| // SPDX-License-Identifier: GPL-2.0 |
| /* Copyright (c) 2018, Intel Corporation. */ |
| |
| #include "ice.h" |
| #include "ice_base.h" |
| #include "ice_lib.h" |
| #include "ice_fltr.h" |
| |
| /** |
| * ice_validate_vf_id - helper to check if VF ID is valid |
| * @pf: pointer to the PF structure |
| * @vf_id: the ID of the VF to check |
| */ |
| static int ice_validate_vf_id(struct ice_pf *pf, u16 vf_id) |
| { |
| /* vf_id range is only valid for 0-255, and should always be unsigned */ |
| if (vf_id >= pf->num_alloc_vfs) { |
| dev_err(ice_pf_to_dev(pf), "Invalid VF ID: %u\n", vf_id); |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| /** |
| * ice_check_vf_init - helper to check if VF init complete |
| * @pf: pointer to the PF structure |
| * @vf: the pointer to the VF to check |
| */ |
| static int ice_check_vf_init(struct ice_pf *pf, struct ice_vf *vf) |
| { |
| if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states)) { |
| dev_err(ice_pf_to_dev(pf), "VF ID: %u in reset. Try again.\n", |
| vf->vf_id); |
| return -EBUSY; |
| } |
| return 0; |
| } |
| |
| /** |
| * ice_err_to_virt_err - translate errors for VF return code |
| * @ice_err: error return code |
| */ |
| static enum virtchnl_status_code ice_err_to_virt_err(enum ice_status ice_err) |
| { |
| switch (ice_err) { |
| case ICE_SUCCESS: |
| return VIRTCHNL_STATUS_SUCCESS; |
| case ICE_ERR_BAD_PTR: |
| case ICE_ERR_INVAL_SIZE: |
| case ICE_ERR_DEVICE_NOT_SUPPORTED: |
| case ICE_ERR_PARAM: |
| case ICE_ERR_CFG: |
| return VIRTCHNL_STATUS_ERR_PARAM; |
| case ICE_ERR_NO_MEMORY: |
| return VIRTCHNL_STATUS_ERR_NO_MEMORY; |
| case ICE_ERR_NOT_READY: |
| case ICE_ERR_RESET_FAILED: |
| case ICE_ERR_FW_API_VER: |
| case ICE_ERR_AQ_ERROR: |
| case ICE_ERR_AQ_TIMEOUT: |
| case ICE_ERR_AQ_FULL: |
| case ICE_ERR_AQ_NO_WORK: |
| case ICE_ERR_AQ_EMPTY: |
| return VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; |
| default: |
| return VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; |
| } |
| } |
| |
| /** |
| * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF |
| * @pf: pointer to the PF structure |
| * @v_opcode: operation code |
| * @v_retval: return value |
| * @msg: pointer to the msg buffer |
| * @msglen: msg length |
| */ |
| static void |
| ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode, |
| enum virtchnl_status_code v_retval, u8 *msg, u16 msglen) |
| { |
| struct ice_hw *hw = &pf->hw; |
| unsigned int i; |
| |
| ice_for_each_vf(pf, i) { |
| struct ice_vf *vf = &pf->vf[i]; |
| |
| /* Not all vfs are enabled so skip the ones that are not */ |
| if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) && |
| !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) |
| continue; |
| |
| /* Ignore return value on purpose - a given VF may fail, but |
| * we need to keep going and send to all of them |
| */ |
| ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg, |
| msglen, NULL); |
| } |
| } |
| |
| /** |
| * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event |
| * @vf: pointer to the VF structure |
| * @pfe: pointer to the virtchnl_pf_event to set link speed/status for |
| * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_* |
| * @link_up: whether or not to set the link up/down |
| */ |
| static void |
| ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe, |
| int ice_link_speed, bool link_up) |
| { |
| if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) { |
| pfe->event_data.link_event_adv.link_status = link_up; |
| /* Speed in Mbps */ |
| pfe->event_data.link_event_adv.link_speed = |
| ice_conv_link_speed_to_virtchnl(true, ice_link_speed); |
| } else { |
| pfe->event_data.link_event.link_status = link_up; |
| /* Legacy method for virtchnl link speeds */ |
| pfe->event_data.link_event.link_speed = |
| (enum virtchnl_link_speed) |
| ice_conv_link_speed_to_virtchnl(false, ice_link_speed); |
| } |
| } |
| |
| /** |
| * ice_vf_has_no_qs_ena - check if the VF has any Rx or Tx queues enabled |
| * @vf: the VF to check |
| * |
| * Returns true if the VF has no Rx and no Tx queues enabled and returns false |
| * otherwise |
| */ |
| static bool ice_vf_has_no_qs_ena(struct ice_vf *vf) |
| { |
| return (!bitmap_weight(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF) && |
| !bitmap_weight(vf->txq_ena, ICE_MAX_RSS_QS_PER_VF)); |
| } |
| |
| /** |
| * ice_is_vf_link_up - check if the VF's link is up |
| * @vf: VF to check if link is up |
| */ |
| static bool ice_is_vf_link_up(struct ice_vf *vf) |
| { |
| struct ice_pf *pf = vf->pf; |
| |
| if (ice_check_vf_init(pf, vf)) |
| return false; |
| |
| if (ice_vf_has_no_qs_ena(vf)) |
| return false; |
| else if (vf->link_forced) |
| return vf->link_up; |
| else |
| return pf->hw.port_info->phy.link_info.link_info & |
| ICE_AQ_LINK_UP; |
| } |
| |
| /** |
| * ice_vc_notify_vf_link_state - Inform a VF of link status |
| * @vf: pointer to the VF structure |
| * |
| * send a link status message to a single VF |
| */ |
| static void ice_vc_notify_vf_link_state(struct ice_vf *vf) |
| { |
| struct virtchnl_pf_event pfe = { 0 }; |
| struct ice_hw *hw = &vf->pf->hw; |
| |
| pfe.event = VIRTCHNL_EVENT_LINK_CHANGE; |
| pfe.severity = PF_EVENT_SEVERITY_INFO; |
| |
| if (ice_is_vf_link_up(vf)) |
| ice_set_pfe_link(vf, &pfe, |
| hw->port_info->phy.link_info.link_speed, true); |
| else |
| ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false); |
| |
| ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT, |
| VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe, |
| sizeof(pfe), NULL); |
| } |
| |
| /** |
| * ice_vf_invalidate_vsi - invalidate vsi_idx/vsi_num to remove VSI access |
| * @vf: VF to remove access to VSI for |
| */ |
| static void ice_vf_invalidate_vsi(struct ice_vf *vf) |
| { |
| vf->lan_vsi_idx = ICE_NO_VSI; |
| vf->lan_vsi_num = ICE_NO_VSI; |
| } |
| |
| /** |
| * ice_vf_vsi_release - invalidate the VF's VSI after freeing it |
| * @vf: invalidate this VF's VSI after freeing it |
| */ |
| static void ice_vf_vsi_release(struct ice_vf *vf) |
| { |
| ice_vsi_release(vf->pf->vsi[vf->lan_vsi_idx]); |
| ice_vf_invalidate_vsi(vf); |
| } |
| |
| /** |
| * ice_free_vf_res - Free a VF's resources |
| * @vf: pointer to the VF info |
| */ |
| static void ice_free_vf_res(struct ice_vf *vf) |
| { |
| struct ice_pf *pf = vf->pf; |
| int i, last_vector_idx; |
| |
| /* First, disable VF's configuration API to prevent OS from |
| * accessing the VF's VSI after it's freed or invalidated. |
| */ |
| clear_bit(ICE_VF_STATE_INIT, vf->vf_states); |
| |
| /* free VSI and disconnect it from the parent uplink */ |
| if (vf->lan_vsi_idx != ICE_NO_VSI) { |
| ice_vf_vsi_release(vf); |
| vf->num_mac = 0; |
| } |
| |
| last_vector_idx = vf->first_vector_idx + pf->num_msix_per_vf - 1; |
| |
| /* clear VF MDD event information */ |
| memset(&vf->mdd_tx_events, 0, sizeof(vf->mdd_tx_events)); |
| memset(&vf->mdd_rx_events, 0, sizeof(vf->mdd_rx_events)); |
| |
| /* Disable interrupts so that VF starts in a known state */ |
| for (i = vf->first_vector_idx; i <= last_vector_idx; i++) { |
| wr32(&pf->hw, GLINT_DYN_CTL(i), GLINT_DYN_CTL_CLEARPBA_M); |
| ice_flush(&pf->hw); |
| } |
| /* reset some of the state variables keeping track of the resources */ |
| clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states); |
| clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states); |
| } |
| |
| /** |
| * ice_dis_vf_mappings |
| * @vf: pointer to the VF structure |
| */ |
| static void ice_dis_vf_mappings(struct ice_vf *vf) |
| { |
| struct ice_pf *pf = vf->pf; |
| struct ice_vsi *vsi; |
| struct device *dev; |
| int first, last, v; |
| struct ice_hw *hw; |
| |
| hw = &pf->hw; |
| vsi = pf->vsi[vf->lan_vsi_idx]; |
| |
| dev = ice_pf_to_dev(pf); |
| wr32(hw, VPINT_ALLOC(vf->vf_id), 0); |
| wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), 0); |
| |
| first = vf->first_vector_idx; |
| last = first + pf->num_msix_per_vf - 1; |
| for (v = first; v <= last; v++) { |
| u32 reg; |
| |
| reg = (((1 << GLINT_VECT2FUNC_IS_PF_S) & |
| GLINT_VECT2FUNC_IS_PF_M) | |
| ((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) & |
| GLINT_VECT2FUNC_PF_NUM_M)); |
| wr32(hw, GLINT_VECT2FUNC(v), reg); |
| } |
| |
| if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) |
| wr32(hw, VPLAN_TX_QBASE(vf->vf_id), 0); |
| else |
| dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n"); |
| |
| if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) |
| wr32(hw, VPLAN_RX_QBASE(vf->vf_id), 0); |
| else |
| dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n"); |
| } |
| |
| /** |
| * ice_sriov_free_msix_res - Reset/free any used MSIX resources |
| * @pf: pointer to the PF structure |
| * |
| * Since no MSIX entries are taken from the pf->irq_tracker then just clear |
| * the pf->sriov_base_vector. |
| * |
| * Returns 0 on success, and -EINVAL on error. |
| */ |
| static int ice_sriov_free_msix_res(struct ice_pf *pf) |
| { |
| struct ice_res_tracker *res; |
| |
| if (!pf) |
| return -EINVAL; |
| |
| res = pf->irq_tracker; |
| if (!res) |
| return -EINVAL; |
| |
| /* give back irq_tracker resources used */ |
| WARN_ON(pf->sriov_base_vector < res->num_entries); |
| |
| pf->sriov_base_vector = 0; |
| |
| return 0; |
| } |
| |
| /** |
| * ice_set_vf_state_qs_dis - Set VF queues state to disabled |
| * @vf: pointer to the VF structure |
| */ |
| void ice_set_vf_state_qs_dis(struct ice_vf *vf) |
| { |
| /* Clear Rx/Tx enabled queues flag */ |
| bitmap_zero(vf->txq_ena, ICE_MAX_RSS_QS_PER_VF); |
| bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF); |
| clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states); |
| } |
| |
| /** |
| * ice_dis_vf_qs - Disable the VF queues |
| * @vf: pointer to the VF structure |
| */ |
| static void ice_dis_vf_qs(struct ice_vf *vf) |
| { |
| struct ice_pf *pf = vf->pf; |
| struct ice_vsi *vsi; |
| |
| vsi = pf->vsi[vf->lan_vsi_idx]; |
| |
| ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, vf->vf_id); |
| ice_vsi_stop_all_rx_rings(vsi); |
| ice_set_vf_state_qs_dis(vf); |
| } |
| |
| /** |
| * ice_free_vfs - Free all VFs |
| * @pf: pointer to the PF structure |
| */ |
| void ice_free_vfs(struct ice_pf *pf) |
| { |
| struct device *dev = ice_pf_to_dev(pf); |
| struct ice_hw *hw = &pf->hw; |
| unsigned int tmp, i; |
| |
| if (!pf->vf) |
| return; |
| |
| while (test_and_set_bit(__ICE_VF_DIS, pf->state)) |
| usleep_range(1000, 2000); |
| |
| /* Disable IOV before freeing resources. This lets any VF drivers |
| * running in the host get themselves cleaned up before we yank |
| * the carpet out from underneath their feet. |
| */ |
| if (!pci_vfs_assigned(pf->pdev)) |
| pci_disable_sriov(pf->pdev); |
| else |
| dev_warn(dev, "VFs are assigned - not disabling SR-IOV\n"); |
| |
| /* Avoid wait time by stopping all VFs at the same time */ |
| ice_for_each_vf(pf, i) |
| if (test_bit(ICE_VF_STATE_QS_ENA, pf->vf[i].vf_states)) |
| ice_dis_vf_qs(&pf->vf[i]); |
| |
| tmp = pf->num_alloc_vfs; |
| pf->num_qps_per_vf = 0; |
| pf->num_alloc_vfs = 0; |
| for (i = 0; i < tmp; i++) { |
| if (test_bit(ICE_VF_STATE_INIT, pf->vf[i].vf_states)) { |
| /* disable VF qp mappings and set VF disable state */ |
| ice_dis_vf_mappings(&pf->vf[i]); |
| set_bit(ICE_VF_STATE_DIS, pf->vf[i].vf_states); |
| ice_free_vf_res(&pf->vf[i]); |
| } |
| } |
| |
| if (ice_sriov_free_msix_res(pf)) |
| dev_err(dev, "Failed to free MSIX resources used by SR-IOV\n"); |
| |
| devm_kfree(dev, pf->vf); |
| pf->vf = NULL; |
| |
| /* This check is for when the driver is unloaded while VFs are |
| * assigned. Setting the number of VFs to 0 through sysfs is caught |
| * before this function ever gets called. |
| */ |
| if (!pci_vfs_assigned(pf->pdev)) { |
| unsigned int vf_id; |
| |
| /* Acknowledge VFLR for all VFs. Without this, VFs will fail to |
| * work correctly when SR-IOV gets re-enabled. |
| */ |
| for (vf_id = 0; vf_id < tmp; vf_id++) { |
| u32 reg_idx, bit_idx; |
| |
| reg_idx = (hw->func_caps.vf_base_id + vf_id) / 32; |
| bit_idx = (hw->func_caps.vf_base_id + vf_id) % 32; |
| wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx)); |
| } |
| } |
| clear_bit(__ICE_VF_DIS, pf->state); |
| clear_bit(ICE_FLAG_SRIOV_ENA, pf->flags); |
| } |
| |
| /** |
| * ice_trigger_vf_reset - Reset a VF on HW |
| * @vf: pointer to the VF structure |
| * @is_vflr: true if VFLR was issued, false if not |
| * @is_pfr: true if the reset was triggered due to a previous PFR |
| * |
| * Trigger hardware to start a reset for a particular VF. Expects the caller |
| * to wait the proper amount of time to allow hardware to reset the VF before |
| * it cleans up and restores VF functionality. |
| */ |
| static void ice_trigger_vf_reset(struct ice_vf *vf, bool is_vflr, bool is_pfr) |
| { |
| struct ice_pf *pf = vf->pf; |
| u32 reg, reg_idx, bit_idx; |
| unsigned int vf_abs_id, i; |
| struct device *dev; |
| struct ice_hw *hw; |
| |
| dev = ice_pf_to_dev(pf); |
| hw = &pf->hw; |
| vf_abs_id = vf->vf_id + hw->func_caps.vf_base_id; |
| |
| /* Inform VF that it is no longer active, as a warning */ |
| clear_bit(ICE_VF_STATE_ACTIVE, vf->vf_states); |
| |
| /* Disable VF's configuration API during reset. The flag is re-enabled |
| * when it's safe again to access VF's VSI. |
| */ |
| clear_bit(ICE_VF_STATE_INIT, vf->vf_states); |
| |
| /* VF_MBX_ARQLEN is cleared by PFR, so the driver needs to clear it |
| * in the case of VFR. If this is done for PFR, it can mess up VF |
| * resets because the VF driver may already have started cleanup |
| * by the time we get here. |
| */ |
| if (!is_pfr) |
| wr32(hw, VF_MBX_ARQLEN(vf->vf_id), 0); |
| |
| /* In the case of a VFLR, the HW has already reset the VF and we |
| * just need to clean up, so don't hit the VFRTRIG register. |
| */ |
| if (!is_vflr) { |
| /* reset VF using VPGEN_VFRTRIG reg */ |
| reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id)); |
| reg |= VPGEN_VFRTRIG_VFSWR_M; |
| wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg); |
| } |
| /* clear the VFLR bit in GLGEN_VFLRSTAT */ |
| reg_idx = (vf_abs_id) / 32; |
| bit_idx = (vf_abs_id) % 32; |
| wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx)); |
| ice_flush(hw); |
| |
| wr32(hw, PF_PCI_CIAA, |
| VF_DEVICE_STATUS | (vf_abs_id << PF_PCI_CIAA_VF_NUM_S)); |
| for (i = 0; i < ICE_PCI_CIAD_WAIT_COUNT; i++) { |
| reg = rd32(hw, PF_PCI_CIAD); |
| /* no transactions pending so stop polling */ |
| if ((reg & VF_TRANS_PENDING_M) == 0) |
| break; |
| |
| dev_err(dev, "VF %u PCI transactions stuck\n", vf->vf_id); |
| udelay(ICE_PCI_CIAD_WAIT_DELAY_US); |
| } |
| } |
| |
| /** |
| * ice_vsi_manage_pvid - Enable or disable port VLAN for VSI |
| * @vsi: the VSI to update |
| * @pvid_info: VLAN ID and QoS used to set the PVID VSI context field |
| * @enable: true for enable PVID false for disable |
| */ |
