| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (c) 2014 Red Hat, Inc. |
| * All Rights Reserved. |
| */ |
| #include "xfs.h" |
| #include "xfs_fs.h" |
| #include "xfs_shared.h" |
| #include "xfs_format.h" |
| #include "xfs_log_format.h" |
| #include "xfs_trans_resv.h" |
| #include "xfs_mount.h" |
| #include "xfs_trans.h" |
| #include "xfs_alloc.h" |
| #include "xfs_btree.h" |
| #include "xfs_btree_staging.h" |
| #include "xfs_rmap.h" |
| #include "xfs_rmap_btree.h" |
| #include "xfs_health.h" |
| #include "xfs_trace.h" |
| #include "xfs_error.h" |
| #include "xfs_extent_busy.h" |
| #include "xfs_ag.h" |
| #include "xfs_ag_resv.h" |
| #include "xfs_buf_mem.h" |
| #include "xfs_btree_mem.h" |
| |
| static struct kmem_cache *xfs_rmapbt_cur_cache; |
| |
| /* |
| * Reverse map btree. |
| * |
| * This is a per-ag tree used to track the owner(s) of a given extent. With |
| * reflink it is possible for there to be multiple owners, which is a departure |
| * from classic XFS. Owner records for data extents are inserted when the |
| * extent is mapped and removed when an extent is unmapped. Owner records for |
| * all other block types (i.e. metadata) are inserted when an extent is |
| * allocated and removed when an extent is freed. There can only be one owner |
| * of a metadata extent, usually an inode or some other metadata structure like |
| * an AG btree. |
| * |
| * The rmap btree is part of the free space management, so blocks for the tree |
| * are sourced from the agfl. Hence we need transaction reservation support for |
| * this tree so that the freelist is always large enough. This also impacts on |
| * the minimum space we need to leave free in the AG. |
| * |
| * The tree is ordered by [ag block, owner, offset]. This is a large key size, |
| * but it is the only way to enforce unique keys when a block can be owned by |
| * multiple files at any offset. There's no need to order/search by extent |
| * size for online updating/management of the tree. It is intended that most |
| * reverse lookups will be to find the owner(s) of a particular block, or to |
| * try to recover tree and file data from corrupt primary metadata. |
| */ |
| |
| static struct xfs_btree_cur * |
| xfs_rmapbt_dup_cursor( |
| struct xfs_btree_cur *cur) |
| { |
| return xfs_rmapbt_init_cursor(cur->bc_mp, cur->bc_tp, |
| cur->bc_ag.agbp, cur->bc_ag.pag); |
| } |
| |
| STATIC void |
| xfs_rmapbt_set_root( |
| struct xfs_btree_cur *cur, |
| const union xfs_btree_ptr *ptr, |
| int inc) |
| { |
| struct xfs_buf *agbp = cur->bc_ag.agbp; |
| struct xfs_agf *agf = agbp->b_addr; |
| |
| ASSERT(ptr->s != 0); |
| |
| agf->agf_rmap_root = ptr->s; |
| be32_add_cpu(&agf->agf_rmap_level, inc); |
| cur->bc_ag.pag->pagf_rmap_level += inc; |
| |
| xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS); |
| } |
| |
| STATIC int |
| xfs_rmapbt_alloc_block( |
| struct xfs_btree_cur *cur, |
| const union xfs_btree_ptr *start, |
| union xfs_btree_ptr *new, |
| int *stat) |
| { |
| struct xfs_buf *agbp = cur->bc_ag.agbp; |
| struct xfs_agf *agf = agbp->b_addr; |
| struct xfs_perag *pag = cur->bc_ag.pag; |
| struct xfs_alloc_arg args = { .len = 1 }; |
| int error; |
| xfs_agblock_t bno; |
| |
| /* Allocate the new block from the freelist. If we can't, give up. */ |
