| /* | 
 |  * Copyright (c) 2016 Avago Technologies.  All rights reserved. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of version 2 of the GNU General Public License as | 
 |  * published by the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful. | 
 |  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, | 
 |  * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A | 
 |  * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO | 
 |  * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID. | 
 |  * See the GNU General Public License for more details, a copy of which | 
 |  * can be found in the file COPYING included with this package | 
 |  * | 
 |  */ | 
 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
 | #include <linux/module.h> | 
 | #include <linux/parser.h> | 
 | #include <uapi/scsi/fc/fc_fs.h> | 
 | #include <uapi/scsi/fc/fc_els.h> | 
 | #include <linux/delay.h> | 
 |  | 
 | #include "nvme.h" | 
 | #include "fabrics.h" | 
 | #include <linux/nvme-fc-driver.h> | 
 | #include <linux/nvme-fc.h> | 
 |  | 
 |  | 
 | /* *************************** Data Structures/Defines ****************** */ | 
 |  | 
 |  | 
 | enum nvme_fc_queue_flags { | 
 | 	NVME_FC_Q_CONNECTED = 0, | 
 | 	NVME_FC_Q_LIVE, | 
 | }; | 
 |  | 
 | #define NVMEFC_QUEUE_DELAY	3		/* ms units */ | 
 |  | 
 | #define NVME_FC_DEFAULT_DEV_LOSS_TMO	60	/* seconds */ | 
 |  | 
 | struct nvme_fc_queue { | 
 | 	struct nvme_fc_ctrl	*ctrl; | 
 | 	struct device		*dev; | 
 | 	struct blk_mq_hw_ctx	*hctx; | 
 | 	void			*lldd_handle; | 
 | 	size_t			cmnd_capsule_len; | 
 | 	u32			qnum; | 
 | 	u32			rqcnt; | 
 | 	u32			seqno; | 
 |  | 
 | 	u64			connection_id; | 
 | 	atomic_t		csn; | 
 |  | 
 | 	unsigned long		flags; | 
 | } __aligned(sizeof(u64));	/* alignment for other things alloc'd with */ | 
 |  | 
 | enum nvme_fcop_flags { | 
 | 	FCOP_FLAGS_TERMIO	= (1 << 0), | 
 | 	FCOP_FLAGS_RELEASED	= (1 << 1), | 
 | 	FCOP_FLAGS_COMPLETE	= (1 << 2), | 
 | 	FCOP_FLAGS_AEN		= (1 << 3), | 
 | }; | 
 |  | 
 | struct nvmefc_ls_req_op { | 
 | 	struct nvmefc_ls_req	ls_req; | 
 |  | 
 | 	struct nvme_fc_rport	*rport; | 
 | 	struct nvme_fc_queue	*queue; | 
 | 	struct request		*rq; | 
 | 	u32			flags; | 
 |  | 
 | 	int			ls_error; | 
 | 	struct completion	ls_done; | 
 | 	struct list_head	lsreq_list;	/* rport->ls_req_list */ | 
 | 	bool			req_queued; | 
 | }; | 
 |  | 
 | enum nvme_fcpop_state { | 
 | 	FCPOP_STATE_UNINIT	= 0, | 
 | 	FCPOP_STATE_IDLE	= 1, | 
 | 	FCPOP_STATE_ACTIVE	= 2, | 
 | 	FCPOP_STATE_ABORTED	= 3, | 
 | 	FCPOP_STATE_COMPLETE	= 4, | 
 | }; | 
 |  | 
 | struct nvme_fc_fcp_op { | 
 | 	struct nvme_request	nreq;		/* | 
 | 						 * nvme/host/core.c | 
 | 						 * requires this to be | 
 | 						 * the 1st element in the | 
 | 						 * private structure | 
 | 						 * associated with the | 
 | 						 * request. | 
 | 						 */ | 
 | 	struct nvmefc_fcp_req	fcp_req; | 
 |  | 
 | 	struct nvme_fc_ctrl	*ctrl; | 
 | 	struct nvme_fc_queue	*queue; | 
 | 	struct request		*rq; | 
 |  | 
 | 	atomic_t		state; | 
 | 	u32			flags; | 
 | 	u32			rqno; | 
 | 	u32			nents; | 
 |  | 
 | 	struct nvme_fc_cmd_iu	cmd_iu; | 
 | 	struct nvme_fc_ersp_iu	rsp_iu; | 
 | }; | 
 |  | 
 | struct nvme_fc_lport { | 
 | 	struct nvme_fc_local_port	localport; | 
 |  | 
 | 	struct ida			endp_cnt; | 
 | 	struct list_head		port_list;	/* nvme_fc_port_list */ | 
 | 	struct list_head		endp_list; | 
 | 	struct device			*dev;	/* physical device for dma */ | 
 | 	struct nvme_fc_port_template	*ops; | 
 | 	struct kref			ref; | 
 | 	atomic_t                        act_rport_cnt; | 
 | } __aligned(sizeof(u64));	/* alignment for other things alloc'd with */ | 
 |  | 
 | struct nvme_fc_rport { | 
 | 	struct nvme_fc_remote_port	remoteport; | 
 |  | 
 | 	struct list_head		endp_list; /* for lport->endp_list */ | 
 | 	struct list_head		ctrl_list; | 
 | 	struct list_head		ls_req_list; | 
 | 	struct device			*dev;	/* physical device for dma */ | 
 | 	struct nvme_fc_lport		*lport; | 
 | 	spinlock_t			lock; | 
 | 	struct kref			ref; | 
 | 	atomic_t                        act_ctrl_cnt; | 
 | 	unsigned long			dev_loss_end; | 
 | } __aligned(sizeof(u64));	/* alignment for other things alloc'd with */ | 
 |  | 
 | enum nvme_fcctrl_flags { | 
 | 	FCCTRL_TERMIO		= (1 << 0), | 
 | }; | 
 |  | 
 | struct nvme_fc_ctrl { | 
 | 	spinlock_t		lock; | 
 | 	struct nvme_fc_queue	*queues; | 
 | 	struct device		*dev; | 
 | 	struct nvme_fc_lport	*lport; | 
 | 	struct nvme_fc_rport	*rport; | 
 | 	u32			cnum; | 
 |  | 
 | 	bool			assoc_active; | 
 | 	u64			association_id; | 
 |  | 
 | 	struct list_head	ctrl_list;	/* rport->ctrl_list */ | 
 |  | 
 | 	struct blk_mq_tag_set	admin_tag_set; | 
 | 	struct blk_mq_tag_set	tag_set; | 
 |  | 
 | 	struct delayed_work	connect_work; | 
 |  | 
 | 	struct kref		ref; | 
 | 	u32			flags; | 
 | 	u32			iocnt; | 
 | 	wait_queue_head_t	ioabort_wait; | 
 |  | 
 | 	struct nvme_fc_fcp_op	aen_ops[NVME_NR_AEN_COMMANDS]; | 
 |  | 
 | 	struct nvme_ctrl	ctrl; | 
 | }; | 
 |  | 
 | static inline struct nvme_fc_ctrl * | 
 | to_fc_ctrl(struct nvme_ctrl *ctrl) | 
 | { | 
 | 	return container_of(ctrl, struct nvme_fc_ctrl, ctrl); | 
 | } | 
 |  | 
 | static inline struct nvme_fc_lport * | 
 | localport_to_lport(struct nvme_fc_local_port *portptr) | 
 | { | 
 | 	return container_of(portptr, struct nvme_fc_lport, localport); | 
 | } | 
 |  | 
 | static inline struct nvme_fc_rport * | 
 | remoteport_to_rport(struct nvme_fc_remote_port *portptr) | 
 | { | 
 | 	return container_of(portptr, struct nvme_fc_rport, remoteport); | 
 | } | 
 |  | 
 | static inline struct nvmefc_ls_req_op * | 
 | ls_req_to_lsop(struct nvmefc_ls_req *lsreq) | 
 | { | 
 | 	return container_of(lsreq, struct nvmefc_ls_req_op, ls_req); | 
 | } | 
 |  | 
 | static inline struct nvme_fc_fcp_op * | 
 | fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq) | 
 | { | 
 | 	return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req); | 
 | } | 
 |  | 
 |  | 
 |  | 
 | /* *************************** Globals **************************** */ | 
 |  | 
 |  | 
 | static DEFINE_SPINLOCK(nvme_fc_lock); | 
 |  | 
 | static LIST_HEAD(nvme_fc_lport_list); | 
 | static DEFINE_IDA(nvme_fc_local_port_cnt); | 
 | static DEFINE_IDA(nvme_fc_ctrl_cnt); | 
 |  | 
 |  | 
 |  | 
 | /* | 
 |  * These items are short-term. They will eventually be moved into | 
 |  * a generic FC class. See comments in module init. | 
 |  */ | 
 | static struct class *fc_class; | 
 | static struct device *fc_udev_device; | 
 |  | 
 |  | 
 | /* *********************** FC-NVME Port Management ************************ */ | 
 |  | 
 | static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *, | 
 | 			struct nvme_fc_queue *, unsigned int); | 
 |  | 
 | static void | 
 | nvme_fc_free_lport(struct kref *ref) | 
 | { | 
 | 	struct nvme_fc_lport *lport = | 
 | 		container_of(ref, struct nvme_fc_lport, ref); | 
 | 	unsigned long flags; | 
 |  | 
 | 	WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED); | 
 | 	WARN_ON(!list_empty(&lport->endp_list)); | 
 |  | 
 | 	/* remove from transport list */ | 
 | 	spin_lock_irqsave(&nvme_fc_lock, flags); | 
 | 	list_del(&lport->port_list); | 
 | 	spin_unlock_irqrestore(&nvme_fc_lock, flags); | 
 |  | 
 | 	ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num); | 
 | 	ida_destroy(&lport->endp_cnt); | 
 |  | 
 | 	put_device(lport->dev); | 
 |  | 
 | 	kfree(lport); | 
 | } | 
 |  | 
 | static void | 
 | nvme_fc_lport_put(struct nvme_fc_lport *lport) | 
 | { | 
 | 	kref_put(&lport->ref, nvme_fc_free_lport); | 
 | } | 
 |  | 
 | static int | 
 | nvme_fc_lport_get(struct nvme_fc_lport *lport) | 
 | { | 
 | 	return kref_get_unless_zero(&lport->ref); | 
 | } | 
 |  | 
 |  | 
 | static struct nvme_fc_lport * | 
 | nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo, | 
 | 			struct nvme_fc_port_template *ops, | 
 | 			struct device *dev) | 
 | { | 
 | 	struct nvme_fc_lport *lport; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&nvme_fc_lock, flags); | 
 |  | 
 | 	list_for_each_entry(lport, &nvme_fc_lport_list, port_list) { | 
 | 		if (lport->localport.node_name != pinfo->node_name || | 
 | 		    lport->localport.port_name != pinfo->port_name) | 
 | 			continue; | 
 |  | 
 | 		if (lport->dev != dev) { | 
 | 			lport = ERR_PTR(-EXDEV); | 
 | 			goto out_done; | 
 | 		} | 
 |  | 
 | 		if (lport->localport.port_state != FC_OBJSTATE_DELETED) { | 
 | 			lport = ERR_PTR(-EEXIST); | 
 | 			goto out_done; | 
 | 		} | 
 |  | 
 | 		if (!nvme_fc_lport_get(lport)) { | 
 | 			/* | 
 | 			 * fails if ref cnt already 0. If so, | 
 | 			 * act as if lport already deleted | 
 | 			 */ | 
 | 			lport = NULL; | 
 | 			goto out_done; | 
 | 		} | 
 |  | 
 | 		/* resume the lport */ | 
 |  | 
 | 		lport->ops = ops; | 
 | 		lport->localport.port_role = pinfo->port_role; | 
 | 		lport->localport.port_id = pinfo->port_id; | 
 | 		lport->localport.port_state = FC_OBJSTATE_ONLINE; | 
 |  | 
 | 		spin_unlock_irqrestore(&nvme_fc_lock, flags); | 
 |  | 
 | 		return lport; | 
 | 	} | 
 |  | 
 | 	lport = NULL; | 
 |  | 
 | out_done: | 
 | 	spin_unlock_irqrestore(&nvme_fc_lock, flags); | 
 |  | 
 | 	return lport; | 
 | } | 
 |  | 
 | /** | 
 |  * nvme_fc_register_localport - transport entry point called by an | 
 |  *                              LLDD to register the existence of a NVME | 
 |  *                              host FC port. | 
 |  * @pinfo:     pointer to information about the port to be registered | 
 |  * @template:  LLDD entrypoints and operational parameters for the port | 
 |  * @dev:       physical hardware device node port corresponds to. Will be | 
 |  *             used for DMA mappings | 
 |  * @lport_p:   pointer to a local port pointer. Upon success, the routine | 
 |  *             will allocate a nvme_fc_local_port structure and place its | 
 |  *             address in the local port pointer. Upon failure, local port | 
 |  *             pointer will be set to 0. | 
 |  * | 
 |  * Returns: | 
 |  * a completion status. Must be 0 upon success; a negative errno | 
 |  * (ex: -ENXIO) upon failure. | 
 |  */ | 
 | int | 
 | nvme_fc_register_localport(struct nvme_fc_port_info *pinfo, | 
 | 			struct nvme_fc_port_template *template, | 
 | 			struct device *dev, | 
 | 			struct nvme_fc_local_port **portptr) | 
 | { | 
 | 	struct nvme_fc_lport *newrec; | 
 | 	unsigned long flags; | 
 | 	int ret, idx; | 
 |  | 
 | 	if (!template->localport_delete || !template->remoteport_delete || | 
 | 	    !template->ls_req || !template->fcp_io || | 
 | 	    !template->ls_abort || !template->fcp_abort || | 
 | 	    !template->max_hw_queues || !template->max_sgl_segments || | 
 | 	    !template->max_dif_sgl_segments || !template->dma_boundary) { | 
 | 		ret = -EINVAL; | 
 | 		goto out_reghost_failed; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * look to see if there is already a localport that had been | 
 | 	 * deregistered and in the process of waiting for all the | 
 | 	 * references to fully be removed.  If the references haven't | 
 | 	 * expired, we can simply re-enable the localport. Remoteports | 
 | 	 * and controller reconnections should resume naturally. | 
 | 	 */ | 
 | 	newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev); | 
 |  | 
 | 	/* found an lport, but something about its state is bad */ | 
 | 	if (IS_ERR(newrec)) { | 
 | 		ret = PTR_ERR(newrec); | 
 | 		goto out_reghost_failed; | 
 |  | 
 | 	/* found existing lport, which was resumed */ | 
 | 	} else if (newrec) { | 
 | 		*portptr = &newrec->localport; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* nothing found - allocate a new localport struct */ | 
 |  | 
 | 	newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz), | 
 | 			 GFP_KERNEL); | 
 | 	if (!newrec) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out_reghost_failed; | 
 | 	} | 
 |  | 
 | 	idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL); | 
 | 	if (idx < 0) { | 
 | 		ret = -ENOSPC; | 
 | 		goto out_fail_kfree; | 
 | 	} | 
 |  | 
 | 	if (!get_device(dev) && dev) { | 
 | 		ret = -ENODEV; | 
 | 		goto out_ida_put; | 
 | 	} | 
 |  | 
 | 	INIT_LIST_HEAD(&newrec->port_list); | 
 | 	INIT_LIST_HEAD(&newrec->endp_list); | 
 | 	kref_init(&newrec->ref); | 
 | 	atomic_set(&newrec->act_rport_cnt, 0); | 
 | 	newrec->ops = template; | 
 | 	newrec->dev = dev; | 
 | 	ida_init(&newrec->endp_cnt); | 
 | 	newrec->localport.private = &newrec[1]; | 
 | 	newrec->localport.node_name = pinfo->node_name; | 
 | 	newrec->localport.port_name = pinfo->port_name; | 
 | 	newrec->localport.port_role = pinfo->port_role; | 
 | 	newrec->localport.port_id = pinfo->port_id; | 
 | 	newrec->localport.port_state = FC_OBJSTATE_ONLINE; | 
 | 	newrec->localport.port_num = idx; | 
 |  | 
 | 	spin_lock_irqsave(&nvme_fc_lock, flags); | 
 | 	list_add_tail(&newrec->port_list, &nvme_fc_lport_list); | 
 | 	spin_unlock_irqrestore(&nvme_fc_lock, flags); | 
 |  | 
 | 	if (dev) | 
 | 		dma_set_seg_boundary(dev, template->dma_boundary); | 
 |  | 
 | 	*portptr = &newrec->localport; | 
 | 	return 0; | 
 |  | 
 | out_ida_put: | 
 | 	ida_simple_remove(&nvme_fc_local_port_cnt, idx); | 
 | out_fail_kfree: | 
 | 	kfree(newrec); | 
 | out_reghost_failed: | 
 | 	*portptr = NULL; | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(nvme_fc_register_localport); | 
 |  | 
 | /** | 
 |  * nvme_fc_unregister_localport - transport entry point called by an | 
 |  *                              LLDD to deregister/remove a previously | 
 |  *                              registered a NVME host FC port. | 
 |  * @localport: pointer to the (registered) local port that is to be | 
 |  *             deregistered. | 
 |  * | 
 |  * Returns: | 
 |  * a completion status. Must be 0 upon success; a negative errno | 
 |  * (ex: -ENXIO) upon failure. | 
 |  */ | 
 | int | 
 | nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr) | 
 | { | 
 | 	struct nvme_fc_lport *lport = localport_to_lport(portptr); | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (!portptr) | 
 | 		return -EINVAL; | 
 |  | 
 | 	spin_lock_irqsave(&nvme_fc_lock, flags); | 
 |  | 
 | 	if (portptr->port_state != FC_OBJSTATE_ONLINE) { | 
