp, i != 1)) { |
| xfs_btree_mark_sick(cnt_cur); |
| error = -EFSCORRUPTED; |
| goto error0; |
| } |
| if ((error = xfs_btree_delete(cnt_cur, &i))) |
| goto error0; |
| if (XFS_IS_CORRUPT(mp, i != 1)) { |
| xfs_btree_mark_sick(cnt_cur); |
| error = -EFSCORRUPTED; |
| goto error0; |
| } |
| /* |
| * Delete the old by-size entry on the right. |
| */ |
| if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i))) |
| goto error0; |
| if (XFS_IS_CORRUPT(mp, i != 1)) { |
| xfs_btree_mark_sick(cnt_cur); |
| error = -EFSCORRUPTED; |
| goto error0; |
| } |
| if ((error = xfs_btree_delete(cnt_cur, &i))) |
| goto error0; |
| if (XFS_IS_CORRUPT(mp, i != 1)) { |
| xfs_btree_mark_sick(cnt_cur); |
| error = -EFSCORRUPTED; |
| goto error0; |
| } |
| /* |
| * Delete the old by-block entry for the right block. |
| */ |
| if ((error = xfs_btree_delete(bno_cur, &i))) |
| goto error0; |
| if (XFS_IS_CORRUPT(mp, i != 1)) { |
| xfs_btree_mark_sick(bno_cur); |
| error = -EFSCORRUPTED; |
| goto error0; |
| } |
| /* |
| * Move the by-block cursor back to the left neighbor. |
| */ |
| if ((error = xfs_btree_decrement(bno_cur, 0, &i))) |
| goto error0; |
| if (XFS_IS_CORRUPT(mp, i != 1)) { |
| xfs_btree_mark_sick(bno_cur); |
| error = -EFSCORRUPTED; |
| goto error0; |
| } |
| #ifdef DEBUG |
| /* |
| * Check that this is the right record: delete didn't |
| * mangle the cursor. |
| */ |
| { |
| xfs_agblock_t xxbno; |
| xfs_extlen_t xxlen; |
| |
| if ((error = xfs_alloc_get_rec(bno_cur, &xxbno, &xxlen, |
| &i))) |
| goto error0; |
| if (XFS_IS_CORRUPT(mp, |
| i != 1 || |
| xxbno != ltbno || |
| xxlen != ltlen)) { |
| xfs_btree_mark_sick(bno_cur); |
| error = -EFSCORRUPTED; |
| goto error0; |
| } |
| } |
| #endif |
| /* |
| * Update remaining by-block entry to the new, joined block. |
| */ |
| nbno = ltbno; |
| nlen = len + ltlen + gtlen; |
| if ((error = xfs_alloc_update(bno_cur, nbno, nlen))) |
| goto error0; |
| } |
| /* |
| * Have only a left contiguous neighbor. |
| * Merge it together with the new freespace. |
| */ |
| else if (haveleft) { |
| /* |
| * Delete the old by-size entry on the left. |
| */ |
| if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i))) |
| goto error0; |
| if (XFS_IS_CORRUPT(mp, i != 1)) { |
| xfs_btree_mark_sick(cnt_cur); |
| error = -EFSCORRUPTED; |
| goto error0; |
| } |
| if ((error = xfs_btree_delete(cnt_cur, &i))) |
| goto error0; |
| if (XFS_IS_CORRUPT(mp, i != 1)) { |
| xfs_btree_mark_sick(cnt_cur); |
| error = -EFSCORRUPTED; |
| goto error0; |
| } |
| /* |
| * Back up the by-block cursor to the left neighbor, and |
| * update its length. |
| */ |
| if ((error = xfs_btree_decrement(bno_cur, 0, &i))) |
| goto error0; |
| if (XFS_IS_CORRUPT(mp, i != 1)) { |
| xfs_btree_mark_sick(bno_cur); |
| error = -EFSCORRUPTED; |
| goto error0; |
| } |
| nbno = ltbno; |
| nlen = len + ltlen; |
| if ((error = xfs_alloc_update(bno_cur, nbno, nlen))) |
| goto error0; |
| } |
| /* |
| * Have only a right contiguous neighbor. |
| * Merge it together with the new freespace. |
| */ |
| else if (haveright) { |
| /* |
| * Delete the old by-size entry on the right. |
| */ |
| if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i))) |
| goto error0; |
| if (XFS_IS_CORRUPT(mp, i != 1)) { |
| xfs_btree_mark_sick(cnt_cur); |
| error = -EFSCORRUPTED; |
| goto error0; |
| } |
| if ((error = xfs_btree_delete(cnt_cur, &i))) |
| goto error0; |
| if (XFS_IS_CORRUPT(mp, i != 1)) { |
| xfs_btree_mark_sick(cnt_cur); |
| error = -EFSCORRUPTED; |
| goto error0; |
| } |
| /* |
| * Update the starting block and length of the right |
| * neighbor in the by-block tree. |
| */ |
| nbno = bno; |
| nlen = len + gtlen; |
| if ((error = xfs_alloc_update(bno_cur, nbno, nlen))) |
| goto error0; |
| } |
| /* |
| * No contiguous neighbors. |
| * Insert the new freespace into the by-block tree. |
| */ |
| else { |
| nbno = bno; |
| nlen = len; |
| if ((error = xfs_btree_insert(bno_cur, &i))) |
| goto error0; |
| if (XFS_IS_CORRUPT(mp, i != 1)) { |
| xfs_btree_mark_sick(bno_cur); |
| error = -EFSCORRUPTED; |
| goto error0; |
| } |
| } |
| xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR); |
| bno_cur = NULL; |
| |
| /* |
| * In all cases we need to insert the new freespace in the by-size tree. |
| * |
| * If this new freespace is being inserted in the block that contains |
| * the largest free space in the btree, make sure we also fix up the |
| * agf->agf-longest tracker field. |
| */ |
| if ((error = xfs_alloc_lookup_eq(cnt_cur, nbno, nlen, &i))) |
| goto error0; |
| if (XFS_IS_CORRUPT(mp, i != 0)) { |
| xfs_btree_mark_sick(cnt_cur); |
| error = -EFSCORRUPTED; |
| goto error0; |
| } |
| if (xfs_alloc_cursor_at_lastrec(cnt_cur)) |
| fixup_longest = true; |
| if ((error = xfs_btree_insert(cnt_cur, &i))) |
| goto error0; |
| if (XFS_IS_CORRUPT(mp, i != 1)) { |
| xfs_btree_mark_sick(cnt_cur); |
| error = -EFSCORRUPTED; |
| goto error0; |
| } |
| if (fixup_longest) { |
| error = xfs_alloc_fixup_longest(cnt_cur); |
| if (error) |
| goto error0; |
| } |
| |
| xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); |
| cnt_cur = NULL; |
| |
| /* |
| * Update the freespace totals in the ag and superblock. |
| */ |
| error = xfs_alloc_update_counters(tp, agbp, len); |
| xfs_ag_resv_free_extent(agbp->b_pag, type, tp, len); |
| if (error) |
| goto error0; |
| |
| XFS_STATS_INC(mp, xs_freex); |
| XFS_STATS_ADD(mp, xs_freeb, len); |
| |
| trace_xfs_free_extent(mp, agno, bno, len, type, haveleft, haveright); |
| |
| return 0; |
| |
| error0: |
| trace_xfs_free_extent(mp, agno, bno, len, type, -1, -1); |
| if (bno_cur) |
| xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR); |
| if (cnt_cur) |
| xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR); |
| return error; |
| } |
| |
| /* |
| * Visible (exported) allocation/free functions. |
| * Some of these are used just by xfs_alloc_btree.c and this file. |
| */ |
| |
| /* |
| * Compute and fill in value of m_alloc_maxlevels. |
| */ |
| void |
| xfs_alloc_compute_maxlevels( |
| xfs_mount_t *mp) /* file system mount structure */ |
| { |
| mp->m_alloc_maxlevels = xfs_btree_compute_maxlevels(mp->m_alloc_mnr, |
| (mp->m_sb.sb_agblocks + 1) / 2); |
| ASSERT(mp->m_alloc_maxlevels <= xfs_allocbt_maxlevels_ondisk()); |
| } |
| |
| /* |
| * Find the length of the longest extent in an AG. The 'need' parameter |
| * specifies how much space we're going to need for the AGFL and the |
| * 'reserved' parameter tells us how many blocks in this AG are reserved for |
| * other callers. |
| */ |
| xfs_extlen_t |
| xfs_alloc_longest_free_extent( |
| struct xfs_perag *pag, |
| xfs_extlen_t need, |
| xfs_extlen_t reserved) |
| { |
| xfs_extlen_t delta = 0; |
| |
| /* |
| * If the AGFL needs a recharge, we'll have to subtract that from the |
| * longest extent. |
| */ |
| if (need > pag->pagf_flcount) |
| delta = need - pag->pagf_flcount; |
| |
| /* |
| * If we cannot maintain others' reservations with space from the |
| * not-longest freesp extents, we'll have to subtract /that/ from |
| * the longest extent too. |
| */ |
| if (pag->pagf_freeblks - pag->pagf_longest < reserved) |
| delta += reserved - (pag->pagf_freeblks - pag->pagf_longest); |
| |
| /* |
| * If the longest extent is long enough to satisfy all the |
| * reservations and AGFL rules in place, we can return this extent. |
| */ |
| if (pag->pagf_longest > delta) |
| return min_t(xfs_extlen_t, pag->pag_mount->m_ag_max_usable, |
| pag->pagf_longest - delta); |
| |
| /* Otherwise, let the caller try for 1 block if there's space. */ |