| error = xfs_alloc_get_freelist(pag, cur->bc_tp, cur->bc_ag.agbp, |
| &bno, 1); |
| if (error) |
| return error; |
| if (bno == NULLAGBLOCK) { |
| *stat = 0; |
| return 0; |
| } |
| |
| xfs_extent_busy_reuse(cur->bc_mp, pag, bno, 1, false); |
| |
| new->s = cpu_to_be32(bno); |
| be32_add_cpu(&agf->agf_rmap_blocks, 1); |
| xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_RMAP_BLOCKS); |
| |
| /* |
| * Since rmapbt blocks are sourced from the AGFL, they are allocated one |
| * at a time and the reservation updates don't require a transaction. |
| */ |
| xfs_ag_resv_alloc_extent(pag, XFS_AG_RESV_RMAPBT, &args); |
| |
| *stat = 1; |
| return 0; |
| } |
| |
| STATIC int |
| xfs_rmapbt_free_block( |
| struct xfs_btree_cur *cur, |
| struct xfs_buf *bp) |
| { |
| struct xfs_buf *agbp = cur->bc_ag.agbp; |
| struct xfs_agf *agf = agbp->b_addr; |
| struct xfs_perag *pag = cur->bc_ag.pag; |
| xfs_agblock_t bno; |
| int error; |
| |
| bno = xfs_daddr_to_agbno(cur->bc_mp, xfs_buf_daddr(bp)); |
| be32_add_cpu(&agf->agf_rmap_blocks, -1); |
| xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_RMAP_BLOCKS); |
| error = xfs_alloc_put_freelist(pag, cur->bc_tp, agbp, NULL, bno, 1); |
| if (error) |
| return error; |
| |
| xfs_extent_busy_insert(cur->bc_tp, pag, bno, 1, |
| XFS_EXTENT_BUSY_SKIP_DISCARD); |
| |
| xfs_ag_resv_free_extent(pag, XFS_AG_RESV_RMAPBT, NULL, 1); |
| return 0; |
| } |
| |
| STATIC int |
| xfs_rmapbt_get_minrecs( |
| struct xfs_btree_cur *cur, |
| int level) |
| { |
| return cur->bc_mp->m_rmap_mnr[level != 0]; |
| } |
| |
| STATIC int |
| xfs_rmapbt_get_maxrecs( |
| struct xfs_btree_cur *cur, |
| int level) |
| { |
| return cur->bc_mp->m_rmap_mxr[level != 0]; |
| } |
| |
| /* |
| * Convert the ondisk record's offset field into the ondisk key's offset field. |
| * Fork and bmbt are significant parts of the rmap record key, but written |
| * status is merely a record attribute. |
| */ |
| static inline __be64 ondisk_rec_offset_to_key(const union xfs_btree_rec *rec) |
| { |
| return rec->rmap.rm_offset & ~cpu_to_be64(XFS_RMAP_OFF_UNWRITTEN); |
| } |
| |
| STATIC void |
| xfs_rmapbt_init_key_from_rec( |
| union xfs_btree_key *key, |
| const union xfs_btree_rec *rec) |
| { |
| key->rmap.rm_startblock = rec->rmap.rm_startblock; |
| key->rmap.rm_owner = rec->rmap.rm_owner; |
| key->rmap.rm_offset = ondisk_rec_offset_to_key(rec); |
| } |
| |
| /* |
| * The high key for a reverse mapping record can be computed by shifting |
| * the startblock and offset to the highest value that would still map |
| * to that record. In practice this means that we add blockcount-1 to |
| * the startblock for all records, and if the record is for a data/attr |
| * fork mapping, we add blockcount-1 to the offset too. |
| */ |
| STATIC void |
| xfs_rmapbt_init_high_key_from_rec( |
| union xfs_btree_key *key, |
| const union xfs_btree_rec *rec) |
| { |
| uint64_t off; |
| int adj; |
| |
| adj = be32_to_cpu(rec->rmap.rm_blockcount) - 1; |
| |
| key->rmap.rm_startblock = rec->rmap.rm_startblock; |
| be32_add_cpu(&key->rmap.rm_startblock, adj); |
| key->rmap.rm_owner = rec->rmap.rm_owner; |
| key->rmap.rm_offset = ondisk_rec_offset_to_key(rec); |
| if (XFS_RMAP_NON_INODE_OWNER(be64_to_cpu(rec->rmap.rm_owner)) || |
| XFS_RMAP_IS_BMBT_BLOCK(be64_to_cpu(rec->rmap.rm_offset))) |