 | 		spin_unlock_irqrestore(&nvme_fc_lock, flags); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	portptr->port_state = FC_OBJSTATE_DELETED; | 
 |  | 
 | 	spin_unlock_irqrestore(&nvme_fc_lock, flags); | 
 |  | 
 | 	if (atomic_read(&lport->act_rport_cnt) == 0) | 
 | 		lport->ops->localport_delete(&lport->localport); | 
 |  | 
 | 	nvme_fc_lport_put(lport); | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport); | 
 |  | 
 | /* | 
 |  * TRADDR strings, per FC-NVME are fixed format: | 
 |  *   "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters | 
 |  * udev event will only differ by prefix of what field is | 
 |  * being specified: | 
 |  *    "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters | 
 |  *  19 + 43 + null_fudge = 64 characters | 
 |  */ | 
 | #define FCNVME_TRADDR_LENGTH		64 | 
 |  | 
 | static void | 
 | nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport, | 
 | 		struct nvme_fc_rport *rport) | 
 | { | 
 | 	char hostaddr[FCNVME_TRADDR_LENGTH];	/* NVMEFC_HOST_TRADDR=...*/ | 
 | 	char tgtaddr[FCNVME_TRADDR_LENGTH];	/* NVMEFC_TRADDR=...*/ | 
 | 	char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL }; | 
 |  | 
 | 	if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY)) | 
 | 		return; | 
 |  | 
 | 	snprintf(hostaddr, sizeof(hostaddr), | 
 | 		"NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx", | 
 | 		lport->localport.node_name, lport->localport.port_name); | 
 | 	snprintf(tgtaddr, sizeof(tgtaddr), | 
 | 		"NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx", | 
 | 		rport->remoteport.node_name, rport->remoteport.port_name); | 
 | 	kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp); | 
 | } | 
 |  | 
 | static void | 
 | nvme_fc_free_rport(struct kref *ref) | 
 | { | 
 | 	struct nvme_fc_rport *rport = | 
 | 		container_of(ref, struct nvme_fc_rport, ref); | 
 | 	struct nvme_fc_lport *lport = | 
 | 			localport_to_lport(rport->remoteport.localport); | 
 | 	unsigned long flags; | 
 |  | 
 | 	WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED); | 
 | 	WARN_ON(!list_empty(&rport->ctrl_list)); | 
 |  | 
 | 	/* remove from lport list */ | 
 | 	spin_lock_irqsave(&nvme_fc_lock, flags); | 
 | 	list_del(&rport->endp_list); | 
 | 	spin_unlock_irqrestore(&nvme_fc_lock, flags); | 
 |  | 
 | 	ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num); | 
 |  | 
 | 	kfree(rport); | 
 |  | 
 | 	nvme_fc_lport_put(lport); | 
 | } | 
 |  | 
 | static void | 
 | nvme_fc_rport_put(struct nvme_fc_rport *rport) | 
 | { | 
 | 	kref_put(&rport->ref, nvme_fc_free_rport); | 
 | } | 
 |  | 
 | static int | 
 | nvme_fc_rport_get(struct nvme_fc_rport *rport) | 
 | { | 
 | 	return kref_get_unless_zero(&rport->ref); | 
 | } | 
 |  | 
 | static void | 
 | nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl) | 
 | { | 
 | 	switch (ctrl->ctrl.state) { | 
 | 	case NVME_CTRL_NEW: | 
 | 	case NVME_CTRL_RECONNECTING: | 
 | 		/* | 
 | 		 * As all reconnects were suppressed, schedule a | 
 | 		 * connect. | 
 | 		 */ | 
 | 		dev_info(ctrl->ctrl.device, | 
 | 			"NVME-FC{%d}: connectivity re-established. " | 
 | 			"Attempting reconnect\n", ctrl->cnum); | 
 |  | 
 | 		queue_delayed_work(nvme_wq, &ctrl->connect_work, 0); | 
 | 		break; | 
 |  | 
 | 	case NVME_CTRL_RESETTING: | 
 | 		/* | 
 | 		 * Controller is already in the process of terminating the | 
 | 		 * association. No need to do anything further. The reconnect | 
 | 		 * step will naturally occur after the reset completes. | 
 | 		 */ | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		/* no action to take - let it delete */ | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | static struct nvme_fc_rport * | 
 | nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport, | 
 | 				struct nvme_fc_port_info *pinfo) | 
 | { | 
 | 	struct nvme_fc_rport *rport; | 
 | 	struct nvme_fc_ctrl *ctrl; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&nvme_fc_lock, flags); | 
 |  | 
 | 	list_for_each_entry(rport, &lport->endp_list, endp_list) { | 
 | 		if (rport->remoteport.node_name != pinfo->node_name || | 
 | 		    rport->remoteport.port_name != pinfo->port_name) | 
 | 			continue; | 
 |  | 
 | 		if (!nvme_fc_rport_get(rport)) { | 
 | 			rport = ERR_PTR(-ENOLCK); | 
 | 			goto out_done; | 
 | 		} | 
 |  | 
 | 		spin_unlock_irqrestore(&nvme_fc_lock, flags); | 
 |  | 
 | 		spin_lock_irqsave(&rport->lock, flags); | 
 |  | 
 | 		/* has it been unregistered */ | 
 | 		if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) { | 
 | 			/* means lldd called us twice */ | 
 | 			spin_unlock_irqrestore(&rport->lock, flags); | 
 | 			nvme_fc_rport_put(rport); | 
 | 			return ERR_PTR(-ESTALE); | 
 | 		} | 
 |  | 
 | 		rport->remoteport.port_state = FC_OBJSTATE_ONLINE; | 
 | 		rport->dev_loss_end = 0; | 
 |  | 
 | 		/* | 
 | 		 * kick off a reconnect attempt on all associations to the | 
 | 		 * remote port. A successful reconnects will resume i/o. | 
 | 		 */ | 
 | 		list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) | 
 | 			nvme_fc_resume_controller(ctrl); | 
 |  | 
 | 		spin_unlock_irqrestore(&rport->lock, flags); | 
 |  | 
 | 		return rport; | 
 | 	} | 
 |  | 
 | 	rport = NULL; | 
 |  | 
 | out_done: | 
 | 	spin_unlock_irqrestore(&nvme_fc_lock, flags); | 
 |  | 
 | 	return rport; | 
 | } | 
 |  | 
 | static inline void | 
 | __nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport, | 
 | 			struct nvme_fc_port_info *pinfo) | 
 | { | 
 | 	if (pinfo->dev_loss_tmo) | 
 | 		rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo; | 
 | 	else | 
 | 		rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO; | 
 | } | 
 |  | 
 | /** | 
 |  * nvme_fc_register_remoteport - transport entry point called by an | 
 |  *                              LLDD to register the existence of a NVME | 
 |  *                              subsystem FC port on its fabric. | 
 |  * @localport: pointer to the (registered) local port that the remote | 
 |  *             subsystem port is connected to. | 
 |  * @pinfo:     pointer to information about the port to be registered | 
 |  * @rport_p:   pointer to a remote port pointer. Upon success, the routine | 
 |  *             will allocate a nvme_fc_remote_port structure and place its | 
 |  *             address in the remote port pointer. Upon failure, remote port | 
 |  *             pointer will be set to 0. | 
 |  * | 
 |  * Returns: | 
 |  * a completion status. Must be 0 upon success; a negative errno | 
 |  * (ex: -ENXIO) upon failure. | 
 |  */ | 
 | int | 
 | nvme_fc_register_remoteport(struct nvme_fc_local_port *localport, | 
 | 				struct nvme_fc_port_info *pinfo, | 
 | 				struct nvme_fc_remote_port **portptr) | 
 | { | 
 | 	struct nvme_fc_lport *lport = localport_to_lport(localport); | 
 | 	struct nvme_fc_rport *newrec; | 
 | 	unsigned long flags; | 
 | 	int ret, idx; | 
 |  | 
 | 	if (!nvme_fc_lport_get(lport)) { | 
 | 		ret = -ESHUTDOWN; | 
 | 		goto out_reghost_failed; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * look to see if there is already a remoteport that is waiting | 
 | 	 * for a reconnect (within dev_loss_tmo) with the same WWN's. | 
 | 	 * If so, transition to it and reconnect. | 
 | 	 */ | 
 | 	newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo); | 
 |  | 
 | 	/* found an rport, but something about its state is bad */ | 
 | 	if (IS_ERR(newrec)) { | 
 | 		ret = PTR_ERR(newrec); | 
 | 		goto out_lport_put; | 
 |  | 
 | 	/* found existing rport, which was resumed */ | 
 | 	} else if (newrec) { | 
 | 		nvme_fc_lport_put(lport); | 
 | 		__nvme_fc_set_dev_loss_tmo(newrec, pinfo); | 
 | 		nvme_fc_signal_discovery_scan(lport, newrec); | 
 | 		*portptr = &newrec->remoteport; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* nothing found - allocate a new remoteport struct */ | 
 |  | 
 | 	newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz), | 
 | 			 GFP_KERNEL); | 
 | 	if (!newrec) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out_lport_put; | 
 | 	} | 
 |  | 
 | 	idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL); | 
 | 	if (idx < 0) { | 
 | 		ret = -ENOSPC; | 
 | 		goto out_kfree_rport; | 
 | 	} | 
 |  | 
 | 	INIT_LIST_HEAD(&newrec->endp_list); | 
 | 	INIT_LIST_HEAD(&newrec->ctrl_list); | 
 | 	INIT_LIST_HEAD(&newrec->ls_req_list); | 
 | 	kref_init(&newrec->ref); | 
 | 	atomic_set(&newrec->act_ctrl_cnt, 0); | 
 | 	spin_lock_init(&newrec->lock); | 
 | 	newrec->remoteport.localport = &lport->localport; | 
 | 	newrec->dev = lport->dev; | 
 | 	newrec->lport = lport; | 
 | 	newrec->remoteport.private = &newrec[1]; | 
 | 	newrec->remoteport.port_role = pinfo->port_role; | 
 | 	newrec->remoteport.node_name = pinfo->node_name; | 
 | 	newrec->remoteport.port_name = pinfo->port_name; | 
 | 	newrec->remoteport.port_id = pinfo->port_id; | 
 | 	newrec->remoteport.port_state = FC_OBJSTATE_ONLINE; | 
 | 	newrec->remoteport.port_num = idx; | 
 | 	__nvme_fc_set_dev_loss_tmo(newrec, pinfo); | 
 |  | 
 | 	spin_lock_irqsave(&nvme_fc_lock, flags); | 
 | 	list_add_tail(&newrec->endp_list, &lport->endp_list); | 
 | 	spin_unlock_irqrestore(&nvme_fc_lock, flags); | 
 |  | 
 | 	nvme_fc_signal_discovery_scan(lport, newrec); | 
 |  | 
 | 	*portptr = &newrec->remoteport; | 
 | 	return 0; | 
 |  | 
 | out_kfree_rport: | 
 | 	kfree(newrec); | 
 | out_lport_put: | 
 | 	nvme_fc_lport_put(lport); | 
 | out_reghost_failed: | 
 | 	*portptr = NULL; | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport); | 
 |  | 
 | static int | 
 | nvme_fc_abort_lsops(struct nvme_fc_rport *rport) | 
 | { | 
 | 	struct nvmefc_ls_req_op *lsop; | 
 | 	unsigned long flags; | 
 |  | 
 | restart: | 
 | 	spin_lock_irqsave(&rport->lock, flags); | 
 |  | 
 | 	list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) { | 
 | 		if (!(lsop->flags & FCOP_FLAGS_TERMIO)) { | 
 | 			lsop->flags |= FCOP_FLAGS_TERMIO; | 
 | 			spin_unlock_irqrestore(&rport->lock, flags); | 
 | 			rport->lport->ops->ls_abort(&rport->lport->localport, | 
 | 						&rport->remoteport, | 
 | 						&lsop->ls_req); | 
 | 			goto restart; | 
 | 		} | 
 | 	} | 
 | 	spin_unlock_irqrestore(&rport->lock, flags); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void | 
 | nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl) | 
 | { | 
 | 	dev_info(ctrl->ctrl.device, | 
 | 		"NVME-FC{%d}: controller connectivity lost. Awaiting " | 
 | 		"Reconnect", ctrl->cnum); | 
 |  | 
 | 	switch (ctrl->ctrl.state) { | 
 | 	case NVME_CTRL_NEW: | 
 | 	case NVME_CTRL_LIVE: | 
 | 		/* | 
 | 		 * Schedule a controller reset. The reset will terminate the | 
 | 		 * association and schedule the reconnect timer.  Reconnects | 
 | 		 * will be attempted until either the ctlr_loss_tmo | 
 | 		 * (max_retries * connect_delay) expires or the remoteport's | 
 | 		 * dev_loss_tmo expires. | 
 | 		 */ | 
 | 		if (nvme_reset_ctrl(&ctrl->ctrl)) { | 
 | 			dev_warn(ctrl->ctrl.device, | 
 | 				"NVME-FC{%d}: Couldn't schedule reset. " | 
 | 				"Deleting controller.\n", | 
 | 				ctrl->cnum); | 
 | 			nvme_delete_ctrl(&ctrl->ctrl); | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	case NVME_CTRL_RECONNECTING: | 
 | 		/* | 
 | 		 * The association has already been terminated and the | 
 | 		 * controller is attempting reconnects.  No need to do anything | 
 | 		 * futher.  Reconnects will be attempted until either the | 
 | 		 * ctlr_loss_tmo (max_retries * connect_delay) expires or the | 
 | 		 * remoteport's dev_loss_tmo expires. | 
 | 		 */ | 
 | 		break; | 
 |  | 
 | 	case NVME_CTRL_RESETTING: | 
 | 		/* | 
 | 		 * Controller is already in the process of terminating the | 
 | 		 * association.  No need to do anything further. The reconnect | 
 | 		 * step will kick in naturally after the association is | 
 | 		 * terminated. | 
 | 		 */ | 
 | 		break; | 
 |  | 
 | 	case NVME_CTRL_DELETING: | 
 | 	default: | 
 | 		/* no action to take - let it delete */ | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * nvme_fc_unregister_remoteport - transport entry point called by an | 
 |  *                              LLDD to deregister/remove a previously | 
 |  *                              registered a NVME subsystem FC port. | 
 |  * @remoteport: pointer to the (registered) remote port that is to be | 
 |  *              deregistered. | 
 |  * | 
 |  * Returns: | 
 |  * a completion status. Must be 0 upon success; a negative errno | 
 |  * (ex: -ENXIO) upon failure. | 
 |  */ | 
 | int | 
 | nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr) | 
 | { | 
 | 	struct nvme_fc_rport *rport = remoteport_to_rport(portptr); | 
 | 	struct nvme_fc_ctrl *ctrl; | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (!portptr) | 
 | 		return -EINVAL; | 
 |  | 
 | 	spin_lock_irqsave(&rport->lock, flags); | 
 |  | 
 | 	if (portptr->port_state != FC_OBJSTATE_ONLINE) { | 
 | 		spin_unlock_irqrestore(&rport->lock, flags); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	portptr->port_state = FC_OBJSTATE_DELETED; | 
 |  | 
 | 	rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ); | 
 |  | 
 | 	list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) { | 
 | 		/* if dev_loss_tmo==0, dev loss is immediate */ | 
 | 		if (!portptr->dev_loss_tmo) { | 
 | 			dev_warn(ctrl->ctrl.device, | 
 | 				"NVME-FC{%d}: controller connectivity lost. " | 
 | 				"Deleting controller.\n", | 
 | 				ctrl->cnum); | 
 | 			nvme_delete_ctrl(&ctrl->ctrl); | 
 | 		} else | 
 | 			nvme_fc_ctrl_connectivity_loss(ctrl); | 
 | 	} | 
 |  | 
 | 	spin_unlock_irqrestore(&rport->lock, flags); | 
 |  | 
 | 	nvme_fc_abort_lsops(rport); | 
 |  | 
 | 	if (atomic_read(&rport->act_ctrl_cnt) == 0) | 
 | 		rport->lport->ops->remoteport_delete(portptr); | 
 |  | 
 | 	/* | 
 | 	 * release the reference, which will allow, if all controllers | 
 | 	 * go away, which should only occur after dev_loss_tmo occurs, | 
 | 	 * for the rport to be torn down. | 
 | 	 */ | 
 | 	nvme_fc_rport_put(rport); | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport); | 
 |  | 
 | /** | 
 |  * nvme_fc_rescan_remoteport - transport entry point called by an | 
 |  *                              LLDD to request a nvme device rescan. | 
 |  * @remoteport: pointer to the (registered) remote port that is to be | 
