|  | /* | 
|  | *  kernel/cpuset.c | 
|  | * | 
|  | *  Processor and Memory placement constraints for sets of tasks. | 
|  | * | 
|  | *  Copyright (C) 2003 BULL SA. | 
|  | *  Copyright (C) 2004-2007 Silicon Graphics, Inc. | 
|  | *  Copyright (C) 2006 Google, Inc | 
|  | * | 
|  | *  Portions derived from Patrick Mochel's sysfs code. | 
|  | *  sysfs is Copyright (c) 2001-3 Patrick Mochel | 
|  | * | 
|  | *  2003-10-10 Written by Simon Derr. | 
|  | *  2003-10-22 Updates by Stephen Hemminger. | 
|  | *  2004 May-July Rework by Paul Jackson. | 
|  | *  2006 Rework by Paul Menage to use generic cgroups | 
|  | *  2008 Rework of the scheduler domains and CPU hotplug handling | 
|  | *       by Max Krasnyansky | 
|  | * | 
|  | *  This file is subject to the terms and conditions of the GNU General Public | 
|  | *  License.  See the file COPYING in the main directory of the Linux | 
|  | *  distribution for more details. | 
|  | */ | 
|  |  | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/cpumask.h> | 
|  | #include <linux/cpuset.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/kmod.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/mempolicy.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/memory.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/mount.h> | 
|  | #include <linux/namei.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/proc_fs.h> | 
|  | #include <linux/rcupdate.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/stat.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/time.h> | 
|  | #include <linux/time64.h> | 
|  | #include <linux/backing-dev.h> | 
|  | #include <linux/sort.h> | 
|  |  | 
|  | #include <asm/uaccess.h> | 
|  | #include <linux/atomic.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/cgroup.h> | 
|  | #include <linux/wait.h> | 
|  |  | 
|  | DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key); | 
|  |  | 
|  | /* See "Frequency meter" comments, below. */ | 
|  |  | 
|  | struct fmeter { | 
|  | int cnt;		/* unprocessed events count */ | 
|  | int val;		/* most recent output value */ | 
|  | time64_t time;		/* clock (secs) when val computed */ | 
|  | spinlock_t lock;	/* guards read or write of above */ | 
|  | }; | 
|  |  | 
|  | struct cpuset { | 
|  | struct cgroup_subsys_state css; | 
|  |  | 
|  | unsigned long flags;		/* "unsigned long" so bitops work */ | 
|  |  | 
|  | /* | 
|  | * On default hierarchy: | 
|  | * | 
|  | * The user-configured masks can only be changed by writing to | 
|  | * cpuset.cpus and cpuset.mems, and won't be limited by the | 
|  | * parent masks. | 
|  | * | 
|  | * The effective masks is the real masks that apply to the tasks | 
|  | * in the cpuset. They may be changed if the configured masks are | 
|  | * changed or hotplug happens. | 
|  | * | 
|  | * effective_mask == configured_mask & parent's effective_mask, | 
|  | * and if it ends up empty, it will inherit the parent's mask. | 
|  | * | 
|  | * | 
|  | * On legacy hierachy: | 
|  | * | 
|  | * The user-configured masks are always the same with effective masks. | 
|  | */ | 
|  |  | 
|  | /* user-configured CPUs and Memory Nodes allow to tasks */ | 
|  | cpumask_var_t cpus_allowed; | 
|  | nodemask_t mems_allowed; | 
|  |  | 
|  | /* effective CPUs and Memory Nodes allow to tasks */ | 
|  | cpumask_var_t effective_cpus; | 
|  | nodemask_t effective_mems; | 
|  |  | 
|  | /* | 
|  | * This is old Memory Nodes tasks took on. | 
|  | * | 
|  | * - top_cpuset.old_mems_allowed is initialized to mems_allowed. | 
|  | * - A new cpuset's old_mems_allowed is initialized when some | 
|  | *   task is moved into it. | 
|  | * - old_mems_allowed is used in cpuset_migrate_mm() when we change | 
|  | *   cpuset.mems_allowed and have tasks' nodemask updated, and | 
|  | *   then old_mems_allowed is updated to mems_allowed. | 
|  | */ | 
|  | nodemask_t old_mems_allowed; | 
|  |  | 
|  | struct fmeter fmeter;		/* memory_pressure filter */ | 
|  |  | 
|  | /* | 
|  | * Tasks are being attached to this cpuset.  Used to prevent | 
|  | * zeroing cpus/mems_allowed between ->can_attach() and ->attach(). | 
|  | */ | 
|  | int attach_in_progress; | 
|  |  | 
|  | /* partition number for rebuild_sched_domains() */ | 
|  | int pn; | 
|  |  | 
|  | /* for custom sched domain */ | 
|  | int relax_domain_level; | 
|  | }; | 
|  |  | 
|  | static inline struct cpuset *css_cs(struct cgroup_subsys_state *css) | 
|  | { | 
|  | return css ? container_of(css, struct cpuset, css) : NULL; | 
|  | } | 
|  |  | 
|  | /* Retrieve the cpuset for a task */ | 
|  | static inline struct cpuset *task_cs(struct task_struct *task) | 
|  | { | 
|  | return css_cs(task_css(task, cpuset_cgrp_id)); | 
|  | } | 
|  |  | 
|  | static inline struct cpuset *parent_cs(struct cpuset *cs) | 
|  | { | 
|  | return css_cs(cs->css.parent); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | static inline bool task_has_mempolicy(struct task_struct *task) | 
|  | { | 
|  | return task->mempolicy; | 
|  | } | 
|  | #else | 
|  | static inline bool task_has_mempolicy(struct task_struct *task) | 
|  | { | 
|  | return false; | 
|  | } | 
|  | #endif | 
|  |  | 
|  |  | 
|  | /* bits in struct cpuset flags field */ | 
|  | typedef enum { | 
|  | CS_ONLINE, | 
|  | CS_CPU_EXCLUSIVE, | 
|  | CS_MEM_EXCLUSIVE, | 
|  | CS_MEM_HARDWALL, | 
|  | CS_MEMORY_MIGRATE, | 
|  | CS_SCHED_LOAD_BALANCE, | 
|  | CS_SPREAD_PAGE, | 
|  | CS_SPREAD_SLAB, | 
|  | } cpuset_flagbits_t; | 
|  |  | 
|  | /* convenient tests for these bits */ | 
|  | static inline bool is_cpuset_online(const struct cpuset *cs) | 
|  | { | 
|  | return test_bit(CS_ONLINE, &cs->flags); | 
|  | } | 
|  |  | 
|  | static inline int is_cpu_exclusive(const struct cpuset *cs) | 
|  | { | 
|  | return test_bit(CS_CPU_EXCLUSIVE, &cs->flags); | 
|  | } | 
|  |  | 
|  | static inline int is_mem_exclusive(const struct cpuset *cs) | 
|  | { | 
|  | return test_bit(CS_MEM_EXCLUSIVE, &cs->flags); | 
|  | } | 
|  |  | 
|  | static inline int is_mem_hardwall(const struct cpuset *cs) | 
|  | { | 
|  | return test_bit(CS_MEM_HARDWALL, &cs->flags); | 
|  | } | 
|  |  | 
|  | static inline int is_sched_load_balance(const struct cpuset *cs) | 
|  | { | 
|  | return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); | 
|  | } | 
|  |  | 
|  | static inline int is_memory_migrate(const struct cpuset *cs) | 
|  | { | 
|  | return test_bit(CS_MEMORY_MIGRATE, &cs->flags); | 
|  | } | 
|  |  | 
|  | static inline int is_spread_page(const struct cpuset *cs) | 
|  | { | 
|  | return test_bit(CS_SPREAD_PAGE, &cs->flags); | 
|  | } | 
|  |  | 
|  | static inline int is_spread_slab(const struct cpuset *cs) | 
|  | { | 
|  | return test_bit(CS_SPREAD_SLAB, &cs->flags); | 
|  | } | 
|  |  | 
|  | static struct cpuset top_cpuset = { | 
|  | .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) | | 
|  | (1 << CS_MEM_EXCLUSIVE)), | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * cpuset_for_each_child - traverse online children of a cpuset | 
|  | * @child_cs: loop cursor pointing to the current child | 
|  | * @pos_css: used for iteration | 
|  | * @parent_cs: target cpuset to walk children of | 
|  | * | 
|  | * Walk @child_cs through the online children of @parent_cs.  Must be used | 
|  | * with RCU read locked. | 
|  | */ | 
|  | #define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\ | 
|  | css_for_each_child((pos_css), &(parent_cs)->css)		\ | 
|  | if (is_cpuset_online(((child_cs) = css_cs((pos_css))))) | 
|  |  | 
|  | /** | 
|  | * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants | 
|  | * @des_cs: loop cursor pointing to the current descendant | 
|  | * @pos_css: used for iteration | 
|  | * @root_cs: target cpuset to walk ancestor of | 
|  | * | 
|  | * Walk @des_cs through the online descendants of @root_cs.  Must be used | 
|  | * with RCU read locked.  The caller may modify @pos_css by calling | 
|  | * css_rightmost_descendant() to skip subtree.  @root_cs is included in the | 
|  | * iteration and the first node to be visited. | 
|  | */ | 
|  | #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\ | 
|  | css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\ | 
|  | if (is_cpuset_online(((des_cs) = css_cs((pos_css))))) | 
|  |  | 
|  | /* | 
|  | * There are two global locks guarding cpuset structures - cpuset_mutex and | 
|  | * callback_lock. We also require taking task_lock() when dereferencing a | 
|  | * task's cpuset pointer. See "The task_lock() exception", at the end of this | 
|  | * comment. | 
|  | * | 
|  | * A task must hold both locks to modify cpusets.  If a task holds | 
|  | * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it | 
|  | * is the only task able to also acquire callback_lock and be able to | 
|  | * modify cpusets.  It can perform various checks on the cpuset structure | 
|  | * first, knowing nothing will change.  It can also allocate memory while | 
|  | * just holding cpuset_mutex.  While it is performing these checks, various | 
|  | * callback routines can briefly acquire callback_lock to query cpusets. | 
|  | * Once it is ready to make the changes, it takes callback_lock, blocking | 
|  | * everyone else. | 
|  | * | 
|  | * Calls to the kernel memory allocator can not be made while holding | 
|  | * callback_lock, as that would risk double tripping on callback_lock | 
|  | * from one of the callbacks into the cpuset code from within | 
|  | * __alloc_pages(). | 
|  | * | 
|  | * If a task is only holding callback_lock, then it has read-only | 
|  | * access to cpusets. | 
|  | * | 
|  | * Now, the task_struct fields mems_allowed and mempolicy may be changed | 
|  | * by other task, we use alloc_lock in the task_struct fields to protect | 
|  | * them. | 
|  | * | 
|  | * The cpuset_common_file_read() handlers only hold callback_lock across | 
|  | * small pieces of code, such as when reading out possibly multi-word | 
|  | * cpumasks and nodemasks. | 
|  | * | 
|  | * Accessing a task's cpuset should be done in accordance with the | 
|  | * guidelines for accessing subsystem state in kernel/cgroup.c | 
|  | */ | 
|  |  | 
|  | static DEFINE_MUTEX(cpuset_mutex); | 
|  | static DEFINE_SPINLOCK(callback_lock); | 
|  |  | 
|  | static struct workqueue_struct *cpuset_migrate_mm_wq; | 
|  |  | 
|  | /* | 
|  | * CPU / memory hotplug is handled asynchronously. | 
|  | */ | 
|  | static void cpuset_hotplug_workfn(struct work_struct *work); | 
|  | static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn); | 
|  |  | 
|  | static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq); | 
|  |  | 
|  | /* | 
|  | * This is ugly, but preserves the userspace API for existing cpuset | 
|  | * users. If someone tries to mount the "cpuset" filesystem, we | 
|  | * silently switch it to mount "cgroup" instead | 
|  | */ | 
|  | static struct dentry *cpuset_mount(struct file_system_type *fs_type, | 
|  | int flags, const char *unused_dev_name, void *data) | 
|  | { | 
|  | struct file_system_type *cgroup_fs = get_fs_type("cgroup"); | 
|  | struct dentry *ret = ERR_PTR(-ENODEV); | 
|  | if (cgroup_fs) { | 
|  | char mountopts[] = | 
|  | "cpuset,noprefix," | 
|  | "release_agent=/sbin/cpuset_release_agent"; | 
|  | ret = cgroup_fs->mount(cgroup_fs, flags, | 
|  | unused_dev_name, mountopts); | 
|  | put_filesystem(cgroup_fs); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static struct file_system_type cpuset_fs_type = { | 
|  | .name = "cpuset", | 
|  | .mount = cpuset_mount, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Return in pmask the portion of a cpusets's cpus_allowed that | 
|  | * are online.  If none are online, walk up the cpuset hierarchy | 
|  | * until we find one that does have some online cpus. | 
|  | * | 
|  | * One way or another, we guarantee to return some non-empty subset | 
|  | * of cpu_online_mask. | 