| return; |
| off = be64_to_cpu(key->rmap.rm_offset); |
| off = (XFS_RMAP_OFF(off) + adj) | (off & ~XFS_RMAP_OFF_MASK); |
| key->rmap.rm_offset = cpu_to_be64(off); |
| } |
| |
| STATIC void |
| xfs_rmapbt_init_rec_from_cur( |
| struct xfs_btree_cur *cur, |
| union xfs_btree_rec *rec) |
| { |
| rec->rmap.rm_startblock = cpu_to_be32(cur->bc_rec.r.rm_startblock); |
| rec->rmap.rm_blockcount = cpu_to_be32(cur->bc_rec.r.rm_blockcount); |
| rec->rmap.rm_owner = cpu_to_be64(cur->bc_rec.r.rm_owner); |
| rec->rmap.rm_offset = cpu_to_be64( |
| xfs_rmap_irec_offset_pack(&cur->bc_rec.r)); |
| } |
| |
| STATIC void |
| xfs_rmapbt_init_ptr_from_cur( |
| struct xfs_btree_cur *cur, |
| union xfs_btree_ptr *ptr) |
| { |
| struct xfs_agf *agf = cur->bc_ag.agbp->b_addr; |
| |
| ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agf->agf_seqno)); |
| |
| ptr->s = agf->agf_rmap_root; |
| } |
| |
| /* |
| * Mask the appropriate parts of the ondisk key field for a key comparison. |
| * Fork and bmbt are significant parts of the rmap record key, but written |
| * status is merely a record attribute. |
| */ |
| static inline uint64_t offset_keymask(uint64_t offset) |
| { |
| return offset & ~XFS_RMAP_OFF_UNWRITTEN; |
| } |
| |
| STATIC int64_t |
| xfs_rmapbt_key_diff( |
| struct xfs_btree_cur *cur, |
| const union xfs_btree_key *key) |
| { |
| struct xfs_rmap_irec *rec = &cur->bc_rec.r; |
| const struct xfs_rmap_key *kp = &key->rmap; |
| __u64 x, y; |
| int64_t d; |
| |
| d = (int64_t)be32_to_cpu(kp->rm_startblock) - rec->rm_startblock; |
| if (d) |
| return d; |
| |
| x = be64_to_cpu(kp->rm_owner); |
| y = rec->rm_owner; |
| if (x > y) |
| return 1; |
| else if (y > x) |
| return -1; |
| |
| x = offset_keymask(be64_to_cpu(kp->rm_offset)); |
| y = offset_keymask(xfs_rmap_irec_offset_pack(rec)); |
| if (x > y) |
| return 1; |
| else if (y > x) |
| return -1; |
| return 0; |
| } |
| |
| STATIC int64_t |
| xfs_rmapbt_diff_two_keys( |
| struct xfs_btree_cur *cur, |
| const union xfs_btree_key *k1, |
| const union xfs_btree_key *k2, |
| const union xfs_btree_key *mask) |
| { |
| const struct xfs_rmap_key *kp1 = &k1->rmap; |
| const struct xfs_rmap_key *kp2 = &k2->rmap; |
| int64_t d; |
| __u64 x, y; |
| |
| /* Doesn't make sense to mask off the physical space part */ |
| ASSERT(!mask || mask->rmap.rm_startblock); |
| |
| d = (int64_t)be32_to_cpu(kp1->rm_startblock) - |
| be32_to_cpu(kp2->rm_startblock); |
| if (d) |
| return d; |
| |
| if (!mask || mask->rmap.rm_owner) { |
| x = be64_to_cpu(kp1->rm_owner); |
| y = be64_to_cpu(kp2->rm_owner); |
| if (x > y) |
| return 1; |
| else if (y > x) |
| return -1; |
| } |
| |
| if (!mask || mask->rmap.rm_offset) { |
| /* Doesn't make sense to allow offset but not owner */ |
| ASSERT(!mask || mask->rmap.rm_owner); |
| |
| x = offset_keymask(be64_to_cpu(kp1->rm_offset)); |
| y = offset_keymask(be64_to_cpu(kp2->rm_offset)); |
| if (x > y) |
| return 1; |
| else if (y > x) |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static xfs_failaddr_t |
| xfs_rmapbt_verify( |
| struct xfs_buf *bp) |
| { |
| struct xfs_mount *mp = bp->b_mount; |
| struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); |
| struct xfs_perag *pag = bp->b_pag; |
| xfs_failaddr_t fa; |
| unsigned int level; |
| |
| /* |