 |  *              rescanned. | 
 |  * | 
 |  * Returns: N/A | 
 |  */ | 
 | void | 
 | nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport) | 
 | { | 
 | 	struct nvme_fc_rport *rport = remoteport_to_rport(remoteport); | 
 |  | 
 | 	nvme_fc_signal_discovery_scan(rport->lport, rport); | 
 | } | 
 | EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport); | 
 |  | 
 | int | 
 | nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr, | 
 | 			u32 dev_loss_tmo) | 
 | { | 
 | 	struct nvme_fc_rport *rport = remoteport_to_rport(portptr); | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&rport->lock, flags); | 
 |  | 
 | 	if (portptr->port_state != FC_OBJSTATE_ONLINE) { | 
 | 		spin_unlock_irqrestore(&rport->lock, flags); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* a dev_loss_tmo of 0 (immediate) is allowed to be set */ | 
 | 	rport->remoteport.dev_loss_tmo = dev_loss_tmo; | 
 |  | 
 | 	spin_unlock_irqrestore(&rport->lock, flags); | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss); | 
 |  | 
 |  | 
 | /* *********************** FC-NVME DMA Handling **************************** */ | 
 |  | 
 | /* | 
 |  * The fcloop device passes in a NULL device pointer. Real LLD's will | 
 |  * pass in a valid device pointer. If NULL is passed to the dma mapping | 
 |  * routines, depending on the platform, it may or may not succeed, and | 
 |  * may crash. | 
 |  * | 
 |  * As such: | 
 |  * Wrapper all the dma routines and check the dev pointer. | 
 |  * | 
 |  * If simple mappings (return just a dma address, we'll noop them, | 
 |  * returning a dma address of 0. | 
 |  * | 
 |  * On more complex mappings (dma_map_sg), a pseudo routine fills | 
 |  * in the scatter list, setting all dma addresses to 0. | 
 |  */ | 
 |  | 
 | static inline dma_addr_t | 
 | fc_dma_map_single(struct device *dev, void *ptr, size_t size, | 
 | 		enum dma_data_direction dir) | 
 | { | 
 | 	return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L; | 
 | } | 
 |  | 
 | static inline int | 
 | fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) | 
 | { | 
 | 	return dev ? dma_mapping_error(dev, dma_addr) : 0; | 
 | } | 
 |  | 
 | static inline void | 
 | fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size, | 
 | 	enum dma_data_direction dir) | 
 | { | 
 | 	if (dev) | 
 | 		dma_unmap_single(dev, addr, size, dir); | 
 | } | 
 |  | 
 | static inline void | 
 | fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size, | 
 | 		enum dma_data_direction dir) | 
 | { | 
 | 	if (dev) | 
 | 		dma_sync_single_for_cpu(dev, addr, size, dir); | 
 | } | 
 |  | 
 | static inline void | 
 | fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size, | 
 | 		enum dma_data_direction dir) | 
 | { | 
 | 	if (dev) | 
 | 		dma_sync_single_for_device(dev, addr, size, dir); | 
 | } | 
 |  | 
 | /* pseudo dma_map_sg call */ | 
 | static int | 
 | fc_map_sg(struct scatterlist *sg, int nents) | 
 | { | 
 | 	struct scatterlist *s; | 
 | 	int i; | 
 |  | 
 | 	WARN_ON(nents == 0 || sg[0].length == 0); | 
 |  | 
 | 	for_each_sg(sg, s, nents, i) { | 
 | 		s->dma_address = 0L; | 
 | #ifdef CONFIG_NEED_SG_DMA_LENGTH | 
 | 		s->dma_length = s->length; | 
 | #endif | 
 | 	} | 
 | 	return nents; | 
 | } | 
 |  | 
 | static inline int | 
 | fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, | 
 | 		enum dma_data_direction dir) | 
 | { | 
 | 	return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents); | 
 | } | 
 |  | 
 | static inline void | 
 | fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, | 
 | 		enum dma_data_direction dir) | 
 | { | 
 | 	if (dev) | 
 | 		dma_unmap_sg(dev, sg, nents, dir); | 
 | } | 
 |  | 
 | /* *********************** FC-NVME LS Handling **************************** */ | 
 |  | 
 | static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *); | 
 | static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *); | 
 |  | 
 |  | 
 | static void | 
 | __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop) | 
 | { | 
 | 	struct nvme_fc_rport *rport = lsop->rport; | 
 | 	struct nvmefc_ls_req *lsreq = &lsop->ls_req; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&rport->lock, flags); | 
 |  | 
 | 	if (!lsop->req_queued) { | 
 | 		spin_unlock_irqrestore(&rport->lock, flags); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	list_del(&lsop->lsreq_list); | 
 |  | 
 | 	lsop->req_queued = false; | 
 |  | 
 | 	spin_unlock_irqrestore(&rport->lock, flags); | 
 |  | 
 | 	fc_dma_unmap_single(rport->dev, lsreq->rqstdma, | 
 | 				  (lsreq->rqstlen + lsreq->rsplen), | 
 | 				  DMA_BIDIRECTIONAL); | 
 |  | 
 | 	nvme_fc_rport_put(rport); | 
 | } | 
 |  | 
 | static int | 
 | __nvme_fc_send_ls_req(struct nvme_fc_rport *rport, | 
 | 		struct nvmefc_ls_req_op *lsop, | 
 | 		void (*done)(struct nvmefc_ls_req *req, int status)) | 
 | { | 
 | 	struct nvmefc_ls_req *lsreq = &lsop->ls_req; | 
 | 	unsigned long flags; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE) | 
 | 		return -ECONNREFUSED; | 
 |  | 
 | 	if (!nvme_fc_rport_get(rport)) | 
 | 		return -ESHUTDOWN; | 
 |  | 
 | 	lsreq->done = done; | 
 | 	lsop->rport = rport; | 
 | 	lsop->req_queued = false; | 
 | 	INIT_LIST_HEAD(&lsop->lsreq_list); | 
 | 	init_completion(&lsop->ls_done); | 
 |  | 
 | 	lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr, | 
 | 				  lsreq->rqstlen + lsreq->rsplen, | 
 | 				  DMA_BIDIRECTIONAL); | 
 | 	if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) { | 
 | 		ret = -EFAULT; | 
 | 		goto out_putrport; | 
 | 	} | 
 | 	lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen; | 
 |  | 
 | 	spin_lock_irqsave(&rport->lock, flags); | 
 |  | 
 | 	list_add_tail(&lsop->lsreq_list, &rport->ls_req_list); | 
 |  | 
 | 	lsop->req_queued = true; | 
 |  | 
 | 	spin_unlock_irqrestore(&rport->lock, flags); | 
 |  | 
 | 	ret = rport->lport->ops->ls_req(&rport->lport->localport, | 
 | 					&rport->remoteport, lsreq); | 
 | 	if (ret) | 
 | 		goto out_unlink; | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_unlink: | 
 | 	lsop->ls_error = ret; | 
 | 	spin_lock_irqsave(&rport->lock, flags); | 
 | 	lsop->req_queued = false; | 
 | 	list_del(&lsop->lsreq_list); | 
 | 	spin_unlock_irqrestore(&rport->lock, flags); | 
 | 	fc_dma_unmap_single(rport->dev, lsreq->rqstdma, | 
 | 				  (lsreq->rqstlen + lsreq->rsplen), | 
 | 				  DMA_BIDIRECTIONAL); | 
 | out_putrport: | 
 | 	nvme_fc_rport_put(rport); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void | 
 | nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status) | 
 | { | 
 | 	struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq); | 
 |  | 
 | 	lsop->ls_error = status; | 
 | 	complete(&lsop->ls_done); | 
 | } | 
 |  | 
 | static int | 
 | nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop) | 
 | { | 
 | 	struct nvmefc_ls_req *lsreq = &lsop->ls_req; | 
 | 	struct fcnvme_ls_rjt *rjt = lsreq->rspaddr; | 
 | 	int ret; | 
 |  | 
 | 	ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done); | 
 |  | 
 | 	if (!ret) { | 
 | 		/* | 
 | 		 * No timeout/not interruptible as we need the struct | 
 | 		 * to exist until the lldd calls us back. Thus mandate | 
 | 		 * wait until driver calls back. lldd responsible for | 
 | 		 * the timeout action | 
 | 		 */ | 
 | 		wait_for_completion(&lsop->ls_done); | 
 |  | 
 | 		__nvme_fc_finish_ls_req(lsop); | 
 |  | 
 | 		ret = lsop->ls_error; | 
 | 	} | 
 |  | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	/* ACC or RJT payload ? */ | 
 | 	if (rjt->w0.ls_cmd == FCNVME_LS_RJT) | 
 | 		return -ENXIO; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport, | 
 | 		struct nvmefc_ls_req_op *lsop, | 
 | 		void (*done)(struct nvmefc_ls_req *req, int status)) | 
 | { | 
 | 	/* don't wait for completion */ | 
 |  | 
 | 	return __nvme_fc_send_ls_req(rport, lsop, done); | 
 | } | 
 |  | 
 | /* Validation Error indexes into the string table below */ | 
 | enum { | 
 | 	VERR_NO_ERROR		= 0, | 
 | 	VERR_LSACC		= 1, | 
 | 	VERR_LSDESC_RQST	= 2, | 
 | 	VERR_LSDESC_RQST_LEN	= 3, | 
 | 	VERR_ASSOC_ID		= 4, | 
 | 	VERR_ASSOC_ID_LEN	= 5, | 
 | 	VERR_CONN_ID		= 6, | 
 | 	VERR_CONN_ID_LEN	= 7, | 
 | 	VERR_CR_ASSOC		= 8, | 
 | 	VERR_CR_ASSOC_ACC_LEN	= 9, | 
 | 	VERR_CR_CONN		= 10, | 
 | 	VERR_CR_CONN_ACC_LEN	= 11, | 
 | 	VERR_DISCONN		= 12, | 
 | 	VERR_DISCONN_ACC_LEN	= 13, | 
 | }; | 
 |  | 
 | static char *validation_errors[] = { | 
 | 	"OK", | 
 | 	"Not LS_ACC", | 
 | 	"Not LSDESC_RQST", | 
 | 	"Bad LSDESC_RQST Length", | 
 | 	"Not Association ID", | 
 | 	"Bad Association ID Length", | 
 | 	"Not Connection ID", | 
 | 	"Bad Connection ID Length", | 
 | 	"Not CR_ASSOC Rqst", | 
 | 	"Bad CR_ASSOC ACC Length", | 
 | 	"Not CR_CONN Rqst", | 
 | 	"Bad CR_CONN ACC Length", | 
 | 	"Not Disconnect Rqst", | 
 | 	"Bad Disconnect ACC Length", | 
 | }; | 
 |  | 
 | static int | 
 | nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl, | 
 | 	struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio) | 
 | { | 
 | 	struct nvmefc_ls_req_op *lsop; | 
 | 	struct nvmefc_ls_req *lsreq; | 
 | 	struct fcnvme_ls_cr_assoc_rqst *assoc_rqst; | 
 | 	struct fcnvme_ls_cr_assoc_acc *assoc_acc; | 
 | 	int ret, fcret = 0; | 
 |  | 
 | 	lsop = kzalloc((sizeof(*lsop) + | 
 | 			 ctrl->lport->ops->lsrqst_priv_sz + | 
 | 			 sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL); | 
 | 	if (!lsop) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out_no_memory; | 
 | 	} | 
 | 	lsreq = &lsop->ls_req; | 
 |  | 
 | 	lsreq->private = (void *)&lsop[1]; | 
 | 	assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *) | 
 | 			(lsreq->private + ctrl->lport->ops->lsrqst_priv_sz); | 
 | 	assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1]; | 
 |  | 
 | 	assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION; | 
 | 	assoc_rqst->desc_list_len = | 
 | 			cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd)); | 
 |  | 
 | 	assoc_rqst->assoc_cmd.desc_tag = | 
 | 			cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD); | 
 | 	assoc_rqst->assoc_cmd.desc_len = | 
 | 			fcnvme_lsdesc_len( | 
 | 				sizeof(struct fcnvme_lsdesc_cr_assoc_cmd)); | 
 |  | 
 | 	assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio); | 
 | 	assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize); | 
 | 	/* Linux supports only Dynamic controllers */ | 
 | 	assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff); | 
 | 	uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id); | 
 | 	strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn, | 
 | 		min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE)); | 
 | 	strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn, | 
 | 		min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE)); | 
 |  | 
 | 	lsop->queue = queue; | 
 | 	lsreq->rqstaddr = assoc_rqst; | 
 | 	lsreq->rqstlen = sizeof(*assoc_rqst); | 
 | 	lsreq->rspaddr = assoc_acc; | 
 | 	lsreq->rsplen = sizeof(*assoc_acc); | 
 | 	lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC; | 
 |  | 
 | 	ret = nvme_fc_send_ls_req(ctrl->rport, lsop); | 
 | 	if (ret) | 
 | 		goto out_free_buffer; | 
 |  | 
 | 	/* process connect LS completion */ | 
 |  | 
 | 	/* validate the ACC response */ | 
 | 	if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC) | 
 | 		fcret = VERR_LSACC; | 
 | 	else if (assoc_acc->hdr.desc_list_len != | 
 | 			fcnvme_lsdesc_len( | 
 | 				sizeof(struct fcnvme_ls_cr_assoc_acc))) | 
 | 		fcret = VERR_CR_ASSOC_ACC_LEN; | 
 | 	else if (assoc_acc->hdr.rqst.desc_tag != | 
 | 			cpu_to_be32(FCNVME_LSDESC_RQST)) | 
 | 		fcret = VERR_LSDESC_RQST; | 
 | 	else if (assoc_acc->hdr.rqst.desc_len != | 
 | 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst))) | 
 | 		fcret = VERR_LSDESC_RQST_LEN; | 
 | 	else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION) | 
 | 		fcret = VERR_CR_ASSOC; | 
 | 	else if (assoc_acc->associd.desc_tag != | 
 | 			cpu_to_be32(FCNVME_LSDESC_ASSOC_ID)) | 
 | 		fcret = VERR_ASSOC_ID; | 
 | 	else if (assoc_acc->associd.desc_len != | 
 | 			fcnvme_lsdesc_len( | 
 | 				sizeof(struct fcnvme_lsdesc_assoc_id))) | 
 | 		fcret = VERR_ASSOC_ID_LEN; | 
 | 	else if (assoc_acc->connectid.desc_tag != | 
 | 			cpu_to_be32(FCNVME_LSDESC_CONN_ID)) | 
 | 		fcret = VERR_CONN_ID; | 
 | 	else if (assoc_acc->connectid.desc_len != | 
 | 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id))) | 
 | 		fcret = VERR_CONN_ID_LEN; | 
 |  | 
 | 	if (fcret) { | 
 | 		ret = -EBADF; | 
 | 		dev_err(ctrl->dev, | 
 | 			"q %d connect failed: %s\n", | 
 | 			queue->qnum, validation_errors[fcret]); | 
 | 	} else { | 
 | 		ctrl->association_id = | 
 | 			be64_to_cpu(assoc_acc->associd.association_id); | 
 | 		queue->connection_id = | 
 | 			be64_to_cpu(assoc_acc->connectid.connection_id); | 
 | 		set_bit(NVME_FC_Q_CONNECTED, &queue->flags); | 
 | 	} | 
 |  | 
 | out_free_buffer: | 
 | 	kfree(lsop); | 
 | out_no_memory: | 
 | 	if (ret) | 
 | 		dev_err(ctrl->dev, | 
 | 			"queue %d connect admin queue failed (%d).\n", | 
 | 			queue->qnum, ret); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int | 
 | nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue, | 
 | 			u16 qsize, u16 ersp_ratio) | 
 | { | 
 | 	struct nvmefc_ls_req_op *lsop; | 
 | 	struct nvmefc_ls_req *lsreq; | 
 | 	struct fcnvme_ls_cr_conn_rqst *conn_rqst; | 
 | 	struct fcnvme_ls_cr_conn_acc *conn_acc; | 
 | 	int ret, fcret = 0; | 
 |  | 
 | 	lsop = kzalloc((sizeof(*lsop) + | 
 | 			 ctrl->lport->ops->lsrqst_priv_sz + | 
 | 			 sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL); | 
 | 	if (!lsop) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out_no_memory; | 
 | 	} | 
 | 	lsreq = &lsop->ls_req; | 
 |  | 
 | 	lsreq->private = (void *)&lsop[1]; | 
 | 	conn_rqst = (struct fcnvme_ls_cr_conn_rqst *) | 
 | 			(lsreq->private + ctrl->lport->ops->lsrqst_priv_sz); | 
 | 	conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1]; | 
 |  | 
 | 	conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION; | 
 | 	conn_rqst->desc_list_len = cpu_to_be32( | 
 | 				sizeof(struct fcnvme_lsdesc_assoc_id) + | 
 | 				sizeof(struct fcnvme_lsdesc_cr_conn_cmd)); | 
 |  | 
 | 	conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID); | 