|  | * | 
|  | * Call with callback_lock or cpuset_mutex held. | 
|  | */ | 
|  | static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask) | 
|  | { | 
|  | while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) { | 
|  | cs = parent_cs(cs); | 
|  | if (unlikely(!cs)) { | 
|  | /* | 
|  | * The top cpuset doesn't have any online cpu as a | 
|  | * consequence of a race between cpuset_hotplug_work | 
|  | * and cpu hotplug notifier.  But we know the top | 
|  | * cpuset's effective_cpus is on its way to to be | 
|  | * identical to cpu_online_mask. | 
|  | */ | 
|  | cpumask_copy(pmask, cpu_online_mask); | 
|  | return; | 
|  | } | 
|  | } | 
|  | cpumask_and(pmask, cs->effective_cpus, cpu_online_mask); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return in *pmask the portion of a cpusets's mems_allowed that | 
|  | * are online, with memory.  If none are online with memory, walk | 
|  | * up the cpuset hierarchy until we find one that does have some | 
|  | * online mems.  The top cpuset always has some mems online. | 
|  | * | 
|  | * One way or another, we guarantee to return some non-empty subset | 
|  | * of node_states[N_MEMORY]. | 
|  | * | 
|  | * Call with callback_lock or cpuset_mutex held. | 
|  | */ | 
|  | static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask) | 
|  | { | 
|  | while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY])) | 
|  | cs = parent_cs(cs); | 
|  | nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * update task's spread flag if cpuset's page/slab spread flag is set | 
|  | * | 
|  | * Call with callback_lock or cpuset_mutex held. | 
|  | */ | 
|  | static void cpuset_update_task_spread_flag(struct cpuset *cs, | 
|  | struct task_struct *tsk) | 
|  | { | 
|  | if (is_spread_page(cs)) | 
|  | task_set_spread_page(tsk); | 
|  | else | 
|  | task_clear_spread_page(tsk); | 
|  |  | 
|  | if (is_spread_slab(cs)) | 
|  | task_set_spread_slab(tsk); | 
|  | else | 
|  | task_clear_spread_slab(tsk); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q? | 
|  | * | 
|  | * One cpuset is a subset of another if all its allowed CPUs and | 
|  | * Memory Nodes are a subset of the other, and its exclusive flags | 
|  | * are only set if the other's are set.  Call holding cpuset_mutex. | 
|  | */ | 
|  |  | 
|  | static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q) | 
|  | { | 
|  | return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) && | 
|  | nodes_subset(p->mems_allowed, q->mems_allowed) && | 
|  | is_cpu_exclusive(p) <= is_cpu_exclusive(q) && | 
|  | is_mem_exclusive(p) <= is_mem_exclusive(q); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * alloc_trial_cpuset - allocate a trial cpuset | 
|  | * @cs: the cpuset that the trial cpuset duplicates | 
|  | */ | 
|  | static struct cpuset *alloc_trial_cpuset(struct cpuset *cs) | 
|  | { | 
|  | struct cpuset *trial; | 
|  |  | 
|  | trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL); | 
|  | if (!trial) | 
|  | return NULL; | 
|  |  | 
|  | if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) | 
|  | goto free_cs; | 
|  | if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL)) | 
|  | goto free_cpus; | 
|  |  | 
|  | cpumask_copy(trial->cpus_allowed, cs->cpus_allowed); | 
|  | cpumask_copy(trial->effective_cpus, cs->effective_cpus); | 
|  | return trial; | 
|  |  | 
|  | free_cpus: | 
|  | free_cpumask_var(trial->cpus_allowed); | 
|  | free_cs: | 
|  | kfree(trial); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * free_trial_cpuset - free the trial cpuset | 
|  | * @trial: the trial cpuset to be freed | 
|  | */ | 
|  | static void free_trial_cpuset(struct cpuset *trial) | 
|  | { | 
|  | free_cpumask_var(trial->effective_cpus); | 
|  | free_cpumask_var(trial->cpus_allowed); | 
|  | kfree(trial); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * validate_change() - Used to validate that any proposed cpuset change | 
|  | *		       follows the structural rules for cpusets. | 
|  | * | 
|  | * If we replaced the flag and mask values of the current cpuset | 
|  | * (cur) with those values in the trial cpuset (trial), would | 
|  | * our various subset and exclusive rules still be valid?  Presumes | 
|  | * cpuset_mutex held. | 
|  | * | 
|  | * 'cur' is the address of an actual, in-use cpuset.  Operations | 
|  | * such as list traversal that depend on the actual address of the | 
|  | * cpuset in the list must use cur below, not trial. | 
|  | * | 
|  | * 'trial' is the address of bulk structure copy of cur, with | 
|  | * perhaps one or more of the fields cpus_allowed, mems_allowed, | 
|  | * or flags changed to new, trial values. | 
|  | * | 
|  | * Return 0 if valid, -errno if not. | 
|  | */ | 
|  |  | 
|  | static int validate_change(struct cpuset *cur, struct cpuset *trial) | 
|  | { | 
|  | struct cgroup_subsys_state *css; | 
|  | struct cpuset *c, *par; | 
|  | int ret; | 
|  |  | 
|  | rcu_read_lock(); | 
|  |  | 
|  | /* Each of our child cpusets must be a subset of us */ | 
|  | ret = -EBUSY; | 
|  | cpuset_for_each_child(c, css, cur) | 
|  | if (!is_cpuset_subset(c, trial)) | 
|  | goto out; | 
|  |  | 
|  | /* Remaining checks don't apply to root cpuset */ | 
|  | ret = 0; | 
|  | if (cur == &top_cpuset) | 
|  | goto out; | 
|  |  | 
|  | par = parent_cs(cur); | 
|  |  | 
|  | /* On legacy hiearchy, we must be a subset of our parent cpuset. */ | 
|  | ret = -EACCES; | 
|  | if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && | 
|  | !is_cpuset_subset(trial, par)) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * If either I or some sibling (!= me) is exclusive, we can't | 
|  | * overlap | 
|  | */ | 
|  | ret = -EINVAL; | 
|  | cpuset_for_each_child(c, css, par) { | 
|  | if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) && | 
|  | c != cur && | 
|  | cpumask_intersects(trial->cpus_allowed, c->cpus_allowed)) | 
|  | goto out; | 
|  | if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) && | 
|  | c != cur && | 
|  | nodes_intersects(trial->mems_allowed, c->mems_allowed)) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Cpusets with tasks - existing or newly being attached - can't | 
|  | * be changed to have empty cpus_allowed or mems_allowed. | 
|  | */ | 
|  | ret = -ENOSPC; | 
|  | if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) { | 
|  | if (!cpumask_empty(cur->cpus_allowed) && | 
|  | cpumask_empty(trial->cpus_allowed)) | 
|  | goto out; | 
|  | if (!nodes_empty(cur->mems_allowed) && | 
|  | nodes_empty(trial->mems_allowed)) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We can't shrink if we won't have enough room for SCHED_DEADLINE | 
|  | * tasks. | 
|  | */ | 
|  | ret = -EBUSY; | 
|  | if (is_cpu_exclusive(cur) && | 
|  | !cpuset_cpumask_can_shrink(cur->cpus_allowed, | 
|  | trial->cpus_allowed)) | 
|  | goto out; | 
|  |  | 
|  | ret = 0; | 
|  | out: | 
|  | rcu_read_unlock(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * Helper routine for generate_sched_domains(). | 
|  | * Do cpusets a, b have overlapping effective cpus_allowed masks? | 
|  | */ | 
|  | static int cpusets_overlap(struct cpuset *a, struct cpuset *b) | 
|  | { | 
|  | return cpumask_intersects(a->effective_cpus, b->effective_cpus); | 
|  | } | 
|  |  | 
|  | static void | 
|  | update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c) | 
|  | { | 
|  | if (dattr->relax_domain_level < c->relax_domain_level) | 
|  | dattr->relax_domain_level = c->relax_domain_level; | 
|  | return; | 
|  | } | 
|  |  | 
|  | static void update_domain_attr_tree(struct sched_domain_attr *dattr, | 
|  | struct cpuset *root_cs) | 
|  | { | 
|  | struct cpuset *cp; | 
|  | struct cgroup_subsys_state *pos_css; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | cpuset_for_each_descendant_pre(cp, pos_css, root_cs) { | 
|  | /* skip the whole subtree if @cp doesn't have any CPU */ | 
|  | if (cpumask_empty(cp->cpus_allowed)) { | 
|  | pos_css = css_rightmost_descendant(pos_css); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (is_sched_load_balance(cp)) | 
|  | update_domain_attr(dattr, cp); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * generate_sched_domains() | 
|  | * | 
|  | * This function builds a partial partition of the systems CPUs | 
|  | * A 'partial partition' is a set of non-overlapping subsets whose | 
|  | * union is a subset of that set. | 
|  | * The output of this function needs to be passed to kernel/sched/core.c | 
|  | * partition_sched_domains() routine, which will rebuild the scheduler's | 
|  | * load balancing domains (sched domains) as specified by that partial | 
|  | * partition. | 
|  | * | 
|  | * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt | 
|  | * for a background explanation of this. | 
|  | * | 
|  | * Does not return errors, on the theory that the callers of this | 
|  | * routine would rather not worry about failures to rebuild sched | 
|  | * domains when operating in the severe memory shortage situations | 
|  | * that could cause allocation failures below. | 
|  | * | 
|  | * Must be called with cpuset_mutex held. | 
|  | * | 
|  | * The three key local variables below are: | 
|  | *    q  - a linked-list queue of cpuset pointers, used to implement a | 
|  | *	   top-down scan of all cpusets.  This scan loads a pointer | 
|  | *	   to each cpuset marked is_sched_load_balance into the | 
|  | *	   array 'csa'.  For our purposes, rebuilding the schedulers | 
|  | *	   sched domains, we can ignore !is_sched_load_balance cpusets. | 
|  | *  csa  - (for CpuSet Array) Array of pointers to all the cpusets | 
|  | *	   that need to be load balanced, for convenient iterative | 
|  | *	   access by the subsequent code that finds the best partition, | 
|  | *	   i.e the set of domains (subsets) of CPUs such that the | 
|  | *	   cpus_allowed of every cpuset marked is_sched_load_balance | 
|  | *	   is a subset of one of these domains, while there are as | 
|  | *	   many such domains as possible, each as small as possible. | 
|  | * doms  - Conversion of 'csa' to an array of cpumasks, for passing to | 
|  | *	   the kernel/sched/core.c routine partition_sched_domains() in a | 
|  | *	   convenient format, that can be easily compared to the prior | 
|  | *	   value to determine what partition elements (sched domains) | 
|  | *	   were changed (added or removed.) | 
|  | * | 
|  | * Finding the best partition (set of domains): | 
|  | *	The triple nested loops below over i, j, k scan over the | 
|  | *	load balanced cpusets (using the array of cpuset pointers in | 
|  | *	csa[]) looking for pairs of cpusets that have overlapping | 
|  | *	cpus_allowed, but which don't have the same 'pn' partition | 
|  | *	number and gives them in the same partition number.  It keeps | 
|  | *	looping on the 'restart' label until it can no longer find | 
|  | *	any such pairs. | 
|  | * | 
|  | *	The union of the cpus_allowed masks from the set of | 
|  | *	all cpusets having the same 'pn' value then form the one | 
|  | *	element of the partition (one sched domain) to be passed to | 
|  | *	partition_sched_domains(). | 
|  | */ | 
|  | static int generate_sched_domains(cpumask_var_t **domains, | 
|  | struct sched_domain_attr **attributes) | 
|  | { | 
|  | struct cpuset *cp;	/* scans q */ | 
|  | struct cpuset **csa;	/* array of all cpuset ptrs */ | 
|  | int csn;		/* how many cpuset ptrs in csa so far */ | 
|  | int i, j, k;		/* indices for partition finding loops */ | 
|  | cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */ | 
|  | cpumask_var_t non_isolated_cpus;  /* load balanced CPUs */ | 
|  | struct sched_domain_attr *dattr;  /* attributes for custom domains */ | 
|  | int ndoms = 0;		/* number of sched domains in result */ | 
|  | int nslot;		/* next empty doms[] struct cpumask slot */ | 
|  | struct cgroup_subsys_state *pos_css; | 