| * magic number and level verification |
| * |
| * During growfs operations, we can't verify the exact level or owner as |
| * the perag is not fully initialised and hence not attached to the |
| * buffer. In this case, check against the maximum tree depth. |
| * |
| * Similarly, during log recovery we will have a perag structure |
| * attached, but the agf information will not yet have been initialised |
| * from the on disk AGF. Again, we can only check against maximum limits |
| * in this case. |
| */ |
| if (!xfs_verify_magic(bp, block->bb_magic)) |
| return __this_address; |
| |
| if (!xfs_has_rmapbt(mp)) |
| return __this_address; |
| fa = xfs_btree_agblock_v5hdr_verify(bp); |
| if (fa) |
| return fa; |
| |
| level = be16_to_cpu(block->bb_level); |
| if (pag && xfs_perag_initialised_agf(pag)) { |
| unsigned int maxlevel = pag->pagf_rmap_level; |
| |
| #ifdef CONFIG_XFS_ONLINE_REPAIR |
| /* |
| * Online repair could be rewriting the free space btrees, so |
| * we'll validate against the larger of either tree while this |
| * is going on. |
| */ |
| maxlevel = max_t(unsigned int, maxlevel, |
| pag->pagf_repair_rmap_level); |
| #endif |
| if (level >= maxlevel) |
| return __this_address; |
| } else if (level >= mp->m_rmap_maxlevels) |
| return __this_address; |
| |
| return xfs_btree_agblock_verify(bp, mp->m_rmap_mxr[level != 0]); |
| } |
| |
| static void |
| xfs_rmapbt_read_verify( |
| struct xfs_buf *bp) |
| { |
| xfs_failaddr_t fa; |
| |
| if (!xfs_btree_agblock_verify_crc(bp)) |
| xfs_verifier_error(bp, -EFSBADCRC, __this_address); |
| else { |
| fa = xfs_rmapbt_verify(bp); |
| if (fa) |
| xfs_verifier_error(bp, -EFSCORRUPTED, fa); |
| } |
| |
| if (bp->b_error) |
| trace_xfs_btree_corrupt(bp, _RET_IP_); |
| } |
| |
| static void |
| xfs_rmapbt_write_verify( |
| struct xfs_buf *bp) |
| { |
| xfs_failaddr_t fa; |
| |
| fa = xfs_rmapbt_verify(bp); |
| if (fa) { |
| trace_xfs_btree_corrupt(bp, _RET_IP_); |
| xfs_verifier_error(bp, -EFSCORRUPTED, fa); |
| return; |
| } |
| xfs_btree_agblock_calc_crc(bp); |
| |
| } |
| |
| const struct xfs_buf_ops xfs_rmapbt_buf_ops = { |
| .name = "xfs_rmapbt", |
| .magic = { 0, cpu_to_be32(XFS_RMAP_CRC_MAGIC) }, |
| .verify_read = xfs_rmapbt_read_verify, |
| .verify_write = xfs_rmapbt_write_verify, |
| .verify_struct = xfs_rmapbt_verify, |
| }; |
| |
| STATIC int |
| xfs_rmapbt_keys_inorder( |
| struct xfs_btree_cur *cur, |
| const union xfs_btree_key *k1, |
| const union xfs_btree_key *k2) |
| { |
| uint32_t x; |
| uint32_t y; |
| uint64_t a; |
| uint64_t b; |
| |
| x = be32_to_cpu(k1->rmap.rm_startblock); |
| y = be32_to_cpu(k2->rmap.rm_startblock); |
| if (x < y) |
| return 1; |
| else if (x > y) |
| return 0; |
| a = be64_to_cpu(k1->rmap.rm_owner); |
| b = be64_to_cpu(k2->rmap.rm_owner); |
| if (a < b) |
| return 1; |
| else if (a > b) |
| return 0; |
| a = offset_keymask(be64_to_cpu(k1->rmap.rm_offset)); |
| b = offset_keymask(be64_to_cpu(k2->rmap.rm_offset)); |
| if (a <= b) |
| return 1; |
| return 0; |
| } |
| |
| STATIC int |
| xfs_rmapbt_recs_inorder( |
| struct xfs_btree_cur *cur, |
| const union xfs_btree_rec *r1, |
| const union xfs_btree_rec *r2) |
| { |
| uint32_t x; |
| uint32_t y; |
| uint64_t a; |
| uint64_t b; |
| |
| x = be32_to_cpu(r1->rmap.rm_startblock); |