| return pag->pagf_flcount > 0 || pag->pagf_longest > 0; |
| } |
| |
| /* |
| * Compute the minimum length of the AGFL in the given AG. If @pag is NULL, |
| * return the largest possible minimum length. |
| */ |
| unsigned int |
| xfs_alloc_min_freelist( |
| struct xfs_mount *mp, |
| struct xfs_perag *pag) |
| { |
| /* AG btrees have at least 1 level. */ |
| const unsigned int bno_level = pag ? pag->pagf_bno_level : 1; |
| const unsigned int cnt_level = pag ? pag->pagf_cnt_level : 1; |
| const unsigned int rmap_level = pag ? pag->pagf_rmap_level : 1; |
| unsigned int min_free; |
| |
| ASSERT(mp->m_alloc_maxlevels > 0); |
| |
| /* |
| * For a btree shorter than the maximum height, the worst case is that |
| * every level gets split and a new level is added, then while inserting |
| * another entry to refill the AGFL, every level under the old root gets |
| * split again. This is: |
| * |
| * (full height split reservation) + (AGFL refill split height) |
| * = (current height + 1) + (current height - 1) |
| * = (new height) + (new height - 2) |
| * = 2 * new height - 2 |
| * |
| * For a btree of maximum height, the worst case is that every level |
| * under the root gets split, then while inserting another entry to |
| * refill the AGFL, every level under the root gets split again. This is |
| * also: |
| * |
| * 2 * (current height - 1) |
| * = 2 * (new height - 1) |
| * = 2 * new height - 2 |
| */ |
| |
| /* space needed by-bno freespace btree */ |
| min_free = min(bno_level + 1, mp->m_alloc_maxlevels) * 2 - 2; |
| /* space needed by-size freespace btree */ |
| min_free += min(cnt_level + 1, mp->m_alloc_maxlevels) * 2 - 2; |
| /* space needed reverse mapping used space btree */ |
| if (xfs_has_rmapbt(mp)) |
| min_free += min(rmap_level + 1, mp->m_rmap_maxlevels) * 2 - 2; |
| return min_free; |
| } |
| |
| /* |
| * Check if the operation we are fixing up the freelist for should go ahead or |
| * not. If we are freeing blocks, we always allow it, otherwise the allocation |
| * is dependent on whether the size and shape of free space available will |
| * permit the requested allocation to take place. |
| */ |
| static bool |
| xfs_alloc_space_available( |
| struct xfs_alloc_arg *args, |
| xfs_extlen_t min_free, |
| int flags) |
| { |
| struct xfs_perag *pag = args->pag; |
| xfs_extlen_t alloc_len, longest; |
| xfs_extlen_t reservation; /* blocks that are still reserved */ |
| int available; |
| xfs_extlen_t agflcount; |
| |
| if (flags & XFS_ALLOC_FLAG_FREEING) |
| return true; |
| |
| reservation = xfs_ag_resv_needed(pag, args->resv); |
| |
| /* do we have enough contiguous free space for the allocation? */ |
| alloc_len = args->minlen + (args->alignment - 1) + args->minalignslop; |
| longest = xfs_alloc_longest_free_extent(pag, min_free, reservation); |
| if (longest < alloc_len) |
| return false; |
| |
| /* |
| * Do we have enough free space remaining for the allocation? Don't |
| * account extra agfl blocks because we are about to defer free them, |
| * making them unavailable until the current transaction commits. |
| */ |
| agflcount = min_t(xfs_extlen_t, pag->pagf_flcount, min_free); |
| available = (int)(pag->pagf_freeblks + agflcount - |
| reservation - min_free - args->minleft); |
| if (available < (int)max(args->total, alloc_len)) |
| return false; |
| |
| /* |
| * Clamp maxlen to the amount of free space available for the actual |
| * extent allocation. |
| */ |
| if (available < (int)args->maxlen && !(flags & XFS_ALLOC_FLAG_CHECK)) { |
| args->maxlen = available; |
| ASSERT(args->maxlen > 0); |
| ASSERT(args->maxlen >= args->minlen); |
| } |
| |
| return true; |
| } |
| |
| /* |
| * Check the agfl fields of the agf for inconsistency or corruption. |
| * |
| * The original purpose was to detect an agfl header padding mismatch between |
| * current and early v5 kernels. This problem manifests as a 1-slot size |
| * difference between the on-disk flcount and the active [first, last] range of |
| * a wrapped agfl. |
| * |
| * However, we need to use these same checks to catch agfl count corruptions |
| * unrelated to padding. This could occur on any v4 or v5 filesystem, so either |
| * way, we need to reset the agfl and warn the user. |
| * |
| * Return true if a reset is required before the agfl can be used, false |
| * otherwise. |
| */ |
| static bool |
| xfs_agfl_needs_reset( |
| struct xfs_mount *mp, |
| struct xfs_agf *agf) |
| { |
| uint32_t f = be32_to_cpu(agf->agf_flfirst); |
| uint32_t l = be32_to_cpu(agf->agf_fllast); |
| uint32_t c = be32_to_cpu(agf->agf_flcount); |
| int agfl_size = xfs_agfl_size(mp); |
| int active; |
| |
| /* |
| * The agf read verifier catches severe corruption of these fields. |
| * Repeat some sanity checks to cover a packed -> unpacked mismatch if |
| * the verifier allows it. |
| */ |
| if (f >= agfl_size || l >= agfl_size) |
| return true; |
| if (c > agfl_size) |
| return true; |
| |
| /* |
| * Check consistency between the on-disk count and the active range. An |
| * agfl padding mismatch manifests as an inconsistent flcount. |
| */ |
| if (c && l >= f) |
| active = l - f + 1; |
| else if (c) |
| active = agfl_size - f + l + 1; |
| else |
| active = 0; |
| |
| return active != c; |
| } |
| |
| /* |
| * Reset the agfl to an empty state. Ignore/drop any existing blocks since the |
| * agfl content cannot be trusted. Warn the user that a repair is required to |
| * recover leaked blocks. |
| * |
| * The purpose of this mechanism is to handle filesystems affected by the agfl |
| * header padding mismatch problem. A reset keeps the filesystem online with a |
| * relatively minor free space accounting inconsistency rather than suffer the |
| * inevitable crash from use of an invalid agfl block. |
| */ |
| static void |
| xfs_agfl_reset( |
| struct xfs_trans *tp, |
| struct xfs_buf *agbp, |
| struct xfs_perag *pag) |
| { |
| struct xfs_mount *mp = tp->t_mountp; |
| struct xfs_agf *agf = agbp->b_addr; |
| |
| ASSERT(xfs_perag_agfl_needs_reset(pag)); |
| trace_xfs_agfl_reset(mp, agf, 0, _RET_IP_); |
| |
| xfs_warn(mp, |
| "WARNING: Reset corrupted AGFL on AG %u. %d blocks leaked. " |
| "Please unmount and run xfs_repair.", |
| pag->pag_agno, pag->pagf_flcount); |
| |
| agf->agf_flfirst = 0; |
| agf->agf_fllast = cpu_to_be32(xfs_agfl_size(mp) - 1); |
| agf->agf_flcount = 0; |
| xfs_alloc_log_agf(tp, agbp, XFS_AGF_FLFIRST | XFS_AGF_FLLAST | |
| XFS_AGF_FLCOUNT); |
| |
| pag->pagf_flcount = 0; |
| clear_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate); |
| } |
| |
| /* |
| * Add the extent to the list of extents to be free at transaction end. |
| * The list is maintained sorted (by block number). |
| */ |
| static int |
| xfs_defer_extent_free( |
| struct xfs_trans *tp, |
| xfs_fsblock_t bno, |
| xfs_filblks_t len, |
| const struct xfs_owner_info *oinfo, |
| enum xfs_ag_resv_type type, |
| unsigned int free_flags, |
| struct xfs_defer_pending **dfpp) |
| { |
| struct xfs_extent_free_item *xefi; |
| struct xfs_mount *mp = tp->t_mountp; |
| |
| ASSERT(len <= XFS_MAX_BMBT_EXTLEN); |
| ASSERT(!isnullstartblock(bno)); |
| ASSERT(!(free_flags & ~XFS_FREE_EXTENT_ALL_FLAGS)); |
| |
| if (XFS_IS_CORRUPT(mp, !xfs_verify_fsbext(mp, bno, len))) |
| return -EFSCORRUPTED; |
| |
| xefi = kmem_cache_zalloc(xfs_extfree_item_cache, |
| GFP_KERNEL | __GFP_NOFAIL); |
| xefi->xefi_startblock = bno; |
| xefi->xefi_blockcount = (xfs_extlen_t)len; |
| xefi->xefi_agresv = type; |