|  |  | 
|  | doms = NULL; | 
|  | dattr = NULL; | 
|  | csa = NULL; | 
|  |  | 
|  | if (!alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL)) | 
|  | goto done; | 
|  | cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); | 
|  |  | 
|  | /* Special case for the 99% of systems with one, full, sched domain */ | 
|  | if (is_sched_load_balance(&top_cpuset)) { | 
|  | ndoms = 1; | 
|  | doms = alloc_sched_domains(ndoms); | 
|  | if (!doms) | 
|  | goto done; | 
|  |  | 
|  | dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL); | 
|  | if (dattr) { | 
|  | *dattr = SD_ATTR_INIT; | 
|  | update_domain_attr_tree(dattr, &top_cpuset); | 
|  | } | 
|  | cpumask_and(doms[0], top_cpuset.effective_cpus, | 
|  | non_isolated_cpus); | 
|  |  | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL); | 
|  | if (!csa) | 
|  | goto done; | 
|  | csn = 0; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) { | 
|  | if (cp == &top_cpuset) | 
|  | continue; | 
|  | /* | 
|  | * Continue traversing beyond @cp iff @cp has some CPUs and | 
|  | * isn't load balancing.  The former is obvious.  The | 
|  | * latter: All child cpusets contain a subset of the | 
|  | * parent's cpus, so just skip them, and then we call | 
|  | * update_domain_attr_tree() to calc relax_domain_level of | 
|  | * the corresponding sched domain. | 
|  | */ | 
|  | if (!cpumask_empty(cp->cpus_allowed) && | 
|  | !(is_sched_load_balance(cp) && | 
|  | cpumask_intersects(cp->cpus_allowed, non_isolated_cpus))) | 
|  | continue; | 
|  |  | 
|  | if (is_sched_load_balance(cp)) | 
|  | csa[csn++] = cp; | 
|  |  | 
|  | /* skip @cp's subtree */ | 
|  | pos_css = css_rightmost_descendant(pos_css); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | for (i = 0; i < csn; i++) | 
|  | csa[i]->pn = i; | 
|  | ndoms = csn; | 
|  |  | 
|  | restart: | 
|  | /* Find the best partition (set of sched domains) */ | 
|  | for (i = 0; i < csn; i++) { | 
|  | struct cpuset *a = csa[i]; | 
|  | int apn = a->pn; | 
|  |  | 
|  | for (j = 0; j < csn; j++) { | 
|  | struct cpuset *b = csa[j]; | 
|  | int bpn = b->pn; | 
|  |  | 
|  | if (apn != bpn && cpusets_overlap(a, b)) { | 
|  | for (k = 0; k < csn; k++) { | 
|  | struct cpuset *c = csa[k]; | 
|  |  | 
|  | if (c->pn == bpn) | 
|  | c->pn = apn; | 
|  | } | 
|  | ndoms--;	/* one less element */ | 
|  | goto restart; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now we know how many domains to create. | 
|  | * Convert <csn, csa> to <ndoms, doms> and populate cpu masks. | 
|  | */ | 
|  | doms = alloc_sched_domains(ndoms); | 
|  | if (!doms) | 
|  | goto done; | 
|  |  | 
|  | /* | 
|  | * The rest of the code, including the scheduler, can deal with | 
|  | * dattr==NULL case. No need to abort if alloc fails. | 
|  | */ | 
|  | dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL); | 
|  |  | 
|  | for (nslot = 0, i = 0; i < csn; i++) { | 
|  | struct cpuset *a = csa[i]; | 
|  | struct cpumask *dp; | 
|  | int apn = a->pn; | 
|  |  | 
|  | if (apn < 0) { | 
|  | /* Skip completed partitions */ | 
|  | continue; | 
|  | } | 
|  |  | 
|  | dp = doms[nslot]; | 
|  |  | 
|  | if (nslot == ndoms) { | 
|  | static int warnings = 10; | 
|  | if (warnings) { | 
|  | pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n", | 
|  | nslot, ndoms, csn, i, apn); | 
|  | warnings--; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | cpumask_clear(dp); | 
|  | if (dattr) | 
|  | *(dattr + nslot) = SD_ATTR_INIT; | 
|  | for (j = i; j < csn; j++) { | 
|  | struct cpuset *b = csa[j]; | 
|  |  | 
|  | if (apn == b->pn) { | 
|  | cpumask_or(dp, dp, b->effective_cpus); | 
|  | cpumask_and(dp, dp, non_isolated_cpus); | 
|  | if (dattr) | 
|  | update_domain_attr_tree(dattr + nslot, b); | 
|  |  | 
|  | /* Done with this partition */ | 
|  | b->pn = -1; | 
|  | } | 
|  | } | 
|  | nslot++; | 
|  | } | 
|  | BUG_ON(nslot != ndoms); | 
|  |  | 
|  | done: | 
|  | free_cpumask_var(non_isolated_cpus); | 
|  | kfree(csa); | 
|  |  | 
|  | /* | 
|  | * Fallback to the default domain if kmalloc() failed. | 
|  | * See comments in partition_sched_domains(). | 
|  | */ | 
|  | if (doms == NULL) | 
|  | ndoms = 1; | 
|  |  | 
|  | *domains    = doms; | 
|  | *attributes = dattr; | 
|  | return ndoms; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Rebuild scheduler domains. | 
|  | * | 
|  | * If the flag 'sched_load_balance' of any cpuset with non-empty | 
|  | * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset | 
|  | * which has that flag enabled, or if any cpuset with a non-empty | 
|  | * 'cpus' is removed, then call this routine to rebuild the | 
|  | * scheduler's dynamic sched domains. | 
|  | * | 
|  | * Call with cpuset_mutex held.  Takes get_online_cpus(). | 
|  | */ | 
|  | static void rebuild_sched_domains_locked(void) | 
|  | { | 
|  | struct sched_domain_attr *attr; | 
|  | cpumask_var_t *doms; | 
|  | int ndoms; | 
|  |  | 
|  | lockdep_assert_held(&cpuset_mutex); | 
|  | get_online_cpus(); | 
|  |  | 
|  | /* | 
|  | * We have raced with CPU hotplug. Don't do anything to avoid | 
|  | * passing doms with offlined cpu to partition_sched_domains(). | 
|  | * Anyways, hotplug work item will rebuild sched domains. | 
|  | */ | 
|  | if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask)) | 
|  | goto out; | 
|  |  | 
|  | /* Generate domain masks and attrs */ | 
|  | ndoms = generate_sched_domains(&doms, &attr); | 
|  |  | 
|  | /* Have scheduler rebuild the domains */ | 
|  | partition_sched_domains(ndoms, doms, attr); | 
|  | out: | 
|  | put_online_cpus(); | 
|  | } | 
|  | #else /* !CONFIG_SMP */ | 
|  | static void rebuild_sched_domains_locked(void) | 
|  | { | 
|  | } | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | void rebuild_sched_domains(void) | 
|  | { | 
|  | mutex_lock(&cpuset_mutex); | 
|  | rebuild_sched_domains_locked(); | 
|  | mutex_unlock(&cpuset_mutex); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset. | 
|  | * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed | 
|  | * | 
|  | * Iterate through each task of @cs updating its cpus_allowed to the | 
|  | * effective cpuset's.  As this function is called with cpuset_mutex held, | 
|  | * cpuset membership stays stable. | 
|  | */ | 
|  | static void update_tasks_cpumask(struct cpuset *cs) | 
|  | { | 
|  | struct css_task_iter it; | 
|  | struct task_struct *task; | 
|  |  | 
|  | css_task_iter_start(&cs->css, &it); | 
|  | while ((task = css_task_iter_next(&it))) | 
|  | set_cpus_allowed_ptr(task, cs->effective_cpus); | 
|  | css_task_iter_end(&it); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree | 
|  | * @cs: the cpuset to consider | 
|  | * @new_cpus: temp variable for calculating new effective_cpus | 
|  | * | 
|  | * When congifured cpumask is changed, the effective cpumasks of this cpuset | 
|  | * and all its descendants need to be updated. | 
|  | * | 
|  | * On legacy hierachy, effective_cpus will be the same with cpu_allowed. | 
|  | * | 
|  | * Called with cpuset_mutex held | 
|  | */ | 
|  | static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus) | 
|  | { | 
|  | struct cpuset *cp; | 
|  | struct cgroup_subsys_state *pos_css; | 
|  | bool need_rebuild_sched_domains = false; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | cpuset_for_each_descendant_pre(cp, pos_css, cs) { | 
|  | struct cpuset *parent = parent_cs(cp); | 
|  |  | 
|  | cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus); | 
|  |  | 
|  | /* | 
|  | * If it becomes empty, inherit the effective mask of the | 
|  | * parent, which is guaranteed to have some CPUs. | 
|  | */ | 
|  | if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && | 
|  | cpumask_empty(new_cpus)) | 
|  | cpumask_copy(new_cpus, parent->effective_cpus); | 
|  |  | 
|  | /* Skip the whole subtree if the cpumask remains the same. */ | 
|  | if (cpumask_equal(new_cpus, cp->effective_cpus)) { | 
|  | pos_css = css_rightmost_descendant(pos_css); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!css_tryget_online(&cp->css)) | 
|  | continue; | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | spin_lock_irq(&callback_lock); | 
|  | cpumask_copy(cp->effective_cpus, new_cpus); | 
|  | spin_unlock_irq(&callback_lock); | 
|  |  | 
|  | WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && | 
|  | !cpumask_equal(cp->cpus_allowed, cp->effective_cpus)); | 
|  |  | 
|  | update_tasks_cpumask(cp); | 
|  |  | 
|  | /* | 
|  | * If the effective cpumask of any non-empty cpuset is changed, | 
|  | * we need to rebuild sched domains. | 
|  | */ | 
|  | if (!cpumask_empty(cp->cpus_allowed) && | 
|  | is_sched_load_balance(cp)) | 
|  | need_rebuild_sched_domains = true; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | css_put(&cp->css); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | if (need_rebuild_sched_domains) | 
|  | rebuild_sched_domains_locked(); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it | 
|  | * @cs: the cpuset to consider | 
|  | * @trialcs: trial cpuset | 
|  | * @buf: buffer of cpu numbers written to this cpuset | 
|  | */ | 
|  | static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs, | 
|  | const char *buf) | 
|  | { | 
|  | int retval; | 
|  |  | 
|  | /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */ | 
|  | if (cs == &top_cpuset) | 
|  | return -EACCES; | 
|  |  | 
|  | /* | 
|  | * An empty cpus_allowed is ok only if the cpuset has no tasks. | 
|  | * Since cpulist_parse() fails on an empty mask, we special case | 
|  | * that parsing.  The validate_change() call ensures that cpusets | 
|  | * with tasks have cpus. | 
|  | */ | 
|  | if (!*buf) { | 
|  | cpumask_clear(trialcs->cpus_allowed); | 
|  | } else { | 
|  | retval = cpulist_parse(buf, trialcs->cpus_allowed); | 
|  | if (retval < 0) | 
|  | return retval; | 
|  |  | 
|  | if (!cpumask_subset(trialcs->cpus_allowed, | 
|  | top_cpuset.cpus_allowed)) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Nothing to do if the cpus didn't change */ | 
|  | if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed)) | 
|  | return 0; | 
|  |  | 
|  | retval = validate_change(cs, trialcs); | 
|  | if (retval < 0) | 
|  | return retval; | 
|  |  | 
|  | spin_lock_irq(&callback_lock); | 
|  | cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed); | 
|  | spin_unlock_irq(&callback_lock); | 
|  |  | 
|  | /* use trialcs->cpus_allowed as a temp variable */ | 
|  | update_cpumasks_hier(cs, trialcs->cpus_allowed); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Migrate memory region from one set of nodes to another.  This is | 
|  | * performed asynchronously as it can be called from process migration path | 
|  | * holding locks involved in process management.  All mm migrations are | 
|  | * performed in the queued order and can be waited for by flushing | 
|  | * cpuset_migrate_mm_wq. | 
|  | */ | 
|  |  | 
|  | struct cpuset_migrate_mm_work { | 
|  | struct work_struct	work; | 
|  | struct mm_struct	*mm; | 
|  | nodemask_t		from; | 
|  | nodemask_t		to; | 
|  | }; | 
|  |  | 
|  | static void cpuset_migrate_mm_workfn(struct work_struct *work) | 
|  | { | 
|  | struct cpuset_migrate_mm_work *mwork = | 
|  | container_of(work, struct cpuset_migrate_mm_work, work); | 
|  |  | 
|  | /* on a wq worker, no need to worry about %current's mems_allowed */ | 
|  | do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL); | 
|  | mmput(mwork->mm); | 
|  | kfree(mwork); | 
|  | } | 
|  |  | 
|  | static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from, | 
|  | const nodemask_t *to) | 
|  | { | 
|  | struct cpuset_migrate_mm_work *mwork; | 
|  |  | 
|  | mwork = kzalloc(sizeof(*mwork), GFP_KERNEL); | 
|  | if (mwork) { | 
|  | mwork->mm = mm; | 
|  | mwork->from = *from; | 
|  | mwork->to = *to; | 
|  | INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn); | 