| static int ice_vsi_manage_pvid(struct ice_vsi *vsi, u16 pvid_info, bool enable) |
| { |
| struct ice_hw *hw = &vsi->back->hw; |
| struct ice_aqc_vsi_props *info; |
| struct ice_vsi_ctx *ctxt; |
| enum ice_status status; |
| int ret = 0; |
| |
| ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); |
| if (!ctxt) |
| return -ENOMEM; |
| |
| ctxt->info = vsi->info; |
| info = &ctxt->info; |
| if (enable) { |
| info->vlan_flags = ICE_AQ_VSI_VLAN_MODE_UNTAGGED | |
| ICE_AQ_VSI_PVLAN_INSERT_PVID | |
| ICE_AQ_VSI_VLAN_EMOD_STR; |
| info->sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; |
| } else { |
| info->vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING | |
| ICE_AQ_VSI_VLAN_MODE_ALL; |
| info->sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; |
| } |
| |
| info->pvid = cpu_to_le16(pvid_info); |
| info->valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | |
| ICE_AQ_VSI_PROP_SW_VALID); |
| |
| status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); |
| if (status) { |
| dev_info(ice_hw_to_dev(hw), "update VSI for port VLAN failed, err %s aq_err %s\n", |
| ice_stat_str(status), |
| ice_aq_str(hw->adminq.sq_last_status)); |
| ret = -EIO; |
| goto out; |
| } |
| |
| vsi->info.vlan_flags = info->vlan_flags; |
| vsi->info.sw_flags2 = info->sw_flags2; |
| vsi->info.pvid = info->pvid; |
| out: |
| kfree(ctxt); |
| return ret; |
| } |
| |
| /** |
| * ice_vf_get_port_info - Get the VF's port info structure |
| * @vf: VF used to get the port info structure for |
| */ |
| static struct ice_port_info *ice_vf_get_port_info(struct ice_vf *vf) |
| { |
| return vf->pf->hw.port_info; |
| } |
| |
| /** |
| * ice_vf_vsi_setup - Set up a VF VSI |
| * @vf: VF to setup VSI for |
| * |
| * Returns pointer to the successfully allocated VSI struct on success, |
| * otherwise returns NULL on failure. |
| */ |
| static struct ice_vsi *ice_vf_vsi_setup(struct ice_vf *vf) |
| { |
| struct ice_port_info *pi = ice_vf_get_port_info(vf); |
| struct ice_pf *pf = vf->pf; |
| struct ice_vsi *vsi; |
| |
| vsi = ice_vsi_setup(pf, pi, ICE_VSI_VF, vf->vf_id); |
| |
| if (!vsi) { |
| dev_err(ice_pf_to_dev(pf), "Failed to create VF VSI\n"); |
| ice_vf_invalidate_vsi(vf); |
| return NULL; |
| } |
| |
| vf->lan_vsi_idx = vsi->idx; |
| vf->lan_vsi_num = vsi->vsi_num; |
| |
| return vsi; |
| } |
| |
| /** |
| * ice_calc_vf_first_vector_idx - Calculate MSIX vector index in the PF space |
| * @pf: pointer to PF structure |
| * @vf: pointer to VF that the first MSIX vector index is being calculated for |
| * |
| * This returns the first MSIX vector index in PF space that is used by this VF. |
| * This index is used when accessing PF relative registers such as |
| * GLINT_VECT2FUNC and GLINT_DYN_CTL. |
| * This will always be the OICR index in the AVF driver so any functionality |
| * using vf->first_vector_idx for queue configuration will have to increment by |
| * 1 to avoid meddling with the OICR index. |
| */ |
| static int ice_calc_vf_first_vector_idx(struct ice_pf *pf, struct ice_vf *vf) |
| { |
| return pf->sriov_base_vector + vf->vf_id * pf->num_msix_per_vf; |
| } |
| |
| /** |
| * ice_vf_rebuild_host_vlan_cfg - add VLAN 0 filter or rebuild the Port VLAN |
| * @vf: VF to add MAC filters for |
| * |
| * Called after a VF VSI has been re-added/rebuilt during reset. The PF driver |
| * always re-adds either a VLAN 0 or port VLAN based filter after reset. |
| */ |
| static int ice_vf_rebuild_host_vlan_cfg(struct ice_vf *vf) |
| { |
| struct ice_vsi *vsi = vf->pf->vsi[vf->lan_vsi_idx]; |
| struct device *dev = ice_pf_to_dev(vf->pf); |
| u16 vlan_id = 0; |
| int err; |
| |
| if (vf->port_vlan_info) { |
| err = ice_vsi_manage_pvid(vsi, vf->port_vlan_info, true); |
| if (err) { |
| dev_err(dev, "failed to configure port VLAN via VSI parameters for VF %u, error %d\n", |
| vf->vf_id, err); |
| return err; |
| } |
| |
| vlan_id = vf->port_vlan_info & VLAN_VID_MASK; |
| } |
| |
| /* vlan_id will either be 0 or the port VLAN number */ |
| err = ice_vsi_add_vlan(vsi, vlan_id, ICE_FWD_TO_VSI); |
| if (err) { |
| dev_err(dev, "failed to add %s VLAN %u filter for VF %u, error %d\n", |
| vf->port_vlan_info ? "port" : "", vlan_id, vf->vf_id, |
| err); |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ice_vf_rebuild_host_mac_cfg - add broadcast and the VF's perm_addr/LAA |
| * @vf: VF to add MAC filters for |
| * |
| * Called after a VF VSI has been re-added/rebuilt during reset. The PF driver |
| * always re-adds a broadcast filter and the VF's perm_addr/LAA after reset. |
| */ |
| static int ice_vf_rebuild_host_mac_cfg(struct ice_vf *vf) |
| { |
| struct ice_vsi *vsi = vf->pf->vsi[vf->lan_vsi_idx]; |
| struct device *dev = ice_pf_to_dev(vf->pf); |
| enum ice_status status; |
| u8 broadcast[ETH_ALEN]; |
| |
| eth_broadcast_addr(broadcast); |
| status = ice_fltr_add_mac(vsi, broadcast, ICE_FWD_TO_VSI); |
| if (status) { |
| dev_err(dev, "failed to add broadcast MAC filter for VF %u, error %s\n", |
| vf->vf_id, ice_stat_str(status)); |
| return ice_status_to_errno(status); |
| } |
| |
| vf->num_mac++; |
| |
| if (is_valid_ether_addr(vf->dflt_lan_addr.addr)) { |
| status = ice_fltr_add_mac(vsi, vf->dflt_lan_addr.addr, |
| ICE_FWD_TO_VSI); |
| if (status) { |
| dev_err(dev, "failed to add default unicast MAC filter %pM for VF %u, error %s\n", |
| &vf->dflt_lan_addr.addr[0], vf->vf_id, |
| ice_stat_str(status)); |
| return ice_status_to_errno(status); |
| } |
| vf->num_mac++; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ice_vf_set_host_trust_cfg - set trust setting based on pre-reset value |
| * @vf: VF to configure trust setting for |
| */ |
| static void ice_vf_set_host_trust_cfg(struct ice_vf *vf) |
| { |
| if (vf->trusted) |
| set_bit(ICE_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps); |
| else |
| clear_bit(ICE_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps); |
| } |
| |
| /** |
| * ice_ena_vf_msix_mappings - enable VF MSIX mappings in hardware |
| * @vf: VF to enable MSIX mappings for |
| * |
| * Some of the registers need to be indexed/configured using hardware global |
| * device values and other registers need 0-based values, which represent PF |
| * based values. |
| */ |
| static void ice_ena_vf_msix_mappings(struct ice_vf *vf) |
| { |
| int device_based_first_msix, device_based_last_msix; |
| int pf_based_first_msix, pf_based_last_msix, v; |
| struct ice_pf *pf = vf->pf; |
| int device_based_vf_id; |
| struct ice_hw *hw; |
| u32 reg; |
| |
| hw = &pf->hw; |
| pf_based_first_msix = vf->first_vector_idx; |
| pf_based_last_msix = (pf_based_first_msix + pf->num_msix_per_vf) - 1; |
| |
| device_based_first_msix = pf_based_first_msix + |
| pf->hw.func_caps.common_cap.msix_vector_first_id; |
| device_based_last_msix = |
| (device_based_first_msix + pf->num_msix_per_vf) - 1; |
| device_based_vf_id = vf->vf_id + hw->func_caps.vf_base_id; |
| |
| reg = (((device_based_first_msix << VPINT_ALLOC_FIRST_S) & |
| VPINT_ALLOC_FIRST_M) | |
| ((device_based_last_msix << VPINT_ALLOC_LAST_S) & |
| VPINT_ALLOC_LAST_M) | VPINT_ALLOC_VALID_M); |
| wr32(hw, VPINT_ALLOC(vf->vf_id), reg); |
| |
| reg = (((device_based_first_msix << VPINT_ALLOC_PCI_FIRST_S) |
| & VPINT_ALLOC_PCI_FIRST_M) | |
| ((device_based_last_msix << VPINT_ALLOC_PCI_LAST_S) & |
| VPINT_ALLOC_PCI_LAST_M) | VPINT_ALLOC_PCI_VALID_M); |
| wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), reg); |
| |
| /* map the interrupts to its functions */ |
| for (v = pf_based_first_msix; v <= pf_based_last_msix; v++) { |
| reg = (((device_based_vf_id << GLINT_VECT2FUNC_VF_NUM_S) & |
| GLINT_VECT2FUNC_VF_NUM_M) | |
| ((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) & |
| GLINT_VECT2FUNC_PF_NUM_M)); |
| wr32(hw, GLINT_VECT2FUNC(v), reg); |
| } |
| |
| /* Map mailbox interrupt to VF MSI-X vector 0 */ |
| wr32(hw, VPINT_MBX_CTL(device_based_vf_id), VPINT_MBX_CTL_CAUSE_ENA_M); |
| } |
| |
| /** |
| * ice_ena_vf_q_mappings - enable Rx/Tx queue mappings for a VF |
| * @vf: VF to enable the mappings for |
| * @max_txq: max Tx queues allowed on the VF's VSI |
| * @max_rxq: max Rx queues allowed on the VF's VSI |
| */ |
| static void ice_ena_vf_q_mappings(struct ice_vf *vf, u16 max_txq, u16 max_rxq) |
| { |
| struct ice_vsi *vsi = vf->pf->vsi[vf->lan_vsi_idx]; |
| struct device *dev = ice_pf_to_dev(vf->pf); |
| struct ice_hw *hw = &vf->pf->hw; |
| u32 reg; |
| |
| /* set regardless of mapping mode */ |
| wr32(hw, VPLAN_TXQ_MAPENA(vf->vf_id), VPLAN_TXQ_MAPENA_TX_ENA_M); |
| |
| /* VF Tx queues allocation */ |
| if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) { |
| /* set the VF PF Tx queue range |
| * VFNUMQ value should be set to (number of queues - 1). A value |
| * of 0 means 1 queue and a value of 255 means 256 queues |
| */ |
| reg = (((vsi->txq_map[0] << VPLAN_TX_QBASE_VFFIRSTQ_S) & |
| VPLAN_TX_QBASE_VFFIRSTQ_M) | |
| (((max_txq - 1) << VPLAN_TX_QBASE_VFNUMQ_S) & |
| VPLAN_TX_QBASE_VFNUMQ_M)); |
| wr32(hw, VPLAN_TX_QBASE(vf->vf_id), reg); |
| } else { |
| dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n"); |
| } |
| |
| /* set regardless of mapping mode */ |
| wr32(hw, VPLAN_RXQ_MAPENA(vf->vf_id), VPLAN_RXQ_MAPENA_RX_ENA_M); |
| |
| /* VF Rx queues allocation */ |
| if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) { |
| /* set the VF PF Rx queue range |
| * VFNUMQ value should be set to (number of queues - 1). A value |
| * of 0 means 1 queue and a value of 255 means 256 queues |
| */ |
| reg = (((vsi->rxq_map[0] << VPLAN_RX_QBASE_VFFIRSTQ_S) & |
| VPLAN_RX_QBASE_VFFIRSTQ_M) | |
| (((max_rxq - 1) << VPLAN_RX_QBASE_VFNUMQ_S) & |
| VPLAN_RX_QBASE_VFNUMQ_M)); |
| wr32(hw, VPLAN_RX_QBASE(vf->vf_id), reg); |
| } else { |
| dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n"); |
| } |
| } |
| |
| /** |
| * ice_ena_vf_mappings - enable VF MSIX and queue mapping |
| * @vf: pointer to the VF structure |
| */ |
| static void ice_ena_vf_mappings(struct ice_vf *vf) |
| { |
| struct ice_vsi *vsi = vf->pf->vsi[vf->lan_vsi_idx]; |
| |
| ice_ena_vf_msix_mappings(vf); |
| ice_ena_vf_q_mappings(vf, vsi->alloc_txq, vsi->alloc_rxq); |
| } |
| |
| /** |
| * ice_determine_res |
| * @pf: pointer to the PF structure |
| * @avail_res: available resources in the PF structure |
| * @max_res: maximum resources that can be given per VF |
| * @min_res: minimum resources that can be given per VF |
| * |
| * Returns non-zero value if resources (queues/vectors) are available or |
| * returns zero if PF cannot accommodate for all num_alloc_vfs. |
| */ |
| static int |
| ice_determine_res(struct ice_pf *pf, u16 avail_res, u16 max_res, u16 min_res) |
| { |
| bool checked_min_res = false; |
| int res; |
| |
| /* start by checking if PF can assign max number of resources for |
| * all num_alloc_vfs. |
| * if yes, return number per VF |
| * If no, divide by 2 and roundup, check again |
| * repeat the loop till we reach a point where even minimum resources |
| * are not available, in that case return 0 |
| */ |
| res = max_res; |
| while ((res >= min_res) && !checked_min_res) { |
| int num_all_res; |
| |
| num_all_res = pf->num_alloc_vfs * res; |
| if (num_all_res <= avail_res) |
| return res; |
| |
| if (res == min_res) |
| checked_min_res = true; |
| |
| res = DIV_ROUND_UP(res, 2); |
| } |
| return 0; |
| } |
| |
| /** |
| * ice_calc_vf_reg_idx - Calculate the VF's register index in the PF space |
| * @vf: VF to calculate the register index for |
| * @q_vector: a q_vector associated to the VF |
| */ |
| int ice_calc_vf_reg_idx(struct ice_vf *vf, struct ice_q_vector *q_vector) |
| { |
| struct ice_pf *pf; |
| |
| if (!vf || !q_vector) |
| return -EINVAL; |
| |
| pf = vf->pf; |
| |
| /* always add one to account for the OICR being the first MSIX */ |
| return pf->sriov_base_vector + pf->num_msix_per_vf * vf->vf_id + |
| q_vector->v_idx + 1; |
| } |
| |
| /** |
| * ice_get_max_valid_res_idx - Get the max valid resource index |
| * @res: pointer to the resource to find the max valid index for |
| * |
| * Start from the end of the ice_res_tracker and return right when we find the |
| * first res->list entry with the ICE_RES_VALID_BIT set. This function is only |
| * valid for SR-IOV because it is the only consumer that manipulates the |
| * res->end and this is always called when res->end is set to res->num_entries. |
| */ |
| static int ice_get_max_valid_res_idx(struct ice_res_tracker *res) |
| { |
| int i; |
| |
| if (!res) |
| return -EINVAL; |
| |
| for (i = res->num_entries - 1; i >= 0; i--) |
| if (res->list[i] & ICE_RES_VALID_BIT) |
| return i; |
| |
| return 0; |
| } |
| |
| /** |
| * ice_sriov_set_msix_res - Set any used MSIX resources |
| * @pf: pointer to PF structure |
| * @num_msix_needed: number of MSIX vectors needed for all SR-IOV VFs |
| * |
| * This function allows SR-IOV resources to be taken from the end of the PF's |
| * allowed HW MSIX vectors so that the irq_tracker will not be affected. We |
| * just set the pf->sriov_base_vector and return success. |
| * |
| * If there are not enough resources available, return an error. This should |
| * always be caught by ice_set_per_vf_res(). |
| * |
| * Return 0 on success, and -EINVAL when there are not enough MSIX vectors in |
| * in the PF's space available for SR-IOV. |
| */ |
| static int ice_sriov_set_msix_res(struct ice_pf *pf, u16 num_msix_needed) |
| { |
| u16 total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors; |
| int vectors_used = pf->irq_tracker->num_entries; |
| int sriov_base_vector; |
| |
| sriov_base_vector = total_vectors - num_msix_needed; |
| |
| /* make sure we only grab irq_tracker entries from the list end and |
| * that we have enough available MSIX vectors |
| */ |
| if (sriov_base_vector < vectors_used) |
| return -EINVAL; |
| |
| pf->sriov_base_vector = sriov_base_vector; |
| |
| return 0; |
| } |
| |
| /** |
| * ice_set_per_vf_res - check if vectors and queues are available |
| * @pf: pointer to the PF structure |
| * |
| * First, determine HW interrupts from common pool. If we allocate fewer VFs, we |
| * get more vectors and can enable more queues per VF. Note that this does not |
| * grab any vectors from the SW pool already allocated. Also note, that all |
| * vector counts include one for each VF's miscellaneous interrupt vector |
| * (i.e. OICR). |
| * |
| * Minimum VFs - 2 vectors, 1 queue pair |
| * Small VFs - 5 vectors, 4 queue pairs |
| * Medium VFs - 17 vectors, 16 queue pairs |
| * |
| * Second, determine number of queue pairs per VF by starting with a pre-defined |
| * maximum each VF supports. If this is not possible, then we adjust based on |
| * queue pairs available on the device. |
| * |
| * Lastly, set queue and MSI-X VF variables tracked by the PF so it can be used |
| * by each VF during VF initialization and reset. |
| */ |
| static int ice_set_per_vf_res(struct ice_pf *pf) |