| if (free_flags & XFS_FREE_EXTENT_SKIP_DISCARD) |
| xefi->xefi_flags |= XFS_EFI_SKIP_DISCARD; |
| if (oinfo) { |
| ASSERT(oinfo->oi_offset == 0); |
| |
| if (oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK) |
| xefi->xefi_flags |= XFS_EFI_ATTR_FORK; |
| if (oinfo->oi_flags & XFS_OWNER_INFO_BMBT_BLOCK) |
| xefi->xefi_flags |= XFS_EFI_BMBT_BLOCK; |
| xefi->xefi_owner = oinfo->oi_owner; |
| } else { |
| xefi->xefi_owner = XFS_RMAP_OWN_NULL; |
| } |
| |
| xfs_extent_free_defer_add(tp, xefi, dfpp); |
| return 0; |
| } |
| |
| int |
| xfs_free_extent_later( |
| struct xfs_trans *tp, |
| xfs_fsblock_t bno, |
| xfs_filblks_t len, |
| const struct xfs_owner_info *oinfo, |
| enum xfs_ag_resv_type type, |
| unsigned int free_flags) |
| { |
| struct xfs_defer_pending *dontcare = NULL; |
| |
| return xfs_defer_extent_free(tp, bno, len, oinfo, type, free_flags, |
| &dontcare); |
| } |
| |
| /* |
| * Set up automatic freeing of unwritten space in the filesystem. |
| * |
| * This function attached a paused deferred extent free item to the |
| * transaction. Pausing means that the EFI will be logged in the next |
| * transaction commit, but the pending EFI will not be finished until the |
| * pending item is unpaused. |
| * |
| * If the system goes down after the EFI has been persisted to the log but |
| * before the pending item is unpaused, log recovery will find the EFI, fail to |
| * find the EFD, and free the space. |
| * |
| * If the pending item is unpaused, the next transaction commit will log an EFD |
| * without freeing the space. |
| * |
| * Caller must ensure that the tp, fsbno, len, oinfo, and resv flags of the |
| * @args structure are set to the relevant values. |
| */ |
| int |
| xfs_alloc_schedule_autoreap( |
| const struct xfs_alloc_arg *args, |
| unsigned int free_flags, |
| struct xfs_alloc_autoreap *aarp) |
| { |
| int error; |
| |
| error = xfs_defer_extent_free(args->tp, args->fsbno, args->len, |
| &args->oinfo, args->resv, free_flags, &aarp->dfp); |
| if (error) |
| return error; |
| |
| xfs_defer_item_pause(args->tp, aarp->dfp); |
| return 0; |
| } |
| |
| /* |
| * Cancel automatic freeing of unwritten space in the filesystem. |
| * |
| * Earlier, we created a paused deferred extent free item and attached it to |
| * this transaction so that we could automatically roll back a new space |
| * allocation if the system went down. Now we want to cancel the paused work |
| * item by marking the EFI stale so we don't actually free the space, unpausing |
| * the pending item and logging an EFD. |
| * |
| * The caller generally should have already mapped the space into the ondisk |
| * filesystem. If the reserved space was partially used, the caller must call |
| * xfs_free_extent_later to create a new EFI to free the unused space. |
| */ |
| void |
| xfs_alloc_cancel_autoreap( |
| struct xfs_trans *tp, |
| struct xfs_alloc_autoreap *aarp) |
| { |
| struct xfs_defer_pending *dfp = aarp->dfp; |
| struct xfs_extent_free_item *xefi; |
| |
| if (!dfp) |
| return; |
| |
| list_for_each_entry(xefi, &dfp->dfp_work, xefi_list) |
| xefi->xefi_flags |= XFS_EFI_CANCELLED; |
| |
| xfs_defer_item_unpause(tp, dfp); |
| } |
| |
| /* |
| * Commit automatic freeing of unwritten space in the filesystem. |
| * |
| * This unpauses an earlier _schedule_autoreap and commits to freeing the |
| * allocated space. Call this if none of the reserved space was used. |
| */ |
| void |
| xfs_alloc_commit_autoreap( |
| struct xfs_trans *tp, |
| struct xfs_alloc_autoreap *aarp) |
| { |
| if (aarp->dfp) |
| xfs_defer_item_unpause(tp, aarp->dfp); |
| } |
| |
| /* |
| * Check if an AGF has a free extent record whose length is equal to |
| * args->minlen. |
| */ |
| STATIC int |
| xfs_exact_minlen_extent_available( |
| struct xfs_alloc_arg *args, |
| struct xfs_buf *agbp, |
| int *stat) |
| { |
| struct xfs_btree_cur *cnt_cur; |
| xfs_agblock_t fbno; |
| xfs_extlen_t flen; |
| int error = 0; |
| |
| cnt_cur = xfs_cntbt_init_cursor(args->mp, args->tp, agbp, |
| args->pag); |
| error = xfs_alloc_lookup_ge(cnt_cur, 0, args->minlen, stat); |
| if (error) |
| goto out; |
| |
| if (*stat == 0) { |
| xfs_btree_mark_sick(cnt_cur); |
| error = -EFSCORRUPTED; |
| goto out; |
| } |
| |
| error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, stat); |
| if (error) |
| goto out; |
| |
| if (*stat == 1 && flen != args->minlen) |
| *stat = 0; |
| |
| out: |
| xfs_btree_del_cursor(cnt_cur, error); |
| |
| return error; |
| } |
| |
| /* |
| * Decide whether to use this allocation group for this allocation. |
| * If so, fix up the btree freelist's size. |
| */ |
| int /* error */ |
| xfs_alloc_fix_freelist( |
| struct xfs_alloc_arg *args, /* allocation argument structure */ |
| uint32_t alloc_flags) |
| { |
| struct xfs_mount *mp = args->mp; |
| struct xfs_perag *pag = args->pag; |
| struct xfs_trans *tp = args->tp; |
| struct xfs_buf *agbp = NULL; |
| struct xfs_buf *agflbp = NULL; |
| struct xfs_alloc_arg targs; /* local allocation arguments */ |
| xfs_agblock_t bno; /* freelist block */ |
| xfs_extlen_t need; /* total blocks needed in freelist */ |
| int error = 0; |
| |
| /* deferred ops (AGFL block frees) require permanent transactions */ |
| ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); |
| |
| if (!xfs_perag_initialised_agf(pag)) { |
| error = xfs_alloc_read_agf(pag, tp, alloc_flags, &agbp); |
| if (error) { |
| /* Couldn't lock the AGF so skip this AG. */ |
| if (error == -EAGAIN) |
| error = 0; |
| goto out_no_agbp; |
| } |
| } |
| |
| /* |
| * If this is a metadata preferred pag and we are user data then try |
| * somewhere else if we are not being asked to try harder at this |
| * point |
| */ |
| if (xfs_perag_prefers_metadata(pag) && |
| (args->datatype & XFS_ALLOC_USERDATA) && |
| (alloc_flags & XFS_ALLOC_FLAG_TRYLOCK)) { |
| ASSERT(!(alloc_flags & XFS_ALLOC_FLAG_FREEING)); |
| goto out_agbp_relse; |
| } |
| |
| need = xfs_alloc_min_freelist(mp, pag); |
| if (!xfs_alloc_space_available(args, need, alloc_flags | |
| XFS_ALLOC_FLAG_CHECK)) |
| goto out_agbp_relse; |
| |
| /* |
| * Get the a.g. freespace buffer. |
| * Can fail if we're not blocking on locks, and it's held. |
| */ |
| if (!agbp) { |
| error = xfs_alloc_read_agf(pag, tp, alloc_flags, &agbp); |
| if (error) { |
| /* Couldn't lock the AGF so skip this AG. */ |
| if (error == -EAGAIN) |
| error = 0; |
| goto out_no_agbp; |
| } |
| } |
| |
| /* reset a padding mismatched agfl before final free space check */ |
| if (xfs_perag_agfl_needs_reset(pag)) |
| xfs_agfl_reset(tp, agbp, pag); |
| |
| /* If there isn't enough total space or single-extent, reject it. */ |
| need = xfs_alloc_min_freelist(mp, pag); |
| if (!xfs_alloc_space_available(args, need, alloc_flags)) |
| goto out_agbp_relse; |
| |
| if (IS_ENABLED(CONFIG_XFS_DEBUG) && args->alloc_minlen_only) { |
| int stat; |
| |
| error = xfs_exact_minlen_extent_available(args, agbp, &stat); |
| if (error || !stat) |
| goto out_agbp_relse; |
| } |
| |
| /* |
| * Make the freelist shorter if it's too long. |
| * |
| * Note that from this point onwards, we will always release the agf and |
| * agfl buffers on error. This handles the case where we error out and |
| * the buffers are clean or may not have been joined to the transaction |
| * and hence need to be released manually. If they have been joined to |
| * the transaction, then xfs_trans_brelse() will handle them |
| * appropriately based on the recursion count and dirty state of the |
| * buffer. |
| * |