|  | queue_work(cpuset_migrate_mm_wq, &mwork->work); | 
|  | } else { | 
|  | mmput(mm); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void cpuset_post_attach(void) | 
|  | { | 
|  | flush_workqueue(cpuset_migrate_mm_wq); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy | 
|  | * @tsk: the task to change | 
|  | * @newmems: new nodes that the task will be set | 
|  | * | 
|  | * In order to avoid seeing no nodes if the old and new nodes are disjoint, | 
|  | * we structure updates as setting all new allowed nodes, then clearing newly | 
|  | * disallowed ones. | 
|  | */ | 
|  | static void cpuset_change_task_nodemask(struct task_struct *tsk, | 
|  | nodemask_t *newmems) | 
|  | { | 
|  | bool need_loop; | 
|  |  | 
|  | task_lock(tsk); | 
|  | /* | 
|  | * Determine if a loop is necessary if another thread is doing | 
|  | * read_mems_allowed_begin().  If at least one node remains unchanged and | 
|  | * tsk does not have a mempolicy, then an empty nodemask will not be | 
|  | * possible when mems_allowed is larger than a word. | 
|  | */ | 
|  | need_loop = task_has_mempolicy(tsk) || | 
|  | !nodes_intersects(*newmems, tsk->mems_allowed); | 
|  |  | 
|  | if (need_loop) { | 
|  | local_irq_disable(); | 
|  | write_seqcount_begin(&tsk->mems_allowed_seq); | 
|  | } | 
|  |  | 
|  | nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems); | 
|  | mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1); | 
|  |  | 
|  | mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2); | 
|  | tsk->mems_allowed = *newmems; | 
|  |  | 
|  | if (need_loop) { | 
|  | write_seqcount_end(&tsk->mems_allowed_seq); | 
|  | local_irq_enable(); | 
|  | } | 
|  |  | 
|  | task_unlock(tsk); | 
|  | } | 
|  |  | 
|  | static void *cpuset_being_rebound; | 
|  |  | 
|  | /** | 
|  | * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset. | 
|  | * @cs: the cpuset in which each task's mems_allowed mask needs to be changed | 
|  | * | 
|  | * Iterate through each task of @cs updating its mems_allowed to the | 
|  | * effective cpuset's.  As this function is called with cpuset_mutex held, | 
|  | * cpuset membership stays stable. | 
|  | */ | 
|  | static void update_tasks_nodemask(struct cpuset *cs) | 
|  | { | 
|  | static nodemask_t newmems;	/* protected by cpuset_mutex */ | 
|  | struct css_task_iter it; | 
|  | struct task_struct *task; | 
|  |  | 
|  | cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */ | 
|  |  | 
|  | guarantee_online_mems(cs, &newmems); | 
|  |  | 
|  | /* | 
|  | * The mpol_rebind_mm() call takes mmap_sem, which we couldn't | 
|  | * take while holding tasklist_lock.  Forks can happen - the | 
|  | * mpol_dup() cpuset_being_rebound check will catch such forks, | 
|  | * and rebind their vma mempolicies too.  Because we still hold | 
|  | * the global cpuset_mutex, we know that no other rebind effort | 
|  | * will be contending for the global variable cpuset_being_rebound. | 
|  | * It's ok if we rebind the same mm twice; mpol_rebind_mm() | 
|  | * is idempotent.  Also migrate pages in each mm to new nodes. | 
|  | */ | 
|  | css_task_iter_start(&cs->css, &it); | 
|  | while ((task = css_task_iter_next(&it))) { | 
|  | struct mm_struct *mm; | 
|  | bool migrate; | 
|  |  | 
|  | cpuset_change_task_nodemask(task, &newmems); | 
|  |  | 
|  | mm = get_task_mm(task); | 
|  | if (!mm) | 
|  | continue; | 
|  |  | 
|  | migrate = is_memory_migrate(cs); | 
|  |  | 
|  | mpol_rebind_mm(mm, &cs->mems_allowed); | 
|  | if (migrate) | 
|  | cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems); | 
|  | else | 
|  | mmput(mm); | 
|  | } | 
|  | css_task_iter_end(&it); | 
|  |  | 
|  | /* | 
|  | * All the tasks' nodemasks have been updated, update | 
|  | * cs->old_mems_allowed. | 
|  | */ | 
|  | cs->old_mems_allowed = newmems; | 
|  |  | 
|  | /* We're done rebinding vmas to this cpuset's new mems_allowed. */ | 
|  | cpuset_being_rebound = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree | 
|  | * @cs: the cpuset to consider | 
|  | * @new_mems: a temp variable for calculating new effective_mems | 
|  | * | 
|  | * When configured nodemask is changed, the effective nodemasks of this cpuset | 
|  | * and all its descendants need to be updated. | 
|  | * | 
|  | * On legacy hiearchy, effective_mems will be the same with mems_allowed. | 
|  | * | 
|  | * Called with cpuset_mutex held | 
|  | */ | 
|  | static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems) | 
|  | { | 
|  | struct cpuset *cp; | 
|  | struct cgroup_subsys_state *pos_css; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | cpuset_for_each_descendant_pre(cp, pos_css, cs) { | 
|  | struct cpuset *parent = parent_cs(cp); | 
|  |  | 
|  | nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems); | 
|  |  | 
|  | /* | 
|  | * If it becomes empty, inherit the effective mask of the | 
|  | * parent, which is guaranteed to have some MEMs. | 
|  | */ | 
|  | if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && | 
|  | nodes_empty(*new_mems)) | 
|  | *new_mems = parent->effective_mems; | 
|  |  | 
|  | /* Skip the whole subtree if the nodemask remains the same. */ | 
|  | if (nodes_equal(*new_mems, cp->effective_mems)) { | 
|  | pos_css = css_rightmost_descendant(pos_css); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!css_tryget_online(&cp->css)) | 
|  | continue; | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | spin_lock_irq(&callback_lock); | 
|  | cp->effective_mems = *new_mems; | 
|  | spin_unlock_irq(&callback_lock); | 
|  |  | 
|  | WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && | 
|  | !nodes_equal(cp->mems_allowed, cp->effective_mems)); | 
|  |  | 
|  | update_tasks_nodemask(cp); | 
|  |  | 
|  | rcu_read_lock(); | 
|  | css_put(&cp->css); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle user request to change the 'mems' memory placement | 
|  | * of a cpuset.  Needs to validate the request, update the | 
|  | * cpusets mems_allowed, and for each task in the cpuset, | 
|  | * update mems_allowed and rebind task's mempolicy and any vma | 
|  | * mempolicies and if the cpuset is marked 'memory_migrate', | 
|  | * migrate the tasks pages to the new memory. | 
|  | * | 
|  | * Call with cpuset_mutex held. May take callback_lock during call. | 
|  | * Will take tasklist_lock, scan tasklist for tasks in cpuset cs, | 
|  | * lock each such tasks mm->mmap_sem, scan its vma's and rebind | 
|  | * their mempolicies to the cpusets new mems_allowed. | 
|  | */ | 
|  | static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs, | 
|  | const char *buf) | 
|  | { | 
|  | int retval; | 
|  |  | 
|  | /* | 
|  | * top_cpuset.mems_allowed tracks node_stats[N_MEMORY]; | 
|  | * it's read-only | 
|  | */ | 
|  | if (cs == &top_cpuset) { | 
|  | retval = -EACCES; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * An empty mems_allowed is ok iff there are no tasks in the cpuset. | 
|  | * Since nodelist_parse() fails on an empty mask, we special case | 
|  | * that parsing.  The validate_change() call ensures that cpusets | 
|  | * with tasks have memory. | 
|  | */ | 
|  | if (!*buf) { | 
|  | nodes_clear(trialcs->mems_allowed); | 
|  | } else { | 
|  | retval = nodelist_parse(buf, trialcs->mems_allowed); | 
|  | if (retval < 0) | 
|  | goto done; | 
|  |  | 
|  | if (!nodes_subset(trialcs->mems_allowed, | 
|  | top_cpuset.mems_allowed)) { | 
|  | retval = -EINVAL; | 
|  | goto done; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) { | 
|  | retval = 0;		/* Too easy - nothing to do */ | 
|  | goto done; | 
|  | } | 
|  | retval = validate_change(cs, trialcs); | 
|  | if (retval < 0) | 
|  | goto done; | 
|  |  | 
|  | spin_lock_irq(&callback_lock); | 
|  | cs->mems_allowed = trialcs->mems_allowed; | 
|  | spin_unlock_irq(&callback_lock); | 
|  |  | 
|  | /* use trialcs->mems_allowed as a temp variable */ | 
|  | update_nodemasks_hier(cs, &trialcs->mems_allowed); | 
|  | done: | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | int current_cpuset_is_being_rebound(void) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | ret = task_cs(current) == cpuset_being_rebound; | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int update_relax_domain_level(struct cpuset *cs, s64 val) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | if (val < -1 || val >= sched_domain_level_max) | 
|  | return -EINVAL; | 
|  | #endif | 
|  |  | 
|  | if (val != cs->relax_domain_level) { | 
|  | cs->relax_domain_level = val; | 
|  | if (!cpumask_empty(cs->cpus_allowed) && | 
|  | is_sched_load_balance(cs)) | 
|  | rebuild_sched_domains_locked(); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * update_tasks_flags - update the spread flags of tasks in the cpuset. | 
|  | * @cs: the cpuset in which each task's spread flags needs to be changed | 
|  | * | 
|  | * Iterate through each task of @cs updating its spread flags.  As this | 
|  | * function is called with cpuset_mutex held, cpuset membership stays | 
|  | * stable. | 
|  | */ | 
|  | static void update_tasks_flags(struct cpuset *cs) | 
|  | { | 
|  | struct css_task_iter it; | 
|  | struct task_struct *task; | 
|  |  | 
|  | css_task_iter_start(&cs->css, &it); | 
|  | while ((task = css_task_iter_next(&it))) | 
|  | cpuset_update_task_spread_flag(cs, task); | 
|  | css_task_iter_end(&it); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * update_flag - read a 0 or a 1 in a file and update associated flag | 
|  | * bit:		the bit to update (see cpuset_flagbits_t) | 
|  | * cs:		the cpuset to update | 
|  | * turning_on: 	whether the flag is being set or cleared | 
|  | * | 
|  | * Call with cpuset_mutex held. | 
|  | */ | 
|  |  | 
|  | static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, | 
|  | int turning_on) | 
|  | { | 
|  | struct cpuset *trialcs; | 
|  | int balance_flag_changed; | 
|  | int spread_flag_changed; | 
|  | int err; | 
|  |  | 
|  | trialcs = alloc_trial_cpuset(cs); | 
|  | if (!trialcs) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (turning_on) | 
|  | set_bit(bit, &trialcs->flags); | 
|  | else | 
|  | clear_bit(bit, &trialcs->flags); | 
|  |  | 
|  | err = validate_change(cs, trialcs); | 
|  | if (err < 0) | 
|  | goto out; | 
|  |  | 
|  | balance_flag_changed = (is_sched_load_balance(cs) != | 
|  | is_sched_load_balance(trialcs)); | 
|  |  | 
|  | spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs)) | 
|  | || (is_spread_page(cs) != is_spread_page(trialcs))); | 
|  |  | 
|  | spin_lock_irq(&callback_lock); | 
|  | cs->flags = trialcs->flags; | 
|  | spin_unlock_irq(&callback_lock); | 
|  |  | 
|  | if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) | 
|  | rebuild_sched_domains_locked(); | 
|  |  | 
|  | if (spread_flag_changed) | 
|  | update_tasks_flags(cs); | 
|  | out: | 
|  | free_trial_cpuset(trialcs); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Frequency meter - How fast is some event occurring? | 
|  | * | 
|  | * These routines manage a digitally filtered, constant time based, | 
|  | * event frequency meter.  There are four routines: | 
|  | *   fmeter_init() - initialize a frequency meter. | 
|  | *   fmeter_markevent() - called each time the event happens. | 
|  | *   fmeter_getrate() - returns the recent rate of such events. | 
|  | *   fmeter_update() - internal routine used to update fmeter. | 
|  | * | 
|  | * A common data structure is passed to each of these routines, | 
|  | * which is used to keep track of the state required to manage the | 
|  | * frequency meter and its digital filter. | 
|  | * | 
|  | * The filter works on the number of events marked per unit time. | 
|  | * The filter is single-pole low-pass recursive (IIR).  The time unit | 
|  | * is 1 second.  Arithmetic is done using 32-bit integers scaled to | 
|  | * simulate 3 decimal digits of precision (multiplied by 1000). | 
|  | * | 