 | 	conn_rqst->associd.desc_len = | 
 | 			fcnvme_lsdesc_len( | 
 | 				sizeof(struct fcnvme_lsdesc_assoc_id)); | 
 | 	conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id); | 
 | 	conn_rqst->connect_cmd.desc_tag = | 
 | 			cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD); | 
 | 	conn_rqst->connect_cmd.desc_len = | 
 | 			fcnvme_lsdesc_len( | 
 | 				sizeof(struct fcnvme_lsdesc_cr_conn_cmd)); | 
 | 	conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio); | 
 | 	conn_rqst->connect_cmd.qid  = cpu_to_be16(queue->qnum); | 
 | 	conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize); | 
 |  | 
 | 	lsop->queue = queue; | 
 | 	lsreq->rqstaddr = conn_rqst; | 
 | 	lsreq->rqstlen = sizeof(*conn_rqst); | 
 | 	lsreq->rspaddr = conn_acc; | 
 | 	lsreq->rsplen = sizeof(*conn_acc); | 
 | 	lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC; | 
 |  | 
 | 	ret = nvme_fc_send_ls_req(ctrl->rport, lsop); | 
 | 	if (ret) | 
 | 		goto out_free_buffer; | 
 |  | 
 | 	/* process connect LS completion */ | 
 |  | 
 | 	/* validate the ACC response */ | 
 | 	if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC) | 
 | 		fcret = VERR_LSACC; | 
 | 	else if (conn_acc->hdr.desc_list_len != | 
 | 			fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc))) | 
 | 		fcret = VERR_CR_CONN_ACC_LEN; | 
 | 	else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST)) | 
 | 		fcret = VERR_LSDESC_RQST; | 
 | 	else if (conn_acc->hdr.rqst.desc_len != | 
 | 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst))) | 
 | 		fcret = VERR_LSDESC_RQST_LEN; | 
 | 	else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION) | 
 | 		fcret = VERR_CR_CONN; | 
 | 	else if (conn_acc->connectid.desc_tag != | 
 | 			cpu_to_be32(FCNVME_LSDESC_CONN_ID)) | 
 | 		fcret = VERR_CONN_ID; | 
 | 	else if (conn_acc->connectid.desc_len != | 
 | 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id))) | 
 | 		fcret = VERR_CONN_ID_LEN; | 
 |  | 
 | 	if (fcret) { | 
 | 		ret = -EBADF; | 
 | 		dev_err(ctrl->dev, | 
 | 			"q %d connect failed: %s\n", | 
 | 			queue->qnum, validation_errors[fcret]); | 
 | 	} else { | 
 | 		queue->connection_id = | 
 | 			be64_to_cpu(conn_acc->connectid.connection_id); | 
 | 		set_bit(NVME_FC_Q_CONNECTED, &queue->flags); | 
 | 	} | 
 |  | 
 | out_free_buffer: | 
 | 	kfree(lsop); | 
 | out_no_memory: | 
 | 	if (ret) | 
 | 		dev_err(ctrl->dev, | 
 | 			"queue %d connect command failed (%d).\n", | 
 | 			queue->qnum, ret); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void | 
 | nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status) | 
 | { | 
 | 	struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq); | 
 |  | 
 | 	__nvme_fc_finish_ls_req(lsop); | 
 |  | 
 | 	/* fc-nvme iniator doesn't care about success or failure of cmd */ | 
 |  | 
 | 	kfree(lsop); | 
 | } | 
 |  | 
 | /* | 
 |  * This routine sends a FC-NVME LS to disconnect (aka terminate) | 
 |  * the FC-NVME Association.  Terminating the association also | 
 |  * terminates the FC-NVME connections (per queue, both admin and io | 
 |  * queues) that are part of the association. E.g. things are torn | 
 |  * down, and the related FC-NVME Association ID and Connection IDs | 
 |  * become invalid. | 
 |  * | 
 |  * The behavior of the fc-nvme initiator is such that it's | 
 |  * understanding of the association and connections will implicitly | 
 |  * be torn down. The action is implicit as it may be due to a loss of | 
 |  * connectivity with the fc-nvme target, so you may never get a | 
 |  * response even if you tried.  As such, the action of this routine | 
 |  * is to asynchronously send the LS, ignore any results of the LS, and | 
 |  * continue on with terminating the association. If the fc-nvme target | 
 |  * is present and receives the LS, it too can tear down. | 
 |  */ | 
 | static void | 
 | nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl) | 
 | { | 
 | 	struct fcnvme_ls_disconnect_rqst *discon_rqst; | 
 | 	struct fcnvme_ls_disconnect_acc *discon_acc; | 
 | 	struct nvmefc_ls_req_op *lsop; | 
 | 	struct nvmefc_ls_req *lsreq; | 
 | 	int ret; | 
 |  | 
 | 	lsop = kzalloc((sizeof(*lsop) + | 
 | 			 ctrl->lport->ops->lsrqst_priv_sz + | 
 | 			 sizeof(*discon_rqst) + sizeof(*discon_acc)), | 
 | 			GFP_KERNEL); | 
 | 	if (!lsop) | 
 | 		/* couldn't sent it... too bad */ | 
 | 		return; | 
 |  | 
 | 	lsreq = &lsop->ls_req; | 
 |  | 
 | 	lsreq->private = (void *)&lsop[1]; | 
 | 	discon_rqst = (struct fcnvme_ls_disconnect_rqst *) | 
 | 			(lsreq->private + ctrl->lport->ops->lsrqst_priv_sz); | 
 | 	discon_acc = (struct fcnvme_ls_disconnect_acc *)&discon_rqst[1]; | 
 |  | 
 | 	discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT; | 
 | 	discon_rqst->desc_list_len = cpu_to_be32( | 
 | 				sizeof(struct fcnvme_lsdesc_assoc_id) + | 
 | 				sizeof(struct fcnvme_lsdesc_disconn_cmd)); | 
 |  | 
 | 	discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID); | 
 | 	discon_rqst->associd.desc_len = | 
 | 			fcnvme_lsdesc_len( | 
 | 				sizeof(struct fcnvme_lsdesc_assoc_id)); | 
 |  | 
 | 	discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id); | 
 |  | 
 | 	discon_rqst->discon_cmd.desc_tag = cpu_to_be32( | 
 | 						FCNVME_LSDESC_DISCONN_CMD); | 
 | 	discon_rqst->discon_cmd.desc_len = | 
 | 			fcnvme_lsdesc_len( | 
 | 				sizeof(struct fcnvme_lsdesc_disconn_cmd)); | 
 | 	discon_rqst->discon_cmd.scope = FCNVME_DISCONN_ASSOCIATION; | 
 | 	discon_rqst->discon_cmd.id = cpu_to_be64(ctrl->association_id); | 
 |  | 
 | 	lsreq->rqstaddr = discon_rqst; | 
 | 	lsreq->rqstlen = sizeof(*discon_rqst); | 
 | 	lsreq->rspaddr = discon_acc; | 
 | 	lsreq->rsplen = sizeof(*discon_acc); | 
 | 	lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC; | 
 |  | 
 | 	ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop, | 
 | 				nvme_fc_disconnect_assoc_done); | 
 | 	if (ret) | 
 | 		kfree(lsop); | 
 |  | 
 | 	/* only meaningful part to terminating the association */ | 
 | 	ctrl->association_id = 0; | 
 | } | 
 |  | 
 |  | 
 | /* *********************** NVME Ctrl Routines **************************** */ | 
 |  | 
 | static void __nvme_fc_final_op_cleanup(struct request *rq); | 
 | static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg); | 
 |  | 
 | static int | 
 | nvme_fc_reinit_request(void *data, struct request *rq) | 
 | { | 
 | 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); | 
 | 	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; | 
 |  | 
 | 	memset(cmdiu, 0, sizeof(*cmdiu)); | 
 | 	cmdiu->scsi_id = NVME_CMD_SCSI_ID; | 
 | 	cmdiu->fc_id = NVME_CMD_FC_ID; | 
 | 	cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32)); | 
 | 	memset(&op->rsp_iu, 0, sizeof(op->rsp_iu)); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void | 
 | __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl, | 
 | 		struct nvme_fc_fcp_op *op) | 
 | { | 
 | 	fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma, | 
 | 				sizeof(op->rsp_iu), DMA_FROM_DEVICE); | 
 | 	fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma, | 
 | 				sizeof(op->cmd_iu), DMA_TO_DEVICE); | 
 |  | 
 | 	atomic_set(&op->state, FCPOP_STATE_UNINIT); | 
 | } | 
 |  | 
 | static void | 
 | nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq, | 
 | 		unsigned int hctx_idx) | 
 | { | 
 | 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); | 
 |  | 
 | 	return __nvme_fc_exit_request(set->driver_data, op); | 
 | } | 
 |  | 
 | static int | 
 | __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op) | 
 | { | 
 | 	int state; | 
 |  | 
 | 	state = atomic_xchg(&op->state, FCPOP_STATE_ABORTED); | 
 | 	if (state != FCPOP_STATE_ACTIVE) { | 
 | 		atomic_set(&op->state, state); | 
 | 		return -ECANCELED; | 
 | 	} | 
 |  | 
 | 	ctrl->lport->ops->fcp_abort(&ctrl->lport->localport, | 
 | 					&ctrl->rport->remoteport, | 
 | 					op->queue->lldd_handle, | 
 | 					&op->fcp_req); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void | 
 | nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl) | 
 | { | 
 | 	struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops; | 
 | 	unsigned long flags; | 
 | 	int i, ret; | 
 |  | 
 | 	for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) { | 
 | 		if (atomic_read(&aen_op->state) != FCPOP_STATE_ACTIVE) | 
 | 			continue; | 
 |  | 
 | 		spin_lock_irqsave(&ctrl->lock, flags); | 
 | 		if (ctrl->flags & FCCTRL_TERMIO) { | 
 | 			ctrl->iocnt++; | 
 | 			aen_op->flags |= FCOP_FLAGS_TERMIO; | 
 | 		} | 
 | 		spin_unlock_irqrestore(&ctrl->lock, flags); | 
 |  | 
 | 		ret = __nvme_fc_abort_op(ctrl, aen_op); | 
 | 		if (ret) { | 
 | 			/* | 
 | 			 * if __nvme_fc_abort_op failed the io wasn't | 
 | 			 * active. Thus this call path is running in | 
 | 			 * parallel to the io complete. Treat as non-error. | 
 | 			 */ | 
 |  | 
 | 			/* back out the flags/counters */ | 
 | 			spin_lock_irqsave(&ctrl->lock, flags); | 
 | 			if (ctrl->flags & FCCTRL_TERMIO) | 
 | 				ctrl->iocnt--; | 
 | 			aen_op->flags &= ~FCOP_FLAGS_TERMIO; | 
 | 			spin_unlock_irqrestore(&ctrl->lock, flags); | 
 | 			return; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static inline int | 
 | __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl, | 
 | 		struct nvme_fc_fcp_op *op) | 
 | { | 
 | 	unsigned long flags; | 
 | 	bool complete_rq = false; | 
 |  | 
 | 	spin_lock_irqsave(&ctrl->lock, flags); | 
 | 	if (unlikely(op->flags & FCOP_FLAGS_TERMIO)) { | 
 | 		if (ctrl->flags & FCCTRL_TERMIO) { | 
 | 			if (!--ctrl->iocnt) | 
 | 				wake_up(&ctrl->ioabort_wait); | 
 | 		} | 
 | 	} | 
 | 	if (op->flags & FCOP_FLAGS_RELEASED) | 
 | 		complete_rq = true; | 
 | 	else | 
 | 		op->flags |= FCOP_FLAGS_COMPLETE; | 
 | 	spin_unlock_irqrestore(&ctrl->lock, flags); | 
 |  | 
 | 	return complete_rq; | 
 | } | 
 |  | 
 | static void | 
 | nvme_fc_fcpio_done(struct nvmefc_fcp_req *req) | 
 | { | 
 | 	struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req); | 
 | 	struct request *rq = op->rq; | 
 | 	struct nvmefc_fcp_req *freq = &op->fcp_req; | 
 | 	struct nvme_fc_ctrl *ctrl = op->ctrl; | 
 | 	struct nvme_fc_queue *queue = op->queue; | 
 | 	struct nvme_completion *cqe = &op->rsp_iu.cqe; | 
 | 	struct nvme_command *sqe = &op->cmd_iu.sqe; | 
 | 	__le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1); | 
 | 	union nvme_result result; | 
 | 	bool terminate_assoc = true; | 
 |  | 
 | 	/* | 
 | 	 * WARNING: | 
 | 	 * The current linux implementation of a nvme controller | 
 | 	 * allocates a single tag set for all io queues and sizes | 
 | 	 * the io queues to fully hold all possible tags. Thus, the | 
 | 	 * implementation does not reference or care about the sqhd | 
 | 	 * value as it never needs to use the sqhd/sqtail pointers | 
 | 	 * for submission pacing. | 
 | 	 * | 
 | 	 * This affects the FC-NVME implementation in two ways: | 
 | 	 * 1) As the value doesn't matter, we don't need to waste | 
 | 	 *    cycles extracting it from ERSPs and stamping it in the | 
 | 	 *    cases where the transport fabricates CQEs on successful | 
 | 	 *    completions. | 
 | 	 * 2) The FC-NVME implementation requires that delivery of | 
 | 	 *    ERSP completions are to go back to the nvme layer in order | 
 | 	 *    relative to the rsn, such that the sqhd value will always | 
 | 	 *    be "in order" for the nvme layer. As the nvme layer in | 
 | 	 *    linux doesn't care about sqhd, there's no need to return | 
 | 	 *    them in order. | 
 | 	 * | 
 | 	 * Additionally: | 
 | 	 * As the core nvme layer in linux currently does not look at | 
 | 	 * every field in the cqe - in cases where the FC transport must | 
 | 	 * fabricate a CQE, the following fields will not be set as they | 
 | 	 * are not referenced: | 
 | 	 *      cqe.sqid,  cqe.sqhd,  cqe.command_id | 
 | 	 * | 
 | 	 * Failure or error of an individual i/o, in a transport | 
 | 	 * detected fashion unrelated to the nvme completion status, | 
 | 	 * potentially cause the initiator and target sides to get out | 
 | 	 * of sync on SQ head/tail (aka outstanding io count allowed). | 
 | 	 * Per FC-NVME spec, failure of an individual command requires | 
 | 	 * the connection to be terminated, which in turn requires the | 
 | 	 * association to be terminated. | 
 | 	 */ | 
 |  | 
 | 	fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma, | 
 | 				sizeof(op->rsp_iu), DMA_FROM_DEVICE); | 
 |  | 
 | 	if (atomic_read(&op->state) == FCPOP_STATE_ABORTED || | 
 | 			op->flags & FCOP_FLAGS_TERMIO) | 
 | 		status = cpu_to_le16(NVME_SC_ABORT_REQ << 1); | 
 | 	else if (freq->status) | 
 | 		status = cpu_to_le16(NVME_SC_INTERNAL << 1); | 
 |  | 
 | 	/* | 
 | 	 * For the linux implementation, if we have an unsuccesful | 
 | 	 * status, they blk-mq layer can typically be called with the | 
 | 	 * non-zero status and the content of the cqe isn't important. | 
 | 	 */ | 
 | 	if (status) | 
 | 		goto done; | 
 |  | 
 | 	/* | 
 | 	 * command completed successfully relative to the wire | 
 | 	 * protocol. However, validate anything received and | 
 | 	 * extract the status and result from the cqe (create it | 
 | 	 * where necessary). | 
 | 	 */ | 
 |  | 
 | 	switch (freq->rcv_rsplen) { | 
 |  | 
 | 	case 0: | 
 | 	case NVME_FC_SIZEOF_ZEROS_RSP: | 
 | 		/* | 
 | 		 * No response payload or 12 bytes of payload (which | 
 | 		 * should all be zeros) are considered successful and | 
 | 		 * no payload in the CQE by the transport. | 
 | 		 */ | 
 | 		if (freq->transferred_length != | 
 | 			be32_to_cpu(op->cmd_iu.data_len)) { | 
 | 			status = cpu_to_le16(NVME_SC_INTERNAL << 1); | 
 | 			goto done; | 
 | 		} | 
 | 		result.u64 = 0; | 
 | 		break; | 
 |  | 
 | 	case sizeof(struct nvme_fc_ersp_iu): | 
 | 		/* | 
 | 		 * The ERSP IU contains a full completion with CQE. | 
 | 		 * Validate ERSP IU and look at cqe. | 
 | 		 */ | 
 | 		if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) != | 
 | 					(freq->rcv_rsplen / 4) || | 
 | 			     be32_to_cpu(op->rsp_iu.xfrd_len) != | 
 | 					freq->transferred_length || | 
 | 			     op->rsp_iu.status_code || | 
 | 			     sqe->common.command_id != cqe->command_id)) { | 
 | 			status = cpu_to_le16(NVME_SC_INTERNAL << 1); | 
 | 			goto done; | 
 | 		} | 
 | 		result = cqe->result; | 