| * XXX (dgc): When we have lots of free space, does this buy us |
| * anything other than extra overhead when we need to put more blocks |
| * back on the free list? Maybe we should only do this when space is |
| * getting low or the AGFL is more than half full? |
| * |
| * The NOSHRINK flag prevents the AGFL from being shrunk if it's too |
| * big; the NORMAP flag prevents AGFL expand/shrink operations from |
| * updating the rmapbt. Both flags are used in xfs_repair while we're |
| * rebuilding the rmapbt, and neither are used by the kernel. They're |
| * both required to ensure that rmaps are correctly recorded for the |
| * regenerated AGFL, bnobt, and cntbt. See repair/phase5.c and |
| * repair/rmap.c in xfsprogs for details. |
| */ |
| memset(&targs, 0, sizeof(targs)); |
| /* struct copy below */ |
| if (alloc_flags & XFS_ALLOC_FLAG_NORMAP) |
| targs.oinfo = XFS_RMAP_OINFO_SKIP_UPDATE; |
| else |
| targs.oinfo = XFS_RMAP_OINFO_AG; |
| while (!(alloc_flags & XFS_ALLOC_FLAG_NOSHRINK) && |
| pag->pagf_flcount > need) { |
| error = xfs_alloc_get_freelist(pag, tp, agbp, &bno, 0); |
| if (error) |
| goto out_agbp_relse; |
| |
| /* |
| * Defer the AGFL block free. |
| * |
| * This helps to prevent log reservation overruns due to too |
| * many allocation operations in a transaction. AGFL frees are |
| * prone to this problem because for one they are always freed |
| * one at a time. Further, an immediate AGFL block free can |
| * cause a btree join and require another block free before the |
| * real allocation can proceed. |
| * Deferring the free disconnects freeing up the AGFL slot from |
| * freeing the block. |
| */ |
| error = xfs_free_extent_later(tp, |
| XFS_AGB_TO_FSB(mp, args->agno, bno), 1, |
| &targs.oinfo, XFS_AG_RESV_AGFL, 0); |
| if (error) |
| goto out_agbp_relse; |
| } |
| |
| targs.tp = tp; |
| targs.mp = mp; |
| targs.agbp = agbp; |
| targs.agno = args->agno; |
| targs.alignment = targs.minlen = targs.prod = 1; |
| targs.pag = pag; |
| error = xfs_alloc_read_agfl(pag, tp, &agflbp); |
| if (error) |
| goto out_agbp_relse; |
| |
| /* Make the freelist longer if it's too short. */ |
| while (pag->pagf_flcount < need) { |
| targs.agbno = 0; |
| targs.maxlen = need - pag->pagf_flcount; |
| targs.resv = XFS_AG_RESV_AGFL; |
| |
| /* Allocate as many blocks as possible at once. */ |
| error = xfs_alloc_ag_vextent_size(&targs, alloc_flags); |
| if (error) |
| goto out_agflbp_relse; |
| |
| /* |
| * Stop if we run out. Won't happen if callers are obeying |
| * the restrictions correctly. Can happen for free calls |
| * on a completely full ag. |
| */ |
| if (targs.agbno == NULLAGBLOCK) { |
| if (alloc_flags & XFS_ALLOC_FLAG_FREEING) |
| break; |
| goto out_agflbp_relse; |
| } |
| |
| if (!xfs_rmap_should_skip_owner_update(&targs.oinfo)) { |
| error = xfs_rmap_alloc(tp, agbp, pag, |
| targs.agbno, targs.len, &targs.oinfo); |
| if (error) |
| goto out_agflbp_relse; |
| } |
| error = xfs_alloc_update_counters(tp, agbp, |
| -((long)(targs.len))); |
| if (error) |
| goto out_agflbp_relse; |
| |
| /* |
| * Put each allocated block on the list. |
| */ |
| for (bno = targs.agbno; bno < targs.agbno + targs.len; bno++) { |
| error = xfs_alloc_put_freelist(pag, tp, agbp, |
| agflbp, bno, 0); |
| if (error) |
| goto out_agflbp_relse; |
| } |
| } |
| xfs_trans_brelse(tp, agflbp); |
| args->agbp = agbp; |
| return 0; |
| |
| out_agflbp_relse: |
| xfs_trans_brelse(tp, agflbp); |
| out_agbp_relse: |
| if (agbp) |
| xfs_trans_brelse(tp, agbp); |
| out_no_agbp: |
| args->agbp = NULL; |
| return error; |
| } |
| |
| /* |
| * Get a block from the freelist. |
| * Returns with the buffer for the block gotten. |
| */ |
| int |
| xfs_alloc_get_freelist( |
| struct xfs_perag *pag, |
| struct xfs_trans *tp, |
| struct xfs_buf *agbp, |
| xfs_agblock_t *bnop, |
| int btreeblk) |
| { |
| struct xfs_agf *agf = agbp->b_addr; |
| struct xfs_buf *agflbp; |
| xfs_agblock_t bno; |
| __be32 *agfl_bno; |
| int error; |
| uint32_t logflags; |
| struct xfs_mount *mp = tp->t_mountp; |
| |
| /* |
| * Freelist is empty, give up. |
| */ |
| if (!agf->agf_flcount) { |
| *bnop = NULLAGBLOCK; |
| return 0; |
| } |
| /* |
| * Read the array of free blocks. |
| */ |
| error = xfs_alloc_read_agfl(pag, tp, &agflbp); |
| if (error) |
| return error; |
| |
| |
| /* |
| * Get the block number and update the data structures. |
| */ |
| agfl_bno = xfs_buf_to_agfl_bno(agflbp); |
| bno = be32_to_cpu(agfl_bno[be32_to_cpu(agf->agf_flfirst)]); |
| if (XFS_IS_CORRUPT(tp->t_mountp, !xfs_verify_agbno(pag, bno))) |
| return -EFSCORRUPTED; |
| |
| be32_add_cpu(&agf->agf_flfirst, 1); |
| xfs_trans_brelse(tp, agflbp); |
| if (be32_to_cpu(agf->agf_flfirst) == xfs_agfl_size(mp)) |
| agf->agf_flfirst = 0; |
| |
| ASSERT(!xfs_perag_agfl_needs_reset(pag)); |
| be32_add_cpu(&agf->agf_flcount, -1); |
| pag->pagf_flcount--; |
| |
| logflags = XFS_AGF_FLFIRST | XFS_AGF_FLCOUNT; |
| if (btreeblk) { |
| be32_add_cpu(&agf->agf_btreeblks, 1); |
| pag->pagf_btreeblks++; |
| logflags |= XFS_AGF_BTREEBLKS; |
| } |
| |
| xfs_alloc_log_agf(tp, agbp, logflags); |
| *bnop = bno; |
| |
| return 0; |
| } |
| |
| /* |
| * Log the given fields from the agf structure. |
| */ |
| void |
| xfs_alloc_log_agf( |
| struct xfs_trans *tp, |
| struct xfs_buf *bp, |
| uint32_t fields) |
| { |
| int first; /* first byte offset */ |
| int last; /* last byte offset */ |
| static const short offsets[] = { |
| offsetof(xfs_agf_t, agf_magicnum), |
| offsetof(xfs_agf_t, agf_versionnum), |
| offsetof(xfs_agf_t, agf_seqno), |
| offsetof(xfs_agf_t, agf_length), |
| offsetof(xfs_agf_t, agf_bno_root), /* also cnt/rmap root */ |
| offsetof(xfs_agf_t, agf_bno_level), /* also cnt/rmap levels */ |
| offsetof(xfs_agf_t, agf_flfirst), |
| offsetof(xfs_agf_t, agf_fllast), |
| offsetof(xfs_agf_t, agf_flcount), |
| offsetof(xfs_agf_t, agf_freeblks), |
| offsetof(xfs_agf_t, agf_longest), |
| offsetof(xfs_agf_t, agf_btreeblks), |
| offsetof(xfs_agf_t, agf_uuid), |
| offsetof(xfs_agf_t, agf_rmap_blocks), |
| offsetof(xfs_agf_t, agf_refcount_blocks), |
| offsetof(xfs_agf_t, agf_refcount_root), |
| offsetof(xfs_agf_t, agf_refcount_level), |
| /* needed so that we don't log the whole rest of the structure: */ |
| offsetof(xfs_agf_t, agf_spare64), |
| sizeof(xfs_agf_t) |
| }; |
| |
| trace_xfs_agf(tp->t_mountp, bp->b_addr, fields, _RET_IP_); |
| |
| xfs_trans_buf_set_type(tp, bp, XFS_BLFT_AGF_BUF); |
| |
| xfs_btree_offsets(fields, offsets, XFS_AGF_NUM_BITS, &first, &last); |
| xfs_trans_log_buf(tp, bp, (uint)first, (uint)last); |
| } |
| |
| /* |
| * Put the block on the freelist for the allocation group. |
| */ |
| int |
| xfs_alloc_put_freelist( |
| struct xfs_perag *pag, |
| struct xfs_trans *tp, |
| struct xfs_buf *agbp, |
| struct xfs_buf *agflbp, |
| xfs_agblock_t bno, |
| int btreeblk) |
| { |
| struct xfs_mount *mp = tp->t_mountp; |
| struct xfs_agf *agf = agbp->b_addr; |
| __be32 *blockp; |
| int error; |
| uint32_t logflags; |
| __be32 *agfl_bno; |
| int startoff; |
| |
| if (!agflbp) { |
| error = xfs_alloc_read_agfl(pag, tp, &agflbp); |
| if (error) |
| return error; |
| } |
| |
| be32_add_cpu(&agf->agf_fllast, 1); |
| if (be32_to_cpu(agf->agf_fllast) == xfs_agfl_size(mp)) |
| agf->agf_fllast = 0; |
| |
| ASSERT(!xfs_perag_agfl_needs_reset(pag)); |
| be32_add_cpu(&agf->agf_flcount, 1); |
| pag->pagf_flcount++; |
| |
| logflags = XFS_AGF_FLLAST | XFS_AGF_FLCOUNT; |
| if (btreeblk) { |
| be32_add_cpu(&agf->agf_btreeblks, -1); |
| pag->pagf_btreeblks--; |
| logflags |= XFS_AGF_BTREEBLKS; |