|  | * With an FM_COEF of 933, and a time base of 1 second, the filter | 
|  | * has a half-life of 10 seconds, meaning that if the events quit | 
|  | * happening, then the rate returned from the fmeter_getrate() | 
|  | * will be cut in half each 10 seconds, until it converges to zero. | 
|  | * | 
|  | * It is not worth doing a real infinitely recursive filter.  If more | 
|  | * than FM_MAXTICKS ticks have elapsed since the last filter event, | 
|  | * just compute FM_MAXTICKS ticks worth, by which point the level | 
|  | * will be stable. | 
|  | * | 
|  | * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid | 
|  | * arithmetic overflow in the fmeter_update() routine. | 
|  | * | 
|  | * Given the simple 32 bit integer arithmetic used, this meter works | 
|  | * best for reporting rates between one per millisecond (msec) and | 
|  | * one per 32 (approx) seconds.  At constant rates faster than one | 
|  | * per msec it maxes out at values just under 1,000,000.  At constant | 
|  | * rates between one per msec, and one per second it will stabilize | 
|  | * to a value N*1000, where N is the rate of events per second. | 
|  | * At constant rates between one per second and one per 32 seconds, | 
|  | * it will be choppy, moving up on the seconds that have an event, | 
|  | * and then decaying until the next event.  At rates slower than | 
|  | * about one in 32 seconds, it decays all the way back to zero between | 
|  | * each event. | 
|  | */ | 
|  |  | 
|  | #define FM_COEF 933		/* coefficient for half-life of 10 secs */ | 
|  | #define FM_MAXTICKS ((u32)99)   /* useless computing more ticks than this */ | 
|  | #define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */ | 
|  | #define FM_SCALE 1000		/* faux fixed point scale */ | 
|  |  | 
|  | /* Initialize a frequency meter */ | 
|  | static void fmeter_init(struct fmeter *fmp) | 
|  | { | 
|  | fmp->cnt = 0; | 
|  | fmp->val = 0; | 
|  | fmp->time = 0; | 
|  | spin_lock_init(&fmp->lock); | 
|  | } | 
|  |  | 
|  | /* Internal meter update - process cnt events and update value */ | 
|  | static void fmeter_update(struct fmeter *fmp) | 
|  | { | 
|  | time64_t now; | 
|  | u32 ticks; | 
|  |  | 
|  | now = ktime_get_seconds(); | 
|  | ticks = now - fmp->time; | 
|  |  | 
|  | if (ticks == 0) | 
|  | return; | 
|  |  | 
|  | ticks = min(FM_MAXTICKS, ticks); | 
|  | while (ticks-- > 0) | 
|  | fmp->val = (FM_COEF * fmp->val) / FM_SCALE; | 
|  | fmp->time = now; | 
|  |  | 
|  | fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE; | 
|  | fmp->cnt = 0; | 
|  | } | 
|  |  | 
|  | /* Process any previous ticks, then bump cnt by one (times scale). */ | 
|  | static void fmeter_markevent(struct fmeter *fmp) | 
|  | { | 
|  | spin_lock(&fmp->lock); | 
|  | fmeter_update(fmp); | 
|  | fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE); | 
|  | spin_unlock(&fmp->lock); | 
|  | } | 
|  |  | 
|  | /* Process any previous ticks, then return current value. */ | 
|  | static int fmeter_getrate(struct fmeter *fmp) | 
|  | { | 
|  | int val; | 
|  |  | 
|  | spin_lock(&fmp->lock); | 
|  | fmeter_update(fmp); | 
|  | val = fmp->val; | 
|  | spin_unlock(&fmp->lock); | 
|  | return val; | 
|  | } | 
|  |  | 
|  | static struct cpuset *cpuset_attach_old_cs; | 
|  |  | 
|  | /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */ | 
|  | static int cpuset_can_attach(struct cgroup_taskset *tset) | 
|  | { | 
|  | struct cgroup_subsys_state *css; | 
|  | struct cpuset *cs; | 
|  | struct task_struct *task; | 
|  | int ret; | 
|  |  | 
|  | /* used later by cpuset_attach() */ | 
|  | cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css)); | 
|  | cs = css_cs(css); | 
|  |  | 
|  | mutex_lock(&cpuset_mutex); | 
|  |  | 
|  | /* allow moving tasks into an empty cpuset if on default hierarchy */ | 
|  | ret = -ENOSPC; | 
|  | if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && | 
|  | (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))) | 
|  | goto out_unlock; | 
|  |  | 
|  | cgroup_taskset_for_each(task, css, tset) { | 
|  | ret = task_can_attach(task, cs->cpus_allowed); | 
|  | if (ret) | 
|  | goto out_unlock; | 
|  | ret = security_task_setscheduler(task); | 
|  | if (ret) | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Mark attach is in progress.  This makes validate_change() fail | 
|  | * changes which zero cpus/mems_allowed. | 
|  | */ | 
|  | cs->attach_in_progress++; | 
|  | ret = 0; | 
|  | out_unlock: | 
|  | mutex_unlock(&cpuset_mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void cpuset_cancel_attach(struct cgroup_taskset *tset) | 
|  | { | 
|  | struct cgroup_subsys_state *css; | 
|  | struct cpuset *cs; | 
|  |  | 
|  | cgroup_taskset_first(tset, &css); | 
|  | cs = css_cs(css); | 
|  |  | 
|  | mutex_lock(&cpuset_mutex); | 
|  | css_cs(css)->attach_in_progress--; | 
|  | mutex_unlock(&cpuset_mutex); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Protected by cpuset_mutex.  cpus_attach is used only by cpuset_attach() | 
|  | * but we can't allocate it dynamically there.  Define it global and | 
|  | * allocate from cpuset_init(). | 
|  | */ | 
|  | static cpumask_var_t cpus_attach; | 
|  |  | 
|  | static void cpuset_attach(struct cgroup_taskset *tset) | 
|  | { | 
|  | /* static buf protected by cpuset_mutex */ | 
|  | static nodemask_t cpuset_attach_nodemask_to; | 
|  | struct task_struct *task; | 
|  | struct task_struct *leader; | 
|  | struct cgroup_subsys_state *css; | 
|  | struct cpuset *cs; | 
|  | struct cpuset *oldcs = cpuset_attach_old_cs; | 
|  |  | 
|  | cgroup_taskset_first(tset, &css); | 
|  | cs = css_cs(css); | 
|  |  | 
|  | mutex_lock(&cpuset_mutex); | 
|  |  | 
|  | /* prepare for attach */ | 
|  | if (cs == &top_cpuset) | 
|  | cpumask_copy(cpus_attach, cpu_possible_mask); | 
|  | else | 
|  | guarantee_online_cpus(cs, cpus_attach); | 
|  |  | 
|  | guarantee_online_mems(cs, &cpuset_attach_nodemask_to); | 
|  |  | 
|  | cgroup_taskset_for_each(task, css, tset) { | 
|  | /* | 
|  | * can_attach beforehand should guarantee that this doesn't | 
|  | * fail.  TODO: have a better way to handle failure here | 
|  | */ | 
|  | WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach)); | 
|  |  | 
|  | cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to); | 
|  | cpuset_update_task_spread_flag(cs, task); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Change mm for all threadgroup leaders. This is expensive and may | 
|  | * sleep and should be moved outside migration path proper. | 
|  | */ | 
|  | cpuset_attach_nodemask_to = cs->effective_mems; | 
|  | cgroup_taskset_for_each_leader(leader, css, tset) { | 
|  | struct mm_struct *mm = get_task_mm(leader); | 
|  |  | 
|  | if (mm) { | 
|  | mpol_rebind_mm(mm, &cpuset_attach_nodemask_to); | 
|  |  | 
|  | /* | 
|  | * old_mems_allowed is the same with mems_allowed | 
|  | * here, except if this task is being moved | 
|  | * automatically due to hotplug.  In that case | 
|  | * @mems_allowed has been updated and is empty, so | 
|  | * @old_mems_allowed is the right nodesets that we | 
|  | * migrate mm from. | 
|  | */ | 
|  | if (is_memory_migrate(cs)) | 
|  | cpuset_migrate_mm(mm, &oldcs->old_mems_allowed, | 
|  | &cpuset_attach_nodemask_to); | 
|  | else | 
|  | mmput(mm); | 
|  | } | 
|  | } | 
|  |  | 
|  | cs->old_mems_allowed = cpuset_attach_nodemask_to; | 
|  |  | 
|  | cs->attach_in_progress--; | 
|  | if (!cs->attach_in_progress) | 
|  | wake_up(&cpuset_attach_wq); | 
|  |  | 
|  | mutex_unlock(&cpuset_mutex); | 
|  | } | 
|  |  | 
|  | /* The various types of files and directories in a cpuset file system */ | 
|  |  | 
|  | typedef enum { | 
|  | FILE_MEMORY_MIGRATE, | 
|  | FILE_CPULIST, | 
|  | FILE_MEMLIST, | 
|  | FILE_EFFECTIVE_CPULIST, | 
|  | FILE_EFFECTIVE_MEMLIST, | 
|  | FILE_CPU_EXCLUSIVE, | 
|  | FILE_MEM_EXCLUSIVE, | 
|  | FILE_MEM_HARDWALL, | 
|  | FILE_SCHED_LOAD_BALANCE, | 
|  | FILE_SCHED_RELAX_DOMAIN_LEVEL, | 
|  | FILE_MEMORY_PRESSURE_ENABLED, | 
|  | FILE_MEMORY_PRESSURE, | 
|  | FILE_SPREAD_PAGE, | 
|  | FILE_SPREAD_SLAB, | 
|  | } cpuset_filetype_t; | 
|  |  | 
|  | static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft, | 
|  | u64 val) | 
|  | { | 
|  | struct cpuset *cs = css_cs(css); | 
|  | cpuset_filetype_t type = cft->private; | 
|  | int retval = 0; | 
|  |  | 
|  | mutex_lock(&cpuset_mutex); | 
|  | if (!is_cpuset_online(cs)) { | 
|  | retval = -ENODEV; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | switch (type) { | 
|  | case FILE_CPU_EXCLUSIVE: | 
|  | retval = update_flag(CS_CPU_EXCLUSIVE, cs, val); | 
|  | break; | 
|  | case FILE_MEM_EXCLUSIVE: | 
|  | retval = update_flag(CS_MEM_EXCLUSIVE, cs, val); | 
|  | break; | 
|  | case FILE_MEM_HARDWALL: | 
|  | retval = update_flag(CS_MEM_HARDWALL, cs, val); | 
|  | break; | 
|  | case FILE_SCHED_LOAD_BALANCE: | 
|  | retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val); | 
|  | break; | 
|  | case FILE_MEMORY_MIGRATE: | 
|  | retval = update_flag(CS_MEMORY_MIGRATE, cs, val); | 
|  | break; | 
|  | case FILE_MEMORY_PRESSURE_ENABLED: | 
|  | cpuset_memory_pressure_enabled = !!val; | 
|  | break; | 
|  | case FILE_SPREAD_PAGE: | 
|  | retval = update_flag(CS_SPREAD_PAGE, cs, val); | 
|  | break; | 
|  | case FILE_SPREAD_SLAB: | 
|  | retval = update_flag(CS_SPREAD_SLAB, cs, val); | 
|  | break; | 
|  | default: | 
|  | retval = -EINVAL; | 
|  | break; | 
|  | } | 
|  | out_unlock: | 
|  | mutex_unlock(&cpuset_mutex); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft, | 
|  | s64 val) | 
|  | { | 
|  | struct cpuset *cs = css_cs(css); | 
|  | cpuset_filetype_t type = cft->private; | 
|  | int retval = -ENODEV; | 
|  |  | 
|  | mutex_lock(&cpuset_mutex); | 
|  | if (!is_cpuset_online(cs)) | 
|  | goto out_unlock; | 
|  |  | 
|  | switch (type) { | 
|  | case FILE_SCHED_RELAX_DOMAIN_LEVEL: | 
|  | retval = update_relax_domain_level(cs, val); | 
|  | break; | 
|  | default: | 
|  | retval = -EINVAL; | 
|  | break; | 
|  | } | 
|  | out_unlock: | 
|  | mutex_unlock(&cpuset_mutex); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Common handling for a write to a "cpus" or "mems" file. | 
|  | */ | 
|  | static ssize_t cpuset_write_resmask(struct kernfs_open_file *of, | 
|  | char *buf, size_t nbytes, loff_t off) | 
|  | { | 
|  | struct cpuset *cs = css_cs(of_css(of)); | 
|  | struct cpuset *trialcs; | 
|  | int retval = -ENODEV; | 
|  |  | 
|  | buf = strstrip(buf); | 
|  |  | 
|  | /* | 
|  | * CPU or memory hotunplug may leave @cs w/o any execution | 
|  | * resources, in which case the hotplug code asynchronously updates | 
|  | * configuration and transfers all tasks to the nearest ancestor | 
|  | * which can execute. | 
|  | * | 
|  | * As writes to "cpus" or "mems" may restore @cs's execution | 
|  | * resources, wait for the previously scheduled operations before | 
|  | * proceeding, so that we don't end up keep removing tasks added | 
|  | * after execution capability is restored. | 
|  | * | 
|  | * cpuset_hotplug_work calls back into cgroup core via | 
|  | * cgroup_transfer_tasks() and waiting for it from a cgroupfs | 
|  | * operation like this one can lead to a deadlock through kernfs | 
|  | * active_ref protection.  Let's break the protection.  Losing the | 
|  | * protection is okay as we check whether @cs is online after | 
|  | * grabbing cpuset_mutex anyway.  This only happens on the legacy | 
|  | * hierarchies. | 
|  | */ | 
|  | css_get(&cs->css); | 
|  | kernfs_break_active_protection(of->kn); | 
|  | flush_work(&cpuset_hotplug_work); | 
|  |  | 
|  | mutex_lock(&cpuset_mutex); | 
|  | if (!is_cpuset_online(cs)) | 
|  | goto out_unlock; | 
|  |  | 
|  | trialcs = alloc_trial_cpuset(cs); | 
|  | if (!trialcs) { | 
|  | retval = -ENOMEM; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | switch (of_cft(of)->private) { | 
|  | case FILE_CPULIST: | 