| { |
| int max_valid_res_idx = ice_get_max_valid_res_idx(pf->irq_tracker); |
| int msix_avail_per_vf, msix_avail_for_sriov; |
| struct device *dev = ice_pf_to_dev(pf); |
| u16 num_msix_per_vf, num_txq, num_rxq; |
| |
| if (!pf->num_alloc_vfs || max_valid_res_idx < 0) |
| return -EINVAL; |
| |
| /* determine MSI-X resources per VF */ |
| msix_avail_for_sriov = pf->hw.func_caps.common_cap.num_msix_vectors - |
| pf->irq_tracker->num_entries; |
| msix_avail_per_vf = msix_avail_for_sriov / pf->num_alloc_vfs; |
| if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MED) { |
| num_msix_per_vf = ICE_NUM_VF_MSIX_MED; |
| } else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_SMALL) { |
| num_msix_per_vf = ICE_NUM_VF_MSIX_SMALL; |
| } else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MULTIQ_MIN) { |
| num_msix_per_vf = ICE_NUM_VF_MSIX_MULTIQ_MIN; |
| } else if (msix_avail_per_vf >= ICE_MIN_INTR_PER_VF) { |
| num_msix_per_vf = ICE_MIN_INTR_PER_VF; |
| } else { |
| dev_err(dev, "Only %d MSI-X interrupts available for SR-IOV. Not enough to support minimum of %d MSI-X interrupts per VF for %d VFs\n", |
| msix_avail_for_sriov, ICE_MIN_INTR_PER_VF, |
| pf->num_alloc_vfs); |
| return -EIO; |
| } |
| |
| /* determine queue resources per VF */ |
| num_txq = ice_determine_res(pf, ice_get_avail_txq_count(pf), |
| min_t(u16, |
| num_msix_per_vf - ICE_NONQ_VECS_VF, |
| ICE_MAX_RSS_QS_PER_VF), |
| ICE_MIN_QS_PER_VF); |
| |
| num_rxq = ice_determine_res(pf, ice_get_avail_rxq_count(pf), |
| min_t(u16, |
| num_msix_per_vf - ICE_NONQ_VECS_VF, |
| ICE_MAX_RSS_QS_PER_VF), |
| ICE_MIN_QS_PER_VF); |
| |
| if (!num_txq || !num_rxq) { |
| dev_err(dev, "Not enough queues to support minimum of %d queue pairs per VF for %d VFs\n", |
| ICE_MIN_QS_PER_VF, pf->num_alloc_vfs); |
| return -EIO; |
| } |
| |
| if (ice_sriov_set_msix_res(pf, num_msix_per_vf * pf->num_alloc_vfs)) { |
| dev_err(dev, "Unable to set MSI-X resources for %d VFs\n", |
| pf->num_alloc_vfs); |
| return -EINVAL; |
| } |
| |
| /* only allow equal Tx/Rx queue count (i.e. queue pairs) */ |
| pf->num_qps_per_vf = min_t(int, num_txq, num_rxq); |
| pf->num_msix_per_vf = num_msix_per_vf; |
| dev_info(dev, "Enabling %d VFs with %d vectors and %d queues per VF\n", |
| pf->num_alloc_vfs, pf->num_msix_per_vf, pf->num_qps_per_vf); |
| |
| return 0; |
| } |
| |
| /** |
| * ice_clear_vf_reset_trigger - enable VF to access hardware |
| * @vf: VF to enabled hardware access for |
| */ |
| static void ice_clear_vf_reset_trigger(struct ice_vf *vf) |
| { |
| struct ice_hw *hw = &vf->pf->hw; |
| u32 reg; |
| |
| reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id)); |
| reg &= ~VPGEN_VFRTRIG_VFSWR_M; |
| wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg); |
| ice_flush(hw); |
| } |
| |
| /** |
| * ice_vf_set_vsi_promisc - set given VF VSI to given promiscuous mode(s) |
| * @vf: pointer to the VF info |
| * @vsi: the VSI being configured |
| * @promisc_m: mask of promiscuous config bits |
| * @rm_promisc: promisc flag request from the VF to remove or add filter |
| * |
| * This function configures VF VSI promiscuous mode, based on the VF requests, |
| * for Unicast, Multicast and VLAN |
| */ |
| static enum ice_status |
| ice_vf_set_vsi_promisc(struct ice_vf *vf, struct ice_vsi *vsi, u8 promisc_m, |
| bool rm_promisc) |
| { |
| struct ice_pf *pf = vf->pf; |
| enum ice_status status = 0; |
| struct ice_hw *hw; |
| |
| hw = &pf->hw; |
| if (vsi->num_vlan) { |
| status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m, |
| rm_promisc); |
| } else if (vf->port_vlan_info) { |
| if (rm_promisc) |
| status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m, |
| vf->port_vlan_info); |
| else |
| status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m, |
| vf->port_vlan_info); |
| } else { |
| if (rm_promisc) |
| status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m, |
| 0); |
| else |
| status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m, |
| 0); |
| } |
| |
| return status; |
| } |
| |
| static void ice_vf_clear_counters(struct ice_vf *vf) |
| { |
| struct ice_vsi *vsi = vf->pf->vsi[vf->lan_vsi_idx]; |
| |
| vf->num_mac = 0; |
| vsi->num_vlan = 0; |
| memset(&vf->mdd_tx_events, 0, sizeof(vf->mdd_tx_events)); |
| memset(&vf->mdd_rx_events, 0, sizeof(vf->mdd_rx_events)); |
| } |
| |
| /** |
| * ice_vf_pre_vsi_rebuild - tasks to be done prior to VSI rebuild |
| * @vf: VF to perform pre VSI rebuild tasks |
| * |
| * These tasks are items that don't need to be amortized since they are most |
| * likely called in a for loop with all VF(s) in the reset_all_vfs() case. |
| */ |
| static void ice_vf_pre_vsi_rebuild(struct ice_vf *vf) |
| { |
| ice_vf_clear_counters(vf); |
| ice_clear_vf_reset_trigger(vf); |
| } |
| |
| /** |
| * ice_vf_rebuild_host_cfg - host admin configuration is persistent across reset |
| * @vf: VF to rebuild host configuration on |
| */ |
| static void ice_vf_rebuild_host_cfg(struct ice_vf *vf) |
| { |
| struct device *dev = ice_pf_to_dev(vf->pf); |
| |
| ice_vf_set_host_trust_cfg(vf); |
| |
| if (ice_vf_rebuild_host_mac_cfg(vf)) |
| dev_err(dev, "failed to rebuild default MAC configuration for VF %d\n", |
| vf->vf_id); |
| |
| if (ice_vf_rebuild_host_vlan_cfg(vf)) |
| dev_err(dev, "failed to rebuild VLAN configuration for VF %u\n", |
| vf->vf_id); |
| } |
| |
| /** |
| * ice_vf_rebuild_vsi_with_release - release and setup the VF's VSI |
| * @vf: VF to release and setup the VSI for |
| * |
| * This is only called when a single VF is being reset (i.e. VFR, VFLR, host VF |
| * configuration change, etc.). |
| */ |
| static int ice_vf_rebuild_vsi_with_release(struct ice_vf *vf) |
| { |
| ice_vf_vsi_release(vf); |
| if (!ice_vf_vsi_setup(vf)) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| /** |
| * ice_vf_rebuild_vsi - rebuild the VF's VSI |
| * @vf: VF to rebuild the VSI for |
| * |
| * This is only called when all VF(s) are being reset (i.e. PCIe Reset on the |
| * host, PFR, CORER, etc.). |
| */ |
| static int ice_vf_rebuild_vsi(struct ice_vf *vf) |
| { |
| struct ice_pf *pf = vf->pf; |
| struct ice_vsi *vsi; |
| |
| vsi = pf->vsi[vf->lan_vsi_idx]; |
| |
| if (ice_vsi_rebuild(vsi, true)) { |
| dev_err(ice_pf_to_dev(pf), "failed to rebuild VF %d VSI\n", |
| vf->vf_id); |
| return -EIO; |
| } |
| /* vsi->idx will remain the same in this case so don't update |
| * vf->lan_vsi_idx |
| */ |
| vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); |
| vf->lan_vsi_num = vsi->vsi_num; |
| |
| return 0; |
| } |
| |
| /** |
| * ice_vf_set_initialized - VF is ready for VIRTCHNL communication |
| * @vf: VF to set in initialized state |
| * |
| * After this function the VF will be ready to receive/handle the |
| * VIRTCHNL_OP_GET_VF_RESOURCES message |
| */ |
| static void ice_vf_set_initialized(struct ice_vf *vf) |
| { |
| ice_set_vf_state_qs_dis(vf); |
| clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states); |
| clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states); |
| clear_bit(ICE_VF_STATE_DIS, vf->vf_states); |
| set_bit(ICE_VF_STATE_INIT, vf->vf_states); |
| } |
| |
| /** |
| * ice_vf_post_vsi_rebuild - tasks to do after the VF's VSI have been rebuilt |
| * @vf: VF to perform tasks on |
| */ |
| static void ice_vf_post_vsi_rebuild(struct ice_vf *vf) |
| { |
| struct ice_pf *pf = vf->pf; |
| struct ice_hw *hw; |
| |
| hw = &pf->hw; |
| |
| ice_vf_rebuild_host_cfg(vf); |
| |
| ice_vf_set_initialized(vf); |
| ice_ena_vf_mappings(vf); |
| wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE); |
| } |
| |
| /** |
| * ice_reset_all_vfs - reset all allocated VFs in one go |
| * @pf: pointer to the PF structure |
| * @is_vflr: true if VFLR was issued, false if not |
| * |
| * First, tell the hardware to reset each VF, then do all the waiting in one |
| * chunk, and finally finish restoring each VF after the wait. This is useful |
| * during PF routines which need to reset all VFs, as otherwise it must perform |
| * these resets in a serialized fashion. |
| * |
| * Returns true if any VFs were reset, and false otherwise. |
| */ |
| bool ice_reset_all_vfs(struct ice_pf *pf, bool is_vflr) |
| { |
| struct device *dev = ice_pf_to_dev(pf); |
| struct ice_hw *hw = &pf->hw; |
| struct ice_vf *vf; |
| int v, i; |
| |
| /* If we don't have any VFs, then there is nothing to reset */ |
| if (!pf->num_alloc_vfs) |
| return false; |
| |
| /* If VFs have been disabled, there is no need to reset */ |
| if (test_and_set_bit(__ICE_VF_DIS, pf->state)) |
| return false; |
| |
| /* Begin reset on all VFs at once */ |
| ice_for_each_vf(pf, v) |
| ice_trigger_vf_reset(&pf->vf[v], is_vflr, true); |
| |
| /* HW requires some time to make sure it can flush the FIFO for a VF |
| * when it resets it. Poll the VPGEN_VFRSTAT register for each VF in |
| * sequence to make sure that it has completed. We'll keep track of |
| * the VFs using a simple iterator that increments once that VF has |
| * finished resetting. |
| */ |
| for (i = 0, v = 0; i < 10 && v < pf->num_alloc_vfs; i++) { |
| /* Check each VF in sequence */ |
| while (v < pf->num_alloc_vfs) { |
| u32 reg; |
| |
| vf = &pf->vf[v]; |
| reg = rd32(hw, VPGEN_VFRSTAT(vf->vf_id)); |
| if (!(reg & VPGEN_VFRSTAT_VFRD_M)) { |
| /* only delay if the check failed */ |
| usleep_range(10, 20); |
| break; |
| } |
| |
| /* If the current VF has finished resetting, move on |
| * to the next VF in sequence. |
| */ |
| v++; |
| } |
| } |
| |
| /* Display a warning if at least one VF didn't manage to reset in |
| * time, but continue on with the operation. |
| */ |
| if (v < pf->num_alloc_vfs) |
| dev_warn(dev, "VF reset check timeout\n"); |
| |
| /* free VF resources to begin resetting the VSI state */ |
| ice_for_each_vf(pf, v) { |
| vf = &pf->vf[v]; |
| |
| ice_vf_pre_vsi_rebuild(vf); |
| ice_vf_rebuild_vsi(vf); |
| ice_vf_post_vsi_rebuild(vf); |
| } |
| |
| ice_flush(hw); |
| clear_bit(__ICE_VF_DIS, pf->state); |
| |
| return true; |
| } |
| |
| /** |
| * ice_is_vf_disabled |
| * @vf: pointer to the VF info |
| * |
| * Returns true if the PF or VF is disabled, false otherwise. |
| */ |
| static bool ice_is_vf_disabled(struct ice_vf *vf) |
| { |
| struct ice_pf *pf = vf->pf; |
| |
| /* If the PF has been disabled, there is no need resetting VF until |
| * PF is active again. Similarly, if the VF has been disabled, this |
| * means something else is resetting the VF, so we shouldn't continue. |
| * Otherwise, set disable VF state bit for actual reset, and continue. |
| */ |
| return (test_bit(__ICE_VF_DIS, pf->state) || |
| test_bit(ICE_VF_STATE_DIS, vf->vf_states)); |
| } |
| |
| /** |
| * ice_reset_vf - Reset a particular VF |
| * @vf: pointer to the VF structure |
| * @is_vflr: true if VFLR was issued, false if not |
| * |
| * Returns true if the VF is currently in reset, resets successfully, or resets |
| * are disabled and false otherwise. |
| */ |
| bool ice_reset_vf(struct ice_vf *vf, bool is_vflr) |
| { |
| struct ice_pf *pf = vf->pf; |
| struct ice_vsi *vsi; |
| struct device *dev; |
| struct ice_hw *hw; |
| bool rsd = false; |
| u8 promisc_m; |
| u32 reg; |
| int i; |
| |
| dev = ice_pf_to_dev(pf); |
| |
| if (test_bit(__ICE_VF_RESETS_DISABLED, pf->state)) { |
| dev_dbg(dev, "Trying to reset VF %d, but all VF resets are disabled\n", |
| vf->vf_id); |
| return true; |
| } |
| |
| if (ice_is_vf_disabled(vf)) { |
| dev_dbg(dev, "VF is already disabled, there is no need for resetting it, telling VM, all is fine %d\n", |
| vf->vf_id); |
| return true; |
| } |
| |
| /* Set VF disable bit state here, before triggering reset */ |
| set_bit(ICE_VF_STATE_DIS, vf->vf_states); |
| ice_trigger_vf_reset(vf, is_vflr, false); |
| |
| vsi = pf->vsi[vf->lan_vsi_idx]; |
| |
| if (test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) |
| ice_dis_vf_qs(vf); |
| |
| /* Call Disable LAN Tx queue AQ whether or not queues are |
| * enabled. This is needed for successful completion of VFR. |
| */ |
| ice_dis_vsi_txq(vsi->port_info, vsi->idx, 0, 0, NULL, NULL, |
| NULL, ICE_VF_RESET, vf->vf_id, NULL); |
| |
| hw = &pf->hw; |
| /* poll VPGEN_VFRSTAT reg to make sure |
| * that reset is complete |
| */ |
| for (i = 0; i < 10; i++) { |
| /* VF reset requires driver to first reset the VF and then |
| * poll the status register to make sure that the reset |
| * completed successfully. |
| */ |
| reg = rd32(hw, VPGEN_VFRSTAT(vf->vf_id)); |
| if (reg & VPGEN_VFRSTAT_VFRD_M) { |
| rsd = true; |
| break; |
| } |
| |
| /* only sleep if the reset is not done */ |
| usleep_range(10, 20); |
| } |
| |
| /* Display a warning if VF didn't manage to reset in time, but need to |
| * continue on with the operation. |
| */ |
| if (!rsd) |
| dev_warn(dev, "VF reset check timeout on VF %d\n", vf->vf_id); |
| |
| /* disable promiscuous modes in case they were enabled |
| * ignore any error if disabling process failed |
| */ |
| if (test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) || |
| test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) { |
| if (vf->port_vlan_info || vsi->num_vlan) |
| promisc_m = ICE_UCAST_VLAN_PROMISC_BITS; |
| else |
| promisc_m = ICE_UCAST_PROMISC_BITS; |
| |
| vsi = pf->vsi[vf->lan_vsi_idx]; |
| if (ice_vf_set_vsi_promisc(vf, vsi, promisc_m, true)) |
| dev_err(dev, "disabling promiscuous mode failed\n"); |
| } |
| |
| ice_vf_pre_vsi_rebuild(vf); |
| ice_vf_rebuild_vsi_with_release(vf); |
| ice_vf_post_vsi_rebuild(vf); |
| |
| return true; |
| } |
| |
| /** |
| * ice_vc_notify_link_state - Inform all VFs on a PF of link status |
| * @pf: pointer to the PF structure |
| */ |
| void ice_vc_notify_link_state(struct ice_pf *pf) |
| { |
| int i; |
| |
| ice_for_each_vf(pf, i) |
| ice_vc_notify_vf_link_state(&pf->vf[i]); |
| } |
| |
| /** |
| * ice_vc_notify_reset - Send pending reset message to all VFs |
| * @pf: pointer to the PF structure |
| * |
| * indicate a pending reset to all VFs on a given PF |
| */ |
| void ice_vc_notify_reset(struct ice_pf *pf) |
| { |
| struct virtchnl_pf_event pfe; |
| |
| if (!pf->num_alloc_vfs) |
| return; |
| |
| pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING; |
| pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM; |
| ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS, |
| (u8 *)&pfe, sizeof(struct virtchnl_pf_event)); |
| } |
| |
| /** |
| * ice_vc_notify_vf_reset - Notify VF of a reset event |
| * @vf: pointer to the VF structure |
| */ |
| static void ice_vc_notify_vf_reset(struct ice_vf *vf) |
| { |
| struct virtchnl_pf_event pfe; |
| struct ice_pf *pf; |
| |
| if (!vf) |
| return; |
| |
| pf = vf->pf; |
| if (ice_validate_vf_id(pf, vf->vf_id)) |
| return; |
| |
| /* Bail out if VF is in disabled state, neither initialized, nor active |
| * state - otherwise proceed with notifications |
| */ |
| if ((!test_bit(ICE_VF_STATE_INIT, vf->vf_states) && |