| y = be32_to_cpu(r2->rmap.rm_startblock); |
| if (x < y) |
| return 1; |
| else if (x > y) |
| return 0; |
| a = be64_to_cpu(r1->rmap.rm_owner); |
| b = be64_to_cpu(r2->rmap.rm_owner); |
| if (a < b) |
| return 1; |
| else if (a > b) |
| return 0; |
| a = offset_keymask(be64_to_cpu(r1->rmap.rm_offset)); |
| b = offset_keymask(be64_to_cpu(r2->rmap.rm_offset)); |
| if (a <= b) |
| return 1; |
| return 0; |
| } |
| |
| STATIC enum xbtree_key_contig |
| xfs_rmapbt_keys_contiguous( |
| struct xfs_btree_cur *cur, |
| const union xfs_btree_key *key1, |
| const union xfs_btree_key *key2, |
| const union xfs_btree_key *mask) |
| { |
| ASSERT(!mask || mask->rmap.rm_startblock); |
| |
| /* |
| * We only support checking contiguity of the physical space component. |
| * If any callers ever need more specificity than that, they'll have to |
| * implement it here. |
| */ |
| ASSERT(!mask || (!mask->rmap.rm_owner && !mask->rmap.rm_offset)); |
| |
| return xbtree_key_contig(be32_to_cpu(key1->rmap.rm_startblock), |
| be32_to_cpu(key2->rmap.rm_startblock)); |
| } |
| |
| const struct xfs_btree_ops xfs_rmapbt_ops = { |
| .name = "rmap", |
| .type = XFS_BTREE_TYPE_AG, |
| .geom_flags = XFS_BTGEO_OVERLAPPING, |
| |
| .rec_len = sizeof(struct xfs_rmap_rec), |
| /* Overlapping btree; 2 keys per pointer. */ |
| .key_len = 2 * sizeof(struct xfs_rmap_key), |
| .ptr_len = XFS_BTREE_SHORT_PTR_LEN, |
| |
| .lru_refs = XFS_RMAP_BTREE_REF, |
| .statoff = XFS_STATS_CALC_INDEX(xs_rmap_2), |
| .sick_mask = XFS_SICK_AG_RMAPBT, |
| |
| .dup_cursor = xfs_rmapbt_dup_cursor, |
| .set_root = xfs_rmapbt_set_root, |
| .alloc_block = xfs_rmapbt_alloc_block, |
| .free_block = xfs_rmapbt_free_block, |
| .get_minrecs = xfs_rmapbt_get_minrecs, |
| .get_maxrecs = xfs_rmapbt_get_maxrecs, |
| .init_key_from_rec = xfs_rmapbt_init_key_from_rec, |
| .init_high_key_from_rec = xfs_rmapbt_init_high_key_from_rec, |
| .init_rec_from_cur = xfs_rmapbt_init_rec_from_cur, |
| .init_ptr_from_cur = xfs_rmapbt_init_ptr_from_cur, |
| .key_diff = xfs_rmapbt_key_diff, |
| .buf_ops = &xfs_rmapbt_buf_ops, |
| .diff_two_keys = xfs_rmapbt_diff_two_keys, |
| .keys_inorder = xfs_rmapbt_keys_inorder, |
| .recs_inorder = xfs_rmapbt_recs_inorder, |
| .keys_contiguous = xfs_rmapbt_keys_contiguous, |
| }; |
| |
| /* |
| * Create a new reverse mapping btree cursor. |
| * |
| * For staging cursors tp and agbp are NULL. |
| */ |
| struct xfs_btree_cur * |
| xfs_rmapbt_init_cursor( |
| struct xfs_mount *mp, |
| struct xfs_trans *tp, |
| struct xfs_buf *agbp, |
| struct xfs_perag *pag) |
| { |
| struct xfs_btree_cur *cur; |
| |
| cur = xfs_btree_alloc_cursor(mp, tp, &xfs_rmapbt_ops, |
| mp->m_rmap_maxlevels, xfs_rmapbt_cur_cache); |
| cur->bc_ag.pag = xfs_perag_hold(pag); |
| cur->bc_ag.agbp = agbp; |
| if (agbp) { |
| struct xfs_agf *agf = agbp->b_addr; |
| |
| cur->bc_nlevels = be32_to_cpu(agf->agf_rmap_level); |
| } |
| return cur; |
| } |
| |
| #ifdef CONFIG_XFS_BTREE_IN_MEM |
| static inline unsigned int |
| xfs_rmapbt_mem_block_maxrecs( |
| unsigned int blocklen, |
| bool leaf) |
| { |
| if (leaf) |
| return blocklen / sizeof(struct xfs_rmap_rec); |
| return blocklen / |
| (2 * sizeof(struct xfs_rmap_key) + sizeof(__be64)); |
| } |
| |
| /* |
| * Validate an in-memory rmap btree block. Callers are allowed to generate an |