|  | retval = update_cpumask(cs, trialcs, buf); | 
|  | break; | 
|  | case FILE_MEMLIST: | 
|  | retval = update_nodemask(cs, trialcs, buf); | 
|  | break; | 
|  | default: | 
|  | retval = -EINVAL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | free_trial_cpuset(trialcs); | 
|  | out_unlock: | 
|  | mutex_unlock(&cpuset_mutex); | 
|  | kernfs_unbreak_active_protection(of->kn); | 
|  | css_put(&cs->css); | 
|  | flush_workqueue(cpuset_migrate_mm_wq); | 
|  | return retval ?: nbytes; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * These ascii lists should be read in a single call, by using a user | 
|  | * buffer large enough to hold the entire map.  If read in smaller | 
|  | * chunks, there is no guarantee of atomicity.  Since the display format | 
|  | * used, list of ranges of sequential numbers, is variable length, | 
|  | * and since these maps can change value dynamically, one could read | 
|  | * gibberish by doing partial reads while a list was changing. | 
|  | */ | 
|  | static int cpuset_common_seq_show(struct seq_file *sf, void *v) | 
|  | { | 
|  | struct cpuset *cs = css_cs(seq_css(sf)); | 
|  | cpuset_filetype_t type = seq_cft(sf)->private; | 
|  | int ret = 0; | 
|  |  | 
|  | spin_lock_irq(&callback_lock); | 
|  |  | 
|  | switch (type) { | 
|  | case FILE_CPULIST: | 
|  | seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed)); | 
|  | break; | 
|  | case FILE_MEMLIST: | 
|  | seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed)); | 
|  | break; | 
|  | case FILE_EFFECTIVE_CPULIST: | 
|  | seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus)); | 
|  | break; | 
|  | case FILE_EFFECTIVE_MEMLIST: | 
|  | seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems)); | 
|  | break; | 
|  | default: | 
|  | ret = -EINVAL; | 
|  | } | 
|  |  | 
|  | spin_unlock_irq(&callback_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft) | 
|  | { | 
|  | struct cpuset *cs = css_cs(css); | 
|  | cpuset_filetype_t type = cft->private; | 
|  | switch (type) { | 
|  | case FILE_CPU_EXCLUSIVE: | 
|  | return is_cpu_exclusive(cs); | 
|  | case FILE_MEM_EXCLUSIVE: | 
|  | return is_mem_exclusive(cs); | 
|  | case FILE_MEM_HARDWALL: | 
|  | return is_mem_hardwall(cs); | 
|  | case FILE_SCHED_LOAD_BALANCE: | 
|  | return is_sched_load_balance(cs); | 
|  | case FILE_MEMORY_MIGRATE: | 
|  | return is_memory_migrate(cs); | 
|  | case FILE_MEMORY_PRESSURE_ENABLED: | 
|  | return cpuset_memory_pressure_enabled; | 
|  | case FILE_MEMORY_PRESSURE: | 
|  | return fmeter_getrate(&cs->fmeter); | 
|  | case FILE_SPREAD_PAGE: | 
|  | return is_spread_page(cs); | 
|  | case FILE_SPREAD_SLAB: | 
|  | return is_spread_slab(cs); | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | /* Unreachable but makes gcc happy */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft) | 
|  | { | 
|  | struct cpuset *cs = css_cs(css); | 
|  | cpuset_filetype_t type = cft->private; | 
|  | switch (type) { | 
|  | case FILE_SCHED_RELAX_DOMAIN_LEVEL: | 
|  | return cs->relax_domain_level; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | /* Unrechable but makes gcc happy */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * for the common functions, 'private' gives the type of file | 
|  | */ | 
|  |  | 
|  | static struct cftype files[] = { | 
|  | { | 
|  | .name = "cpus", | 
|  | .seq_show = cpuset_common_seq_show, | 
|  | .write = cpuset_write_resmask, | 
|  | .max_write_len = (100U + 6 * NR_CPUS), | 
|  | .private = FILE_CPULIST, | 
|  | }, | 
|  |  | 
|  | { | 
|  | .name = "mems", | 
|  | .seq_show = cpuset_common_seq_show, | 
|  | .write = cpuset_write_resmask, | 
|  | .max_write_len = (100U + 6 * MAX_NUMNODES), | 
|  | .private = FILE_MEMLIST, | 
|  | }, | 
|  |  | 
|  | { | 
|  | .name = "effective_cpus", | 
|  | .seq_show = cpuset_common_seq_show, | 
|  | .private = FILE_EFFECTIVE_CPULIST, | 
|  | }, | 
|  |  | 
|  | { | 
|  | .name = "effective_mems", | 
|  | .seq_show = cpuset_common_seq_show, | 
|  | .private = FILE_EFFECTIVE_MEMLIST, | 
|  | }, | 
|  |  | 
|  | { | 
|  | .name = "cpu_exclusive", | 
|  | .read_u64 = cpuset_read_u64, | 
|  | .write_u64 = cpuset_write_u64, | 
|  | .private = FILE_CPU_EXCLUSIVE, | 
|  | }, | 
|  |  | 
|  | { | 
|  | .name = "mem_exclusive", | 
|  | .read_u64 = cpuset_read_u64, | 
|  | .write_u64 = cpuset_write_u64, | 
|  | .private = FILE_MEM_EXCLUSIVE, | 
|  | }, | 
|  |  | 
|  | { | 
|  | .name = "mem_hardwall", | 
|  | .read_u64 = cpuset_read_u64, | 
|  | .write_u64 = cpuset_write_u64, | 
|  | .private = FILE_MEM_HARDWALL, | 
|  | }, | 
|  |  | 
|  | { | 
|  | .name = "sched_load_balance", | 
|  | .read_u64 = cpuset_read_u64, | 
|  | .write_u64 = cpuset_write_u64, | 
|  | .private = FILE_SCHED_LOAD_BALANCE, | 
|  | }, | 
|  |  | 
|  | { | 
|  | .name = "sched_relax_domain_level", | 
|  | .read_s64 = cpuset_read_s64, | 
|  | .write_s64 = cpuset_write_s64, | 
|  | .private = FILE_SCHED_RELAX_DOMAIN_LEVEL, | 
|  | }, | 
|  |  | 
|  | { | 
|  | .name = "memory_migrate", | 
|  | .read_u64 = cpuset_read_u64, | 
|  | .write_u64 = cpuset_write_u64, | 
|  | .private = FILE_MEMORY_MIGRATE, | 
|  | }, | 
|  |  | 
|  | { | 
|  | .name = "memory_pressure", | 
|  | .read_u64 = cpuset_read_u64, | 
|  | }, | 
|  |  | 
|  | { | 
|  | .name = "memory_spread_page", | 
|  | .read_u64 = cpuset_read_u64, | 
|  | .write_u64 = cpuset_write_u64, | 
|  | .private = FILE_SPREAD_PAGE, | 
|  | }, | 
|  |  | 
|  | { | 
|  | .name = "memory_spread_slab", | 
|  | .read_u64 = cpuset_read_u64, | 
|  | .write_u64 = cpuset_write_u64, | 
|  | .private = FILE_SPREAD_SLAB, | 
|  | }, | 
|  |  | 
|  | { | 
|  | .name = "memory_pressure_enabled", | 
|  | .flags = CFTYPE_ONLY_ON_ROOT, | 
|  | .read_u64 = cpuset_read_u64, | 
|  | .write_u64 = cpuset_write_u64, | 
|  | .private = FILE_MEMORY_PRESSURE_ENABLED, | 
|  | }, | 
|  |  | 
|  | { }	/* terminate */ | 
|  | }; | 
|  |  | 
|  | /* | 
|  | *	cpuset_css_alloc - allocate a cpuset css | 
|  | *	cgrp:	control group that the new cpuset will be part of | 
|  | */ | 
|  |  | 
|  | static struct cgroup_subsys_state * | 
|  | cpuset_css_alloc(struct cgroup_subsys_state *parent_css) | 
|  | { | 
|  | struct cpuset *cs; | 
|  |  | 
|  | if (!parent_css) | 
|  | return &top_cpuset.css; | 
|  |  | 
|  | cs = kzalloc(sizeof(*cs), GFP_KERNEL); | 
|  | if (!cs) | 
|  | return ERR_PTR(-ENOMEM); | 
|  | if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) | 
|  | goto free_cs; | 
|  | if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL)) | 
|  | goto free_cpus; | 
|  |  | 
|  | set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); | 
|  | cpumask_clear(cs->cpus_allowed); | 
|  | nodes_clear(cs->mems_allowed); | 
|  | cpumask_clear(cs->effective_cpus); | 
|  | nodes_clear(cs->effective_mems); | 
|  | fmeter_init(&cs->fmeter); | 
|  | cs->relax_domain_level = -1; | 
|  |  | 
|  | return &cs->css; | 
|  |  | 
|  | free_cpus: | 
|  | free_cpumask_var(cs->cpus_allowed); | 
|  | free_cs: | 
|  | kfree(cs); | 
|  | return ERR_PTR(-ENOMEM); | 
|  | } | 
|  |  | 
|  | static int cpuset_css_online(struct cgroup_subsys_state *css) | 
|  | { | 
|  | struct cpuset *cs = css_cs(css); | 
|  | struct cpuset *parent = parent_cs(cs); | 
|  | struct cpuset *tmp_cs; | 
|  | struct cgroup_subsys_state *pos_css; | 
|  |  | 
|  | if (!parent) | 
|  | return 0; | 
|  |  | 
|  | mutex_lock(&cpuset_mutex); | 
|  |  | 
|  | set_bit(CS_ONLINE, &cs->flags); | 
|  | if (is_spread_page(parent)) | 
|  | set_bit(CS_SPREAD_PAGE, &cs->flags); | 
|  | if (is_spread_slab(parent)) | 
|  | set_bit(CS_SPREAD_SLAB, &cs->flags); | 
|  |  | 
|  | cpuset_inc(); | 
|  |  | 
|  | spin_lock_irq(&callback_lock); | 
|  | if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) { | 
|  | cpumask_copy(cs->effective_cpus, parent->effective_cpus); | 
|  | cs->effective_mems = parent->effective_mems; | 
|  | } | 
|  | spin_unlock_irq(&callback_lock); | 
|  |  | 
|  | if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags)) | 
|  | goto out_unlock; | 
|  |  | 
|  | /* | 
|  | * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is | 
|  | * set.  This flag handling is implemented in cgroup core for | 
|  | * histrical reasons - the flag may be specified during mount. | 
|  | * | 
|  | * Currently, if any sibling cpusets have exclusive cpus or mem, we | 
|  | * refuse to clone the configuration - thereby refusing the task to | 
|  | * be entered, and as a result refusing the sys_unshare() or | 
|  | * clone() which initiated it.  If this becomes a problem for some | 
|  | * users who wish to allow that scenario, then this could be | 
|  | * changed to grant parent->cpus_allowed-sibling_cpus_exclusive | 
|  | * (and likewise for mems) to the new cgroup. | 
|  | */ | 
|  | rcu_read_lock(); | 
|  | cpuset_for_each_child(tmp_cs, pos_css, parent) { | 
|  | if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) { | 
|  | rcu_read_unlock(); | 
|  | goto out_unlock; | 
|  | } | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | spin_lock_irq(&callback_lock); | 
|  | cs->mems_allowed = parent->mems_allowed; | 
|  | cs->effective_mems = parent->mems_allowed; | 
|  | cpumask_copy(cs->cpus_allowed, parent->cpus_allowed); | 
|  | cpumask_copy(cs->effective_cpus, parent->cpus_allowed); | 
|  | spin_unlock_irq(&callback_lock); | 
|  | out_unlock: | 
|  | mutex_unlock(&cpuset_mutex); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the cpuset being removed has its flag 'sched_load_balance' | 
|  | * enabled, then simulate turning sched_load_balance off, which | 
|  | * will call rebuild_sched_domains_locked(). | 
|  | */ | 
|  |  | 
|  | static void cpuset_css_offline(struct cgroup_subsys_state *css) | 
|  | { | 
|  | struct cpuset *cs = css_cs(css); | 
|  |  | 
|  | mutex_lock(&cpuset_mutex); | 
|  |  | 
|  | if (is_sched_load_balance(cs)) | 
|  | update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); | 
|  |  | 
|  | cpuset_dec(); | 
|  | clear_bit(CS_ONLINE, &cs->flags); | 
|  |  | 
|  | mutex_unlock(&cpuset_mutex); | 
|  | } | 
|  |  | 
|  | static void cpuset_css_free(struct cgroup_subsys_state *css) | 
|  | { | 
|  | struct cpuset *cs = css_cs(css); | 
|  |  | 
|  | free_cpumask_var(cs->effective_cpus); | 
|  | free_cpumask_var(cs->cpus_allowed); | 
|  | kfree(cs); | 
|  | } | 
|  |  | 
|  | static void cpuset_bind(struct cgroup_subsys_state *root_css) | 
|  | { | 
|  | mutex_lock(&cpuset_mutex); | 
|  | spin_lock_irq(&callback_lock); | 
|  |  | 
|  | if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) { | 
|  | cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask); | 
|  | top_cpuset.mems_allowed = node_possible_map; | 
|  | } else { | 
|  | cpumask_copy(top_cpuset.cpus_allowed, | 
|  | top_cpuset.effective_cpus); | 
|  | top_cpuset.mems_allowed = top_cpuset.effective_mems; | 
|  | } | 
|  |  | 
|  | spin_unlock_irq(&callback_lock); | 
|  | mutex_unlock(&cpuset_mutex); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Make sure the new task conform to the current state of its parent, | 
|  | * which could have been changed by cpuset just after it inherits the | 
|  | * state from the parent and before it sits on the cgroup's task list. | 
|  | */ | 
|  | static void cpuset_fork(struct task_struct *task) | 
|  | { | 
|  | if (task_css_is_root(task, cpuset_cgrp_id)) | 
|  | return; | 
|  |  | 
|  | set_cpus_allowed_ptr(task, ¤t->cpus_allowed); | 
|  | task->mems_allowed = current->mems_allowed; | 
|  | } | 
|  |  | 
|  | struct cgroup_subsys cpuset_cgrp_subsys = { | 
|  | .css_alloc	= cpuset_css_alloc, | 
|  | .css_online	= cpuset_css_online, | 
|  | .css_offline	= cpuset_css_offline, | 
|  | .css_free	= cpuset_css_free, | 
|  | .can_attach	= cpuset_can_attach, | 
|  | .cancel_attach	= cpuset_cancel_attach, | 
|  | .attach		= cpuset_attach, | 
|  | .post_attach	= cpuset_post_attach, | 
|  | .bind		= cpuset_bind, | 