| !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) || |
| test_bit(ICE_VF_STATE_DIS, vf->vf_states)) |
| return; |
| |
| pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING; |
| pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM; |
| ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, VIRTCHNL_OP_EVENT, |
| VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe, sizeof(pfe), |
| NULL); |
| } |
| |
| /** |
| * ice_init_vf_vsi_res - initialize/setup VF VSI resources |
| * @vf: VF to initialize/setup the VSI for |
| * |
| * This function creates a VSI for the VF, adds a VLAN 0 filter, and sets up the |
| * VF VSI's broadcast filter and is only used during initial VF creation. |
| */ |
| static int ice_init_vf_vsi_res(struct ice_vf *vf) |
| { |
| struct ice_pf *pf = vf->pf; |
| u8 broadcast[ETH_ALEN]; |
| enum ice_status status; |
| struct ice_vsi *vsi; |
| struct device *dev; |
| int err; |
| |
| vf->first_vector_idx = ice_calc_vf_first_vector_idx(pf, vf); |
| |
| dev = ice_pf_to_dev(pf); |
| vsi = ice_vf_vsi_setup(vf); |
| if (!vsi) |
| return -ENOMEM; |
| |
| err = ice_vsi_add_vlan(vsi, 0, ICE_FWD_TO_VSI); |
| if (err) { |
| dev_warn(dev, "Failed to add VLAN 0 filter for VF %d\n", |
| vf->vf_id); |
| goto release_vsi; |
| } |
| |
| eth_broadcast_addr(broadcast); |
| status = ice_fltr_add_mac(vsi, broadcast, ICE_FWD_TO_VSI); |
| if (status) { |
| dev_err(dev, "Failed to add broadcast MAC filter for VF %d, status %s\n", |
| vf->vf_id, ice_stat_str(status)); |
| err = ice_status_to_errno(status); |
| goto release_vsi; |
| } |
| |
| vf->num_mac = 1; |
| |
| return 0; |
| |
| release_vsi: |
| ice_vf_vsi_release(vf); |
| return err; |
| } |
| |
| /** |
| * ice_start_vfs - start VFs so they are ready to be used by SR-IOV |
| * @pf: PF the VFs are associated with |
| */ |
| static int ice_start_vfs(struct ice_pf *pf) |
| { |
| struct ice_hw *hw = &pf->hw; |
| int retval, i; |
| |
| ice_for_each_vf(pf, i) { |
| struct ice_vf *vf = &pf->vf[i]; |
| |
| ice_clear_vf_reset_trigger(vf); |
| |
| retval = ice_init_vf_vsi_res(vf); |
| if (retval) { |
| dev_err(ice_pf_to_dev(pf), "Failed to initialize VSI resources for VF %d, error %d\n", |
| vf->vf_id, retval); |
| goto teardown; |
| } |
| |
| set_bit(ICE_VF_STATE_INIT, vf->vf_states); |
| ice_ena_vf_mappings(vf); |
| wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE); |
| } |
| |
| ice_flush(hw); |
| return 0; |
| |
| teardown: |
| for (i = i - 1; i >= 0; i--) { |
| struct ice_vf *vf = &pf->vf[i]; |
| |
| ice_dis_vf_mappings(vf); |
| ice_vf_vsi_release(vf); |
| } |
| |
| return retval; |
| } |
| |
| /** |
| * ice_set_dflt_settings - set VF defaults during initialization/creation |
| * @pf: PF holding reference to all VFs for default configuration |
| */ |
| static void ice_set_dflt_settings_vfs(struct ice_pf *pf) |
| { |
| int i; |
| |
| ice_for_each_vf(pf, i) { |
| struct ice_vf *vf = &pf->vf[i]; |
| |
| vf->pf = pf; |
| vf->vf_id = i; |
| vf->vf_sw_id = pf->first_sw; |
| /* assign default capabilities */ |
| set_bit(ICE_VIRTCHNL_VF_CAP_L2, &vf->vf_caps); |
| vf->spoofchk = true; |
| vf->num_vf_qs = pf->num_qps_per_vf; |
| } |
| } |
| |
| /** |
| * ice_alloc_vfs - allocate num_vfs in the PF structure |
| * @pf: PF to store the allocated VFs in |
| * @num_vfs: number of VFs to allocate |
| */ |
| static int ice_alloc_vfs(struct ice_pf *pf, int num_vfs) |
| { |
| struct ice_vf *vfs; |
| |
| vfs = devm_kcalloc(ice_pf_to_dev(pf), num_vfs, sizeof(*vfs), |
| GFP_KERNEL); |
| if (!vfs) |
| return -ENOMEM; |
| |
| pf->vf = vfs; |
| pf->num_alloc_vfs = num_vfs; |
| |
| return 0; |
| } |
| |
| /** |
| * ice_ena_vfs - enable VFs so they are ready to be used |
| * @pf: pointer to the PF structure |
| * @num_vfs: number of VFs to enable |
| */ |
| static int ice_ena_vfs(struct ice_pf *pf, u16 num_vfs) |
| { |
| struct device *dev = ice_pf_to_dev(pf); |
| struct ice_hw *hw = &pf->hw; |
| int ret; |
| |
| /* Disable global interrupt 0 so we don't try to handle the VFLR. */ |
| wr32(hw, GLINT_DYN_CTL(pf->oicr_idx), |
| ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S); |
| set_bit(__ICE_OICR_INTR_DIS, pf->state); |
| ice_flush(hw); |
| |
| ret = pci_enable_sriov(pf->pdev, num_vfs); |
| if (ret) { |
| pf->num_alloc_vfs = 0; |
| goto err_unroll_intr; |
| } |
| |
| ret = ice_alloc_vfs(pf, num_vfs); |
| if (ret) |
| goto err_pci_disable_sriov; |
| |
| if (ice_set_per_vf_res(pf)) { |
| dev_err(dev, "Not enough resources for %d VFs, try with fewer number of VFs\n", |
| num_vfs); |
| ret = -ENOSPC; |
| goto err_unroll_sriov; |
| } |
| |
| ice_set_dflt_settings_vfs(pf); |
| |
| if (ice_start_vfs(pf)) { |
| dev_err(dev, "Failed to start VF(s)\n"); |
| ret = -EAGAIN; |
| goto err_unroll_sriov; |
| } |
| |
| clear_bit(__ICE_VF_DIS, pf->state); |
| return 0; |
| |
| err_unroll_sriov: |
| devm_kfree(dev, pf->vf); |
| pf->vf = NULL; |
| pf->num_alloc_vfs = 0; |
| err_pci_disable_sriov: |
| pci_disable_sriov(pf->pdev); |
| err_unroll_intr: |
| /* rearm interrupts here */ |
| ice_irq_dynamic_ena(hw, NULL, NULL); |
| clear_bit(__ICE_OICR_INTR_DIS, pf->state); |
| return ret; |
| } |
| |
| /** |
| * ice_pci_sriov_ena - Enable or change number of VFs |
| * @pf: pointer to the PF structure |
| * @num_vfs: number of VFs to allocate |
| * |
| * Returns 0 on success and negative on failure |
| */ |
| static int ice_pci_sriov_ena(struct ice_pf *pf, int num_vfs) |
| { |
| int pre_existing_vfs = pci_num_vf(pf->pdev); |
| struct device *dev = ice_pf_to_dev(pf); |
| int err; |
| |
| if (pre_existing_vfs && pre_existing_vfs != num_vfs) |
| ice_free_vfs(pf); |
| else if (pre_existing_vfs && pre_existing_vfs == num_vfs) |
| return 0; |
| |
| if (num_vfs > pf->num_vfs_supported) { |
| dev_err(dev, "Can't enable %d VFs, max VFs supported is %d\n", |
| num_vfs, pf->num_vfs_supported); |
| return -EOPNOTSUPP; |
| } |
| |
| dev_info(dev, "Enabling %d VFs\n", num_vfs); |
| err = ice_ena_vfs(pf, num_vfs); |
| if (err) { |
| dev_err(dev, "Failed to enable SR-IOV: %d\n", err); |
| return err; |
| } |
| |
| set_bit(ICE_FLAG_SRIOV_ENA, pf->flags); |
| return 0; |
| } |
| |
| /** |
| * ice_check_sriov_allowed - check if SR-IOV is allowed based on various checks |
| * @pf: PF to enabled SR-IOV on |
| */ |
| static int ice_check_sriov_allowed(struct ice_pf *pf) |
| { |
| struct device *dev = ice_pf_to_dev(pf); |
| |
| if (!test_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags)) { |
| dev_err(dev, "This device is not capable of SR-IOV\n"); |
| return -EOPNOTSUPP; |
| } |
| |
| if (ice_is_safe_mode(pf)) { |
| dev_err(dev, "SR-IOV cannot be configured - Device is in Safe Mode\n"); |
| return -EOPNOTSUPP; |
| } |
| |
| if (!ice_pf_state_is_nominal(pf)) { |
| dev_err(dev, "Cannot enable SR-IOV, device not ready\n"); |
| return -EBUSY; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ice_sriov_configure - Enable or change number of VFs via sysfs |
| * @pdev: pointer to a pci_dev structure |
| * @num_vfs: number of VFs to allocate or 0 to free VFs |
| * |
| * This function is called when the user updates the number of VFs in sysfs. On |
| * success return whatever num_vfs was set to by the caller. Return negative on |
| * failure. |
| */ |
| int ice_sriov_configure(struct pci_dev *pdev, int num_vfs) |
| { |
| struct ice_pf *pf = pci_get_drvdata(pdev); |
| struct device *dev = ice_pf_to_dev(pf); |
| int err; |
| |
| err = ice_check_sriov_allowed(pf); |
| if (err) |
| return err; |
| |
| if (!num_vfs) { |
| if (!pci_vfs_assigned(pdev)) { |
| ice_free_vfs(pf); |
| return 0; |
| } |
| |
| dev_err(dev, "can't free VFs because some are assigned to VMs.\n"); |
| return -EBUSY; |
| } |
| |
| err = ice_pci_sriov_ena(pf, num_vfs); |
| if (err) |
| return err; |
| |
| return num_vfs; |
| } |
| |
| /** |
| * ice_process_vflr_event - Free VF resources via IRQ calls |
| * @pf: pointer to the PF structure |
| * |
| * called from the VFLR IRQ handler to |
| * free up VF resources and state variables |
| */ |
| void ice_process_vflr_event(struct ice_pf *pf) |
| { |
| struct ice_hw *hw = &pf->hw; |
| unsigned int vf_id; |
| u32 reg; |
| |
| if (!test_and_clear_bit(__ICE_VFLR_EVENT_PENDING, pf->state) || |
| !pf->num_alloc_vfs) |
| return; |
| |
| ice_for_each_vf(pf, vf_id) { |
| struct ice_vf *vf = &pf->vf[vf_id]; |
| u32 reg_idx, bit_idx; |
| |
| reg_idx = (hw->func_caps.vf_base_id + vf_id) / 32; |
| bit_idx = (hw->func_caps.vf_base_id + vf_id) % 32; |
| /* read GLGEN_VFLRSTAT register to find out the flr VFs */ |
| reg = rd32(hw, GLGEN_VFLRSTAT(reg_idx)); |
| if (reg & BIT(bit_idx)) |
| /* GLGEN_VFLRSTAT bit will be cleared in ice_reset_vf */ |
| ice_reset_vf(vf, true); |
| } |
| } |
| |
| /** |
| * ice_vc_reset_vf - Perform software reset on the VF after informing the AVF |
| * @vf: pointer to the VF info |
| */ |
| static void ice_vc_reset_vf(struct ice_vf *vf) |
| { |
| ice_vc_notify_vf_reset(vf); |
| ice_reset_vf(vf, false); |
| } |
| |
| /** |
| * ice_get_vf_from_pfq - get the VF who owns the PF space queue passed in |
| * @pf: PF used to index all VFs |
| * @pfq: queue index relative to the PF's function space |
| * |
| * If no VF is found who owns the pfq then return NULL, otherwise return a |
| * pointer to the VF who owns the pfq |
| */ |
| static struct ice_vf *ice_get_vf_from_pfq(struct ice_pf *pf, u16 pfq) |
| { |
| unsigned int vf_id; |
| |
| ice_for_each_vf(pf, vf_id) { |
| struct ice_vf *vf = &pf->vf[vf_id]; |
| struct ice_vsi *vsi; |
| u16 rxq_idx; |
| |
| vsi = pf->vsi[vf->lan_vsi_idx]; |
| |
| ice_for_each_rxq(vsi, rxq_idx) |
| if (vsi->rxq_map[rxq_idx] == pfq) |
| return vf; |
| } |
| |
| return NULL; |
| } |
| |
| /** |
| * ice_globalq_to_pfq - convert from global queue index to PF space queue index |
| * @pf: PF used for conversion |
| * @globalq: global queue index used to convert to PF space queue index |
| */ |
| static u32 ice_globalq_to_pfq(struct ice_pf *pf, u32 globalq) |
| { |
| return globalq - pf->hw.func_caps.common_cap.rxq_first_id; |
| } |
| |
| /** |
| * ice_vf_lan_overflow_event - handle LAN overflow event for a VF |
| * @pf: PF that the LAN overflow event happened on |
| * @event: structure holding the event information for the LAN overflow event |
| * |
| * Determine if the LAN overflow event was caused by a VF queue. If it was not |
| * caused by a VF, do nothing. If a VF caused this LAN overflow event trigger a |
| * reset on the offending VF. |
| */ |
| void |
| ice_vf_lan_overflow_event(struct ice_pf *pf, struct ice_rq_event_info *event) |
| { |
| u32 gldcb_rtctq, queue; |
| struct ice_vf *vf; |
| |
| gldcb_rtctq = le32_to_cpu(event->desc.params.lan_overflow.prtdcb_ruptq); |
| dev_dbg(ice_pf_to_dev(pf), "GLDCB_RTCTQ: 0x%08x\n", gldcb_rtctq); |
| |
| /* event returns device global Rx queue number */ |
| queue = (gldcb_rtctq & GLDCB_RTCTQ_RXQNUM_M) >> |
| GLDCB_RTCTQ_RXQNUM_S; |
| |
| vf = ice_get_vf_from_pfq(pf, ice_globalq_to_pfq(pf, queue)); |
| if (!vf) |
| return; |
| |
| ice_vc_reset_vf(vf); |
| } |
| |
| /** |
| * ice_vc_send_msg_to_vf - Send message to VF |
| * @vf: pointer to the VF info |
| * @v_opcode: virtual channel opcode |
| * @v_retval: virtual channel return value |
| * @msg: pointer to the msg buffer |
| * @msglen: msg length |
| * |
| * send msg to VF |
| */ |
| static int |
| ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode, |
| enum virtchnl_status_code v_retval, u8 *msg, u16 msglen) |
| { |
| enum ice_status aq_ret; |
| struct device *dev; |
| struct ice_pf *pf; |
| |
| if (!vf) |
| return -EINVAL; |
| |
| pf = vf->pf; |
| if (ice_validate_vf_id(pf, vf->vf_id)) |
| return -EINVAL; |
| |
| dev = ice_pf_to_dev(pf); |
| |
| /* single place to detect unsuccessful return values */ |
| if (v_retval) { |
| vf->num_inval_msgs++; |
| dev_info(dev, "VF %d failed opcode %d, retval: %d\n", vf->vf_id, |
| v_opcode, v_retval); |
| if (vf->num_inval_msgs > ICE_DFLT_NUM_INVAL_MSGS_ALLOWED) { |
| dev_err(dev, "Number of invalid messages exceeded for VF %d\n", |
| vf->vf_id); |
| dev_err(dev, "Use PF Control I/F to enable the VF\n"); |
| set_bit(ICE_VF_STATE_DIS, vf->vf_states); |
| return -EIO; |
| } |
| } else { |
| vf->num_valid_msgs++; |
| /* reset the invalid counter, if a valid message is received. */ |
| vf->num_inval_msgs = 0; |
| } |
| |
| aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval, |
| msg, msglen, NULL); |
| if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) { |
| dev_info(dev, "Unable to send the message to VF %d ret %s aq_err %s\n", |
| vf->vf_id, ice_stat_str(aq_ret), |
| ice_aq_str(pf->hw.mailboxq.sq_last_status)); |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ice_vc_get_ver_msg |
| * @vf: pointer to the VF info |
| * @msg: pointer to the msg buffer |
| * |
| * called from the VF to request the API version used by the PF |
| */ |
| static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg) |
| { |
| struct virtchnl_version_info info = { |
| VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR |
| }; |
| |
| vf->vf_ver = *(struct virtchnl_version_info *)msg; |
| /* VFs running the 1.0 API expect to get 1.0 back or they will cry. */ |
| if (VF_IS_V10(&vf->vf_ver)) |
| info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS; |
| |
| return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION, |
| VIRTCHNL_STATUS_SUCCESS, (u8 *)&info, |
| sizeof(struct virtchnl_version_info)); |
| } |
| |
| /** |
| * ice_vc_get_vf_res_msg |
| * @vf: pointer to the VF info |
| * @msg: pointer to the msg buffer |
| * |
| * called from the VF to request its resources |
| */ |
| static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg) |
| { |
| enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; |
| struct virtchnl_vf_resource *vfres = NULL; |
| struct ice_pf *pf = vf->pf; |
| struct ice_vsi *vsi; |
| int len = 0; |
| int ret; |
| |
| if (ice_check_vf_init(pf, vf)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto err; |
| } |
| |
| len = sizeof(struct virtchnl_vf_resource); |
| |
| vfres = kzalloc(len, GFP_KERNEL); |
| if (!vfres) { |
| v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; |
| len = 0; |
| goto err; |
| } |
| if (VF_IS_V11(&vf->vf_ver)) |
| vf->driver_caps = *(u32 *)msg; |
| else |
| vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 | |
| VIRTCHNL_VF_OFFLOAD_RSS_REG | |
| VIRTCHNL_VF_OFFLOAD_VLAN; |
| |
| vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2; |
| vsi = pf->vsi[vf->lan_vsi_idx]; |
| if (!vsi) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto err; |
| } |
| |
| if (!vsi->info.pvid) |
| vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_VLAN; |
| |
| if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF) { |
| vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF; |
| } else { |
| if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_AQ) |
| vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_AQ; |
| else |
| vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_REG; |
| } |
| |
| if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) |
| vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2; |
| |
| if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP) |
| vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP; |
| |
| if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM) |
| vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM; |
| |
| if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING) |
| vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING; |
| |
| if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) |
| vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR; |
| |
| if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES) |
| vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES; |
| |
| if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) |
| vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED; |
| |
| vfres->num_vsis = 1; |
| /* Tx and Rx queue are equal for VF */ |
| vfres->num_queue_pairs = vsi->num_txq; |
| vfres->max_vectors = pf->num_msix_per_vf; |
| vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE; |
| vfres->rss_lut_size = ICE_VSIQF_HLUT_ARRAY_SIZE; |
| |
| vfres->vsi_res[0].vsi_id = vf->lan_vsi_num; |
| vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV; |
| vfres->vsi_res[0].num_queue_pairs = vsi->num_txq; |
| ether_addr_copy(vfres->vsi_res[0].default_mac_addr, |
| vf->dflt_lan_addr.addr); |
| |
| /* match guest capabilities */ |
| vf->driver_caps = vfres->vf_cap_flags; |
| |
| set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states); |
| |
| err: |
| /* send the response back to the VF */ |
| ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret, |
| (u8 *)vfres, len); |
| |
| kfree(vfres); |
| return ret; |
| } |
| |
| /** |
| * ice_vc_reset_vf_msg |
| * @vf: pointer to the VF info |
| * |
| * called from the VF to reset itself, |
| * unlike other virtchnl messages, PF driver |
| * doesn't send the response back to the VF |
| */ |
| static void ice_vc_reset_vf_msg(struct ice_vf *vf) |
| { |
| if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) |
| ice_reset_vf(vf, false); |
| } |
| |
| /** |
| * ice_find_vsi_from_id |
| * @pf: the PF structure to search for the VSI |
| * @id: ID of the VSI it is searching for |
| * |
| * searches for the VSI with the given ID |
| */ |
| static struct ice_vsi *ice_find_vsi_from_id(struct ice_pf *pf, u16 id) |
| { |
| int i; |
| |
| ice_for_each_vsi(pf, i) |
| if (pf->vsi[i] && pf->vsi[i]->vsi_num == id) |
| return pf->vsi[i]; |
| |
| return NULL; |
| } |
| |
| /** |
| * ice_vc_isvalid_vsi_id |
| * @vf: pointer to the VF info |
| * @vsi_id: VF relative VSI ID |
| * |
| * check for the valid VSI ID |
| */ |
| static bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id) |
| { |
| struct ice_pf *pf = vf->pf; |
| struct ice_vsi *vsi; |
| |
| vsi = ice_find_vsi_from_id(pf, vsi_id); |
| |
| return (vsi && (vsi->vf_id == vf->vf_id)); |
| } |
| |
| /** |
| * ice_vc_isvalid_q_id |
| * @vf: pointer to the VF info |
| * @vsi_id: VSI ID |
| * @qid: VSI relative queue ID |
| * |
| * check for the valid queue ID |
| */ |
| static bool ice_vc_isvalid_q_id(struct ice_vf *vf, u16 vsi_id, u8 qid) |
| { |
| struct ice_vsi *vsi = ice_find_vsi_from_id(vf->pf, vsi_id); |
| /* allocated Tx and Rx queues should be always equal for VF VSI */ |
| return (vsi && (qid < vsi->alloc_txq)); |
| } |
| |
| /** |
| * ice_vc_isvalid_ring_len |
| * @ring_len: length of ring |
| * |
| * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE |
| * or zero |
| */ |
| static bool ice_vc_isvalid_ring_len(u16 ring_len) |
| { |
| return ring_len == 0 || |
| (ring_len >= ICE_MIN_NUM_DESC && |
| ring_len <= ICE_MAX_NUM_DESC && |
| !(ring_len % ICE_REQ_DESC_MULTIPLE)); |
| } |
| |
| /** |
| * ice_vc_config_rss_key |
| * @vf: pointer to the VF info |
| * @msg: pointer to the msg buffer |
| * |
| * Configure the VF's RSS key |
| */ |
| static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg) |
| { |
| enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; |
| struct virtchnl_rss_key *vrk = |
| (struct virtchnl_rss_key *)msg; |
| struct ice_pf *pf = vf->pf; |
| struct ice_vsi *vsi; |
| |
| if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| vsi = pf->vsi[vf->lan_vsi_idx]; |
| if (!vsi) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (ice_set_rss(vsi, vrk->key, NULL, 0)) |
| v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; |
| error_param: |
| return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret, |
| NULL, 0); |
| } |
| |
| /** |
| * ice_vc_config_rss_lut |
| * @vf: pointer to the VF info |
| * @msg: pointer to the msg buffer |
| * |
| * Configure the VF's RSS LUT |
| */ |
| static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg) |
| { |
| struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg; |
| enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; |
| struct ice_pf *pf = vf->pf; |
| struct ice_vsi *vsi; |
| |
| if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (vrl->lut_entries != ICE_VSIQF_HLUT_ARRAY_SIZE) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| vsi = pf->vsi[vf->lan_vsi_idx]; |
| if (!vsi) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (ice_set_rss(vsi, NULL, vrl->lut, ICE_VSIQF_HLUT_ARRAY_SIZE)) |
| v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; |
| error_param: |
| return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret, |
| NULL, 0); |
| } |
| |
| /** |
| * ice_wait_on_vf_reset - poll to make sure a given VF is ready after reset |
| * @vf: The VF being resseting |
| * |
| * The max poll time is about ~800ms, which is about the maximum time it takes |
| * for a VF to be reset and/or a VF driver to be removed. |
| */ |
| static void ice_wait_on_vf_reset(struct ice_vf *vf) |
| { |
| int i; |
| |
| for (i = 0; i < ICE_MAX_VF_RESET_TRIES; i++) { |
| if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) |
| break; |
| msleep(ICE_MAX_VF_RESET_SLEEP_MS); |
| } |
| } |
| |
| /** |
| * ice_check_vf_ready_for_cfg - check if VF is ready to be configured/queried |
| * @vf: VF to check if it's ready to be configured/queried |
| * |
| * The purpose of this function is to make sure the VF is not in reset, not |
| * disabled, and initialized so it can be configured and/or queried by a host |
| * administrator. |
| */ |
| static int ice_check_vf_ready_for_cfg(struct ice_vf *vf) |
| { |
| struct ice_pf *pf; |
| |
| ice_wait_on_vf_reset(vf); |
| |
| if (ice_is_vf_disabled(vf)) |
| return -EINVAL; |
| |
| pf = vf->pf; |
| if (ice_check_vf_init(pf, vf)) |
| return -EBUSY; |
| |
| return 0; |
| } |
| |
| /** |
| * ice_set_vf_spoofchk |
| * @netdev: network interface device structure |
| * @vf_id: VF identifier |
| * @ena: flag to enable or disable feature |
| * |
| * Enable or disable VF spoof checking |
| */ |
| int ice_set_vf_spoofchk(struct net_device *netdev, int vf_id, bool ena) |
| { |
| struct ice_netdev_priv *np = netdev_priv(netdev); |
| struct ice_pf *pf = np->vsi->back; |
| struct ice_vsi_ctx *ctx; |
| struct ice_vsi *vf_vsi; |
| enum ice_status status; |
| struct device *dev; |
| struct ice_vf *vf; |
| int ret; |
| |
| dev = ice_pf_to_dev(pf); |
| if (ice_validate_vf_id(pf, vf_id)) |
| return -EINVAL; |
| |
| vf = &pf->vf[vf_id]; |
| ret = ice_check_vf_ready_for_cfg(vf); |
| if (ret) |
| return ret; |
| |
| vf_vsi = pf->vsi[vf->lan_vsi_idx]; |
| if (!vf_vsi) { |
| netdev_err(netdev, "VSI %d for VF %d is null\n", |
| vf->lan_vsi_idx, vf->vf_id); |
| return -EINVAL; |
| } |
| |
| if (vf_vsi->type != ICE_VSI_VF) { |
| netdev_err(netdev, "Type %d of VSI %d for VF %d is no ICE_VSI_VF\n", |
| vf_vsi->type, vf_vsi->vsi_num, vf->vf_id); |
| return -ENODEV; |
| } |
| |
| if (ena == vf->spoofchk) { |
| dev_dbg(dev, "VF spoofchk already %s\n", ena ? "ON" : "OFF"); |
| return 0; |
| } |
| |
| ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); |
| if (!ctx) |
| return -ENOMEM; |
| |
| ctx->info.sec_flags = vf_vsi->info.sec_flags; |
| ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); |
| if (ena) { |
| ctx->info.sec_flags |= |
| ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | |
| (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << |
| ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); |
| } else { |
| ctx->info.sec_flags &= |
| ~(ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | |
| (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << |
| ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S)); |
| } |
| |
| status = ice_update_vsi(&pf->hw, vf_vsi->idx, ctx, NULL); |
| if (status) { |
| dev_err(dev, "Failed to %sable spoofchk on VF %d VSI %d\n error %s\n", |
| ena ? "en" : "dis", vf->vf_id, vf_vsi->vsi_num, |
| ice_stat_str(status)); |
| ret = -EIO; |
| goto out; |
| } |
| |
| /* only update spoofchk state and VSI context on success */ |
| vf_vsi->info.sec_flags = ctx->info.sec_flags; |
| vf->spoofchk = ena; |
| |
| out: |
| kfree(ctx); |
| return ret; |
| } |
| |
| /** |
| * ice_is_any_vf_in_promisc - check if any VF(s) are in promiscuous mode |
| * @pf: PF structure for accessing VF(s) |
| * |
| * Return false if no VF(s) are in unicast and/or multicast promiscuous mode, |
| * else return true |
| */ |
| bool ice_is_any_vf_in_promisc(struct ice_pf *pf) |
| { |
| int vf_idx; |
| |
| ice_for_each_vf(pf, vf_idx) { |
| struct ice_vf *vf = &pf->vf[vf_idx]; |
| |
| /* found a VF that has promiscuous mode configured */ |
| if (test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) || |
| test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /** |
| * ice_vc_cfg_promiscuous_mode_msg |
| * @vf: pointer to the VF info |
| * @msg: pointer to the msg buffer |
| * |
| * called from the VF to configure VF VSIs promiscuous mode |
| */ |
| static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg) |
| { |
| enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; |
| struct virtchnl_promisc_info *info = |
| (struct virtchnl_promisc_info *)msg; |
| struct ice_pf *pf = vf->pf; |
| struct ice_vsi *vsi; |
| struct device *dev; |
| bool rm_promisc; |
| int ret = 0; |
| |
| if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| vsi = pf->vsi[vf->lan_vsi_idx]; |
| if (!vsi) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| dev = ice_pf_to_dev(pf); |
| if (!test_bit(ICE_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps)) { |
| dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n", |
| vf->vf_id); |
| /* Leave v_ret alone, lie to the VF on purpose. */ |
| goto error_param; |
| } |
| |
| rm_promisc = !(info->flags & FLAG_VF_UNICAST_PROMISC) && |
| !(info->flags & FLAG_VF_MULTICAST_PROMISC); |
| |
| if (vsi->num_vlan || vf->port_vlan_info) { |
| struct ice_vsi *pf_vsi = ice_get_main_vsi(pf); |
| struct net_device *pf_netdev; |
| |
| if (!pf_vsi) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| pf_netdev = pf_vsi->netdev; |
| |
| ret = ice_set_vf_spoofchk(pf_netdev, vf->vf_id, rm_promisc); |
| if (ret) { |
| dev_err(dev, "Failed to update spoofchk to %s for VF %d VSI %d when setting promiscuous mode\n", |
| rm_promisc ? "ON" : "OFF", vf->vf_id, |
| vsi->vsi_num); |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| } |
| |
| ret = ice_cfg_vlan_pruning(vsi, true, !rm_promisc); |
| if (ret) { |
| dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n"); |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| } |
| |
| if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) { |
| bool set_dflt_vsi = !!(info->flags & FLAG_VF_UNICAST_PROMISC); |
| |
| if (set_dflt_vsi && !ice_is_dflt_vsi_in_use(pf->first_sw)) |
| /* only attempt to set the default forwarding VSI if |
| * it's not currently set |
| */ |
| ret = ice_set_dflt_vsi(pf->first_sw, vsi); |
| else if (!set_dflt_vsi && |
| ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) |
| /* only attempt to free the default forwarding VSI if we |
| * are the owner |
| */ |
| ret = ice_clear_dflt_vsi(pf->first_sw); |
| |
| if (ret) { |
| dev_err(dev, "%sable VF %d as the default VSI failed, error %d\n", |
| set_dflt_vsi ? "en" : "dis", vf->vf_id, ret); |
| v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; |
| goto error_param; |
| } |
| } else { |
| enum ice_status status; |
| u8 promisc_m; |
| |
| if (info->flags & FLAG_VF_UNICAST_PROMISC) { |
| if (vf->port_vlan_info || vsi->num_vlan) |
| promisc_m = ICE_UCAST_VLAN_PROMISC_BITS; |
| else |
| promisc_m = ICE_UCAST_PROMISC_BITS; |
| } else if (info->flags & FLAG_VF_MULTICAST_PROMISC) { |
| if (vf->port_vlan_info || vsi->num_vlan) |
| promisc_m = ICE_MCAST_VLAN_PROMISC_BITS; |
| else |
| promisc_m = ICE_MCAST_PROMISC_BITS; |
| } else { |
| if (vf->port_vlan_info || vsi->num_vlan) |
| promisc_m = ICE_UCAST_VLAN_PROMISC_BITS; |
| else |
| promisc_m = ICE_UCAST_PROMISC_BITS; |
| } |
| |
| /* Configure multicast/unicast with or without VLAN promiscuous |
| * mode |
| */ |
| status = ice_vf_set_vsi_promisc(vf, vsi, promisc_m, rm_promisc); |
| if (status) { |
| dev_err(dev, "%sable Tx/Rx filter promiscuous mode on VF-%d failed, error: %s\n", |
| rm_promisc ? "dis" : "en", vf->vf_id, |
| ice_stat_str(status)); |
| v_ret = ice_err_to_virt_err(status); |
| goto error_param; |
| } else { |
| dev_dbg(dev, "%sable Tx/Rx filter promiscuous mode on VF-%d succeeded\n", |
| rm_promisc ? "dis" : "en", vf->vf_id); |
| } |
| } |
| |
| if (info->flags & FLAG_VF_MULTICAST_PROMISC) |
| set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states); |
| else |
| clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states); |
| |
| if (info->flags & FLAG_VF_UNICAST_PROMISC) |
| set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states); |
| else |
| clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states); |
| |
| error_param: |
| return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE, |
| v_ret, NULL, 0); |
| } |
| |
| /** |
| * ice_vc_get_stats_msg |
| * @vf: pointer to the VF info |
| * @msg: pointer to the msg buffer |
| * |
| * called from the VF to get VSI stats |
| */ |
| static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg) |
| { |
| enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; |
| struct virtchnl_queue_select *vqs = |
| (struct virtchnl_queue_select *)msg; |
| struct ice_eth_stats stats = { 0 }; |
| struct ice_pf *pf = vf->pf; |
| struct ice_vsi *vsi; |
| |
| if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| vsi = pf->vsi[vf->lan_vsi_idx]; |
| if (!vsi) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| ice_update_eth_stats(vsi); |
| |
| stats = vsi->eth_stats; |
| |
| error_param: |
| /* send the response to the VF */ |
| return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret, |