| } |
| |
| xfs_alloc_log_agf(tp, agbp, logflags); |
| |
| ASSERT(be32_to_cpu(agf->agf_flcount) <= xfs_agfl_size(mp)); |
| |
| agfl_bno = xfs_buf_to_agfl_bno(agflbp); |
| blockp = &agfl_bno[be32_to_cpu(agf->agf_fllast)]; |
| *blockp = cpu_to_be32(bno); |
| startoff = (char *)blockp - (char *)agflbp->b_addr; |
| |
| xfs_alloc_log_agf(tp, agbp, logflags); |
| |
| xfs_trans_buf_set_type(tp, agflbp, XFS_BLFT_AGFL_BUF); |
| xfs_trans_log_buf(tp, agflbp, startoff, |
| startoff + sizeof(xfs_agblock_t) - 1); |
| return 0; |
| } |
| |
| /* |
| * Check that this AGF/AGI header's sequence number and length matches the AG |
| * number and size in fsblocks. |
| */ |
| xfs_failaddr_t |
| xfs_validate_ag_length( |
| struct xfs_buf *bp, |
| uint32_t seqno, |
| uint32_t length) |
| { |
| struct xfs_mount *mp = bp->b_mount; |
| /* |
| * During growfs operations, the perag is not fully initialised, |
| * so we can't use it for any useful checking. growfs ensures we can't |
| * use it by using uncached buffers that don't have the perag attached |
| * so we can detect and avoid this problem. |
| */ |
| if (bp->b_pag && seqno != bp->b_pag->pag_agno) |
| return __this_address; |
| |
| /* |
| * Only the last AG in the filesystem is allowed to be shorter |
| * than the AG size recorded in the superblock. |
| */ |
| if (length != mp->m_sb.sb_agblocks) { |
| /* |
| * During growfs, the new last AG can get here before we |
| * have updated the superblock. Give it a pass on the seqno |
| * check. |
| */ |
| if (bp->b_pag && seqno != mp->m_sb.sb_agcount - 1) |
| return __this_address; |
| if (length < XFS_MIN_AG_BLOCKS) |
| return __this_address; |
| if (length > mp->m_sb.sb_agblocks) |
| return __this_address; |
| } |
| |
| return NULL; |
| } |
| |
| /* |
| * Verify the AGF is consistent. |
| * |
| * We do not verify the AGFL indexes in the AGF are fully consistent here |
| * because of issues with variable on-disk structure sizes. Instead, we check |
| * the agfl indexes for consistency when we initialise the perag from the AGF |
| * information after a read completes. |
| * |
| * If the index is inconsistent, then we mark the perag as needing an AGFL |
| * reset. The first AGFL update performed then resets the AGFL indexes and |
| * refills the AGFL with known good free blocks, allowing the filesystem to |
| * continue operating normally at the cost of a few leaked free space blocks. |
| */ |
| static xfs_failaddr_t |
| xfs_agf_verify( |
| struct xfs_buf *bp) |
| { |
| struct xfs_mount *mp = bp->b_mount; |
| struct xfs_agf *agf = bp->b_addr; |
| xfs_failaddr_t fa; |
| uint32_t agf_seqno = be32_to_cpu(agf->agf_seqno); |
| uint32_t agf_length = be32_to_cpu(agf->agf_length); |
| |
| if (xfs_has_crc(mp)) { |
| if (!uuid_equal(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid)) |
| return __this_address; |
| if (!xfs_log_check_lsn(mp, be64_to_cpu(agf->agf_lsn))) |
| return __this_address; |
| } |
| |
| if (!xfs_verify_magic(bp, agf->agf_magicnum)) |
| return __this_address; |
| |
| if (!XFS_AGF_GOOD_VERSION(be32_to_cpu(agf->agf_versionnum))) |
| return __this_address; |
| |
| /* |
| * Both agf_seqno and agf_length need to validated before anything else |
| * block number related in the AGF or AGFL can be checked. |
| */ |
| fa = xfs_validate_ag_length(bp, agf_seqno, agf_length); |
| if (fa) |
| return fa; |
| |
| if (be32_to_cpu(agf->agf_flfirst) >= xfs_agfl_size(mp)) |
| return __this_address; |
| if (be32_to_cpu(agf->agf_fllast) >= xfs_agfl_size(mp)) |
| return __this_address; |
| if (be32_to_cpu(agf->agf_flcount) > xfs_agfl_size(mp)) |
| return __this_address; |
| |
| if (be32_to_cpu(agf->agf_freeblks) < be32_to_cpu(agf->agf_longest) || |
| be32_to_cpu(agf->agf_freeblks) > agf_length) |
| return __this_address; |
| |
| if (be32_to_cpu(agf->agf_bno_level) < 1 || |
| be32_to_cpu(agf->agf_cnt_level) < 1 || |
| be32_to_cpu(agf->agf_bno_level) > mp->m_alloc_maxlevels || |
| be32_to_cpu(agf->agf_cnt_level) > mp->m_alloc_maxlevels) |
| return __this_address; |
| |
| if (xfs_has_lazysbcount(mp) && |
| be32_to_cpu(agf->agf_btreeblks) > agf_length) |
| return __this_address; |
| |
| if (xfs_has_rmapbt(mp)) { |
| if (be32_to_cpu(agf->agf_rmap_blocks) > agf_length) |
| return __this_address; |
| |
| if (be32_to_cpu(agf->agf_rmap_level) < 1 || |
| be32_to_cpu(agf->agf_rmap_level) > mp->m_rmap_maxlevels) |
| return __this_address; |
| } |
| |
| if (xfs_has_reflink(mp)) { |
| if (be32_to_cpu(agf->agf_refcount_blocks) > agf_length) |
| return __this_address; |
| |
| if (be32_to_cpu(agf->agf_refcount_level) < 1 || |
| be32_to_cpu(agf->agf_refcount_level) > mp->m_refc_maxlevels) |
| return __this_address; |
| } |
| |
| return NULL; |
| } |
| |
| static void |
| xfs_agf_read_verify( |
| struct xfs_buf *bp) |
| { |
| struct xfs_mount *mp = bp->b_mount; |
| xfs_failaddr_t fa; |
| |
| if (xfs_has_crc(mp) && |
| !xfs_buf_verify_cksum(bp, XFS_AGF_CRC_OFF)) |
| xfs_verifier_error(bp, -EFSBADCRC, __this_address); |
| else { |
| fa = xfs_agf_verify(bp); |
| if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_ALLOC_READ_AGF)) |
| xfs_verifier_error(bp, -EFSCORRUPTED, fa); |
| } |
| } |
| |
| static void |
| xfs_agf_write_verify( |
| struct xfs_buf *bp) |
| { |
| struct xfs_mount *mp = bp->b_mount; |
| struct xfs_buf_log_item *bip = bp->b_log_item; |
| struct xfs_agf *agf = bp->b_addr; |
| xfs_failaddr_t fa; |
| |
| fa = xfs_agf_verify(bp); |
| if (fa) { |
| xfs_verifier_error(bp, -EFSCORRUPTED, fa); |
| return; |
| } |
| |
| if (!xfs_has_crc(mp)) |
| return; |
| |
| if (bip) |
| agf->agf_lsn = cpu_to_be64(bip->bli_item.li_lsn); |
| |
| xfs_buf_update_cksum(bp, XFS_AGF_CRC_OFF); |
| } |
| |
| const struct xfs_buf_ops xfs_agf_buf_ops = { |
| .name = "xfs_agf", |
| .magic = { cpu_to_be32(XFS_AGF_MAGIC), cpu_to_be32(XFS_AGF_MAGIC) }, |
| .verify_read = xfs_agf_read_verify, |
| .verify_write = xfs_agf_write_verify, |
| .verify_struct = xfs_agf_verify, |
| }; |
| |
| /* |
| * Read in the allocation group header (free/alloc section). |
| */ |
| int |
| xfs_read_agf( |
| struct xfs_perag *pag, |
| struct xfs_trans *tp, |
| int flags, |
| struct xfs_buf **agfbpp) |
| { |
| struct xfs_mount *mp = pag->pag_mount; |
| int error; |
| |
| trace_xfs_read_agf(pag->pag_mount, pag->pag_agno); |
| |
| error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, |
| XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGF_DADDR(mp)), |
| XFS_FSS_TO_BB(mp, 1), flags, agfbpp, &xfs_agf_buf_ops); |
| if (xfs_metadata_is_sick(error)) |
| xfs_ag_mark_sick(pag, XFS_SICK_AG_AGF); |
| if (error) |
| return error; |
| |
| xfs_buf_set_ref(*agfbpp, XFS_AGF_REF); |
| return 0; |
| } |
| |
| /* |
| * Read in the allocation group header (free/alloc section) and initialise the |
| * perag structure if necessary. If the caller provides @agfbpp, then return the |
| * locked buffer to the caller, otherwise free it. |
| */ |
| int |
| xfs_alloc_read_agf( |
| struct xfs_perag *pag, |
| struct xfs_trans *tp, |
| int flags, |
| struct xfs_buf **agfbpp) |
| { |
| struct xfs_buf *agfbp; |
| struct xfs_agf *agf; |
| int error; |
| int allocbt_blks; |
| |
| trace_xfs_alloc_read_agf(pag->pag_mount, pag->pag_agno); |
| |
| /* We don't support trylock when freeing. */ |
| ASSERT((flags & (XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK)) != |
| (XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK)); |
| error = xfs_read_agf(pag, tp, |
| (flags & XFS_ALLOC_FLAG_TRYLOCK) ? XBF_TRYLOCK : 0, |
| &agfbp); |
| if (error) |