|  | .fork		= cpuset_fork, | 
|  | .legacy_cftypes	= files, | 
|  | .early_init	= true, | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * cpuset_init - initialize cpusets at system boot | 
|  | * | 
|  | * Description: Initialize top_cpuset and the cpuset internal file system, | 
|  | **/ | 
|  |  | 
|  | int __init cpuset_init(void) | 
|  | { | 
|  | int err = 0; | 
|  |  | 
|  | if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL)) | 
|  | BUG(); | 
|  | if (!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL)) | 
|  | BUG(); | 
|  |  | 
|  | cpumask_setall(top_cpuset.cpus_allowed); | 
|  | nodes_setall(top_cpuset.mems_allowed); | 
|  | cpumask_setall(top_cpuset.effective_cpus); | 
|  | nodes_setall(top_cpuset.effective_mems); | 
|  |  | 
|  | fmeter_init(&top_cpuset.fmeter); | 
|  | set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags); | 
|  | top_cpuset.relax_domain_level = -1; | 
|  |  | 
|  | err = register_filesystem(&cpuset_fs_type); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL)) | 
|  | BUG(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If CPU and/or memory hotplug handlers, below, unplug any CPUs | 
|  | * or memory nodes, we need to walk over the cpuset hierarchy, | 
|  | * removing that CPU or node from all cpusets.  If this removes the | 
|  | * last CPU or node from a cpuset, then move the tasks in the empty | 
|  | * cpuset to its next-highest non-empty parent. | 
|  | */ | 
|  | static void remove_tasks_in_empty_cpuset(struct cpuset *cs) | 
|  | { | 
|  | struct cpuset *parent; | 
|  |  | 
|  | /* | 
|  | * Find its next-highest non-empty parent, (top cpuset | 
|  | * has online cpus, so can't be empty). | 
|  | */ | 
|  | parent = parent_cs(cs); | 
|  | while (cpumask_empty(parent->cpus_allowed) || | 
|  | nodes_empty(parent->mems_allowed)) | 
|  | parent = parent_cs(parent); | 
|  |  | 
|  | if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) { | 
|  | pr_err("cpuset: failed to transfer tasks out of empty cpuset "); | 
|  | pr_cont_cgroup_name(cs->css.cgroup); | 
|  | pr_cont("\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | hotplug_update_tasks_legacy(struct cpuset *cs, | 
|  | struct cpumask *new_cpus, nodemask_t *new_mems, | 
|  | bool cpus_updated, bool mems_updated) | 
|  | { | 
|  | bool is_empty; | 
|  |  | 
|  | spin_lock_irq(&callback_lock); | 
|  | cpumask_copy(cs->cpus_allowed, new_cpus); | 
|  | cpumask_copy(cs->effective_cpus, new_cpus); | 
|  | cs->mems_allowed = *new_mems; | 
|  | cs->effective_mems = *new_mems; | 
|  | spin_unlock_irq(&callback_lock); | 
|  |  | 
|  | /* | 
|  | * Don't call update_tasks_cpumask() if the cpuset becomes empty, | 
|  | * as the tasks will be migratecd to an ancestor. | 
|  | */ | 
|  | if (cpus_updated && !cpumask_empty(cs->cpus_allowed)) | 
|  | update_tasks_cpumask(cs); | 
|  | if (mems_updated && !nodes_empty(cs->mems_allowed)) | 
|  | update_tasks_nodemask(cs); | 
|  |  | 
|  | is_empty = cpumask_empty(cs->cpus_allowed) || | 
|  | nodes_empty(cs->mems_allowed); | 
|  |  | 
|  | mutex_unlock(&cpuset_mutex); | 
|  |  | 
|  | /* | 
|  | * Move tasks to the nearest ancestor with execution resources, | 
|  | * This is full cgroup operation which will also call back into | 
|  | * cpuset. Should be done outside any lock. | 
|  | */ | 
|  | if (is_empty) | 
|  | remove_tasks_in_empty_cpuset(cs); | 
|  |  | 
|  | mutex_lock(&cpuset_mutex); | 
|  | } | 
|  |  | 
|  | static void | 
|  | hotplug_update_tasks(struct cpuset *cs, | 
|  | struct cpumask *new_cpus, nodemask_t *new_mems, | 
|  | bool cpus_updated, bool mems_updated) | 
|  | { | 
|  | if (cpumask_empty(new_cpus)) | 
|  | cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus); | 
|  | if (nodes_empty(*new_mems)) | 
|  | *new_mems = parent_cs(cs)->effective_mems; | 
|  |  | 
|  | spin_lock_irq(&callback_lock); | 
|  | cpumask_copy(cs->effective_cpus, new_cpus); | 
|  | cs->effective_mems = *new_mems; | 
|  | spin_unlock_irq(&callback_lock); | 
|  |  | 
|  | if (cpus_updated) | 
|  | update_tasks_cpumask(cs); | 
|  | if (mems_updated) | 
|  | update_tasks_nodemask(cs); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug | 
|  | * @cs: cpuset in interest | 
|  | * | 
|  | * Compare @cs's cpu and mem masks against top_cpuset and if some have gone | 
|  | * offline, update @cs accordingly.  If @cs ends up with no CPU or memory, | 
|  | * all its tasks are moved to the nearest ancestor with both resources. | 
|  | */ | 
|  | static void cpuset_hotplug_update_tasks(struct cpuset *cs) | 
|  | { | 
|  | static cpumask_t new_cpus; | 
|  | static nodemask_t new_mems; | 
|  | bool cpus_updated; | 
|  | bool mems_updated; | 
|  | retry: | 
|  | wait_event(cpuset_attach_wq, cs->attach_in_progress == 0); | 
|  |  | 
|  | mutex_lock(&cpuset_mutex); | 
|  |  | 
|  | /* | 
|  | * We have raced with task attaching. We wait until attaching | 
|  | * is finished, so we won't attach a task to an empty cpuset. | 
|  | */ | 
|  | if (cs->attach_in_progress) { | 
|  | mutex_unlock(&cpuset_mutex); | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus); | 
|  | nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems); | 
|  |  | 
|  | cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus); | 
|  | mems_updated = !nodes_equal(new_mems, cs->effective_mems); | 
|  |  | 
|  | if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) | 
|  | hotplug_update_tasks(cs, &new_cpus, &new_mems, | 
|  | cpus_updated, mems_updated); | 
|  | else | 
|  | hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems, | 
|  | cpus_updated, mems_updated); | 
|  |  | 
|  | mutex_unlock(&cpuset_mutex); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset | 
|  | * | 
|  | * This function is called after either CPU or memory configuration has | 
|  | * changed and updates cpuset accordingly.  The top_cpuset is always | 
|  | * synchronized to cpu_active_mask and N_MEMORY, which is necessary in | 
|  | * order to make cpusets transparent (of no affect) on systems that are | 
|  | * actively using CPU hotplug but making no active use of cpusets. | 
|  | * | 
|  | * Non-root cpusets are only affected by offlining.  If any CPUs or memory | 
|  | * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on | 
|  | * all descendants. | 
|  | * | 
|  | * Note that CPU offlining during suspend is ignored.  We don't modify | 
|  | * cpusets across suspend/resume cycles at all. | 
|  | */ | 
|  | static void cpuset_hotplug_workfn(struct work_struct *work) | 
|  | { | 
|  | static cpumask_t new_cpus; | 
|  | static nodemask_t new_mems; | 
|  | bool cpus_updated, mems_updated; | 
|  | bool on_dfl = cgroup_subsys_on_dfl(cpuset_cgrp_subsys); | 
|  |  | 
|  | mutex_lock(&cpuset_mutex); | 
|  |  | 
|  | /* fetch the available cpus/mems and find out which changed how */ | 
|  | cpumask_copy(&new_cpus, cpu_active_mask); | 
|  | new_mems = node_states[N_MEMORY]; | 
|  |  | 
|  | cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus); | 
|  | mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems); | 
|  |  | 
|  | /* synchronize cpus_allowed to cpu_active_mask */ | 
|  | if (cpus_updated) { | 
|  | spin_lock_irq(&callback_lock); | 
|  | if (!on_dfl) | 
|  | cpumask_copy(top_cpuset.cpus_allowed, &new_cpus); | 
|  | cpumask_copy(top_cpuset.effective_cpus, &new_cpus); | 
|  | spin_unlock_irq(&callback_lock); | 
|  | /* we don't mess with cpumasks of tasks in top_cpuset */ | 
|  | } | 
|  |  | 
|  | /* synchronize mems_allowed to N_MEMORY */ | 
|  | if (mems_updated) { | 
|  | spin_lock_irq(&callback_lock); | 
|  | if (!on_dfl) | 
|  | top_cpuset.mems_allowed = new_mems; | 
|  | top_cpuset.effective_mems = new_mems; | 
|  | spin_unlock_irq(&callback_lock); | 
|  | update_tasks_nodemask(&top_cpuset); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&cpuset_mutex); | 
|  |  | 
|  | /* if cpus or mems changed, we need to propagate to descendants */ | 
|  | if (cpus_updated || mems_updated) { | 
|  | struct cpuset *cs; | 
|  | struct cgroup_subsys_state *pos_css; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { | 
|  | if (cs == &top_cpuset || !css_tryget_online(&cs->css)) | 
|  | continue; | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | cpuset_hotplug_update_tasks(cs); | 
|  |  | 
|  | rcu_read_lock(); | 
|  | css_put(&cs->css); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | /* rebuild sched domains if cpus_allowed has changed */ | 
|  | if (cpus_updated) | 
|  | rebuild_sched_domains(); | 
|  | } | 
|  |  | 
|  | void cpuset_update_active_cpus(bool cpu_online) | 
|  | { | 
|  | /* | 
|  | * We're inside cpu hotplug critical region which usually nests | 
|  | * inside cgroup synchronization.  Bounce actual hotplug processing | 
|  | * to a work item to avoid reverse locking order. | 
|  | * | 
|  | * We still need to do partition_sched_domains() synchronously; | 
|  | * otherwise, the scheduler will get confused and put tasks to the | 
|  | * dead CPU.  Fall back to the default single domain. | 
|  | * cpuset_hotplug_workfn() will rebuild it as necessary. | 
|  | */ | 
|  | partition_sched_domains(1, NULL, NULL); | 
|  | schedule_work(&cpuset_hotplug_work); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY]. | 
|  | * Call this routine anytime after node_states[N_MEMORY] changes. | 
|  | * See cpuset_update_active_cpus() for CPU hotplug handling. | 
|  | */ | 
|  | static int cpuset_track_online_nodes(struct notifier_block *self, | 
|  | unsigned long action, void *arg) | 
|  | { | 
|  | schedule_work(&cpuset_hotplug_work); | 
|  | return NOTIFY_OK; | 
|  | } | 
|  |  | 
|  | static struct notifier_block cpuset_track_online_nodes_nb = { | 
|  | .notifier_call = cpuset_track_online_nodes, | 
|  | .priority = 10,		/* ??! */ | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * cpuset_init_smp - initialize cpus_allowed | 
|  | * | 
|  | * Description: Finish top cpuset after cpu, node maps are initialized | 
|  | */ | 
|  | void __init cpuset_init_smp(void) | 
|  | { | 
|  | cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask); | 
|  | top_cpuset.mems_allowed = node_states[N_MEMORY]; | 
|  | top_cpuset.old_mems_allowed = top_cpuset.mems_allowed; | 
|  |  | 
|  | cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask); | 
|  | top_cpuset.effective_mems = node_states[N_MEMORY]; | 
|  |  | 
|  | register_hotmemory_notifier(&cpuset_track_online_nodes_nb); | 
|  |  | 
|  | cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0); | 
|  | BUG_ON(!cpuset_migrate_mm_wq); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset. | 
|  | * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. | 
|  | * @pmask: pointer to struct cpumask variable to receive cpus_allowed set. | 
|  | * | 
|  | * Description: Returns the cpumask_var_t cpus_allowed of the cpuset | 
|  | * attached to the specified @tsk.  Guaranteed to return some non-empty | 
|  | * subset of cpu_online_mask, even if this means going outside the | 
|  | * tasks cpuset. | 
|  | **/ | 
|  |  | 
|  | void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&callback_lock, flags); | 
|  | rcu_read_lock(); | 
|  | guarantee_online_cpus(task_cs(tsk), pmask); | 
|  | rcu_read_unlock(); | 
|  | spin_unlock_irqrestore(&callback_lock, flags); | 
|  | } | 
|  |  | 
|  | void cpuset_cpus_allowed_fallback(struct task_struct *tsk) | 
|  | { | 
|  | rcu_read_lock(); | 
|  | do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | /* | 
|  | * We own tsk->cpus_allowed, nobody can change it under us. | 
|  | * | 
|  | * But we used cs && cs->cpus_allowed lockless and thus can | 
|  | * race with cgroup_attach_task() or update_cpumask() and get | 
|  | * the wrong tsk->cpus_allowed. However, both cases imply the | 
|  | * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr() | 
|  | * which takes task_rq_lock(). | 
|  | * | 