| (u8 *)&stats, sizeof(stats)); |
| } |
| |
| /** |
| * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL |
| * @vqs: virtchnl_queue_select structure containing bitmaps to validate |
| * |
| * Return true on successful validation, else false |
| */ |
| static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs) |
| { |
| if ((!vqs->rx_queues && !vqs->tx_queues) || |
| vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) || |
| vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF)) |
| return false; |
| |
| return true; |
| } |
| |
| /** |
| * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL |
| * @vsi: VSI of the VF to configure |
| * @q_idx: VF queue index used to determine the queue in the PF's space |
| */ |
| static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx) |
| { |
| struct ice_hw *hw = &vsi->back->hw; |
| u32 pfq = vsi->txq_map[q_idx]; |
| u32 reg; |
| |
| reg = rd32(hw, QINT_TQCTL(pfq)); |
| |
| /* MSI-X index 0 in the VF's space is always for the OICR, which means |
| * this is most likely a poll mode VF driver, so don't enable an |
| * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP |
| */ |
| if (!(reg & QINT_TQCTL_MSIX_INDX_M)) |
| return; |
| |
| wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M); |
| } |
| |
| /** |
| * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL |
| * @vsi: VSI of the VF to configure |
| * @q_idx: VF queue index used to determine the queue in the PF's space |
| */ |
| static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx) |
| { |
| struct ice_hw *hw = &vsi->back->hw; |
| u32 pfq = vsi->rxq_map[q_idx]; |
| u32 reg; |
| |
| reg = rd32(hw, QINT_RQCTL(pfq)); |
| |
| /* MSI-X index 0 in the VF's space is always for the OICR, which means |
| * this is most likely a poll mode VF driver, so don't enable an |
| * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP |
| */ |
| if (!(reg & QINT_RQCTL_MSIX_INDX_M)) |
| return; |
| |
| wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M); |
| } |
| |
| /** |
| * ice_vc_ena_qs_msg |
| * @vf: pointer to the VF info |
| * @msg: pointer to the msg buffer |
| * |
| * called from the VF to enable all or specific queue(s) |
| */ |
| static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg) |
| { |
| enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; |
| struct virtchnl_queue_select *vqs = |
| (struct virtchnl_queue_select *)msg; |
| struct ice_pf *pf = vf->pf; |
| struct ice_vsi *vsi; |
| unsigned long q_map; |
| u16 vf_q_id; |
| |
| if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (!ice_vc_validate_vqs_bitmaps(vqs)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| vsi = pf->vsi[vf->lan_vsi_idx]; |
| if (!vsi) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| /* Enable only Rx rings, Tx rings were enabled by the FW when the |
| * Tx queue group list was configured and the context bits were |
| * programmed using ice_vsi_cfg_txqs |
| */ |
| q_map = vqs->rx_queues; |
| for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { |
| if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| /* Skip queue if enabled */ |
| if (test_bit(vf_q_id, vf->rxq_ena)) |
| continue; |
| |
| if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) { |
| dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n", |
| vf_q_id, vsi->vsi_num); |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| ice_vf_ena_rxq_interrupt(vsi, vf_q_id); |
| set_bit(vf_q_id, vf->rxq_ena); |
| } |
| |
| vsi = pf->vsi[vf->lan_vsi_idx]; |
| q_map = vqs->tx_queues; |
| for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { |
| if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| /* Skip queue if enabled */ |
| if (test_bit(vf_q_id, vf->txq_ena)) |
| continue; |
| |
| ice_vf_ena_txq_interrupt(vsi, vf_q_id); |
| set_bit(vf_q_id, vf->txq_ena); |
| } |
| |
| /* Set flag to indicate that queues are enabled */ |
| if (v_ret == VIRTCHNL_STATUS_SUCCESS) |
| set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states); |
| |
| error_param: |
| /* send the response to the VF */ |
| return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret, |
| NULL, 0); |
| } |
| |
| /** |
| * ice_vc_dis_qs_msg |
| * @vf: pointer to the VF info |
| * @msg: pointer to the msg buffer |
| * |
| * called from the VF to disable all or specific |
| * queue(s) |
| */ |
| static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg) |
| { |
| enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; |
| struct virtchnl_queue_select *vqs = |
| (struct virtchnl_queue_select *)msg; |
| struct ice_pf *pf = vf->pf; |
| struct ice_vsi *vsi; |
| unsigned long q_map; |
| u16 vf_q_id; |
| |
| if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) && |
| !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (!ice_vc_validate_vqs_bitmaps(vqs)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| vsi = pf->vsi[vf->lan_vsi_idx]; |
| if (!vsi) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (vqs->tx_queues) { |
| q_map = vqs->tx_queues; |
| |
| for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { |
| struct ice_ring *ring = vsi->tx_rings[vf_q_id]; |
| struct ice_txq_meta txq_meta = { 0 }; |
| |
| if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| /* Skip queue if not enabled */ |
| if (!test_bit(vf_q_id, vf->txq_ena)) |
| continue; |
| |
| ice_fill_txq_meta(vsi, ring, &txq_meta); |
| |
| if (ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id, |
| ring, &txq_meta)) { |
| dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n", |
| vf_q_id, vsi->vsi_num); |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| /* Clear enabled queues flag */ |
| clear_bit(vf_q_id, vf->txq_ena); |
| } |
| } |
| |
| q_map = vqs->rx_queues; |
| /* speed up Rx queue disable by batching them if possible */ |
| if (q_map && |
| bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) { |
| if (ice_vsi_stop_all_rx_rings(vsi)) { |
| dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n", |
| vsi->vsi_num); |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF); |
| } else if (q_map) { |
| for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { |
| if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| /* Skip queue if not enabled */ |
| if (!test_bit(vf_q_id, vf->rxq_ena)) |
| continue; |
| |
| if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id, |
| true)) { |
| dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n", |
| vf_q_id, vsi->vsi_num); |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| /* Clear enabled queues flag */ |
| clear_bit(vf_q_id, vf->rxq_ena); |
| } |
| } |
| |
| /* Clear enabled queues flag */ |
| if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf)) |
| clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states); |
| |
| error_param: |
| /* send the response to the VF */ |
| return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret, |
| NULL, 0); |
| } |
| |
| /** |
| * ice_cfg_interrupt |
| * @vf: pointer to the VF info |
| * @vsi: the VSI being configured |
| * @vector_id: vector ID |
| * @map: vector map for mapping vectors to queues |
| * @q_vector: structure for interrupt vector |
| * configure the IRQ to queue map |
| */ |
| static int |
| ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi, u16 vector_id, |
| struct virtchnl_vector_map *map, |
| struct ice_q_vector *q_vector) |
| { |
| u16 vsi_q_id, vsi_q_id_idx; |
| unsigned long qmap; |
| |
| q_vector->num_ring_rx = 0; |
| q_vector->num_ring_tx = 0; |
| |
| qmap = map->rxq_map; |
| for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) { |
| vsi_q_id = vsi_q_id_idx; |
| |
| if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id)) |
| return VIRTCHNL_STATUS_ERR_PARAM; |
| |
| q_vector->num_ring_rx++; |
| q_vector->rx.itr_idx = map->rxitr_idx; |
| vsi->rx_rings[vsi_q_id]->q_vector = q_vector; |
| ice_cfg_rxq_interrupt(vsi, vsi_q_id, vector_id, |
| q_vector->rx.itr_idx); |
| } |
| |
| qmap = map->txq_map; |
| for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) { |
| vsi_q_id = vsi_q_id_idx; |
| |
| if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id)) |
| return VIRTCHNL_STATUS_ERR_PARAM; |
| |
| q_vector->num_ring_tx++; |
| q_vector->tx.itr_idx = map->txitr_idx; |
| vsi->tx_rings[vsi_q_id]->q_vector = q_vector; |
| ice_cfg_txq_interrupt(vsi, vsi_q_id, vector_id, |
| q_vector->tx.itr_idx); |
| } |
| |
| return VIRTCHNL_STATUS_SUCCESS; |
| } |
| |
| /** |
| * ice_vc_cfg_irq_map_msg |
| * @vf: pointer to the VF info |
| * @msg: pointer to the msg buffer |
| * |
| * called from the VF to configure the IRQ to queue map |
| */ |
| static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg) |
| { |
| enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; |
| u16 num_q_vectors_mapped, vsi_id, vector_id; |
| struct virtchnl_irq_map_info *irqmap_info; |
| struct virtchnl_vector_map *map; |
| struct ice_pf *pf = vf->pf; |
| struct ice_vsi *vsi; |
| int i; |
| |
| irqmap_info = (struct virtchnl_irq_map_info *)msg; |
| num_q_vectors_mapped = irqmap_info->num_vectors; |
| |
| /* Check to make sure number of VF vectors mapped is not greater than |
| * number of VF vectors originally allocated, and check that |
| * there is actually at least a single VF queue vector mapped |
| */ |
| if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || |
| pf->num_msix_per_vf < num_q_vectors_mapped || |
| !num_q_vectors_mapped) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| vsi = pf->vsi[vf->lan_vsi_idx]; |
| if (!vsi) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| for (i = 0; i < num_q_vectors_mapped; i++) { |
| struct ice_q_vector *q_vector; |
| |
| map = &irqmap_info->vecmap[i]; |
| |
| vector_id = map->vector_id; |
| vsi_id = map->vsi_id; |
| /* vector_id is always 0-based for each VF, and can never be |
| * larger than or equal to the max allowed interrupts per VF |
| */ |
| if (!(vector_id < pf->num_msix_per_vf) || |
| !ice_vc_isvalid_vsi_id(vf, vsi_id) || |
| (!vector_id && (map->rxq_map || map->txq_map))) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| /* No need to map VF miscellaneous or rogue vector */ |
| if (!vector_id) |
| continue; |
| |
| /* Subtract non queue vector from vector_id passed by VF |
| * to get actual number of VSI queue vector array index |
| */ |
| q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF]; |
| if (!q_vector) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| /* lookout for the invalid queue index */ |
| v_ret = (enum virtchnl_status_code) |
| ice_cfg_interrupt(vf, vsi, vector_id, map, q_vector); |
| if (v_ret) |
| goto error_param; |
| } |
| |
| error_param: |
| /* send the response to the VF */ |
| return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret, |
| NULL, 0); |
| } |
| |
| /** |
| * ice_vc_cfg_qs_msg |
| * @vf: pointer to the VF info |
| * @msg: pointer to the msg buffer |
| * |
| * called from the VF to configure the Rx/Tx queues |
| */ |
| static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg) |
| { |
| enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; |
| struct virtchnl_vsi_queue_config_info *qci = |
| (struct virtchnl_vsi_queue_config_info *)msg; |
| struct virtchnl_queue_pair_info *qpi; |
| u16 num_rxq = 0, num_txq = 0; |
| struct ice_pf *pf = vf->pf; |
| struct ice_vsi *vsi; |
| int i; |
| |
| if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| vsi = pf->vsi[vf->lan_vsi_idx]; |
| if (!vsi) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF || |
| qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) { |
| dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n", |
| vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)); |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| for (i = 0; i < qci->num_queue_pairs; i++) { |
| qpi = &qci->qpair[i]; |
| if (qpi->txq.vsi_id != qci->vsi_id || |
| qpi->rxq.vsi_id != qci->vsi_id || |
| qpi->rxq.queue_id != qpi->txq.queue_id || |
| qpi->txq.headwb_enabled || |
| !ice_vc_isvalid_ring_len(qpi->txq.ring_len) || |
| !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) || |
| !ice_vc_isvalid_q_id(vf, qci->vsi_id, qpi->txq.queue_id)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| /* copy Tx queue info from VF into VSI */ |
| if (qpi->txq.ring_len > 0) { |
| num_txq++; |
| vsi->tx_rings[i]->dma = qpi->txq.dma_ring_addr; |
| vsi->tx_rings[i]->count = qpi->txq.ring_len; |
| } |
| |
| /* copy Rx queue info from VF into VSI */ |
| if (qpi->rxq.ring_len > 0) { |
| num_rxq++; |
| vsi->rx_rings[i]->dma = qpi->rxq.dma_ring_addr; |
| vsi->rx_rings[i]->count = qpi->rxq.ring_len; |
| |
| if (qpi->rxq.databuffer_size != 0 && |
| (qpi->rxq.databuffer_size > ((16 * 1024) - 128) || |
| qpi->rxq.databuffer_size < 1024)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| vsi->rx_buf_len = qpi->rxq.databuffer_size; |
| vsi->rx_rings[i]->rx_buf_len = vsi->rx_buf_len; |
| if (qpi->rxq.max_pkt_size >= (16 * 1024) || |
| qpi->rxq.max_pkt_size < 64) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| } |
| |
| vsi->max_frame = qpi->rxq.max_pkt_size; |
| } |
| |
| /* VF can request to configure less than allocated queues or default |
| * allocated queues. So update the VSI with new number |
| */ |
| vsi->num_txq = num_txq; |
| vsi->num_rxq = num_rxq; |
| /* All queues of VF VSI are in TC 0 */ |
| vsi->tc_cfg.tc_info[0].qcount_tx = num_txq; |
| vsi->tc_cfg.tc_info[0].qcount_rx = num_rxq; |
| |
| if (ice_vsi_cfg_lan_txqs(vsi) || ice_vsi_cfg_rxqs(vsi)) |
| v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; |
| |
| error_param: |
| /* send the response to the VF */ |
| return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, v_ret, |
| NULL, 0); |
| } |
| |
| /** |
| * ice_is_vf_trusted |
| * @vf: pointer to the VF info |
| */ |
| static bool ice_is_vf_trusted(struct ice_vf *vf) |
| { |
| return test_bit(ICE_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps); |
| } |
| |
| /** |
| * ice_can_vf_change_mac |
| * @vf: pointer to the VF info |
| * |
| * Return true if the VF is allowed to change its MAC filters, false otherwise |
| */ |
| static bool ice_can_vf_change_mac(struct ice_vf *vf) |
| { |
| /* If the VF MAC address has been set administratively (via the |
| * ndo_set_vf_mac command), then deny permission to the VF to |
| * add/delete unicast MAC addresses, unless the VF is trusted |
| */ |
| if (vf->pf_set_mac && !ice_is_vf_trusted(vf)) |
| return false; |
| |
| return true; |
| } |
| |
| /** |
| * ice_vc_add_mac_addr - attempt to add the MAC address passed in |
| * @vf: pointer to the VF info |
| * @vsi: pointer to the VF's VSI |
| * @mac_addr: MAC address to add |
| */ |
| static int |
| ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, u8 *mac_addr) |
| { |
| struct device *dev = ice_pf_to_dev(vf->pf); |
| enum ice_status status; |
| |
| /* default unicast MAC already added */ |