| * in-memory btree even if the ondisk feature is not enabled. |
| */ |
| static xfs_failaddr_t |
| xfs_rmapbt_mem_verify( |
| struct xfs_buf *bp) |
| { |
| struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); |
| xfs_failaddr_t fa; |
| unsigned int level; |
| unsigned int maxrecs; |
| |
| if (!xfs_verify_magic(bp, block->bb_magic)) |
| return __this_address; |
| |
| fa = xfs_btree_fsblock_v5hdr_verify(bp, XFS_RMAP_OWN_UNKNOWN); |
| if (fa) |
| return fa; |
| |
| level = be16_to_cpu(block->bb_level); |
| if (level >= xfs_rmapbt_maxlevels_ondisk()) |
| return __this_address; |
| |
| maxrecs = xfs_rmapbt_mem_block_maxrecs( |
| XFBNO_BLOCKSIZE - XFS_BTREE_LBLOCK_CRC_LEN, level == 0); |
| return xfs_btree_memblock_verify(bp, maxrecs); |
| } |
| |
| static void |
| xfs_rmapbt_mem_rw_verify( |
| struct xfs_buf *bp) |
| { |
| xfs_failaddr_t fa = xfs_rmapbt_mem_verify(bp); |
| |
| if (fa) |
| xfs_verifier_error(bp, -EFSCORRUPTED, fa); |
| } |
| |
| /* skip crc checks on in-memory btrees to save time */ |
| static const struct xfs_buf_ops xfs_rmapbt_mem_buf_ops = { |
| .name = "xfs_rmapbt_mem", |
| .magic = { 0, cpu_to_be32(XFS_RMAP_CRC_MAGIC) }, |
| .verify_read = xfs_rmapbt_mem_rw_verify, |
| .verify_write = xfs_rmapbt_mem_rw_verify, |
| .verify_struct = xfs_rmapbt_mem_verify, |
| }; |
| |
| const struct xfs_btree_ops xfs_rmapbt_mem_ops = { |
| .name = "mem_rmap", |
| .type = XFS_BTREE_TYPE_MEM, |
| .geom_flags = XFS_BTGEO_OVERLAPPING, |
| |
| .rec_len = sizeof(struct xfs_rmap_rec), |
| /* Overlapping btree; 2 keys per pointer. */ |
| .key_len = 2 * sizeof(struct xfs_rmap_key), |
| .ptr_len = XFS_BTREE_LONG_PTR_LEN, |
| |
| .lru_refs = XFS_RMAP_BTREE_REF, |
| .statoff = XFS_STATS_CALC_INDEX(xs_rmap_mem_2), |
| |
| .dup_cursor = xfbtree_dup_cursor, |
| .set_root = xfbtree_set_root, |
| .alloc_block = xfbtree_alloc_block, |
| .free_block = xfbtree_free_block, |
| .get_minrecs = xfbtree_get_minrecs, |
| .get_maxrecs = xfbtree_get_maxrecs, |
| .init_key_from_rec = xfs_rmapbt_init_key_from_rec, |
| .init_high_key_from_rec = xfs_rmapbt_init_high_key_from_rec, |
| .init_rec_from_cur = xfs_rmapbt_init_rec_from_cur, |
| .init_ptr_from_cur = xfbtree_init_ptr_from_cur, |
| .key_diff = xfs_rmapbt_key_diff, |
| .buf_ops = &xfs_rmapbt_mem_buf_ops, |
| .diff_two_keys = xfs_rmapbt_diff_two_keys, |
| .keys_inorder = xfs_rmapbt_keys_inorder, |
| .recs_inorder = xfs_rmapbt_recs_inorder, |
| .keys_contiguous = xfs_rmapbt_keys_contiguous, |
| }; |
| |
| /* Create a cursor for an in-memory btree. */ |
| struct xfs_btree_cur * |
| xfs_rmapbt_mem_cursor( |
| struct xfs_perag *pag, |
| struct xfs_trans *tp, |
| struct xfbtree *xfbt) |
| { |
| struct xfs_btree_cur *cur; |
| struct xfs_mount *mp = pag->pag_mount; |
| |
| cur = xfs_btree_alloc_cursor(mp, tp, &xfs_rmapbt_mem_ops, |
| xfs_rmapbt_maxlevels_ondisk(), xfs_rmapbt_cur_cache); |
| cur->bc_mem.xfbtree = xfbt; |
| cur->bc_nlevels = xfbt->nlevels; |
| |
| cur->bc_mem.pag = xfs_perag_hold(pag); |
| return cur; |
| } |
| |
| /* Create an in-memory rmap btree. */ |
| int |
| xfs_rmapbt_mem_init( |
| struct xfs_mount *mp, |
| struct xfbtree *xfbt, |
| struct xfs_buftarg *btp, |
| xfs_agnumber_t agno) |
| { |
| xfbt->owner = agno; |
| return xfbtree_init(mp, xfbt, btp, &xfs_rmapbt_mem_ops); |
| } |
| |