|  | * If we are called after it dropped the lock we must see all | 
|  | * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary | 
|  | * set any mask even if it is not right from task_cs() pov, | 
|  | * the pending set_cpus_allowed_ptr() will fix things. | 
|  | * | 
|  | * select_fallback_rq() will fix things ups and set cpu_possible_mask | 
|  | * if required. | 
|  | */ | 
|  | } | 
|  |  | 
|  | void __init cpuset_init_current_mems_allowed(void) | 
|  | { | 
|  | nodes_setall(current->mems_allowed); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset. | 
|  | * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed. | 
|  | * | 
|  | * Description: Returns the nodemask_t mems_allowed of the cpuset | 
|  | * attached to the specified @tsk.  Guaranteed to return some non-empty | 
|  | * subset of node_states[N_MEMORY], even if this means going outside the | 
|  | * tasks cpuset. | 
|  | **/ | 
|  |  | 
|  | nodemask_t cpuset_mems_allowed(struct task_struct *tsk) | 
|  | { | 
|  | nodemask_t mask; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&callback_lock, flags); | 
|  | rcu_read_lock(); | 
|  | guarantee_online_mems(task_cs(tsk), &mask); | 
|  | rcu_read_unlock(); | 
|  | spin_unlock_irqrestore(&callback_lock, flags); | 
|  |  | 
|  | return mask; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed | 
|  | * @nodemask: the nodemask to be checked | 
|  | * | 
|  | * Are any of the nodes in the nodemask allowed in current->mems_allowed? | 
|  | */ | 
|  | int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask) | 
|  | { | 
|  | return nodes_intersects(*nodemask, current->mems_allowed); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or | 
|  | * mem_hardwall ancestor to the specified cpuset.  Call holding | 
|  | * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall | 
|  | * (an unusual configuration), then returns the root cpuset. | 
|  | */ | 
|  | static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs) | 
|  | { | 
|  | while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs)) | 
|  | cs = parent_cs(cs); | 
|  | return cs; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cpuset_node_allowed - Can we allocate on a memory node? | 
|  | * @node: is this an allowed node? | 
|  | * @gfp_mask: memory allocation flags | 
|  | * | 
|  | * If we're in interrupt, yes, we can always allocate.  If @node is set in | 
|  | * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this | 
|  | * node is set in the nearest hardwalled cpuset ancestor to current's cpuset, | 
|  | * yes.  If current has access to memory reserves due to TIF_MEMDIE, yes. | 
|  | * Otherwise, no. | 
|  | * | 
|  | * GFP_USER allocations are marked with the __GFP_HARDWALL bit, | 
|  | * and do not allow allocations outside the current tasks cpuset | 
|  | * unless the task has been OOM killed as is marked TIF_MEMDIE. | 
|  | * GFP_KERNEL allocations are not so marked, so can escape to the | 
|  | * nearest enclosing hardwalled ancestor cpuset. | 
|  | * | 
|  | * Scanning up parent cpusets requires callback_lock.  The | 
|  | * __alloc_pages() routine only calls here with __GFP_HARDWALL bit | 
|  | * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the | 
|  | * current tasks mems_allowed came up empty on the first pass over | 
|  | * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the | 
|  | * cpuset are short of memory, might require taking the callback_lock. | 
|  | * | 
|  | * The first call here from mm/page_alloc:get_page_from_freelist() | 
|  | * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets, | 
|  | * so no allocation on a node outside the cpuset is allowed (unless | 
|  | * in interrupt, of course). | 
|  | * | 
|  | * The second pass through get_page_from_freelist() doesn't even call | 
|  | * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages() | 
|  | * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set | 
|  | * in alloc_flags.  That logic and the checks below have the combined | 
|  | * affect that: | 
|  | *	in_interrupt - any node ok (current task context irrelevant) | 
|  | *	GFP_ATOMIC   - any node ok | 
|  | *	TIF_MEMDIE   - any node ok | 
|  | *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok | 
|  | *	GFP_USER     - only nodes in current tasks mems allowed ok. | 
|  | */ | 
|  | bool __cpuset_node_allowed(int node, gfp_t gfp_mask) | 
|  | { | 
|  | struct cpuset *cs;		/* current cpuset ancestors */ | 
|  | int allowed;			/* is allocation in zone z allowed? */ | 
|  | unsigned long flags; | 
|  |  | 
|  | if (in_interrupt()) | 
|  | return true; | 
|  | if (node_isset(node, current->mems_allowed)) | 
|  | return true; | 
|  | /* | 
|  | * Allow tasks that have access to memory reserves because they have | 
|  | * been OOM killed to get memory anywhere. | 
|  | */ | 
|  | if (unlikely(test_thread_flag(TIF_MEMDIE))) | 
|  | return true; | 
|  | if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */ | 
|  | return false; | 
|  |  | 
|  | if (current->flags & PF_EXITING) /* Let dying task have memory */ | 
|  | return true; | 
|  |  | 
|  | /* Not hardwall and node outside mems_allowed: scan up cpusets */ | 
|  | spin_lock_irqsave(&callback_lock, flags); | 
|  |  | 
|  | rcu_read_lock(); | 
|  | cs = nearest_hardwall_ancestor(task_cs(current)); | 
|  | allowed = node_isset(node, cs->mems_allowed); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | spin_unlock_irqrestore(&callback_lock, flags); | 
|  | return allowed; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cpuset_mem_spread_node() - On which node to begin search for a file page | 
|  | * cpuset_slab_spread_node() - On which node to begin search for a slab page | 
|  | * | 
|  | * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for | 
|  | * tasks in a cpuset with is_spread_page or is_spread_slab set), | 
|  | * and if the memory allocation used cpuset_mem_spread_node() | 
|  | * to determine on which node to start looking, as it will for | 
|  | * certain page cache or slab cache pages such as used for file | 
|  | * system buffers and inode caches, then instead of starting on the | 
|  | * local node to look for a free page, rather spread the starting | 
|  | * node around the tasks mems_allowed nodes. | 
|  | * | 
|  | * We don't have to worry about the returned node being offline | 
|  | * because "it can't happen", and even if it did, it would be ok. | 
|  | * | 
|  | * The routines calling guarantee_online_mems() are careful to | 
|  | * only set nodes in task->mems_allowed that are online.  So it | 
|  | * should not be possible for the following code to return an | 
|  | * offline node.  But if it did, that would be ok, as this routine | 
|  | * is not returning the node where the allocation must be, only | 
|  | * the node where the search should start.  The zonelist passed to | 
|  | * __alloc_pages() will include all nodes.  If the slab allocator | 
|  | * is passed an offline node, it will fall back to the local node. | 
|  | * See kmem_cache_alloc_node(). | 
|  | */ | 
|  |  | 
|  | static int cpuset_spread_node(int *rotor) | 
|  | { | 
|  | return *rotor = next_node_in(*rotor, current->mems_allowed); | 
|  | } | 
|  |  | 
|  | int cpuset_mem_spread_node(void) | 
|  | { | 
|  | if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE) | 
|  | current->cpuset_mem_spread_rotor = | 
|  | node_random(¤t->mems_allowed); | 
|  |  | 
|  | return cpuset_spread_node(¤t->cpuset_mem_spread_rotor); | 
|  | } | 
|  |  | 
|  | int cpuset_slab_spread_node(void) | 
|  | { | 
|  | if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE) | 
|  | current->cpuset_slab_spread_rotor = | 
|  | node_random(¤t->mems_allowed); | 
|  |  | 
|  | return cpuset_spread_node(¤t->cpuset_slab_spread_rotor); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL_GPL(cpuset_mem_spread_node); | 
|  |  | 
|  | /** | 
|  | * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's? | 
|  | * @tsk1: pointer to task_struct of some task. | 
|  | * @tsk2: pointer to task_struct of some other task. | 
|  | * | 
|  | * Description: Return true if @tsk1's mems_allowed intersects the | 
|  | * mems_allowed of @tsk2.  Used by the OOM killer to determine if | 
|  | * one of the task's memory usage might impact the memory available | 
|  | * to the other. | 
|  | **/ | 
|  |  | 
|  | int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, | 
|  | const struct task_struct *tsk2) | 
|  | { | 
|  | return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed | 
|  | * | 
|  | * Description: Prints current's name, cpuset name, and cached copy of its | 
|  | * mems_allowed to the kernel log. | 
|  | */ | 
|  | void cpuset_print_current_mems_allowed(void) | 
|  | { | 
|  | struct cgroup *cgrp; | 
|  |  | 
|  | rcu_read_lock(); | 
|  |  | 
|  | cgrp = task_cs(current)->css.cgroup; | 
|  | pr_info("%s cpuset=", current->comm); | 
|  | pr_cont_cgroup_name(cgrp); | 
|  | pr_cont(" mems_allowed=%*pbl\n", | 
|  | nodemask_pr_args(¤t->mems_allowed)); | 
|  |  | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Collection of memory_pressure is suppressed unless | 
|  | * this flag is enabled by writing "1" to the special | 
|  | * cpuset file 'memory_pressure_enabled' in the root cpuset. | 
|  | */ | 
|  |  | 
|  | int cpuset_memory_pressure_enabled __read_mostly; | 
|  |  | 
|  | /** | 
|  | * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims. | 
|  | * | 
|  | * Keep a running average of the rate of synchronous (direct) | 
|  | * page reclaim efforts initiated by tasks in each cpuset. | 
|  | * | 
|  | * This represents the rate at which some task in the cpuset | 
|  | * ran low on memory on all nodes it was allowed to use, and | 
|  | * had to enter the kernels page reclaim code in an effort to | 
|  | * create more free memory by tossing clean pages or swapping | 
|  | * or writing dirty pages. | 
|  | * | 
|  | * Display to user space in the per-cpuset read-only file | 
|  | * "memory_pressure".  Value displayed is an integer | 
|  | * representing the recent rate of entry into the synchronous | 
|  | * (direct) page reclaim by any task attached to the cpuset. | 
|  | **/ | 
|  |  | 
|  | void __cpuset_memory_pressure_bump(void) | 
|  | { | 
|  | rcu_read_lock(); | 
|  | fmeter_markevent(&task_cs(current)->fmeter); | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PROC_PID_CPUSET | 
|  | /* | 
|  | * proc_cpuset_show() | 
|  | *  - Print tasks cpuset path into seq_file. | 
|  | *  - Used for /proc/<pid>/cpuset. | 
|  | *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it | 
|  | *    doesn't really matter if tsk->cpuset changes after we read it, | 
|  | *    and we take cpuset_mutex, keeping cpuset_attach() from changing it | 
|  | *    anyway. | 
|  | */ | 
|  | int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns, | 
|  | struct pid *pid, struct task_struct *tsk) | 
|  | { | 
|  | char *buf, *p; | 
|  | struct cgroup_subsys_state *css; | 
|  | int retval; | 
|  |  | 
|  | retval = -ENOMEM; | 
|  | buf = kmalloc(PATH_MAX, GFP_KERNEL); | 
|  | if (!buf) | 
|  | goto out; | 
|  |  | 
|  | retval = -ENAMETOOLONG; | 
|  | css = task_get_css(tsk, cpuset_cgrp_id); | 
|  | p = cgroup_path_ns(css->cgroup, buf, PATH_MAX, | 
|  | current->nsproxy->cgroup_ns); | 
|  | css_put(css); | 
|  | if (!p) | 
|  | goto out_free; | 
|  | seq_puts(m, p); | 
|  | seq_putc(m, '\n'); | 
|  | retval = 0; | 
|  | out_free: | 
|  | kfree(buf); | 
|  | out: | 
|  | return retval; | 
|  | } | 
|  | #endif /* CONFIG_PROC_PID_CPUSET */ | 
|  |  | 
|  | /* Display task mems_allowed in /proc/<pid>/status file. */ | 
|  | void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task) | 
|  | { | 
|  | seq_printf(m, "Mems_allowed:\t%*pb\n", | 
|  | nodemask_pr_args(&task->mems_allowed)); | 
|  | seq_printf(m, "Mems_allowed_list:\t%*pbl\n", | 
|  | nodemask_pr_args(&task->mems_allowed)); | 
|  | } |