| if (ether_addr_equal(mac_addr, vf->dflt_lan_addr.addr)) |
| return 0; |
| |
| if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) { |
| dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n"); |
| return -EPERM; |
| } |
| |
| status = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI); |
| if (status == ICE_ERR_ALREADY_EXISTS) { |
| dev_err(dev, "MAC %pM already exists for VF %d\n", mac_addr, |
| vf->vf_id); |
| return -EEXIST; |
| } else if (status) { |
| dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %s\n", |
| mac_addr, vf->vf_id, ice_stat_str(status)); |
| return -EIO; |
| } |
| |
| /* Set the default LAN address to the latest unicast MAC address added |
| * by the VF. The default LAN address is reported by the PF via |
| * ndo_get_vf_config. |
| */ |
| if (is_unicast_ether_addr(mac_addr)) |
| ether_addr_copy(vf->dflt_lan_addr.addr, mac_addr); |
| |
| vf->num_mac++; |
| |
| return 0; |
| } |
| |
| /** |
| * ice_vc_del_mac_addr - attempt to delete the MAC address passed in |
| * @vf: pointer to the VF info |
| * @vsi: pointer to the VF's VSI |
| * @mac_addr: MAC address to delete |
| */ |
| static int |
| ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, u8 *mac_addr) |
| { |
| struct device *dev = ice_pf_to_dev(vf->pf); |
| enum ice_status status; |
| |
| if (!ice_can_vf_change_mac(vf) && |
| ether_addr_equal(mac_addr, vf->dflt_lan_addr.addr)) |
| return 0; |
| |
| status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI); |
| if (status == ICE_ERR_DOES_NOT_EXIST) { |
| dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr, |
| vf->vf_id); |
| return -ENOENT; |
| } else if (status) { |
| dev_err(dev, "Failed to delete MAC %pM for VF %d, error %s\n", |
| mac_addr, vf->vf_id, ice_stat_str(status)); |
| return -EIO; |
| } |
| |
| if (ether_addr_equal(mac_addr, vf->dflt_lan_addr.addr)) |
| eth_zero_addr(vf->dflt_lan_addr.addr); |
| |
| vf->num_mac--; |
| |
| return 0; |
| } |
| |
| /** |
| * ice_vc_handle_mac_addr_msg |
| * @vf: pointer to the VF info |
| * @msg: pointer to the msg buffer |
| * @set: true if MAC filters are being set, false otherwise |
| * |
| * add guest MAC address filter |
| */ |
| static int |
| ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set) |
| { |
| int (*ice_vc_cfg_mac) |
| (struct ice_vf *vf, struct ice_vsi *vsi, u8 *mac_addr); |
| enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; |
| struct virtchnl_ether_addr_list *al = |
| (struct virtchnl_ether_addr_list *)msg; |
| struct ice_pf *pf = vf->pf; |
| enum virtchnl_ops vc_op; |
| struct ice_vsi *vsi; |
| int i; |
| |
| if (set) { |
| vc_op = VIRTCHNL_OP_ADD_ETH_ADDR; |
| ice_vc_cfg_mac = ice_vc_add_mac_addr; |
| } else { |
| vc_op = VIRTCHNL_OP_DEL_ETH_ADDR; |
| ice_vc_cfg_mac = ice_vc_del_mac_addr; |
| } |
| |
| if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || |
| !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto handle_mac_exit; |
| } |
| |
| /* If this VF is not privileged, then we can't add more than a |
| * limited number of addresses. Check to make sure that the |
| * additions do not push us over the limit. |
| */ |
| if (set && !ice_is_vf_trusted(vf) && |
| (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) { |
| dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n", |
| vf->vf_id); |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto handle_mac_exit; |
| } |
| |
| vsi = pf->vsi[vf->lan_vsi_idx]; |
| if (!vsi) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto handle_mac_exit; |
| } |
| |
| for (i = 0; i < al->num_elements; i++) { |
| u8 *mac_addr = al->list[i].addr; |
| int result; |
| |
| if (is_broadcast_ether_addr(mac_addr) || |
| is_zero_ether_addr(mac_addr)) |
| continue; |
| |
| result = ice_vc_cfg_mac(vf, vsi, mac_addr); |
| if (result == -EEXIST || result == -ENOENT) { |
| continue; |
| } else if (result) { |
| v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; |
| goto handle_mac_exit; |
| } |
| } |
| |
| handle_mac_exit: |
| /* send the response to the VF */ |
| return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0); |
| } |
| |
| /** |
| * ice_vc_add_mac_addr_msg |
| * @vf: pointer to the VF info |
| * @msg: pointer to the msg buffer |
| * |
| * add guest MAC address filter |
| */ |
| static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg) |
| { |
| return ice_vc_handle_mac_addr_msg(vf, msg, true); |
| } |
| |
| /** |
| * ice_vc_del_mac_addr_msg |
| * @vf: pointer to the VF info |
| * @msg: pointer to the msg buffer |
| * |
| * remove guest MAC address filter |
| */ |
| static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg) |
| { |
| return ice_vc_handle_mac_addr_msg(vf, msg, false); |
| } |
| |
| /** |
| * ice_vc_request_qs_msg |
| * @vf: pointer to the VF info |
| * @msg: pointer to the msg buffer |
| * |
| * VFs get a default number of queues but can use this message to request a |
| * different number. If the request is successful, PF will reset the VF and |
| * return 0. If unsuccessful, PF will send message informing VF of number of |
| * available queue pairs via virtchnl message response to VF. |
| */ |
| static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg) |
| { |
| enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; |
| struct virtchnl_vf_res_request *vfres = |
| (struct virtchnl_vf_res_request *)msg; |
| u16 req_queues = vfres->num_queue_pairs; |
| struct ice_pf *pf = vf->pf; |
| u16 max_allowed_vf_queues; |
| u16 tx_rx_queue_left; |
| struct device *dev; |
| u16 cur_queues; |
| |
| dev = ice_pf_to_dev(pf); |
| if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| cur_queues = vf->num_vf_qs; |
| tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf), |
| ice_get_avail_rxq_count(pf)); |
| max_allowed_vf_queues = tx_rx_queue_left + cur_queues; |
| if (!req_queues) { |
| dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n", |
| vf->vf_id); |
| } else if (req_queues > ICE_MAX_RSS_QS_PER_VF) { |
| dev_err(dev, "VF %d tried to request more than %d queues.\n", |
| vf->vf_id, ICE_MAX_RSS_QS_PER_VF); |
| vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF; |
| } else if (req_queues > cur_queues && |
| req_queues - cur_queues > tx_rx_queue_left) { |
| dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n", |
| vf->vf_id, req_queues - cur_queues, tx_rx_queue_left); |
| vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues, |
| ICE_MAX_RSS_QS_PER_VF); |
| } else { |
| /* request is successful, then reset VF */ |
| vf->num_req_qs = req_queues; |
| ice_vc_reset_vf(vf); |
| dev_info(dev, "VF %d granted request of %u queues.\n", |
| vf->vf_id, req_queues); |
| return 0; |
| } |
| |
| error_param: |
| /* send the response to the VF */ |
| return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES, |
| v_ret, (u8 *)vfres, sizeof(*vfres)); |
| } |
| |
| /** |
| * ice_set_vf_port_vlan |
| * @netdev: network interface device structure |
| * @vf_id: VF identifier |
| * @vlan_id: VLAN ID being set |
| * @qos: priority setting |
| * @vlan_proto: VLAN protocol |
| * |
| * program VF Port VLAN ID and/or QoS |
| */ |
| int |
| ice_set_vf_port_vlan(struct net_device *netdev, int vf_id, u16 vlan_id, u8 qos, |
| __be16 vlan_proto) |
| { |
| struct ice_pf *pf = ice_netdev_to_pf(netdev); |
| struct device *dev; |
| struct ice_vf *vf; |
| u16 vlanprio; |
| int ret; |
| |
| dev = ice_pf_to_dev(pf); |
| if (ice_validate_vf_id(pf, vf_id)) |
| return -EINVAL; |
| |
| if (vlan_id >= VLAN_N_VID || qos > 7) { |
| dev_err(dev, "Invalid Port VLAN parameters for VF %d, ID %d, QoS %d\n", |
| vf_id, vlan_id, qos); |
| return -EINVAL; |
| } |
| |
| if (vlan_proto != htons(ETH_P_8021Q)) { |
| dev_err(dev, "VF VLAN protocol is not supported\n"); |
| return -EPROTONOSUPPORT; |
| } |
| |
| vf = &pf->vf[vf_id]; |
| ret = ice_check_vf_ready_for_cfg(vf); |
| if (ret) |
| return ret; |
| |
| vlanprio = vlan_id | (qos << VLAN_PRIO_SHIFT); |
| |
| if (vf->port_vlan_info == vlanprio) { |
| /* duplicate request, so just return success */ |
| dev_dbg(dev, "Duplicate pvid %d request\n", vlanprio); |
| return 0; |
| } |
| |
| vf->port_vlan_info = vlanprio; |
| |
| if (vf->port_vlan_info) |
| dev_info(dev, "Setting VLAN %d, QoS 0x%x on VF %d\n", |
| vlan_id, qos, vf_id); |
| else |
| dev_info(dev, "Clearing port VLAN on VF %d\n", vf_id); |
| |
| ice_vc_reset_vf(vf); |
| |
| return 0; |
| } |
| |
| /** |
| * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads |
| * @caps: VF driver negotiated capabilities |
| * |
| * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false |
| */ |
| static bool ice_vf_vlan_offload_ena(u32 caps) |
| { |
| return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN); |
| } |
| |
| /** |
| * ice_vc_process_vlan_msg |
| * @vf: pointer to the VF info |
| * @msg: pointer to the msg buffer |
| * @add_v: Add VLAN if true, otherwise delete VLAN |
| * |
| * Process virtchnl op to add or remove programmed guest VLAN ID |
| */ |
| static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v) |
| { |
| enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; |
| struct virtchnl_vlan_filter_list *vfl = |
| (struct virtchnl_vlan_filter_list *)msg; |
| struct ice_pf *pf = vf->pf; |
| bool vlan_promisc = false; |
| struct ice_vsi *vsi; |
| struct device *dev; |
| struct ice_hw *hw; |
| int status = 0; |
| u8 promisc_m; |
| int i; |
| |
| dev = ice_pf_to_dev(pf); |
| if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| for (i = 0; i < vfl->num_elements; i++) { |
| if (vfl->vlan_id[i] >= VLAN_N_VID) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| dev_err(dev, "invalid VF VLAN id %d\n", |
| vfl->vlan_id[i]); |
| goto error_param; |
| } |
| } |
| |
| hw = &pf->hw; |
| vsi = pf->vsi[vf->lan_vsi_idx]; |
| if (!vsi) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (add_v && !ice_is_vf_trusted(vf) && |
| vsi->num_vlan >= ICE_MAX_VLAN_PER_VF) { |
| dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n", |
| vf->vf_id); |
| /* There is no need to let VF know about being not trusted, |
| * so we can just return success message here |
| */ |
| goto error_param; |
| } |
| |
| if (vsi->info.pvid) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) || |
| test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) && |
| test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) |
| vlan_promisc = true; |
| |
| if (add_v) { |
| for (i = 0; i < vfl->num_elements; i++) { |
| u16 vid = vfl->vlan_id[i]; |
| |
| if (!ice_is_vf_trusted(vf) && |
| vsi->num_vlan >= ICE_MAX_VLAN_PER_VF) { |
| dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n", |
| vf->vf_id); |
| /* There is no need to let VF know about being |
| * not trusted, so we can just return success |
| * message here as well. |
| */ |
| goto error_param; |
| } |
| |
| /* we add VLAN 0 by default for each VF so we can enable |
| * Tx VLAN anti-spoof without triggering MDD events so |
| * we don't need to add it again here |
| */ |
| if (!vid) |
| continue; |
| |
| status = ice_vsi_add_vlan(vsi, vid, ICE_FWD_TO_VSI); |
| if (status) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| /* Enable VLAN pruning when non-zero VLAN is added */ |
| if (!vlan_promisc && vid && |
| !ice_vsi_is_vlan_pruning_ena(vsi)) { |
| status = ice_cfg_vlan_pruning(vsi, true, false); |
| if (status) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n", |
| vid, status); |
| goto error_param; |
| } |
| } else if (vlan_promisc) { |
| /* Enable Ucast/Mcast VLAN promiscuous mode */ |
| promisc_m = ICE_PROMISC_VLAN_TX | |
| ICE_PROMISC_VLAN_RX; |
| |
| status = ice_set_vsi_promisc(hw, vsi->idx, |
| promisc_m, vid); |
| if (status) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n", |
| vid, status); |
| } |
| } |
| } |
| } else { |
| /* In case of non_trusted VF, number of VLAN elements passed |
| * to PF for removal might be greater than number of VLANs |
| * filter programmed for that VF - So, use actual number of |
| * VLANS added earlier with add VLAN opcode. In order to avoid |
| * removing VLAN that doesn't exist, which result to sending |
| * erroneous failed message back to the VF |
| */ |
| int num_vf_vlan; |
| |
| num_vf_vlan = vsi->num_vlan; |
| for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) { |
| u16 vid = vfl->vlan_id[i]; |
| |
| /* we add VLAN 0 by default for each VF so we can enable |
| * Tx VLAN anti-spoof without triggering MDD events so |
| * we don't want a VIRTCHNL request to remove it |
| */ |
| if (!vid) |
| continue; |
| |
| /* Make sure ice_vsi_kill_vlan is successful before |
| * updating VLAN information |
| */ |
| status = ice_vsi_kill_vlan(vsi, vid); |
| if (status) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| /* Disable VLAN pruning when only VLAN 0 is left */ |
| if (vsi->num_vlan == 1 && |
| ice_vsi_is_vlan_pruning_ena(vsi)) |
| ice_cfg_vlan_pruning(vsi, false, false); |
| |
| /* Disable Unicast/Multicast VLAN promiscuous mode */ |
| if (vlan_promisc) { |
| promisc_m = ICE_PROMISC_VLAN_TX | |
| ICE_PROMISC_VLAN_RX; |
| |
| ice_clear_vsi_promisc(hw, vsi->idx, |
| promisc_m, vid); |
| } |
| } |
| } |
| |
| error_param: |
| /* send the response to the VF */ |
| if (add_v) |
| return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret, |
| NULL, 0); |
| else |
| return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret, |
| NULL, 0); |
| } |
| |
| /** |
| * ice_vc_add_vlan_msg |
| * @vf: pointer to the VF info |
| * @msg: pointer to the msg buffer |
| * |
| * Add and program guest VLAN ID |
| */ |
| static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg) |
| { |
| return ice_vc_process_vlan_msg(vf, msg, true); |
| } |
| |
| /** |
| * ice_vc_remove_vlan_msg |
| * @vf: pointer to the VF info |
| * @msg: pointer to the msg buffer |
| * |
| * remove programmed guest VLAN ID |
| */ |
| static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg) |
| { |
| return ice_vc_process_vlan_msg(vf, msg, false); |
| } |
| |
| /** |
| * ice_vc_ena_vlan_stripping |
| * @vf: pointer to the VF info |
| * |
| * Enable VLAN header stripping for a given VF |
| */ |
| static int ice_vc_ena_vlan_stripping(struct ice_vf *vf) |
| { |
| enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; |
| struct ice_pf *pf = vf->pf; |
| struct ice_vsi *vsi; |
| |
| if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| vsi = pf->vsi[vf->lan_vsi_idx]; |
| if (ice_vsi_manage_vlan_stripping(vsi, true)) |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| |
| error_param: |
| return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING, |
| v_ret, NULL, 0); |
| } |
| |
| /** |
| * ice_vc_dis_vlan_stripping |
| * @vf: pointer to the VF info |
| * |
| * Disable VLAN header stripping for a given VF |
| */ |
| static int ice_vc_dis_vlan_stripping(struct ice_vf *vf) |
| { |
| enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; |