 | 		status = cqe->status; | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		status = cpu_to_le16(NVME_SC_INTERNAL << 1); | 
 | 		goto done; | 
 | 	} | 
 |  | 
 | 	terminate_assoc = false; | 
 |  | 
 | done: | 
 | 	if (op->flags & FCOP_FLAGS_AEN) { | 
 | 		nvme_complete_async_event(&queue->ctrl->ctrl, status, &result); | 
 | 		__nvme_fc_fcpop_chk_teardowns(ctrl, op); | 
 | 		atomic_set(&op->state, FCPOP_STATE_IDLE); | 
 | 		op->flags = FCOP_FLAGS_AEN;	/* clear other flags */ | 
 | 		nvme_fc_ctrl_put(ctrl); | 
 | 		goto check_error; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Force failures of commands if we're killing the controller | 
 | 	 * or have an error on a command used to create an new association | 
 | 	 */ | 
 | 	if (status && | 
 | 	    (blk_queue_dying(rq->q) || | 
 | 	     ctrl->ctrl.state == NVME_CTRL_NEW || | 
 | 	     ctrl->ctrl.state == NVME_CTRL_RECONNECTING)) | 
 | 		status |= cpu_to_le16(NVME_SC_DNR << 1); | 
 |  | 
 | 	if (__nvme_fc_fcpop_chk_teardowns(ctrl, op)) | 
 | 		__nvme_fc_final_op_cleanup(rq); | 
 | 	else | 
 | 		nvme_end_request(rq, status, result); | 
 |  | 
 | check_error: | 
 | 	if (terminate_assoc) | 
 | 		nvme_fc_error_recovery(ctrl, "transport detected io error"); | 
 | } | 
 |  | 
 | static int | 
 | __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl, | 
 | 		struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op, | 
 | 		struct request *rq, u32 rqno) | 
 | { | 
 | 	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; | 
 | 	int ret = 0; | 
 |  | 
 | 	memset(op, 0, sizeof(*op)); | 
 | 	op->fcp_req.cmdaddr = &op->cmd_iu; | 
 | 	op->fcp_req.cmdlen = sizeof(op->cmd_iu); | 
 | 	op->fcp_req.rspaddr = &op->rsp_iu; | 
 | 	op->fcp_req.rsplen = sizeof(op->rsp_iu); | 
 | 	op->fcp_req.done = nvme_fc_fcpio_done; | 
 | 	op->fcp_req.first_sgl = (struct scatterlist *)&op[1]; | 
 | 	op->fcp_req.private = &op->fcp_req.first_sgl[SG_CHUNK_SIZE]; | 
 | 	op->ctrl = ctrl; | 
 | 	op->queue = queue; | 
 | 	op->rq = rq; | 
 | 	op->rqno = rqno; | 
 |  | 
 | 	cmdiu->scsi_id = NVME_CMD_SCSI_ID; | 
 | 	cmdiu->fc_id = NVME_CMD_FC_ID; | 
 | 	cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32)); | 
 |  | 
 | 	op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev, | 
 | 				&op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE); | 
 | 	if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) { | 
 | 		dev_err(ctrl->dev, | 
 | 			"FCP Op failed - cmdiu dma mapping failed.\n"); | 
 | 		ret = EFAULT; | 
 | 		goto out_on_error; | 
 | 	} | 
 |  | 
 | 	op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev, | 
 | 				&op->rsp_iu, sizeof(op->rsp_iu), | 
 | 				DMA_FROM_DEVICE); | 
 | 	if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) { | 
 | 		dev_err(ctrl->dev, | 
 | 			"FCP Op failed - rspiu dma mapping failed.\n"); | 
 | 		ret = EFAULT; | 
 | 	} | 
 |  | 
 | 	atomic_set(&op->state, FCPOP_STATE_IDLE); | 
 | out_on_error: | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int | 
 | nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq, | 
 | 		unsigned int hctx_idx, unsigned int numa_node) | 
 | { | 
 | 	struct nvme_fc_ctrl *ctrl = set->driver_data; | 
 | 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); | 
 | 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; | 
 | 	struct nvme_fc_queue *queue = &ctrl->queues[queue_idx]; | 
 |  | 
 | 	return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++); | 
 | } | 
 |  | 
 | static int | 
 | nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl) | 
 | { | 
 | 	struct nvme_fc_fcp_op *aen_op; | 
 | 	struct nvme_fc_cmd_iu *cmdiu; | 
 | 	struct nvme_command *sqe; | 
 | 	void *private; | 
 | 	int i, ret; | 
 |  | 
 | 	aen_op = ctrl->aen_ops; | 
 | 	for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) { | 
 | 		private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz, | 
 | 						GFP_KERNEL); | 
 | 		if (!private) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		cmdiu = &aen_op->cmd_iu; | 
 | 		sqe = &cmdiu->sqe; | 
 | 		ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0], | 
 | 				aen_op, (struct request *)NULL, | 
 | 				(NVME_AQ_BLK_MQ_DEPTH + i)); | 
 | 		if (ret) { | 
 | 			kfree(private); | 
 | 			return ret; | 
 | 		} | 
 |  | 
 | 		aen_op->flags = FCOP_FLAGS_AEN; | 
 | 		aen_op->fcp_req.first_sgl = NULL; /* no sg list */ | 
 | 		aen_op->fcp_req.private = private; | 
 |  | 
 | 		memset(sqe, 0, sizeof(*sqe)); | 
 | 		sqe->common.opcode = nvme_admin_async_event; | 
 | 		/* Note: core layer may overwrite the sqe.command_id value */ | 
 | 		sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void | 
 | nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl) | 
 | { | 
 | 	struct nvme_fc_fcp_op *aen_op; | 
 | 	int i; | 
 |  | 
 | 	aen_op = ctrl->aen_ops; | 
 | 	for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) { | 
 | 		if (!aen_op->fcp_req.private) | 
 | 			continue; | 
 |  | 
 | 		__nvme_fc_exit_request(ctrl, aen_op); | 
 |  | 
 | 		kfree(aen_op->fcp_req.private); | 
 | 		aen_op->fcp_req.private = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | static inline void | 
 | __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl, | 
 | 		unsigned int qidx) | 
 | { | 
 | 	struct nvme_fc_queue *queue = &ctrl->queues[qidx]; | 
 |  | 
 | 	hctx->driver_data = queue; | 
 | 	queue->hctx = hctx; | 
 | } | 
 |  | 
 | static int | 
 | nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, | 
 | 		unsigned int hctx_idx) | 
 | { | 
 | 	struct nvme_fc_ctrl *ctrl = data; | 
 |  | 
 | 	__nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, | 
 | 		unsigned int hctx_idx) | 
 | { | 
 | 	struct nvme_fc_ctrl *ctrl = data; | 
 |  | 
 | 	__nvme_fc_init_hctx(hctx, ctrl, hctx_idx); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void | 
 | nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx) | 
 | { | 
 | 	struct nvme_fc_queue *queue; | 
 |  | 
 | 	queue = &ctrl->queues[idx]; | 
 | 	memset(queue, 0, sizeof(*queue)); | 
 | 	queue->ctrl = ctrl; | 
 | 	queue->qnum = idx; | 
 | 	atomic_set(&queue->csn, 1); | 
 | 	queue->dev = ctrl->dev; | 
 |  | 
 | 	if (idx > 0) | 
 | 		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; | 
 | 	else | 
 | 		queue->cmnd_capsule_len = sizeof(struct nvme_command); | 
 |  | 
 | 	/* | 
 | 	 * Considered whether we should allocate buffers for all SQEs | 
 | 	 * and CQEs and dma map them - mapping their respective entries | 
 | 	 * into the request structures (kernel vm addr and dma address) | 
 | 	 * thus the driver could use the buffers/mappings directly. | 
 | 	 * It only makes sense if the LLDD would use them for its | 
 | 	 * messaging api. It's very unlikely most adapter api's would use | 
 | 	 * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload | 
 | 	 * structures were used instead. | 
 | 	 */ | 
 | } | 
 |  | 
 | /* | 
 |  * This routine terminates a queue at the transport level. | 
 |  * The transport has already ensured that all outstanding ios on | 
 |  * the queue have been terminated. | 
 |  * The transport will send a Disconnect LS request to terminate | 
 |  * the queue's connection. Termination of the admin queue will also | 
 |  * terminate the association at the target. | 
 |  */ | 
 | static void | 
 | nvme_fc_free_queue(struct nvme_fc_queue *queue) | 
 | { | 
 | 	if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags)) | 
 | 		return; | 
 |  | 
 | 	clear_bit(NVME_FC_Q_LIVE, &queue->flags); | 
 | 	/* | 
 | 	 * Current implementation never disconnects a single queue. | 
 | 	 * It always terminates a whole association. So there is never | 
 | 	 * a disconnect(queue) LS sent to the target. | 
 | 	 */ | 
 |  | 
 | 	queue->connection_id = 0; | 
 | } | 
 |  | 
 | static void | 
 | __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl, | 
 | 	struct nvme_fc_queue *queue, unsigned int qidx) | 
 | { | 
 | 	if (ctrl->lport->ops->delete_queue) | 
 | 		ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx, | 
 | 				queue->lldd_handle); | 
 | 	queue->lldd_handle = NULL; | 
 | } | 
 |  | 
 | static void | 
 | nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 1; i < ctrl->ctrl.queue_count; i++) | 
 | 		nvme_fc_free_queue(&ctrl->queues[i]); | 
 | } | 
 |  | 
 | static int | 
 | __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl, | 
 | 	struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	queue->lldd_handle = NULL; | 
 | 	if (ctrl->lport->ops->create_queue) | 
 | 		ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport, | 
 | 				qidx, qsize, &queue->lldd_handle); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void | 
 | nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl) | 
 | { | 
 | 	struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1]; | 
 | 	int i; | 
 |  | 
 | 	for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--) | 
 | 		__nvme_fc_delete_hw_queue(ctrl, queue, i); | 
 | } | 
 |  | 
 | static int | 
 | nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize) | 
 | { | 
 | 	struct nvme_fc_queue *queue = &ctrl->queues[1]; | 
 | 	int i, ret; | 
 |  | 
 | 	for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) { | 
 | 		ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize); | 
 | 		if (ret) | 
 | 			goto delete_queues; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | delete_queues: | 
 | 	for (; i >= 0; i--) | 
 | 		__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int | 
 | nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize) | 
 | { | 
 | 	int i, ret = 0; | 
 |  | 
 | 	for (i = 1; i < ctrl->ctrl.queue_count; i++) { | 
 | 		ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize, | 
 | 					(qsize / 5)); | 
 | 		if (ret) | 
 | 			break; | 
 | 		ret = nvmf_connect_io_queue(&ctrl->ctrl, i); | 
 | 		if (ret) | 
 | 			break; | 
 |  | 
 | 		set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void | 
 | nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 1; i < ctrl->ctrl.queue_count; i++) | 
 | 		nvme_fc_init_queue(ctrl, i); | 
 | } | 
 |  | 
 | static void | 
 | nvme_fc_ctrl_free(struct kref *ref) | 
 | { | 
 | 	struct nvme_fc_ctrl *ctrl = | 
 | 		container_of(ref, struct nvme_fc_ctrl, ref); | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (ctrl->ctrl.tagset) { | 
 | 		blk_cleanup_queue(ctrl->ctrl.connect_q); | 
 | 		blk_mq_free_tag_set(&ctrl->tag_set); | 
 | 	} | 
 |  | 
 | 	/* remove from rport list */ | 
 | 	spin_lock_irqsave(&ctrl->rport->lock, flags); | 
 | 	list_del(&ctrl->ctrl_list); | 
 | 	spin_unlock_irqrestore(&ctrl->rport->lock, flags); | 
 |  | 
 | 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); | 
 | 	blk_cleanup_queue(ctrl->ctrl.admin_q); | 
 | 	blk_mq_free_tag_set(&ctrl->admin_tag_set); | 
 |  | 
 | 	kfree(ctrl->queues); | 
 |  | 
 | 	put_device(ctrl->dev); | 
 | 	nvme_fc_rport_put(ctrl->rport); | 
 |  | 
 | 	ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum); | 
 | 	if (ctrl->ctrl.opts) | 
 | 		nvmf_free_options(ctrl->ctrl.opts); | 
 | 	kfree(ctrl); | 
 | } | 
 |  | 
 | static void | 
 | nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl) | 
 | { | 
 | 	kref_put(&ctrl->ref, nvme_fc_ctrl_free); | 
 | } | 
 |  | 
 | static int | 
 | nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl) | 
 | { | 
 | 	return kref_get_unless_zero(&ctrl->ref); | 
 | } | 
 |  | 
 | /* | 
 |  * All accesses from nvme core layer done - can now free the | 
 |  * controller. Called after last nvme_put_ctrl() call | 
 |  */ | 
 | static void | 
 | nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl) | 
 | { | 
 | 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); | 
 |  | 
 | 	WARN_ON(nctrl != &ctrl->ctrl); | 
 |  | 
 | 	nvme_fc_ctrl_put(ctrl); | 
 | } | 
 |  | 
 | static void | 
 | nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg) | 
 | { | 
 | 	/* only proceed if in LIVE state - e.g. on first error */ | 
 | 	if (ctrl->ctrl.state != NVME_CTRL_LIVE) | 
 | 		return; | 
 |  | 
 | 	dev_warn(ctrl->ctrl.device, | 
 | 		"NVME-FC{%d}: transport association error detected: %s\n", | 
 | 		ctrl->cnum, errmsg); | 
 | 	dev_warn(ctrl->ctrl.device, | 
 | 		"NVME-FC{%d}: resetting controller\n", ctrl->cnum); | 
 |  | 
 | 	nvme_reset_ctrl(&ctrl->ctrl); | 
 | } | 
 |  | 
 | static enum blk_eh_timer_return | 
 | nvme_fc_timeout(struct request *rq, bool reserved) | 
 | { | 
 | 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); | 
 | 	struct nvme_fc_ctrl *ctrl = op->ctrl; | 
 | 	int ret; | 
 |  | 
 | 	if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE || | 
 | 			atomic_read(&op->state) == FCPOP_STATE_ABORTED) | 
 | 		return BLK_EH_RESET_TIMER; | 
 |  | 
 | 	ret = __nvme_fc_abort_op(ctrl, op); | 
 | 	if (ret) | 
 | 		/* io wasn't active to abort */ | 
 | 		return BLK_EH_NOT_HANDLED; | 
 |  | 
 | 	/* | 
 | 	 * we can't individually ABTS an io without affecting the queue, | 
 | 	 * thus killing the queue, adn thus the association. | 
 | 	 * So resolve by performing a controller reset, which will stop | 
 | 	 * the host/io stack, terminate the association on the link, | 
 | 	 * and recreate an association on the link. | 
 | 	 */ | 
 | 	nvme_fc_error_recovery(ctrl, "io timeout error"); | 
 |  | 
 | 	/* | 
 | 	 * the io abort has been initiated. Have the reset timer | 
 | 	 * restarted and the abort completion will complete the io | 
 | 	 * shortly. Avoids a synchronous wait while the abort finishes. | 
 | 	 */ | 
 | 	return BLK_EH_RESET_TIMER; | 
 | } | 
 |  | 
 | static int | 
 | nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq, | 
 | 		struct nvme_fc_fcp_op *op) | 
 | { | 
 | 	struct nvmefc_fcp_req *freq = &op->fcp_req; | 
 | 	enum dma_data_direction dir; | 
 | 	int ret; | 
 |  | 
 | 	freq->sg_cnt = 0; | 
 |  | 
 | 	if (!blk_rq_payload_bytes(rq)) | 
 | 		return 0; | 
 |  | 
 | 	freq->sg_table.sgl = freq->first_sgl; | 
 | 	ret = sg_alloc_table_chained(&freq->sg_table, | 
 | 			blk_rq_nr_phys_segments(rq), freq->sg_table.sgl); | 
 | 	if (ret) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl); | 
 | 	WARN_ON(op->nents > blk_rq_nr_phys_segments(rq)); | 
 | 	dir = (rq_data_dir(rq) == WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE; | 
 | 	freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl, | 