| return error; |
| |
| agf = agfbp->b_addr; |
| if (!xfs_perag_initialised_agf(pag)) { |
| pag->pagf_freeblks = be32_to_cpu(agf->agf_freeblks); |
| pag->pagf_btreeblks = be32_to_cpu(agf->agf_btreeblks); |
| pag->pagf_flcount = be32_to_cpu(agf->agf_flcount); |
| pag->pagf_longest = be32_to_cpu(agf->agf_longest); |
| pag->pagf_bno_level = be32_to_cpu(agf->agf_bno_level); |
| pag->pagf_cnt_level = be32_to_cpu(agf->agf_cnt_level); |
| pag->pagf_rmap_level = be32_to_cpu(agf->agf_rmap_level); |
| pag->pagf_refcount_level = be32_to_cpu(agf->agf_refcount_level); |
| if (xfs_agfl_needs_reset(pag->pag_mount, agf)) |
| set_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate); |
| else |
| clear_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate); |
| |
| /* |
| * Update the in-core allocbt counter. Filter out the rmapbt |
| * subset of the btreeblks counter because the rmapbt is managed |
| * by perag reservation. Subtract one for the rmapbt root block |
| * because the rmap counter includes it while the btreeblks |
| * counter only tracks non-root blocks. |
| */ |
| allocbt_blks = pag->pagf_btreeblks; |
| if (xfs_has_rmapbt(pag->pag_mount)) |
| allocbt_blks -= be32_to_cpu(agf->agf_rmap_blocks) - 1; |
| if (allocbt_blks > 0) |
| atomic64_add(allocbt_blks, |
| &pag->pag_mount->m_allocbt_blks); |
| |
| set_bit(XFS_AGSTATE_AGF_INIT, &pag->pag_opstate); |
| } |
| #ifdef DEBUG |
| else if (!xfs_is_shutdown(pag->pag_mount)) { |
| ASSERT(pag->pagf_freeblks == be32_to_cpu(agf->agf_freeblks)); |
| ASSERT(pag->pagf_btreeblks == be32_to_cpu(agf->agf_btreeblks)); |
| ASSERT(pag->pagf_flcount == be32_to_cpu(agf->agf_flcount)); |
| ASSERT(pag->pagf_longest == be32_to_cpu(agf->agf_longest)); |
| ASSERT(pag->pagf_bno_level == be32_to_cpu(agf->agf_bno_level)); |
| ASSERT(pag->pagf_cnt_level == be32_to_cpu(agf->agf_cnt_level)); |
| } |
| #endif |
| if (agfbpp) |
| *agfbpp = agfbp; |
| else |
| xfs_trans_brelse(tp, agfbp); |
| return 0; |
| } |
| |
| /* |
| * Pre-proces allocation arguments to set initial state that we don't require |
| * callers to set up correctly, as well as bounds check the allocation args |
| * that are set up. |
| */ |
| static int |
| xfs_alloc_vextent_check_args( |
| struct xfs_alloc_arg *args, |
| xfs_fsblock_t target, |
| xfs_agnumber_t *minimum_agno) |
| { |
| struct xfs_mount *mp = args->mp; |
| xfs_agblock_t agsize; |
| |
| args->fsbno = NULLFSBLOCK; |
| |
| *minimum_agno = 0; |
| if (args->tp->t_highest_agno != NULLAGNUMBER) |
| *minimum_agno = args->tp->t_highest_agno; |
| |
| /* |
| * Just fix this up, for the case where the last a.g. is shorter |
| * (or there's only one a.g.) and the caller couldn't easily figure |
| * that out (xfs_bmap_alloc). |
| */ |
| agsize = mp->m_sb.sb_agblocks; |
| if (args->maxlen > agsize) |
| args->maxlen = agsize; |
| if (args->alignment == 0) |
| args->alignment = 1; |
| |
| ASSERT(args->minlen > 0); |
| ASSERT(args->maxlen > 0); |
| ASSERT(args->alignment > 0); |
| ASSERT(args->resv != XFS_AG_RESV_AGFL); |
| |
| ASSERT(XFS_FSB_TO_AGNO(mp, target) < mp->m_sb.sb_agcount); |
| ASSERT(XFS_FSB_TO_AGBNO(mp, target) < agsize); |
| ASSERT(args->minlen <= args->maxlen); |
| ASSERT(args->minlen <= agsize); |
| ASSERT(args->mod < args->prod); |
| |
| if (XFS_FSB_TO_AGNO(mp, target) >= mp->m_sb.sb_agcount || |
| XFS_FSB_TO_AGBNO(mp, target) >= agsize || |
| args->minlen > args->maxlen || args->minlen > agsize || |
| args->mod >= args->prod) { |
| trace_xfs_alloc_vextent_badargs(args); |
| return -ENOSPC; |
| } |
| |
| if (args->agno != NULLAGNUMBER && *minimum_agno > args->agno) { |
| trace_xfs_alloc_vextent_skip_deadlock(args); |
| return -ENOSPC; |
| } |
| return 0; |
| |
| } |
| |
| /* |
| * Prepare an AG for allocation. If the AG is not prepared to accept the |
| * allocation, return failure. |
| * |
| * XXX(dgc): The complexity of "need_pag" will go away as all caller paths are |
| * modified to hold their own perag references. |
| */ |
| static int |
| xfs_alloc_vextent_prepare_ag( |
| struct xfs_alloc_arg *args, |
| uint32_t alloc_flags) |
| { |
| bool need_pag = !args->pag; |
| int error; |
| |
| if (need_pag) |
| args->pag = xfs_perag_get(args->mp, args->agno); |
| |
| args->agbp = NULL; |
| error = xfs_alloc_fix_freelist(args, alloc_flags); |
| if (error) { |
| trace_xfs_alloc_vextent_nofix(args); |
| if (need_pag) |
| xfs_perag_put(args->pag); |
| args->agbno = NULLAGBLOCK; |
| return error; |
| } |
| if (!args->agbp) { |
| /* cannot allocate in this AG at all */ |
| trace_xfs_alloc_vextent_noagbp(args); |
| args->agbno = NULLAGBLOCK; |
| return 0; |
| } |
| args->wasfromfl = 0; |
| return 0; |
| } |
| |
| /* |
| * Post-process allocation results to account for the allocation if it succeed |
| * and set the allocated block number correctly for the caller. |
| * |
| * XXX: we should really be returning ENOSPC for ENOSPC, not |
| * hiding it behind a "successful" NULLFSBLOCK allocation. |
| */ |
| static int |
| xfs_alloc_vextent_finish( |
| struct xfs_alloc_arg *args, |
| xfs_agnumber_t minimum_agno, |
| int alloc_error, |
| bool drop_perag) |
| { |
| struct xfs_mount *mp = args->mp; |
| int error = 0; |
| |
| /* |
| * We can end up here with a locked AGF. If we failed, the caller is |
| * likely going to try to allocate again with different parameters, and |
| * that can widen the AGs that are searched for free space. If we have |
| * to do BMBT block allocation, we have to do a new allocation. |
| * |
| * Hence leaving this function with the AGF locked opens up potential |
| * ABBA AGF deadlocks because a future allocation attempt in this |
| * transaction may attempt to lock a lower number AGF. |
| * |
| * We can't release the AGF until the transaction is commited, so at |
| * this point we must update the "first allocation" tracker to point at |
| * this AG if the tracker is empty or points to a lower AG. This allows |
| * the next allocation attempt to be modified appropriately to avoid |
| * deadlocks. |
| */ |
| if (args->agbp && |
| (args->tp->t_highest_agno == NULLAGNUMBER || |
| args->agno > minimum_agno)) |
| args->tp->t_highest_agno = args->agno; |
| |
| /* |
| * If the allocation failed with an error or we had an ENOSPC result, |
| * preserve the returned error whilst also marking the allocation result |
| * as "no extent allocated". This ensures that callers that fail to |
| * capture the error will still treat it as a failed allocation. |
| */ |
| if (alloc_error || args->agbno == NULLAGBLOCK) { |
| args->fsbno = NULLFSBLOCK; |
| error = alloc_error; |
| goto out_drop_perag; |
| } |
| |
| args->fsbno = XFS_AGB_TO_FSB(mp, args->agno, args->agbno); |
| |
| ASSERT(args->len >= args->minlen); |
| ASSERT(args->len <= args->maxlen); |
| ASSERT(args->agbno % args->alignment == 0); |
| XFS_AG_CHECK_DADDR(mp, XFS_FSB_TO_DADDR(mp, args->fsbno), args->len); |
| |
| /* if not file data, insert new block into the reverse map btree */ |
| if (!xfs_rmap_should_skip_owner_update(&args->oinfo)) { |
| error = xfs_rmap_alloc(args->tp, args->agbp, args->pag, |
| args->agbno, args->len, &args->oinfo); |
| if (error) |
| goto out_drop_perag; |
| } |
| |
| if (!args->wasfromfl) { |
| error = xfs_alloc_update_counters(args->tp, args->agbp, |
| -((long)(args->len))); |
| if (error) |
| goto out_drop_perag; |
| |
| ASSERT(!xfs_extent_busy_search(mp, args->pag, args->agbno, |
| args->len)); |
| } |
| |
| xfs_ag_resv_alloc_extent(args->pag, args->resv, args); |
| |
| XFS_STATS_INC(mp, xs_allocx); |