| /* Compute the max possible height for reverse mapping btrees in memory. */ |
| static unsigned int |
| xfs_rmapbt_mem_maxlevels(void) |
| { |
| unsigned int minrecs[2]; |
| unsigned int blocklen; |
| |
| blocklen = XFBNO_BLOCKSIZE - XFS_BTREE_LBLOCK_CRC_LEN; |
| |
| minrecs[0] = xfs_rmapbt_mem_block_maxrecs(blocklen, true) / 2; |
| minrecs[1] = xfs_rmapbt_mem_block_maxrecs(blocklen, false) / 2; |
| |
| /* |
| * How tall can an in-memory rmap btree become if we filled the entire |
| * AG with rmap records? |
| */ |
| return xfs_btree_compute_maxlevels(minrecs, |
| XFS_MAX_AG_BYTES / sizeof(struct xfs_rmap_rec)); |
| } |
| #else |
| # define xfs_rmapbt_mem_maxlevels() (0) |
| #endif /* CONFIG_XFS_BTREE_IN_MEM */ |
| |
| /* |
| * Install a new reverse mapping btree root. Caller is responsible for |
| * invalidating and freeing the old btree blocks. |
| */ |
| void |
| xfs_rmapbt_commit_staged_btree( |
| struct xfs_btree_cur *cur, |
| struct xfs_trans *tp, |
| struct xfs_buf *agbp) |
| { |
| struct xfs_agf *agf = agbp->b_addr; |
| struct xbtree_afakeroot *afake = cur->bc_ag.afake; |
| |
| ASSERT(cur->bc_flags & XFS_BTREE_STAGING); |
| |
| agf->agf_rmap_root = cpu_to_be32(afake->af_root); |
| agf->agf_rmap_level = cpu_to_be32(afake->af_levels); |
| agf->agf_rmap_blocks = cpu_to_be32(afake->af_blocks); |
| xfs_alloc_log_agf(tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS | |
| XFS_AGF_RMAP_BLOCKS); |
| xfs_btree_commit_afakeroot(cur, tp, agbp); |
| } |
| |
| /* Calculate number of records in a reverse mapping btree block. */ |
| static inline unsigned int |
| xfs_rmapbt_block_maxrecs( |
| unsigned int blocklen, |
| bool leaf) |
| { |
| if (leaf) |
| return blocklen / sizeof(struct xfs_rmap_rec); |
| return blocklen / |
| (2 * sizeof(struct xfs_rmap_key) + sizeof(xfs_rmap_ptr_t)); |
| } |
| |
| /* |
| * Calculate number of records in an rmap btree block. |
| */ |
| unsigned int |
| xfs_rmapbt_maxrecs( |
| struct xfs_mount *mp, |
| unsigned int blocklen, |
| bool leaf) |
| { |
| blocklen -= XFS_RMAP_BLOCK_LEN; |
| return xfs_rmapbt_block_maxrecs(blocklen, leaf); |
| } |
| |
| /* Compute the max possible height for reverse mapping btrees. */ |
| unsigned int |
| xfs_rmapbt_maxlevels_ondisk(void) |
| { |
| unsigned int minrecs[2]; |
| unsigned int blocklen; |
| |
| blocklen = XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN; |
| |
| minrecs[0] = xfs_rmapbt_block_maxrecs(blocklen, true) / 2; |
| minrecs[1] = xfs_rmapbt_block_maxrecs(blocklen, false) / 2; |
| |
| /* |
| * Compute the asymptotic maxlevels for an rmapbt on any reflink fs. |
| * |
| * On a reflink filesystem, each AG block can have up to 2^32 (per the |
| * refcount record format) owners, which means that theoretically we |
| * could face up to 2^64 rmap records. However, we're likely to run |
| * out of blocks in the AG long before that happens, which means that |
| * we must compute the max height based on what the btree will look |
| * like if it consumes almost all the blocks in the AG due to maximal |
| * sharing factor. |
| */ |
| return max(xfs_btree_space_to_height(minrecs, XFS_MAX_CRC_AG_BLOCKS), |
| xfs_rmapbt_mem_maxlevels()); |
| } |
| |
| /* Compute the maximum height of an rmap btree. */ |
| void |
| xfs_rmapbt_compute_maxlevels( |
| struct xfs_mount *mp) |