 | 				op->nents, dir); | 
 | 	if (unlikely(freq->sg_cnt <= 0)) { | 
 | 		sg_free_table_chained(&freq->sg_table, true); | 
 | 		freq->sg_cnt = 0; | 
 | 		return -EFAULT; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * TODO: blk_integrity_rq(rq)  for DIF | 
 | 	 */ | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void | 
 | nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq, | 
 | 		struct nvme_fc_fcp_op *op) | 
 | { | 
 | 	struct nvmefc_fcp_req *freq = &op->fcp_req; | 
 |  | 
 | 	if (!freq->sg_cnt) | 
 | 		return; | 
 |  | 
 | 	fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents, | 
 | 				((rq_data_dir(rq) == WRITE) ? | 
 | 					DMA_TO_DEVICE : DMA_FROM_DEVICE)); | 
 |  | 
 | 	nvme_cleanup_cmd(rq); | 
 |  | 
 | 	sg_free_table_chained(&freq->sg_table, true); | 
 |  | 
 | 	freq->sg_cnt = 0; | 
 | } | 
 |  | 
 | /* | 
 |  * In FC, the queue is a logical thing. At transport connect, the target | 
 |  * creates its "queue" and returns a handle that is to be given to the | 
 |  * target whenever it posts something to the corresponding SQ.  When an | 
 |  * SQE is sent on a SQ, FC effectively considers the SQE, or rather the | 
 |  * command contained within the SQE, an io, and assigns a FC exchange | 
 |  * to it. The SQE and the associated SQ handle are sent in the initial | 
 |  * CMD IU sents on the exchange. All transfers relative to the io occur | 
 |  * as part of the exchange.  The CQE is the last thing for the io, | 
 |  * which is transferred (explicitly or implicitly) with the RSP IU | 
 |  * sent on the exchange. After the CQE is received, the FC exchange is | 
 |  * terminaed and the Exchange may be used on a different io. | 
 |  * | 
 |  * The transport to LLDD api has the transport making a request for a | 
 |  * new fcp io request to the LLDD. The LLDD then allocates a FC exchange | 
 |  * resource and transfers the command. The LLDD will then process all | 
 |  * steps to complete the io. Upon completion, the transport done routine | 
 |  * is called. | 
 |  * | 
 |  * So - while the operation is outstanding to the LLDD, there is a link | 
 |  * level FC exchange resource that is also outstanding. This must be | 
 |  * considered in all cleanup operations. | 
 |  */ | 
 | static blk_status_t | 
 | nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue, | 
 | 	struct nvme_fc_fcp_op *op, u32 data_len, | 
 | 	enum nvmefc_fcp_datadir	io_dir) | 
 | { | 
 | 	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; | 
 | 	struct nvme_command *sqe = &cmdiu->sqe; | 
 | 	u32 csn; | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * before attempting to send the io, check to see if we believe | 
 | 	 * the target device is present | 
 | 	 */ | 
 | 	if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE) | 
 | 		goto busy; | 
 |  | 
 | 	if (!nvme_fc_ctrl_get(ctrl)) | 
 | 		return BLK_STS_IOERR; | 
 |  | 
 | 	/* format the FC-NVME CMD IU and fcp_req */ | 
 | 	cmdiu->connection_id = cpu_to_be64(queue->connection_id); | 
 | 	csn = atomic_inc_return(&queue->csn); | 
 | 	cmdiu->csn = cpu_to_be32(csn); | 
 | 	cmdiu->data_len = cpu_to_be32(data_len); | 
 | 	switch (io_dir) { | 
 | 	case NVMEFC_FCP_WRITE: | 
 | 		cmdiu->flags = FCNVME_CMD_FLAGS_WRITE; | 
 | 		break; | 
 | 	case NVMEFC_FCP_READ: | 
 | 		cmdiu->flags = FCNVME_CMD_FLAGS_READ; | 
 | 		break; | 
 | 	case NVMEFC_FCP_NODATA: | 
 | 		cmdiu->flags = 0; | 
 | 		break; | 
 | 	} | 
 | 	op->fcp_req.payload_length = data_len; | 
 | 	op->fcp_req.io_dir = io_dir; | 
 | 	op->fcp_req.transferred_length = 0; | 
 | 	op->fcp_req.rcv_rsplen = 0; | 
 | 	op->fcp_req.status = NVME_SC_SUCCESS; | 
 | 	op->fcp_req.sqid = cpu_to_le16(queue->qnum); | 
 |  | 
 | 	/* | 
 | 	 * validate per fabric rules, set fields mandated by fabric spec | 
 | 	 * as well as those by FC-NVME spec. | 
 | 	 */ | 
 | 	WARN_ON_ONCE(sqe->common.metadata); | 
 | 	sqe->common.flags |= NVME_CMD_SGL_METABUF; | 
 |  | 
 | 	/* | 
 | 	 * format SQE DPTR field per FC-NVME rules: | 
 | 	 *    type=0x5     Transport SGL Data Block Descriptor | 
 | 	 *    subtype=0xA  Transport-specific value | 
 | 	 *    address=0 | 
 | 	 *    length=length of the data series | 
 | 	 */ | 
 | 	sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | | 
 | 					NVME_SGL_FMT_TRANSPORT_A; | 
 | 	sqe->rw.dptr.sgl.length = cpu_to_le32(data_len); | 
 | 	sqe->rw.dptr.sgl.addr = 0; | 
 |  | 
 | 	if (!(op->flags & FCOP_FLAGS_AEN)) { | 
 | 		ret = nvme_fc_map_data(ctrl, op->rq, op); | 
 | 		if (ret < 0) { | 
 | 			nvme_cleanup_cmd(op->rq); | 
 | 			nvme_fc_ctrl_put(ctrl); | 
 | 			if (ret == -ENOMEM || ret == -EAGAIN) | 
 | 				return BLK_STS_RESOURCE; | 
 | 			return BLK_STS_IOERR; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma, | 
 | 				  sizeof(op->cmd_iu), DMA_TO_DEVICE); | 
 |  | 
 | 	atomic_set(&op->state, FCPOP_STATE_ACTIVE); | 
 |  | 
 | 	if (!(op->flags & FCOP_FLAGS_AEN)) | 
 | 		blk_mq_start_request(op->rq); | 
 |  | 
 | 	ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport, | 
 | 					&ctrl->rport->remoteport, | 
 | 					queue->lldd_handle, &op->fcp_req); | 
 |  | 
 | 	if (ret) { | 
 | 		if (!(op->flags & FCOP_FLAGS_AEN)) | 
 | 			nvme_fc_unmap_data(ctrl, op->rq, op); | 
 |  | 
 | 		nvme_fc_ctrl_put(ctrl); | 
 |  | 
 | 		if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE && | 
 | 				ret != -EBUSY) | 
 | 			return BLK_STS_IOERR; | 
 |  | 
 | 		goto busy; | 
 | 	} | 
 |  | 
 | 	return BLK_STS_OK; | 
 |  | 
 | busy: | 
 | 	if (!(op->flags & FCOP_FLAGS_AEN) && queue->hctx) | 
 | 		blk_mq_delay_run_hw_queue(queue->hctx, NVMEFC_QUEUE_DELAY); | 
 |  | 
 | 	return BLK_STS_RESOURCE; | 
 | } | 
 |  | 
 | static inline blk_status_t nvme_fc_is_ready(struct nvme_fc_queue *queue, | 
 | 		struct request *rq) | 
 | { | 
 | 	if (unlikely(!test_bit(NVME_FC_Q_LIVE, &queue->flags))) | 
 | 		return nvmf_check_init_req(&queue->ctrl->ctrl, rq); | 
 | 	return BLK_STS_OK; | 
 | } | 
 |  | 
 | static blk_status_t | 
 | nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx, | 
 | 			const struct blk_mq_queue_data *bd) | 
 | { | 
 | 	struct nvme_ns *ns = hctx->queue->queuedata; | 
 | 	struct nvme_fc_queue *queue = hctx->driver_data; | 
 | 	struct nvme_fc_ctrl *ctrl = queue->ctrl; | 
 | 	struct request *rq = bd->rq; | 
 | 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); | 
 | 	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; | 
 | 	struct nvme_command *sqe = &cmdiu->sqe; | 
 | 	enum nvmefc_fcp_datadir	io_dir; | 
 | 	u32 data_len; | 
 | 	blk_status_t ret; | 
 |  | 
 | 	ret = nvme_fc_is_ready(queue, rq); | 
 | 	if (unlikely(ret)) | 
 | 		return ret; | 
 |  | 
 | 	ret = nvme_setup_cmd(ns, rq, sqe); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	data_len = blk_rq_payload_bytes(rq); | 
 | 	if (data_len) | 
 | 		io_dir = ((rq_data_dir(rq) == WRITE) ? | 
 | 					NVMEFC_FCP_WRITE : NVMEFC_FCP_READ); | 
 | 	else | 
 | 		io_dir = NVMEFC_FCP_NODATA; | 
 |  | 
 | 	return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir); | 
 | } | 
 |  | 
 | static struct blk_mq_tags * | 
 | nvme_fc_tagset(struct nvme_fc_queue *queue) | 
 | { | 
 | 	if (queue->qnum == 0) | 
 | 		return queue->ctrl->admin_tag_set.tags[queue->qnum]; | 
 |  | 
 | 	return queue->ctrl->tag_set.tags[queue->qnum - 1]; | 
 | } | 
 |  | 
 | static int | 
 | nvme_fc_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag) | 
 |  | 
 | { | 
 | 	struct nvme_fc_queue *queue = hctx->driver_data; | 
 | 	struct nvme_fc_ctrl *ctrl = queue->ctrl; | 
 | 	struct request *req; | 
 | 	struct nvme_fc_fcp_op *op; | 
 |  | 
 | 	req = blk_mq_tag_to_rq(nvme_fc_tagset(queue), tag); | 
 | 	if (!req) | 
 | 		return 0; | 
 |  | 
 | 	op = blk_mq_rq_to_pdu(req); | 
 |  | 
 | 	if ((atomic_read(&op->state) == FCPOP_STATE_ACTIVE) && | 
 | 		 (ctrl->lport->ops->poll_queue)) | 
 | 		ctrl->lport->ops->poll_queue(&ctrl->lport->localport, | 
 | 						 queue->lldd_handle); | 
 |  | 
 | 	return ((atomic_read(&op->state) != FCPOP_STATE_ACTIVE)); | 
 | } | 
 |  | 
 | static void | 
 | nvme_fc_submit_async_event(struct nvme_ctrl *arg) | 
 | { | 
 | 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg); | 
 | 	struct nvme_fc_fcp_op *aen_op; | 
 | 	unsigned long flags; | 
 | 	bool terminating = false; | 
 | 	blk_status_t ret; | 
 |  | 
 | 	spin_lock_irqsave(&ctrl->lock, flags); | 
 | 	if (ctrl->flags & FCCTRL_TERMIO) | 
 | 		terminating = true; | 
 | 	spin_unlock_irqrestore(&ctrl->lock, flags); | 
 |  | 
 | 	if (terminating) | 
 | 		return; | 
 |  | 
 | 	aen_op = &ctrl->aen_ops[0]; | 
 |  | 
 | 	ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0, | 
 | 					NVMEFC_FCP_NODATA); | 
 | 	if (ret) | 
 | 		dev_err(ctrl->ctrl.device, | 
 | 			"failed async event work\n"); | 
 | } | 
 |  | 
 | static void | 
 | __nvme_fc_final_op_cleanup(struct request *rq) | 
 | { | 
 | 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); | 
 | 	struct nvme_fc_ctrl *ctrl = op->ctrl; | 
 |  | 
 | 	atomic_set(&op->state, FCPOP_STATE_IDLE); | 
 | 	op->flags &= ~(FCOP_FLAGS_TERMIO | FCOP_FLAGS_RELEASED | | 
 | 			FCOP_FLAGS_COMPLETE); | 
 |  | 
 | 	nvme_fc_unmap_data(ctrl, rq, op); | 
 | 	nvme_complete_rq(rq); | 
 | 	nvme_fc_ctrl_put(ctrl); | 
 |  | 
 | } | 
 |  | 
 | static void | 
 | nvme_fc_complete_rq(struct request *rq) | 
 | { | 
 | 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); | 
 | 	struct nvme_fc_ctrl *ctrl = op->ctrl; | 
 | 	unsigned long flags; | 
 | 	bool completed = false; | 
 |  | 
 | 	/* | 
 | 	 * the core layer, on controller resets after calling | 
 | 	 * nvme_shutdown_ctrl(), calls complete_rq without our | 
 | 	 * calling blk_mq_complete_request(), thus there may still | 
 | 	 * be live i/o outstanding with the LLDD. Means transport has | 
 | 	 * to track complete calls vs fcpio_done calls to know what | 
 | 	 * path to take on completes and dones. | 
 | 	 */ | 
 | 	spin_lock_irqsave(&ctrl->lock, flags); | 
 | 	if (op->flags & FCOP_FLAGS_COMPLETE) | 
 | 		completed = true; | 
 | 	else | 
 | 		op->flags |= FCOP_FLAGS_RELEASED; | 
 | 	spin_unlock_irqrestore(&ctrl->lock, flags); | 
 |  | 
 | 	if (completed) | 
 | 		__nvme_fc_final_op_cleanup(rq); | 
 | } | 
 |  | 
 | /* | 
 |  * This routine is used by the transport when it needs to find active | 
 |  * io on a queue that is to be terminated. The transport uses | 
 |  * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke | 
 |  * this routine to kill them on a 1 by 1 basis. | 
 |  * | 
 |  * As FC allocates FC exchange for each io, the transport must contact | 
 |  * the LLDD to terminate the exchange, thus releasing the FC exchange. | 
 |  * After terminating the exchange the LLDD will call the transport's | 
 |  * normal io done path for the request, but it will have an aborted | 
 |  * status. The done path will return the io request back to the block | 
 |  * layer with an error status. | 
 |  */ | 
 | static void | 
 | nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved) | 
 | { | 
 | 	struct nvme_ctrl *nctrl = data; | 
 | 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); | 
 | 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req); | 
 | 	unsigned long flags; | 
 | 	int status; | 
 |  | 
 | 	if (!blk_mq_request_started(req)) | 
 | 		return; | 
 |  | 
 | 	spin_lock_irqsave(&ctrl->lock, flags); | 
 | 	if (ctrl->flags & FCCTRL_TERMIO) { | 
 | 		ctrl->iocnt++; | 
 | 		op->flags |= FCOP_FLAGS_TERMIO; | 
 | 	} | 
 | 	spin_unlock_irqrestore(&ctrl->lock, flags); | 
 |  | 
 | 	status = __nvme_fc_abort_op(ctrl, op); | 
 | 	if (status) { | 
 | 		/* | 
 | 		 * if __nvme_fc_abort_op failed the io wasn't | 
 | 		 * active. Thus this call path is running in | 
 | 		 * parallel to the io complete. Treat as non-error. | 
 | 		 */ | 
 |  | 
 | 		/* back out the flags/counters */ | 
 | 		spin_lock_irqsave(&ctrl->lock, flags); | 
 | 		if (ctrl->flags & FCCTRL_TERMIO) | 
 | 			ctrl->iocnt--; | 
 | 		op->flags &= ~FCOP_FLAGS_TERMIO; | 
 | 		spin_unlock_irqrestore(&ctrl->lock, flags); | 
 | 		return; | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | static const struct blk_mq_ops nvme_fc_mq_ops = { | 
 | 	.queue_rq	= nvme_fc_queue_rq, | 
 | 	.complete	= nvme_fc_complete_rq, | 
 | 	.init_request	= nvme_fc_init_request, | 
 | 	.exit_request	= nvme_fc_exit_request, | 
 | 	.init_hctx	= nvme_fc_init_hctx, | 
 | 	.poll		= nvme_fc_poll, | 
 | 	.timeout	= nvme_fc_timeout, | 
 | }; | 
 |  | 
 | static int | 
 | nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl) | 
 | { | 
 | 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; | 
 | 	unsigned int nr_io_queues; | 
 | 	int ret; | 
 |  | 
 | 	nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()), | 
 | 				ctrl->lport->ops->max_hw_queues); | 
 | 	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); | 
 | 	if (ret) { | 
 | 		dev_info(ctrl->ctrl.device, | 
 | 			"set_queue_count failed: %d\n", ret); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	ctrl->ctrl.queue_count = nr_io_queues + 1; | 
 | 	if (!nr_io_queues) | 
 | 		return 0; | 
 |  | 
 | 	nvme_fc_init_io_queues(ctrl); | 
 |  | 
 | 	memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set)); | 
 | 	ctrl->tag_set.ops = &nvme_fc_mq_ops; | 
 | 	ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size; | 
 | 	ctrl->tag_set.reserved_tags = 1; /* fabric connect */ | 
 | 	ctrl->tag_set.numa_node = NUMA_NO_NODE; | 
 | 	ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; | 
 | 	ctrl->tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) + | 
 | 					(SG_CHUNK_SIZE * | 
 | 						sizeof(struct scatterlist)) + | 
 | 					ctrl->lport->ops->fcprqst_priv_sz; | 
 | 	ctrl->tag_set.driver_data = ctrl; | 
 | 	ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1; | 
 | 	ctrl->tag_set.timeout = NVME_IO_TIMEOUT; | 
 |  | 
 | 	ret = blk_mq_alloc_tag_set(&ctrl->tag_set); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ctrl->ctrl.tagset = &ctrl->tag_set; | 
 |  | 
 | 	ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set); | 
 | 	if (IS_ERR(ctrl->ctrl.connect_q)) { | 
 | 		ret = PTR_ERR(ctrl->ctrl.connect_q); | 
 | 		goto out_free_tag_set; | 
 | 	} | 
 |  | 
 | 	ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size); | 
 | 	if (ret) | 