| struct ice_pf *pf = vf->pf; |
| struct ice_vsi *vsi; |
| |
| if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| vsi = pf->vsi[vf->lan_vsi_idx]; |
| if (!vsi) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (ice_vsi_manage_vlan_stripping(vsi, false)) |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| |
| error_param: |
| return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING, |
| v_ret, NULL, 0); |
| } |
| |
| /** |
| * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization |
| * @vf: VF to enable/disable VLAN stripping for on initialization |
| * |
| * If the VIRTCHNL_VF_OFFLOAD_VLAN flag is set enable VLAN stripping, else if |
| * the flag is cleared then we want to disable stripping. For example, the flag |
| * will be cleared when port VLANs are configured by the administrator before |
| * passing the VF to the guest or if the AVF driver doesn't support VLAN |
| * offloads. |
| */ |
| static int ice_vf_init_vlan_stripping(struct ice_vf *vf) |
| { |
| struct ice_vsi *vsi = vf->pf->vsi[vf->lan_vsi_idx]; |
| |
| if (!vsi) |
| return -EINVAL; |
| |
| /* don't modify stripping if port VLAN is configured */ |
| if (vsi->info.pvid) |
| return 0; |
| |
| if (ice_vf_vlan_offload_ena(vf->driver_caps)) |
| return ice_vsi_manage_vlan_stripping(vsi, true); |
| else |
| return ice_vsi_manage_vlan_stripping(vsi, false); |
| } |
| |
| /** |
| * ice_vc_process_vf_msg - Process request from VF |
| * @pf: pointer to the PF structure |
| * @event: pointer to the AQ event |
| * |
| * called from the common asq/arq handler to |
| * process request from VF |
| */ |
| void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event) |
| { |
| u32 v_opcode = le32_to_cpu(event->desc.cookie_high); |
| s16 vf_id = le16_to_cpu(event->desc.retval); |
| u16 msglen = event->msg_len; |
| u8 *msg = event->msg_buf; |
| struct ice_vf *vf = NULL; |
| struct device *dev; |
| int err = 0; |
| |
| dev = ice_pf_to_dev(pf); |
| if (ice_validate_vf_id(pf, vf_id)) { |
| err = -EINVAL; |
| goto error_handler; |
| } |
| |
| vf = &pf->vf[vf_id]; |
| |
| /* Check if VF is disabled. */ |
| if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) { |
| err = -EPERM; |
| goto error_handler; |
| } |
| |
| /* Perform basic checks on the msg */ |
| err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen); |
| if (err) { |
| if (err == VIRTCHNL_STATUS_ERR_PARAM) |
| err = -EPERM; |
| else |
| err = -EINVAL; |
| } |
| |
| error_handler: |
| if (err) { |
| ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM, |
| NULL, 0); |
| dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n", |
| vf_id, v_opcode, msglen, err); |
| return; |
| } |
| |
| switch (v_opcode) { |
| case VIRTCHNL_OP_VERSION: |
| err = ice_vc_get_ver_msg(vf, msg); |
| break; |
| case VIRTCHNL_OP_GET_VF_RESOURCES: |
| err = ice_vc_get_vf_res_msg(vf, msg); |
| if (ice_vf_init_vlan_stripping(vf)) |
| dev_err(dev, "Failed to initialize VLAN stripping for VF %d\n", |
| vf->vf_id); |
| ice_vc_notify_vf_link_state(vf); |
| break; |
| case VIRTCHNL_OP_RESET_VF: |
| ice_vc_reset_vf_msg(vf); |
| break; |
| case VIRTCHNL_OP_ADD_ETH_ADDR: |
| err = ice_vc_add_mac_addr_msg(vf, msg); |
| break; |
| case VIRTCHNL_OP_DEL_ETH_ADDR: |
| err = ice_vc_del_mac_addr_msg(vf, msg); |
| break; |
| case VIRTCHNL_OP_CONFIG_VSI_QUEUES: |
| err = ice_vc_cfg_qs_msg(vf, msg); |
| break; |
| case VIRTCHNL_OP_ENABLE_QUEUES: |
| err = ice_vc_ena_qs_msg(vf, msg); |
| ice_vc_notify_vf_link_state(vf); |
| break; |
| case VIRTCHNL_OP_DISABLE_QUEUES: |
| err = ice_vc_dis_qs_msg(vf, msg); |
| break; |
| case VIRTCHNL_OP_REQUEST_QUEUES: |
| err = ice_vc_request_qs_msg(vf, msg); |
| break; |
| case VIRTCHNL_OP_CONFIG_IRQ_MAP: |
| err = ice_vc_cfg_irq_map_msg(vf, msg); |
| break; |
| case VIRTCHNL_OP_CONFIG_RSS_KEY: |
| err = ice_vc_config_rss_key(vf, msg); |
| break; |
| case VIRTCHNL_OP_CONFIG_RSS_LUT: |
| err = ice_vc_config_rss_lut(vf, msg); |
| break; |
| case VIRTCHNL_OP_GET_STATS: |
| err = ice_vc_get_stats_msg(vf, msg); |
| break; |
| case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE: |
| err = ice_vc_cfg_promiscuous_mode_msg(vf, msg); |
| break; |
| case VIRTCHNL_OP_ADD_VLAN: |
| err = ice_vc_add_vlan_msg(vf, msg); |
| break; |
| case VIRTCHNL_OP_DEL_VLAN: |
| err = ice_vc_remove_vlan_msg(vf, msg); |
| break; |
| case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING: |
| err = ice_vc_ena_vlan_stripping(vf); |
| break; |
| case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING: |
| err = ice_vc_dis_vlan_stripping(vf); |
| break; |
| case VIRTCHNL_OP_UNKNOWN: |
| default: |
| dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode, |
| vf_id); |
| err = ice_vc_send_msg_to_vf(vf, v_opcode, |
| VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, |
| NULL, 0); |
| break; |
| } |
| if (err) { |
| /* Helper function cares less about error return values here |
| * as it is busy with pending work. |
| */ |
| dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n", |
| vf_id, v_opcode, err); |
| } |
| } |
| |
| /** |
| * ice_get_vf_cfg |
| * @netdev: network interface device structure |
| * @vf_id: VF identifier |
| * @ivi: VF configuration structure |
| * |
| * return VF configuration |
| */ |
| int |
| ice_get_vf_cfg(struct net_device *netdev, int vf_id, struct ifla_vf_info *ivi) |
| { |
| struct ice_pf *pf = ice_netdev_to_pf(netdev); |
| struct ice_vf *vf; |
| |
| if (ice_validate_vf_id(pf, vf_id)) |
| return -EINVAL; |
| |
| vf = &pf->vf[vf_id]; |
| |
| if (ice_check_vf_init(pf, vf)) |
| return -EBUSY; |
| |
| ivi->vf = vf_id; |
| ether_addr_copy(ivi->mac, vf->dflt_lan_addr.addr); |
| |
| /* VF configuration for VLAN and applicable QoS */ |
| ivi->vlan = vf->port_vlan_info & VLAN_VID_MASK; |
| ivi->qos = (vf->port_vlan_info & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; |
| |
| ivi->trusted = vf->trusted; |
| ivi->spoofchk = vf->spoofchk; |
| if (!vf->link_forced) |
| ivi->linkstate = IFLA_VF_LINK_STATE_AUTO; |
| else if (vf->link_up) |
| ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE; |
| else |
| ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE; |
| ivi->max_tx_rate = vf->tx_rate; |
| ivi->min_tx_rate = 0; |
| return 0; |
| } |
| |
| /** |
| * ice_unicast_mac_exists - check if the unicast MAC exists on the PF's switch |
| * @pf: PF used to reference the switch's rules |
| * @umac: unicast MAC to compare against existing switch rules |
| * |
| * Return true on the first/any match, else return false |
| */ |
| static bool ice_unicast_mac_exists(struct ice_pf *pf, u8 *umac) |
| { |
| struct ice_sw_recipe *mac_recipe_list = |
| &pf->hw.switch_info->recp_list[ICE_SW_LKUP_MAC]; |
| struct ice_fltr_mgmt_list_entry *list_itr; |
| struct list_head *rule_head; |
| struct mutex *rule_lock; /* protect MAC filter list access */ |
| |
| rule_head = &mac_recipe_list->filt_rules; |
| rule_lock = &mac_recipe_list->filt_rule_lock; |
| |
| mutex_lock(rule_lock); |
| list_for_each_entry(list_itr, rule_head, list_entry) { |
| u8 *existing_mac = &list_itr->fltr_info.l_data.mac.mac_addr[0]; |
| |
| if (ether_addr_equal(existing_mac, umac)) { |
| mutex_unlock(rule_lock); |
| return true; |
| } |
| } |
| |
| mutex_unlock(rule_lock); |
| |
| return false; |
| } |
| |
| /** |
| * ice_set_vf_mac |
| * @netdev: network interface device structure |
| * @vf_id: VF identifier |
| * @mac: MAC address |
| * |
| * program VF MAC address |
| */ |
| int ice_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac) |
| { |
| struct ice_pf *pf = ice_netdev_to_pf(netdev); |
| struct ice_vf *vf; |
| int ret; |
| |
| if (ice_validate_vf_id(pf, vf_id)) |
| return -EINVAL; |
| |
| if (is_multicast_ether_addr(mac)) { |
| netdev_err(netdev, "%pM not a valid unicast address\n", mac); |
| return -EINVAL; |
| } |
| |
| vf = &pf->vf[vf_id]; |
| /* nothing left to do, unicast MAC already set */ |
| if (ether_addr_equal(vf->dflt_lan_addr.addr, mac)) |
| return 0; |
| |
| ret = ice_check_vf_ready_for_cfg(vf); |
| if (ret) |
| return ret; |
| |
| if (ice_unicast_mac_exists(pf, mac)) { |
| netdev_err(netdev, "Unicast MAC %pM already exists on this PF. Preventing setting VF %u unicast MAC address to %pM\n", |
| mac, vf_id, mac); |
| return -EINVAL; |
| } |
| |
| /* VF is notified of its new MAC via the PF's response to the |
| * VIRTCHNL_OP_GET_VF_RESOURCES message after the VF has been reset |
| */ |
| ether_addr_copy(vf->dflt_lan_addr.addr, mac); |
| if (is_zero_ether_addr(mac)) { |
| /* VF will send VIRTCHNL_OP_ADD_ETH_ADDR message with its MAC */ |
| vf->pf_set_mac = false; |
| netdev_info(netdev, "Removing MAC on VF %d. VF driver will be reinitialized\n", |
| vf->vf_id); |
| } else { |
| /* PF will add MAC rule for the VF */ |
| vf->pf_set_mac = true; |
| netdev_info(netdev, "Setting MAC %pM on VF %d. VF driver will be reinitialized\n", |
| mac, vf_id); |
| } |
| |
| ice_vc_reset_vf(vf); |
| return 0; |
| } |
| |
| /** |
| * ice_set_vf_trust |
| * @netdev: network interface device structure |
| * @vf_id: VF identifier |
| * @trusted: Boolean value to enable/disable trusted VF |
| * |
| * Enable or disable a given VF as trusted |
| */ |
| int ice_set_vf_trust(struct net_device *netdev, int vf_id, bool trusted) |
| { |
| struct ice_pf *pf = ice_netdev_to_pf(netdev); |
| struct ice_vf *vf; |
| int ret; |
| |
| if (ice_validate_vf_id(pf, vf_id)) |
| return -EINVAL; |
| |
| vf = &pf->vf[vf_id]; |
| ret = ice_check_vf_ready_for_cfg(vf); |
| if (ret) |
| return ret; |
| |
| /* Check if already trusted */ |
| if (trusted == vf->trusted) |
| return 0; |
| |
| vf->trusted = trusted; |
| ice_vc_reset_vf(vf); |
| dev_info(ice_pf_to_dev(pf), "VF %u is now %strusted\n", |
| vf_id, trusted ? "" : "un"); |
| |
| return 0; |
| } |
| |
| /** |
| * ice_set_vf_link_state |
| * @netdev: network interface device structure |
| * @vf_id: VF identifier |
| * @link_state: required link state |
| * |
| * Set VF's link state, irrespective of physical link state status |
| */ |
| int ice_set_vf_link_state(struct net_device *netdev, int vf_id, int link_state) |
| { |
| struct ice_pf *pf = ice_netdev_to_pf(netdev); |
| struct ice_vf *vf; |
| int ret; |
| |
| if (ice_validate_vf_id(pf, vf_id)) |
| return -EINVAL; |
| |
| vf = &pf->vf[vf_id]; |
| ret = ice_check_vf_ready_for_cfg(vf); |
| if (ret) |
| return ret; |
| |
| switch (link_state) { |
| case IFLA_VF_LINK_STATE_AUTO: |
| vf->link_forced = false; |
| break; |
| case IFLA_VF_LINK_STATE_ENABLE: |
| vf->link_forced = true; |
| vf->link_up = true; |
| break; |
| case IFLA_VF_LINK_STATE_DISABLE: |
| vf->link_forced = true; |
| vf->link_up = false; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| ice_vc_notify_vf_link_state(vf); |
| |
| return 0; |
| } |
| |
| /** |
| * ice_get_vf_stats - populate some stats for the VF |
| * @netdev: the netdev of the PF |
| * @vf_id: the host OS identifier (0-255) |
| * @vf_stats: pointer to the OS memory to be initialized |
| */ |
| int ice_get_vf_stats(struct net_device *netdev, int vf_id, |
| struct ifla_vf_stats *vf_stats) |
| { |
| struct ice_pf *pf = ice_netdev_to_pf(netdev); |
| struct ice_eth_stats *stats; |
| struct ice_vsi *vsi; |
| struct ice_vf *vf; |
| int ret; |
| |
| if (ice_validate_vf_id(pf, vf_id)) |
| return -EINVAL; |
| |
| vf = &pf->vf[vf_id]; |
| ret = ice_check_vf_ready_for_cfg(vf); |
| if (ret) |
| return ret; |
| |
| vsi = pf->vsi[vf->lan_vsi_idx]; |
| if (!vsi) |
| return -EINVAL; |
| |
| ice_update_eth_stats(vsi); |
| stats = &vsi->eth_stats; |
| |
| memset(vf_stats, 0, sizeof(*vf_stats)); |
| |
| vf_stats->rx_packets = stats->rx_unicast + stats->rx_broadcast + |
| stats->rx_multicast; |
| vf_stats->tx_packets = stats->tx_unicast + stats->tx_broadcast + |
| stats->tx_multicast; |
| vf_stats->rx_bytes = stats->rx_bytes; |
| vf_stats->tx_bytes = stats->tx_bytes; |
| vf_stats->broadcast = stats->rx_broadcast; |
| vf_stats->multicast = stats->rx_multicast; |
| vf_stats->rx_dropped = stats->rx_discards; |
| vf_stats->tx_dropped = stats->tx_discards; |
| |
| return 0; |
| } |
| |
| /** |
| * ice_print_vf_rx_mdd_event - print VF Rx malicious driver detect event |
| * @vf: pointer to the VF structure |
| */ |
| void ice_print_vf_rx_mdd_event(struct ice_vf *vf) |
| { |
| struct ice_pf *pf = vf->pf; |
| struct device *dev; |
| |
| dev = ice_pf_to_dev(pf); |
| |
| dev_info(dev, "%d Rx Malicious Driver Detection events detected on PF %d VF %d MAC %pM. mdd-auto-reset-vfs=%s\n", |
| vf->mdd_rx_events.count, pf->hw.pf_id, vf->vf_id, |
| vf->dflt_lan_addr.addr, |
| test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags) |
| ? "on" : "off"); |
| } |
| |
| /** |
| * ice_print_vfs_mdd_event - print VFs malicious driver detect event |
| * @pf: pointer to the PF structure |
| * |
| * Called from ice_handle_mdd_event to rate limit and print VFs MDD events. |
| */ |
| void ice_print_vfs_mdd_events(struct ice_pf *pf) |
| { |
| struct device *dev = ice_pf_to_dev(pf); |
| struct ice_hw *hw = &pf->hw; |
| int i; |
| |
| /* check that there are pending MDD events to print */ |
| if (!test_and_clear_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state)) |
| return; |
| |
| /* VF MDD event logs are rate limited to one second intervals */ |
| if (time_is_after_jiffies(pf->last_printed_mdd_jiffies + HZ * 1)) |
| return; |
| |
| pf->last_printed_mdd_jiffies = jiffies; |
| |
| ice_for_each_vf(pf, i) { |
| struct ice_vf *vf = &pf->vf[i]; |
| |
| /* only print Rx MDD event message if there are new events */ |
| if (vf->mdd_rx_events.count != vf->mdd_rx_events.last_printed) { |
| vf->mdd_rx_events.last_printed = |
| vf->mdd_rx_events.count; |
| ice_print_vf_rx_mdd_event(vf); |
| } |
| |
| /* only print Tx MDD event message if there are new events */ |
| if (vf->mdd_tx_events.count != vf->mdd_tx_events.last_printed) { |
| vf->mdd_tx_events.last_printed = |
| vf->mdd_tx_events.count; |
| |
| dev_info(dev, "%d Tx Malicious Driver Detection events detected on PF %d VF %d MAC %pM.\n", |
| vf->mdd_tx_events.count, hw->pf_id, i, |
| vf->dflt_lan_addr.addr); |
| } |
| } |
| } |
| |
| /** |
| * ice_restore_all_vfs_msi_state - restore VF MSI state after PF FLR |
| * @pdev: pointer to a pci_dev structure |
| * |
| * Called when recovering from a PF FLR to restore interrupt capability to |
| * the VFs. |
| */ |
| void ice_restore_all_vfs_msi_state(struct pci_dev *pdev) |
| { |
| struct pci_dev *vfdev; |
| u16 vf_id; |
| int pos; |
| |
| if (!pci_num_vf(pdev)) |
| return; |
| |
| pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV); |
| if (pos) { |
| pci_read_config_word(pdev, pos + PCI_SRIOV_VF_DID, |
| &vf_id); |
| vfdev = pci_get_device(pdev->vendor, vf_id, NULL); |
| while (vfdev) { |
| if (vfdev->is_virtfn && vfdev->physfn == pdev) |
| pci_restore_msi_state(vfdev); |
| vfdev = pci_get_device(pdev->vendor, vf_id, |
| vfdev); |
| } |
| } |
| } |