| { |
| if (!xfs_has_rmapbt(mp)) { |
| mp->m_rmap_maxlevels = 0; |
| return; |
| } |
| |
| if (xfs_has_reflink(mp)) { |
| /* |
| * Compute the asymptotic maxlevels for an rmap btree on a |
| * filesystem that supports reflink. |
| * |
| * On a reflink filesystem, each AG block can have up to 2^32 |
| * (per the refcount record format) owners, which means that |
| * theoretically we could face up to 2^64 rmap records. |
| * However, we're likely to run out of blocks in the AG long |
| * before that happens, which means that we must compute the |
| * max height based on what the btree will look like if it |
| * consumes almost all the blocks in the AG due to maximal |
| * sharing factor. |
| */ |
| mp->m_rmap_maxlevels = xfs_btree_space_to_height(mp->m_rmap_mnr, |
| mp->m_sb.sb_agblocks); |
| } else { |
| /* |
| * If there's no block sharing, compute the maximum rmapbt |
| * height assuming one rmap record per AG block. |
| */ |
| mp->m_rmap_maxlevels = xfs_btree_compute_maxlevels( |
| mp->m_rmap_mnr, mp->m_sb.sb_agblocks); |
| } |
| ASSERT(mp->m_rmap_maxlevels <= xfs_rmapbt_maxlevels_ondisk()); |
| } |
| |
| /* Calculate the refcount btree size for some records. */ |
| xfs_extlen_t |
| xfs_rmapbt_calc_size( |
| struct xfs_mount *mp, |
| unsigned long long len) |
| { |
| return xfs_btree_calc_size(mp->m_rmap_mnr, len); |
| } |
| |
| /* |
| * Calculate the maximum refcount btree size. |
| */ |
| xfs_extlen_t |
| xfs_rmapbt_max_size( |
| struct xfs_mount *mp, |
| xfs_agblock_t agblocks) |
| { |
| /* Bail out if we're uninitialized, which can happen in mkfs. */ |
| if (mp->m_rmap_mxr[0] == 0) |
| return 0; |
| |
| return xfs_rmapbt_calc_size(mp, agblocks); |
| } |
| |
| /* |
| * Figure out how many blocks to reserve and how many are used by this btree. |
| */ |
| int |
| xfs_rmapbt_calc_reserves( |
| struct xfs_mount *mp, |
| struct xfs_trans *tp, |
| struct xfs_perag *pag, |
| xfs_extlen_t *ask, |
| xfs_extlen_t *used) |
| { |
| struct xfs_buf *agbp; |
| struct xfs_agf *agf; |
| xfs_agblock_t agblocks; |
| xfs_extlen_t tree_len; |
| int error; |
| |
| if (!xfs_has_rmapbt(mp)) |
| return 0; |
| |
| error = xfs_alloc_read_agf(pag, tp, 0, &agbp); |
| if (error) |
| return error; |
| |
| agf = agbp->b_addr; |
| agblocks = be32_to_cpu(agf->agf_length); |
| tree_len = be32_to_cpu(agf->agf_rmap_blocks); |
| xfs_trans_brelse(tp, agbp); |
| |
| /* |
| * The log is permanently allocated, so the space it occupies will |
| * never be available for the kinds of things that would require btree |
| * expansion. We therefore can pretend the space isn't there. |
| */ |
| if (xfs_ag_contains_log(mp, pag->pag_agno)) |
| agblocks -= mp->m_sb.sb_logblocks; |
| |
| /* Reserve 1% of the AG or enough for 1 block per record. */ |
| *ask += max(agblocks / 100, xfs_rmapbt_max_size(mp, agblocks)); |
| *used += tree_len; |
| |
| return error; |
| } |
| |
| int __init |
| xfs_rmapbt_init_cur_cache(void) |
| { |
| xfs_rmapbt_cur_cache = kmem_cache_create("xfs_rmapbt_cur", |
| xfs_btree_cur_sizeof(xfs_rmapbt_maxlevels_ondisk()), |
| 0, 0, NULL); |
| |
| if (!xfs_rmapbt_cur_cache) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| void |
| xfs_rmapbt_destroy_cur_cache(void) |
| { |
| kmem_cache_destroy(xfs_rmapbt_cur_cache); |
| xfs_rmapbt_cur_cache = NULL; |
| } |