| XFS_STATS_ADD(mp, xs_allocb, args->len); |
| |
| trace_xfs_alloc_vextent_finish(args); |
| |
| out_drop_perag: |
| if (drop_perag && args->pag) { |
| xfs_perag_rele(args->pag); |
| args->pag = NULL; |
| } |
| return error; |
| } |
| |
| /* |
| * Allocate within a single AG only. This uses a best-fit length algorithm so if |
| * you need an exact sized allocation without locality constraints, this is the |
| * fastest way to do it. |
| * |
| * Caller is expected to hold a perag reference in args->pag. |
| */ |
| int |
| xfs_alloc_vextent_this_ag( |
| struct xfs_alloc_arg *args, |
| xfs_agnumber_t agno) |
| { |
| struct xfs_mount *mp = args->mp; |
| xfs_agnumber_t minimum_agno; |
| uint32_t alloc_flags = 0; |
| int error; |
| |
| ASSERT(args->pag != NULL); |
| ASSERT(args->pag->pag_agno == agno); |
| |
| args->agno = agno; |
| args->agbno = 0; |
| |
| trace_xfs_alloc_vextent_this_ag(args); |
| |
| error = xfs_alloc_vextent_check_args(args, XFS_AGB_TO_FSB(mp, agno, 0), |
| &minimum_agno); |
| if (error) { |
| if (error == -ENOSPC) |
| return 0; |
| return error; |
| } |
| |
| error = xfs_alloc_vextent_prepare_ag(args, alloc_flags); |
| if (!error && args->agbp) |
| error = xfs_alloc_ag_vextent_size(args, alloc_flags); |
| |
| return xfs_alloc_vextent_finish(args, minimum_agno, error, false); |
| } |
| |
| /* |
| * Iterate all AGs trying to allocate an extent starting from @start_ag. |
| * |
| * If the incoming allocation type is XFS_ALLOCTYPE_NEAR_BNO, it means the |
| * allocation attempts in @start_agno have locality information. If we fail to |
| * allocate in that AG, then we revert to anywhere-in-AG for all the other AGs |
| * we attempt to allocation in as there is no locality optimisation possible for |
| * those allocations. |
| * |
| * On return, args->pag may be left referenced if we finish before the "all |
| * failed" return point. The allocation finish still needs the perag, and |
| * so the caller will release it once they've finished the allocation. |
| * |
| * When we wrap the AG iteration at the end of the filesystem, we have to be |
| * careful not to wrap into AGs below ones we already have locked in the |
| * transaction if we are doing a blocking iteration. This will result in an |
| * out-of-order locking of AGFs and hence can cause deadlocks. |
| */ |
| static int |
| xfs_alloc_vextent_iterate_ags( |
| struct xfs_alloc_arg *args, |
| xfs_agnumber_t minimum_agno, |
| xfs_agnumber_t start_agno, |
| xfs_agblock_t target_agbno, |
| uint32_t alloc_flags) |
| { |
| struct xfs_mount *mp = args->mp; |
| xfs_agnumber_t restart_agno = minimum_agno; |
| xfs_agnumber_t agno; |
| int error = 0; |
| |
| if (alloc_flags & XFS_ALLOC_FLAG_TRYLOCK) |
| restart_agno = 0; |
| restart: |
| for_each_perag_wrap_range(mp, start_agno, restart_agno, |
| mp->m_sb.sb_agcount, agno, args->pag) { |
| args->agno = agno; |
| error = xfs_alloc_vextent_prepare_ag(args, alloc_flags); |
| if (error) |
| break; |
| if (!args->agbp) { |
| trace_xfs_alloc_vextent_loopfailed(args); |
| continue; |
| } |
| |
| /* |
| * Allocation is supposed to succeed now, so break out of the |
| * loop regardless of whether we succeed or not. |
| */ |
| if (args->agno == start_agno && target_agbno) { |
| args->agbno = target_agbno; |
| error = xfs_alloc_ag_vextent_near(args, alloc_flags); |
| } else { |
| args->agbno = 0; |
| error = xfs_alloc_ag_vextent_size(args, alloc_flags); |
| } |
| break; |
| } |
| if (error) { |
| xfs_perag_rele(args->pag); |
| args->pag = NULL; |
| return error; |
| } |
| if (args->agbp) |
| return 0; |
| |
| /* |
| * We didn't find an AG we can alloation from. If we were given |
| * constraining flags by the caller, drop them and retry the allocation |
| * without any constraints being set. |
| */ |
| if (alloc_flags & XFS_ALLOC_FLAG_TRYLOCK) { |
| alloc_flags &= ~XFS_ALLOC_FLAG_TRYLOCK; |
| restart_agno = minimum_agno; |
| goto restart; |
| } |
| |
| ASSERT(args->pag == NULL); |
| trace_xfs_alloc_vextent_allfailed(args); |
| return 0; |
| } |
| |
| /* |
| * Iterate from the AGs from the start AG to the end of the filesystem, trying |
| * to allocate blocks. It starts with a near allocation attempt in the initial |
| * AG, then falls back to anywhere-in-ag after the first AG fails. It will wrap |
| * back to zero if allowed by previous allocations in this transaction, |
| * otherwise will wrap back to the start AG and run a second blocking pass to |
| * the end of the filesystem. |
| */ |
| int |
| xfs_alloc_vextent_start_ag( |
| struct xfs_alloc_arg *args, |
| xfs_fsblock_t target) |
| { |
| struct xfs_mount *mp = args->mp; |
| xfs_agnumber_t minimum_agno; |
| xfs_agnumber_t start_agno; |
| xfs_agnumber_t rotorstep = xfs_rotorstep; |
| bool bump_rotor = false; |
| uint32_t alloc_flags = XFS_ALLOC_FLAG_TRYLOCK; |
| int error; |
| |
| ASSERT(args->pag == NULL); |
| |
| args->agno = NULLAGNUMBER; |
| args->agbno = NULLAGBLOCK; |
| |
| trace_xfs_alloc_vextent_start_ag(args); |
| |
| error = xfs_alloc_vextent_check_args(args, target, &minimum_agno); |
| if (error) { |
| if (error == -ENOSPC) |
| return 0; |
| return error; |
| } |
| |
| if ((args->datatype & XFS_ALLOC_INITIAL_USER_DATA) && |
| xfs_is_inode32(mp)) { |
| target = XFS_AGB_TO_FSB(mp, |
| ((mp->m_agfrotor / rotorstep) % |
| mp->m_sb.sb_agcount), 0); |
| bump_rotor = 1; |
| } |
| |
| start_agno = max(minimum_agno, XFS_FSB_TO_AGNO(mp, target)); |
| error = xfs_alloc_vextent_iterate_ags(args, minimum_agno, start_agno, |
| XFS_FSB_TO_AGBNO(mp, target), alloc_flags); |
| |
| if (bump_rotor) { |
| if (args->agno == start_agno) |
| mp->m_agfrotor = (mp->m_agfrotor + 1) % |
| (mp->m_sb.sb_agcount * rotorstep); |
| else |
| mp->m_agfrotor = (args->agno * rotorstep + 1) % |
| (mp->m_sb.sb_agcount * rotorstep); |
| } |
| |
| return xfs_alloc_vextent_finish(args, minimum_agno, error, true); |
| } |
| |
| /* |
| * Iterate from the agno indicated via @target through to the end of the |
| * filesystem attempting blocking allocation. This does not wrap or try a second |
| * pass, so will not recurse into AGs lower than indicated by the target. |
| */ |
| int |
| xfs_alloc_vextent_first_ag( |
| struct xfs_alloc_arg *args, |
| xfs_fsblock_t target) |
| { |
| struct xfs_mount *mp = args->mp; |
| xfs_agnumber_t minimum_agno; |
| xfs_agnumber_t start_agno; |
| uint32_t alloc_flags = XFS_ALLOC_FLAG_TRYLOCK; |
| int error; |
| |
| ASSERT(args->pag == NULL); |
| |
| args->agno = NULLAGNUMBER; |
| args->agbno = NULLAGBLOCK; |
| |
| trace_xfs_alloc_vextent_first_ag(args); |
| |
| error = xfs_alloc_vextent_check_args(args, target, &minimum_agno); |
| if (error) { |
| if (error == -ENOSPC) |
| return 0; |
| return error; |
| } |
| |
| start_agno = max(minimum_agno, XFS_FSB_TO_AGNO(mp, target)); |
| error = xfs_alloc_vextent_iterate_ags(args, minimum_agno, start_agno, |
| XFS_FSB_TO_AGBNO(mp, target), alloc_flags); |
| return xfs_alloc_vextent_finish(args, minimum_agno, error, true); |
| } |
| |
| /* |
| * Allocate at the exact block target or fail. Caller is expected to hold a |
| * perag reference in args->pag. |
| */ |
| int |
| xfs_alloc_vextent_exact_bno( |
| struct xfs_alloc_arg *args, |
| xfs_fsblock_t target) |
| { |
| struct xfs_mount *mp = args->mp; |
| xfs_agnumber_t minimum_agno; |
| int error; |
| |
| ASSERT(args->pag != NULL); |
| ASSERT(args->pag->pag_agno == XFS_FSB_TO_AGNO(mp, target)); |
| |
| args->agno = XFS_FSB_TO_AGNO(mp, target); |
| args->agbno = XFS_FSB_TO_AGBNO(mp, target); |
| |
| trace_xfs_alloc_vextent_exact_bno(args); |