 | 		goto out_cleanup_blk_queue; | 
 |  | 
 | 	ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size); | 
 | 	if (ret) | 
 | 		goto out_delete_hw_queues; | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_delete_hw_queues: | 
 | 	nvme_fc_delete_hw_io_queues(ctrl); | 
 | out_cleanup_blk_queue: | 
 | 	blk_cleanup_queue(ctrl->ctrl.connect_q); | 
 | out_free_tag_set: | 
 | 	blk_mq_free_tag_set(&ctrl->tag_set); | 
 | 	nvme_fc_free_io_queues(ctrl); | 
 |  | 
 | 	/* force put free routine to ignore io queues */ | 
 | 	ctrl->ctrl.tagset = NULL; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int | 
 | nvme_fc_reinit_io_queues(struct nvme_fc_ctrl *ctrl) | 
 | { | 
 | 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; | 
 | 	unsigned int nr_io_queues; | 
 | 	int ret; | 
 |  | 
 | 	nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()), | 
 | 				ctrl->lport->ops->max_hw_queues); | 
 | 	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); | 
 | 	if (ret) { | 
 | 		dev_info(ctrl->ctrl.device, | 
 | 			"set_queue_count failed: %d\n", ret); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	ctrl->ctrl.queue_count = nr_io_queues + 1; | 
 | 	/* check for io queues existing */ | 
 | 	if (ctrl->ctrl.queue_count == 1) | 
 | 		return 0; | 
 |  | 
 | 	nvme_fc_init_io_queues(ctrl); | 
 |  | 
 | 	ret = nvme_reinit_tagset(&ctrl->ctrl, ctrl->ctrl.tagset); | 
 | 	if (ret) | 
 | 		goto out_free_io_queues; | 
 |  | 
 | 	ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size); | 
 | 	if (ret) | 
 | 		goto out_free_io_queues; | 
 |  | 
 | 	ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size); | 
 | 	if (ret) | 
 | 		goto out_delete_hw_queues; | 
 |  | 
 | 	blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues); | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_delete_hw_queues: | 
 | 	nvme_fc_delete_hw_io_queues(ctrl); | 
 | out_free_io_queues: | 
 | 	nvme_fc_free_io_queues(ctrl); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void | 
 | nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport) | 
 | { | 
 | 	struct nvme_fc_lport *lport = rport->lport; | 
 |  | 
 | 	atomic_inc(&lport->act_rport_cnt); | 
 | } | 
 |  | 
 | static void | 
 | nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport) | 
 | { | 
 | 	struct nvme_fc_lport *lport = rport->lport; | 
 | 	u32 cnt; | 
 |  | 
 | 	cnt = atomic_dec_return(&lport->act_rport_cnt); | 
 | 	if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED) | 
 | 		lport->ops->localport_delete(&lport->localport); | 
 | } | 
 |  | 
 | static int | 
 | nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl) | 
 | { | 
 | 	struct nvme_fc_rport *rport = ctrl->rport; | 
 | 	u32 cnt; | 
 |  | 
 | 	if (ctrl->assoc_active) | 
 | 		return 1; | 
 |  | 
 | 	ctrl->assoc_active = true; | 
 | 	cnt = atomic_inc_return(&rport->act_ctrl_cnt); | 
 | 	if (cnt == 1) | 
 | 		nvme_fc_rport_active_on_lport(rport); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl) | 
 | { | 
 | 	struct nvme_fc_rport *rport = ctrl->rport; | 
 | 	struct nvme_fc_lport *lport = rport->lport; | 
 | 	u32 cnt; | 
 |  | 
 | 	/* ctrl->assoc_active=false will be set independently */ | 
 |  | 
 | 	cnt = atomic_dec_return(&rport->act_ctrl_cnt); | 
 | 	if (cnt == 0) { | 
 | 		if (rport->remoteport.port_state == FC_OBJSTATE_DELETED) | 
 | 			lport->ops->remoteport_delete(&rport->remoteport); | 
 | 		nvme_fc_rport_inactive_on_lport(rport); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * This routine restarts the controller on the host side, and | 
 |  * on the link side, recreates the controller association. | 
 |  */ | 
 | static int | 
 | nvme_fc_create_association(struct nvme_fc_ctrl *ctrl) | 
 | { | 
 | 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; | 
 | 	int ret; | 
 | 	bool changed; | 
 |  | 
 | 	++ctrl->ctrl.nr_reconnects; | 
 |  | 
 | 	if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE) | 
 | 		return -ENODEV; | 
 |  | 
 | 	if (nvme_fc_ctlr_active_on_rport(ctrl)) | 
 | 		return -ENOTUNIQ; | 
 |  | 
 | 	/* | 
 | 	 * Create the admin queue | 
 | 	 */ | 
 |  | 
 | 	nvme_fc_init_queue(ctrl, 0); | 
 |  | 
 | 	ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0, | 
 | 				NVME_AQ_BLK_MQ_DEPTH); | 
 | 	if (ret) | 
 | 		goto out_free_queue; | 
 |  | 
 | 	ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0], | 
 | 				NVME_AQ_BLK_MQ_DEPTH, | 
 | 				(NVME_AQ_BLK_MQ_DEPTH / 4)); | 
 | 	if (ret) | 
 | 		goto out_delete_hw_queue; | 
 |  | 
 | 	if (ctrl->ctrl.state != NVME_CTRL_NEW) | 
 | 		blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); | 
 |  | 
 | 	ret = nvmf_connect_admin_queue(&ctrl->ctrl); | 
 | 	if (ret) | 
 | 		goto out_disconnect_admin_queue; | 
 |  | 
 | 	set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags); | 
 |  | 
 | 	/* | 
 | 	 * Check controller capabilities | 
 | 	 * | 
 | 	 * todo:- add code to check if ctrl attributes changed from | 
 | 	 * prior connection values | 
 | 	 */ | 
 |  | 
 | 	ret = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->ctrl.cap); | 
 | 	if (ret) { | 
 | 		dev_err(ctrl->ctrl.device, | 
 | 			"prop_get NVME_REG_CAP failed\n"); | 
 | 		goto out_disconnect_admin_queue; | 
 | 	} | 
 |  | 
 | 	ctrl->ctrl.sqsize = | 
 | 		min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap) + 1, ctrl->ctrl.sqsize); | 
 |  | 
 | 	ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap); | 
 | 	if (ret) | 
 | 		goto out_disconnect_admin_queue; | 
 |  | 
 | 	ctrl->ctrl.max_hw_sectors = | 
 | 		(ctrl->lport->ops->max_sgl_segments - 1) << (PAGE_SHIFT - 9); | 
 |  | 
 | 	ret = nvme_init_identify(&ctrl->ctrl); | 
 | 	if (ret) | 
 | 		goto out_disconnect_admin_queue; | 
 |  | 
 | 	/* sanity checks */ | 
 |  | 
 | 	/* FC-NVME does not have other data in the capsule */ | 
 | 	if (ctrl->ctrl.icdoff) { | 
 | 		dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n", | 
 | 				ctrl->ctrl.icdoff); | 
 | 		goto out_disconnect_admin_queue; | 
 | 	} | 
 |  | 
 | 	/* FC-NVME supports normal SGL Data Block Descriptors */ | 
 |  | 
 | 	if (opts->queue_size > ctrl->ctrl.maxcmd) { | 
 | 		/* warn if maxcmd is lower than queue_size */ | 
 | 		dev_warn(ctrl->ctrl.device, | 
 | 			"queue_size %zu > ctrl maxcmd %u, reducing " | 
 | 			"to queue_size\n", | 
 | 			opts->queue_size, ctrl->ctrl.maxcmd); | 
 | 		opts->queue_size = ctrl->ctrl.maxcmd; | 
 | 	} | 
 |  | 
 | 	ret = nvme_fc_init_aen_ops(ctrl); | 
 | 	if (ret) | 
 | 		goto out_term_aen_ops; | 
 |  | 
 | 	/* | 
 | 	 * Create the io queues | 
 | 	 */ | 
 |  | 
 | 	if (ctrl->ctrl.queue_count > 1) { | 
 | 		if (ctrl->ctrl.state == NVME_CTRL_NEW) | 
 | 			ret = nvme_fc_create_io_queues(ctrl); | 
 | 		else | 
 | 			ret = nvme_fc_reinit_io_queues(ctrl); | 
 | 		if (ret) | 
 | 			goto out_term_aen_ops; | 
 | 	} | 
 |  | 
 | 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); | 
 |  | 
 | 	ctrl->ctrl.nr_reconnects = 0; | 
 |  | 
 | 	if (changed) | 
 | 		nvme_start_ctrl(&ctrl->ctrl); | 
 |  | 
 | 	return 0;	/* Success */ | 
 |  | 
 | out_term_aen_ops: | 
 | 	nvme_fc_term_aen_ops(ctrl); | 
 | out_disconnect_admin_queue: | 
 | 	/* send a Disconnect(association) LS to fc-nvme target */ | 
 | 	nvme_fc_xmt_disconnect_assoc(ctrl); | 
 | out_delete_hw_queue: | 
 | 	__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0); | 
 | out_free_queue: | 
 | 	nvme_fc_free_queue(&ctrl->queues[0]); | 
 | 	ctrl->assoc_active = false; | 
 | 	nvme_fc_ctlr_inactive_on_rport(ctrl); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * This routine stops operation of the controller on the host side. | 
 |  * On the host os stack side: Admin and IO queues are stopped, | 
 |  *   outstanding ios on them terminated via FC ABTS. | 
 |  * On the link side: the association is terminated. | 
 |  */ | 
 | static void | 
 | nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (!ctrl->assoc_active) | 
 | 		return; | 
 | 	ctrl->assoc_active = false; | 
 |  | 
 | 	spin_lock_irqsave(&ctrl->lock, flags); | 
 | 	ctrl->flags |= FCCTRL_TERMIO; | 
 | 	ctrl->iocnt = 0; | 
 | 	spin_unlock_irqrestore(&ctrl->lock, flags); | 
 |  | 
 | 	/* | 
 | 	 * If io queues are present, stop them and terminate all outstanding | 
 | 	 * ios on them. As FC allocates FC exchange for each io, the | 
 | 	 * transport must contact the LLDD to terminate the exchange, | 
 | 	 * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr() | 
 | 	 * to tell us what io's are busy and invoke a transport routine | 
 | 	 * to kill them with the LLDD.  After terminating the exchange | 
 | 	 * the LLDD will call the transport's normal io done path, but it | 
 | 	 * will have an aborted status. The done path will return the | 
 | 	 * io requests back to the block layer as part of normal completions | 
 | 	 * (but with error status). | 
 | 	 */ | 
 | 	if (ctrl->ctrl.queue_count > 1) { | 
 | 		nvme_stop_queues(&ctrl->ctrl); | 
 | 		blk_mq_tagset_busy_iter(&ctrl->tag_set, | 
 | 				nvme_fc_terminate_exchange, &ctrl->ctrl); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Other transports, which don't have link-level contexts bound | 
 | 	 * to sqe's, would try to gracefully shutdown the controller by | 
 | 	 * writing the registers for shutdown and polling (call | 
 | 	 * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially | 
 | 	 * just aborted and we will wait on those contexts, and given | 
 | 	 * there was no indication of how live the controlelr is on the | 
 | 	 * link, don't send more io to create more contexts for the | 
 | 	 * shutdown. Let the controller fail via keepalive failure if | 
 | 	 * its still present. | 
 | 	 */ | 
 |  | 
 | 	/* | 
 | 	 * clean up the admin queue. Same thing as above. | 
 | 	 * use blk_mq_tagset_busy_itr() and the transport routine to | 
 | 	 * terminate the exchanges. | 
 | 	 */ | 
 | 	if (ctrl->ctrl.state != NVME_CTRL_NEW) | 
 | 		blk_mq_quiesce_queue(ctrl->ctrl.admin_q); | 
 | 	blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, | 
 | 				nvme_fc_terminate_exchange, &ctrl->ctrl); | 
 |  | 
 | 	/* kill the aens as they are a separate path */ | 
 | 	nvme_fc_abort_aen_ops(ctrl); | 
 |  | 
 | 	/* wait for all io that had to be aborted */ | 
 | 	spin_lock_irq(&ctrl->lock); | 
 | 	wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock); | 
 | 	ctrl->flags &= ~FCCTRL_TERMIO; | 
 | 	spin_unlock_irq(&ctrl->lock); | 
 |  | 
 | 	nvme_fc_term_aen_ops(ctrl); | 
 |  | 
 | 	/* | 
 | 	 * send a Disconnect(association) LS to fc-nvme target | 
 | 	 * Note: could have been sent at top of process, but | 
 | 	 * cleaner on link traffic if after the aborts complete. | 
 | 	 * Note: if association doesn't exist, association_id will be 0 | 
 | 	 */ | 
 | 	if (ctrl->association_id) | 
 | 		nvme_fc_xmt_disconnect_assoc(ctrl); | 
 |  | 
 | 	if (ctrl->ctrl.tagset) { | 
 | 		nvme_fc_delete_hw_io_queues(ctrl); | 
 | 		nvme_fc_free_io_queues(ctrl); | 
 | 	} | 
 |  | 
 | 	__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0); | 
 | 	nvme_fc_free_queue(&ctrl->queues[0]); | 
 |  | 
 | 	nvme_fc_ctlr_inactive_on_rport(ctrl); | 
 | } | 
 |  | 
 | static void | 
 | nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl) | 
 | { | 
 | 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); | 
 |  | 
 | 	cancel_delayed_work_sync(&ctrl->connect_work); | 
 | 	/* | 
 | 	 * kill the association on the link side.  this will block | 
 | 	 * waiting for io to terminate | 
 | 	 */ | 
 | 	nvme_fc_delete_association(ctrl); | 
 | } | 
 |  | 
 | static void | 
 | nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status) | 
 | { | 
 | 	struct nvme_fc_rport *rport = ctrl->rport; | 
 | 	struct nvme_fc_remote_port *portptr = &rport->remoteport; | 
 | 	unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ; | 
 | 	bool recon = true; | 
 |  | 
 | 	if (ctrl->ctrl.state != NVME_CTRL_RECONNECTING) | 
 | 		return; | 
 |  | 
 | 	if (portptr->port_state == FC_OBJSTATE_ONLINE) | 
 | 		dev_info(ctrl->ctrl.device, | 
 | 			"NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n", | 
 | 			ctrl->cnum, status); | 
 | 	else if (time_after_eq(jiffies, rport->dev_loss_end)) | 
 | 		recon = false; | 
 |  | 
 | 	if (recon && nvmf_should_reconnect(&ctrl->ctrl)) { | 
 | 		if (portptr->port_state == FC_OBJSTATE_ONLINE) | 
 | 			dev_info(ctrl->ctrl.device, | 
 | 				"NVME-FC{%d}: Reconnect attempt in %ld " | 
 | 				"seconds\n", | 
 | 				ctrl->cnum, recon_delay / HZ); | 
 | 		else if (time_after(jiffies + recon_delay, rport->dev_loss_end)) | 
 | 			recon_delay = rport->dev_loss_end - jiffies; | 
 |  | 
 | 		queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay); | 
 | 	} else { | 
 | 		if (portptr->port_state == FC_OBJSTATE_ONLINE) | 
 | 			dev_warn(ctrl->ctrl.device, | 
 | 				"NVME-FC{%d}: Max reconnect attempts (%d) " | 
 | 				"reached. Removing controller\n", | 
 | 				ctrl->cnum, ctrl->ctrl.nr_reconnects); | 
 | 		else | 
 | 			dev_warn(ctrl->ctrl.device, | 
 | 				"NVME-FC{%d}: dev_loss_tmo (%d) expired " | 
 | 				"while waiting for remoteport connectivity. " | 
 | 				"Removing controller\n", ctrl->cnum, | 
 | 				portptr->dev_loss_tmo); | 
 | 		WARN_ON(nvme_delete_ctrl(&ctrl->ctrl)); | 
 | 	} | 
 | } | 
 |  | 
 | static void | 
 | nvme_fc_reset_ctrl_work(struct work_struct *work) | 
 | { | 
 | 	struct nvme_fc_ctrl *ctrl = | 
 | 		container_of(work, struct nvme_fc_ctrl, ctrl.reset_work); | 
 | 	int ret; | 
 |  | 
 | 	nvme_stop_ctrl(&ctrl->ctrl); | 
 |  | 
 | 	/* will block will waiting for io to terminate */ | 
 | 	nvme_fc_delete_association(ctrl); | 
 |  | 
 | 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING)) { | 
 | 		dev_err(ctrl->ctrl.device, | 
 | 			"NVME-FC{%d}: error_recovery: Couldn't change state " | 
 | 			"to RECONNECTING\n", ctrl->cnum); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE) | 
 | 		ret = nvme_fc_create_association(ctrl); | 
 | 	else | 
 | 		ret = -ENOTCONN; | 
 |  | 
 | 	if (ret) | 
 | 		nvme_fc_reconnect_or_delete(ctrl, ret); | 
 | 	else | 
 | 		dev_info(ctrl->ctrl.device, | 
 | 			"NVME-FC{%d}: controller reset complete\n", | 
 | 			ctrl->cnum); | 
 | } | 
 |  | 
 | static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = { | 
 | 	.name			= "fc", | 
 | 	.module			= THIS_MODULE, | 
 | 	.flags			= NVME_F_FABRICS, | 