| |
| error = xfs_alloc_vextent_check_args(args, target, &minimum_agno); |
| if (error) { |
| if (error == -ENOSPC) |
| return 0; |
| return error; |
| } |
| |
| error = xfs_alloc_vextent_prepare_ag(args, 0); |
| if (!error && args->agbp) |
| error = xfs_alloc_ag_vextent_exact(args); |
| |
| return xfs_alloc_vextent_finish(args, minimum_agno, error, false); |
| } |
| |
| /* |
| * Allocate an extent as close to the target as possible. If there are not |
| * viable candidates in the AG, then fail the allocation. |
| * |
| * Caller may or may not have a per-ag reference in args->pag. |
| */ |
| int |
| xfs_alloc_vextent_near_bno( |
| struct xfs_alloc_arg *args, |
| xfs_fsblock_t target) |
| { |
| struct xfs_mount *mp = args->mp; |
| xfs_agnumber_t minimum_agno; |
| bool needs_perag = args->pag == NULL; |
| uint32_t alloc_flags = 0; |
| int error; |
| |
| if (!needs_perag) |
| ASSERT(args->pag->pag_agno == XFS_FSB_TO_AGNO(mp, target)); |
| |
| args->agno = XFS_FSB_TO_AGNO(mp, target); |
| args->agbno = XFS_FSB_TO_AGBNO(mp, target); |
| |
| trace_xfs_alloc_vextent_near_bno(args); |
| |
| error = xfs_alloc_vextent_check_args(args, target, &minimum_agno); |
| if (error) { |
| if (error == -ENOSPC) |
| return 0; |
| return error; |
| } |
| |
| if (needs_perag) |
| args->pag = xfs_perag_grab(mp, args->agno); |
| |
| error = xfs_alloc_vextent_prepare_ag(args, alloc_flags); |
| if (!error && args->agbp) |
| error = xfs_alloc_ag_vextent_near(args, alloc_flags); |
| |
| return xfs_alloc_vextent_finish(args, minimum_agno, error, needs_perag); |
| } |
| |
| /* Ensure that the freelist is at full capacity. */ |
| int |
| xfs_free_extent_fix_freelist( |
| struct xfs_trans *tp, |
| struct xfs_perag *pag, |
| struct xfs_buf **agbp) |
| { |
| struct xfs_alloc_arg args; |
| int error; |
| |
| memset(&args, 0, sizeof(struct xfs_alloc_arg)); |
| args.tp = tp; |
| args.mp = tp->t_mountp; |
| args.agno = pag->pag_agno; |
| args.pag = pag; |
| |
| /* |
| * validate that the block number is legal - the enables us to detect |
| * and handle a silent filesystem corruption rather than crashing. |
| */ |
| if (args.agno >= args.mp->m_sb.sb_agcount) |
| return -EFSCORRUPTED; |
| |
| error = xfs_alloc_fix_freelist(&args, XFS_ALLOC_FLAG_FREEING); |
| if (error) |
| return error; |
| |
| *agbp = args.agbp; |
| return 0; |
| } |
| |
| /* |
| * Free an extent. |
| * Just break up the extent address and hand off to xfs_free_ag_extent |
| * after fixing up the freelist. |
| */ |
| int |
| __xfs_free_extent( |
| struct xfs_trans *tp, |
| struct xfs_perag *pag, |
| xfs_agblock_t agbno, |
| xfs_extlen_t len, |
| const struct xfs_owner_info *oinfo, |
| enum xfs_ag_resv_type type, |
| bool skip_discard) |
| { |
| struct xfs_mount *mp = tp->t_mountp; |
| struct xfs_buf *agbp; |
| struct xfs_agf *agf; |
| int error; |
| unsigned int busy_flags = 0; |
| |
| ASSERT(len != 0); |
| ASSERT(type != XFS_AG_RESV_AGFL); |
| |
| if (XFS_TEST_ERROR(false, mp, |
| XFS_ERRTAG_FREE_EXTENT)) |
| return -EIO; |
| |
| error = xfs_free_extent_fix_freelist(tp, pag, &agbp); |
| if (error) { |
| if (xfs_metadata_is_sick(error)) |
| xfs_ag_mark_sick(pag, XFS_SICK_AG_BNOBT); |
| return error; |
| } |
| |
| agf = agbp->b_addr; |
| |
| if (XFS_IS_CORRUPT(mp, agbno >= mp->m_sb.sb_agblocks)) { |
| xfs_ag_mark_sick(pag, XFS_SICK_AG_BNOBT); |
| error = -EFSCORRUPTED; |
| goto err_release; |
| } |
| |
| /* validate the extent size is legal now we have the agf locked */ |
| if (XFS_IS_CORRUPT(mp, agbno + len > be32_to_cpu(agf->agf_length))) { |
| xfs_ag_mark_sick(pag, XFS_SICK_AG_BNOBT); |
| error = -EFSCORRUPTED; |
| goto err_release; |
| } |
| |
| error = xfs_free_ag_extent(tp, agbp, pag->pag_agno, agbno, len, oinfo, |
| type); |
| if (error) |
| goto err_release; |
| |
| if (skip_discard) |
| busy_flags |= XFS_EXTENT_BUSY_SKIP_DISCARD; |
| xfs_extent_busy_insert(tp, pag, agbno, len, busy_flags); |
| return 0; |
| |
| err_release: |
| xfs_trans_brelse(tp, agbp); |
| return error; |
| } |
| |
| struct xfs_alloc_query_range_info { |
| xfs_alloc_query_range_fn fn; |
| void *priv; |
| }; |
| |
| /* Format btree record and pass to our callback. */ |
| STATIC int |
| xfs_alloc_query_range_helper( |
| struct xfs_btree_cur *cur, |
| const union xfs_btree_rec *rec, |
| void *priv) |
| { |
| struct xfs_alloc_query_range_info *query = priv; |
| struct xfs_alloc_rec_incore irec; |
| xfs_failaddr_t fa; |
| |
| xfs_alloc_btrec_to_irec(rec, &irec); |
| fa = xfs_alloc_check_irec(cur->bc_ag.pag, &irec); |
| if (fa) |
| return xfs_alloc_complain_bad_rec(cur, fa, &irec); |
| |
| return query->fn(cur, &irec, query->priv); |
| } |
| |
| /* Find all free space within a given range of blocks. */ |
| int |
| xfs_alloc_query_range( |
| struct xfs_btree_cur *cur, |
| const struct xfs_alloc_rec_incore *low_rec, |
| const struct xfs_alloc_rec_incore *high_rec, |
| xfs_alloc_query_range_fn fn, |
| void *priv) |
| { |
| union xfs_btree_irec low_brec = { .a = *low_rec }; |
| union xfs_btree_irec high_brec = { .a = *high_rec }; |
| struct xfs_alloc_query_range_info query = { .priv = priv, .fn = fn }; |
| |
| ASSERT(xfs_btree_is_bno(cur->bc_ops)); |
| return xfs_btree_query_range(cur, &low_brec, &high_brec, |
| xfs_alloc_query_range_helper, &query); |
| } |
| |
| /* Find all free space records. */ |
| int |
| xfs_alloc_query_all( |
| struct xfs_btree_cur *cur, |
| xfs_alloc_query_range_fn fn, |
| void *priv) |
| { |
| struct xfs_alloc_query_range_info query; |
| |
| ASSERT(xfs_btree_is_bno(cur->bc_ops)); |
| query.priv = priv; |
| query.fn = fn; |
| return xfs_btree_query_all(cur, xfs_alloc_query_range_helper, &query); |
| } |
| |
| /* |
| * Scan part of the keyspace of the free space and tell us if the area has no |
| * records, is fully mapped by records, or is partially filled. |
| */ |
| int |
| xfs_alloc_has_records( |
| struct xfs_btree_cur *cur, |
| xfs_agblock_t bno, |
| xfs_extlen_t len, |
| enum xbtree_recpacking *outcome) |
| { |
| union xfs_btree_irec low; |
| union xfs_btree_irec high; |
| |
| memset(&low, 0, sizeof(low)); |
| low.a.ar_startblock = bno; |
| memset(&high, 0xFF, sizeof(high)); |
| high.a.ar_startblock = bno + len - 1; |
| |
| return xfs_btree_has_records(cur, &low, &high, NULL, outcome); |
| } |
| |
| /* |
| * Walk all the blocks in the AGFL. The @walk_fn can return any negative |
| * error code or XFS_ITER_*. |
| */ |
| int |
| xfs_agfl_walk( |
| struct xfs_mount *mp, |
| struct xfs_agf *agf, |
| struct xfs_buf *agflbp, |
| xfs_agfl_walk_fn walk_fn, |
| void *priv) |
| { |
| __be32 *agfl_bno; |
| unsigned int i; |
| int error; |
| |
| agfl_bno = xfs_buf_to_agfl_bno(agflbp); |
| i = be32_to_cpu(agf->agf_flfirst); |
| |
| /* Nothing to walk in an empty AGFL. */ |
| if (agf->agf_flcount == cpu_to_be32(0)) |
| return 0; |
| |
| /* Otherwise, walk from first to last, wrapping as needed. */ |
| for (;;) { |
| error = walk_fn(mp, be32_to_cpu(agfl_bno[i]), priv); |
| if (error) |
| return error; |
| if (i == be32_to_cpu(agf->agf_fllast)) |
| break; |
| if (++i == xfs_agfl_size(mp)) |
| i = 0; |
| } |
| |
| return 0; |
| } |
| |
| int __init |
| xfs_extfree_intent_init_cache(void) |
| { |
| xfs_extfree_item_cache = kmem_cache_create("xfs_extfree_intent", |
| sizeof(struct xfs_extent_free_item), |
| 0, 0, NULL); |
| |
| return xfs_extfree_item_cache != NULL ? 0 : -ENOMEM; |
| } |
| |
| void |
| xfs_extfree_intent_destroy_cache(void) |
| { |
| kmem_cache_destroy(xfs_extfree_item_cache); |
| xfs_extfree_item_cache = NULL; |
| } |