 | 	.reg_read32		= nvmf_reg_read32, | 
 | 	.reg_read64		= nvmf_reg_read64, | 
 | 	.reg_write32		= nvmf_reg_write32, | 
 | 	.free_ctrl		= nvme_fc_nvme_ctrl_freed, | 
 | 	.submit_async_event	= nvme_fc_submit_async_event, | 
 | 	.delete_ctrl		= nvme_fc_delete_ctrl, | 
 | 	.get_address		= nvmf_get_address, | 
 | 	.reinit_request		= nvme_fc_reinit_request, | 
 | }; | 
 |  | 
 | static void | 
 | nvme_fc_connect_ctrl_work(struct work_struct *work) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	struct nvme_fc_ctrl *ctrl = | 
 | 			container_of(to_delayed_work(work), | 
 | 				struct nvme_fc_ctrl, connect_work); | 
 |  | 
 | 	ret = nvme_fc_create_association(ctrl); | 
 | 	if (ret) | 
 | 		nvme_fc_reconnect_or_delete(ctrl, ret); | 
 | 	else | 
 | 		dev_info(ctrl->ctrl.device, | 
 | 			"NVME-FC{%d}: controller reconnect complete\n", | 
 | 			ctrl->cnum); | 
 | } | 
 |  | 
 |  | 
 | static const struct blk_mq_ops nvme_fc_admin_mq_ops = { | 
 | 	.queue_rq	= nvme_fc_queue_rq, | 
 | 	.complete	= nvme_fc_complete_rq, | 
 | 	.init_request	= nvme_fc_init_request, | 
 | 	.exit_request	= nvme_fc_exit_request, | 
 | 	.init_hctx	= nvme_fc_init_admin_hctx, | 
 | 	.timeout	= nvme_fc_timeout, | 
 | }; | 
 |  | 
 |  | 
 | /* | 
 |  * Fails a controller request if it matches an existing controller | 
 |  * (association) with the same tuple: | 
 |  * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN> | 
 |  * | 
 |  * The ports don't need to be compared as they are intrinsically | 
 |  * already matched by the port pointers supplied. | 
 |  */ | 
 | static bool | 
 | nvme_fc_existing_controller(struct nvme_fc_rport *rport, | 
 | 		struct nvmf_ctrl_options *opts) | 
 | { | 
 | 	struct nvme_fc_ctrl *ctrl; | 
 | 	unsigned long flags; | 
 | 	bool found = false; | 
 |  | 
 | 	spin_lock_irqsave(&rport->lock, flags); | 
 | 	list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) { | 
 | 		found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts); | 
 | 		if (found) | 
 | 			break; | 
 | 	} | 
 | 	spin_unlock_irqrestore(&rport->lock, flags); | 
 |  | 
 | 	return found; | 
 | } | 
 |  | 
 | static struct nvme_ctrl * | 
 | nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts, | 
 | 	struct nvme_fc_lport *lport, struct nvme_fc_rport *rport) | 
 | { | 
 | 	struct nvme_fc_ctrl *ctrl; | 
 | 	unsigned long flags; | 
 | 	int ret, idx, retry; | 
 |  | 
 | 	if (!(rport->remoteport.port_role & | 
 | 	    (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) { | 
 | 		ret = -EBADR; | 
 | 		goto out_fail; | 
 | 	} | 
 |  | 
 | 	if (!opts->duplicate_connect && | 
 | 	    nvme_fc_existing_controller(rport, opts)) { | 
 | 		ret = -EALREADY; | 
 | 		goto out_fail; | 
 | 	} | 
 |  | 
 | 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); | 
 | 	if (!ctrl) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out_fail; | 
 | 	} | 
 |  | 
 | 	idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL); | 
 | 	if (idx < 0) { | 
 | 		ret = -ENOSPC; | 
 | 		goto out_free_ctrl; | 
 | 	} | 
 |  | 
 | 	ctrl->ctrl.opts = opts; | 
 | 	INIT_LIST_HEAD(&ctrl->ctrl_list); | 
 | 	ctrl->lport = lport; | 
 | 	ctrl->rport = rport; | 
 | 	ctrl->dev = lport->dev; | 
 | 	ctrl->cnum = idx; | 
 | 	ctrl->assoc_active = false; | 
 | 	init_waitqueue_head(&ctrl->ioabort_wait); | 
 |  | 
 | 	get_device(ctrl->dev); | 
 | 	kref_init(&ctrl->ref); | 
 |  | 
 | 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work); | 
 | 	INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work); | 
 | 	spin_lock_init(&ctrl->lock); | 
 |  | 
 | 	/* io queue count */ | 
 | 	ctrl->ctrl.queue_count = min_t(unsigned int, | 
 | 				opts->nr_io_queues, | 
 | 				lport->ops->max_hw_queues); | 
 | 	ctrl->ctrl.queue_count++;	/* +1 for admin queue */ | 
 |  | 
 | 	ctrl->ctrl.sqsize = opts->queue_size - 1; | 
 | 	ctrl->ctrl.kato = opts->kato; | 
 |  | 
 | 	ret = -ENOMEM; | 
 | 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, | 
 | 				sizeof(struct nvme_fc_queue), GFP_KERNEL); | 
 | 	if (!ctrl->queues) | 
 | 		goto out_free_ida; | 
 |  | 
 | 	memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set)); | 
 | 	ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops; | 
 | 	ctrl->admin_tag_set.queue_depth = NVME_AQ_MQ_TAG_DEPTH; | 
 | 	ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */ | 
 | 	ctrl->admin_tag_set.numa_node = NUMA_NO_NODE; | 
 | 	ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) + | 
 | 					(SG_CHUNK_SIZE * | 
 | 						sizeof(struct scatterlist)) + | 
 | 					ctrl->lport->ops->fcprqst_priv_sz; | 
 | 	ctrl->admin_tag_set.driver_data = ctrl; | 
 | 	ctrl->admin_tag_set.nr_hw_queues = 1; | 
 | 	ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT; | 
 | 	ctrl->admin_tag_set.flags = BLK_MQ_F_NO_SCHED; | 
 |  | 
 | 	ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set); | 
 | 	if (ret) | 
 | 		goto out_free_queues; | 
 | 	ctrl->ctrl.admin_tagset = &ctrl->admin_tag_set; | 
 |  | 
 | 	ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set); | 
 | 	if (IS_ERR(ctrl->ctrl.admin_q)) { | 
 | 		ret = PTR_ERR(ctrl->ctrl.admin_q); | 
 | 		goto out_free_admin_tag_set; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Would have been nice to init io queues tag set as well. | 
 | 	 * However, we require interaction from the controller | 
 | 	 * for max io queue count before we can do so. | 
 | 	 * Defer this to the connect path. | 
 | 	 */ | 
 |  | 
 | 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0); | 
 | 	if (ret) | 
 | 		goto out_cleanup_admin_q; | 
 |  | 
 | 	/* at this point, teardown path changes to ref counting on nvme ctrl */ | 
 |  | 
 | 	spin_lock_irqsave(&rport->lock, flags); | 
 | 	list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list); | 
 | 	spin_unlock_irqrestore(&rport->lock, flags); | 
 |  | 
 | 	/* | 
 | 	 * It's possible that transactions used to create the association | 
 | 	 * may fail. Examples: CreateAssociation LS or CreateIOConnection | 
 | 	 * LS gets dropped/corrupted/fails; or a frame gets dropped or a | 
 | 	 * command times out for one of the actions to init the controller | 
 | 	 * (Connect, Get/Set_Property, Set_Features, etc). Many of these | 
 | 	 * transport errors (frame drop, LS failure) inherently must kill | 
 | 	 * the association. The transport is coded so that any command used | 
 | 	 * to create the association (prior to a LIVE state transition | 
 | 	 * while NEW or RECONNECTING) will fail if it completes in error or | 
 | 	 * times out. | 
 | 	 * | 
 | 	 * As such: as the connect request was mostly likely due to a | 
 | 	 * udev event that discovered the remote port, meaning there is | 
 | 	 * not an admin or script there to restart if the connect | 
 | 	 * request fails, retry the initial connection creation up to | 
 | 	 * three times before giving up and declaring failure. | 
 | 	 */ | 
 | 	for (retry = 0; retry < 3; retry++) { | 
 | 		ret = nvme_fc_create_association(ctrl); | 
 | 		if (!ret) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	if (ret) { | 
 | 		/* couldn't schedule retry - fail out */ | 
 | 		dev_err(ctrl->ctrl.device, | 
 | 			"NVME-FC{%d}: Connect retry failed\n", ctrl->cnum); | 
 |  | 
 | 		ctrl->ctrl.opts = NULL; | 
 |  | 
 | 		/* initiate nvme ctrl ref counting teardown */ | 
 | 		nvme_uninit_ctrl(&ctrl->ctrl); | 
 |  | 
 | 		/* Remove core ctrl ref. */ | 
 | 		nvme_put_ctrl(&ctrl->ctrl); | 
 |  | 
 | 		/* as we're past the point where we transition to the ref | 
 | 		 * counting teardown path, if we return a bad pointer here, | 
 | 		 * the calling routine, thinking it's prior to the | 
 | 		 * transition, will do an rport put. Since the teardown | 
 | 		 * path also does a rport put, we do an extra get here to | 
 | 		 * so proper order/teardown happens. | 
 | 		 */ | 
 | 		nvme_fc_rport_get(rport); | 
 |  | 
 | 		if (ret > 0) | 
 | 			ret = -EIO; | 
 | 		return ERR_PTR(ret); | 
 | 	} | 
 |  | 
 | 	nvme_get_ctrl(&ctrl->ctrl); | 
 |  | 
 | 	dev_info(ctrl->ctrl.device, | 
 | 		"NVME-FC{%d}: new ctrl: NQN \"%s\"\n", | 
 | 		ctrl->cnum, ctrl->ctrl.opts->subsysnqn); | 
 |  | 
 | 	return &ctrl->ctrl; | 
 |  | 
 | out_cleanup_admin_q: | 
 | 	blk_cleanup_queue(ctrl->ctrl.admin_q); | 
 | out_free_admin_tag_set: | 
 | 	blk_mq_free_tag_set(&ctrl->admin_tag_set); | 
 | out_free_queues: | 
 | 	kfree(ctrl->queues); | 
 | out_free_ida: | 
 | 	put_device(ctrl->dev); | 
 | 	ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum); | 
 | out_free_ctrl: | 
 | 	kfree(ctrl); | 
 | out_fail: | 
 | 	/* exit via here doesn't follow ctlr ref points */ | 
 | 	return ERR_PTR(ret); | 
 | } | 
 |  | 
 |  | 
 | struct nvmet_fc_traddr { | 
 | 	u64	nn; | 
 | 	u64	pn; | 
 | }; | 
 |  | 
 | static int | 
 | __nvme_fc_parse_u64(substring_t *sstr, u64 *val) | 
 | { | 
 | 	u64 token64; | 
 |  | 
 | 	if (match_u64(sstr, &token64)) | 
 | 		return -EINVAL; | 
 | 	*val = token64; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * This routine validates and extracts the WWN's from the TRADDR string. | 
 |  * As kernel parsers need the 0x to determine number base, universally | 
 |  * build string to parse with 0x prefix before parsing name strings. | 
 |  */ | 
 | static int | 
 | nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen) | 
 | { | 
 | 	char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1]; | 
 | 	substring_t wwn = { name, &name[sizeof(name)-1] }; | 
 | 	int nnoffset, pnoffset; | 
 |  | 
 | 	/* validate it string one of the 2 allowed formats */ | 
 | 	if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH && | 
 | 			!strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) && | 
 | 			!strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET], | 
 | 				"pn-0x", NVME_FC_TRADDR_OXNNLEN)) { | 
 | 		nnoffset = NVME_FC_TRADDR_OXNNLEN; | 
 | 		pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET + | 
 | 						NVME_FC_TRADDR_OXNNLEN; | 
 | 	} else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH && | 
 | 			!strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) && | 
 | 			!strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET], | 
 | 				"pn-", NVME_FC_TRADDR_NNLEN))) { | 
 | 		nnoffset = NVME_FC_TRADDR_NNLEN; | 
 | 		pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN; | 
 | 	} else | 
 | 		goto out_einval; | 
 |  | 
 | 	name[0] = '0'; | 
 | 	name[1] = 'x'; | 
 | 	name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0; | 
 |  | 
 | 	memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN); | 
 | 	if (__nvme_fc_parse_u64(&wwn, &traddr->nn)) | 
 | 		goto out_einval; | 
 |  | 
 | 	memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN); | 
 | 	if (__nvme_fc_parse_u64(&wwn, &traddr->pn)) | 
 | 		goto out_einval; | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_einval: | 
 | 	pr_warn("%s: bad traddr string\n", __func__); | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | static struct nvme_ctrl * | 
 | nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts) | 
 | { | 
 | 	struct nvme_fc_lport *lport; | 
 | 	struct nvme_fc_rport *rport; | 
 | 	struct nvme_ctrl *ctrl; | 
 | 	struct nvmet_fc_traddr laddr = { 0L, 0L }; | 
 | 	struct nvmet_fc_traddr raddr = { 0L, 0L }; | 
 | 	unsigned long flags; | 
 | 	int ret; | 
 |  | 
 | 	ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE); | 
 | 	if (ret || !raddr.nn || !raddr.pn) | 
 | 		return ERR_PTR(-EINVAL); | 
 |  | 
 | 	ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE); | 
 | 	if (ret || !laddr.nn || !laddr.pn) | 
 | 		return ERR_PTR(-EINVAL); | 
 |  | 
 | 	/* find the host and remote ports to connect together */ | 
 | 	spin_lock_irqsave(&nvme_fc_lock, flags); | 
 | 	list_for_each_entry(lport, &nvme_fc_lport_list, port_list) { | 
 | 		if (lport->localport.node_name != laddr.nn || | 
 | 		    lport->localport.port_name != laddr.pn) | 
 | 			continue; | 
 |  | 
 | 		list_for_each_entry(rport, &lport->endp_list, endp_list) { | 
 | 			if (rport->remoteport.node_name != raddr.nn || | 
 | 			    rport->remoteport.port_name != raddr.pn) | 
 | 				continue; | 
 |  | 
 | 			/* if fail to get reference fall through. Will error */ | 
 | 			if (!nvme_fc_rport_get(rport)) | 
 | 				break; | 
 |  | 
 | 			spin_unlock_irqrestore(&nvme_fc_lock, flags); | 
 |  | 
 | 			ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport); | 
 | 			if (IS_ERR(ctrl)) | 
 | 				nvme_fc_rport_put(rport); | 
 | 			return ctrl; | 
 | 		} | 
 | 	} | 
 | 	spin_unlock_irqrestore(&nvme_fc_lock, flags); | 
 |  | 
 | 	return ERR_PTR(-ENOENT); | 
 | } | 
 |  | 
 |  | 
 | static struct nvmf_transport_ops nvme_fc_transport = { | 
 | 	.name		= "fc", | 
 | 	.required_opts	= NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR, | 
 | 	.allowed_opts	= NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO, | 
 | 	.create_ctrl	= nvme_fc_create_ctrl, | 
 | }; | 
 |  | 
 | static int __init nvme_fc_init_module(void) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * NOTE: | 
 | 	 * It is expected that in the future the kernel will combine | 
 | 	 * the FC-isms that are currently under scsi and now being | 
 | 	 * added to by NVME into a new standalone FC class. The SCSI | 
 | 	 * and NVME protocols and their devices would be under this | 
 | 	 * new FC class. | 
 | 	 * | 
 | 	 * As we need something to post FC-specific udev events to, | 
 | 	 * specifically for nvme probe events, start by creating the | 
 | 	 * new device class.  When the new standalone FC class is | 
 | 	 * put in place, this code will move to a more generic | 
 | 	 * location for the class. | 
 | 	 */ | 
 | 	fc_class = class_create(THIS_MODULE, "fc"); | 
 | 	if (IS_ERR(fc_class)) { | 
 | 		pr_err("couldn't register class fc\n"); | 
 | 		return PTR_ERR(fc_class); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Create a device for the FC-centric udev events | 
 | 	 */ | 
 | 	fc_udev_device = device_create(fc_class, NULL, MKDEV(0, 0), NULL, | 
 | 				"fc_udev_device"); | 
 | 	if (IS_ERR(fc_udev_device)) { | 
 | 		pr_err("couldn't create fc_udev device!\n"); | 
 | 		ret = PTR_ERR(fc_udev_device); | 
 | 		goto out_destroy_class; | 
 | 	} | 
 |  | 
 | 	ret = nvmf_register_transport(&nvme_fc_transport); | 
 | 	if (ret) | 
 | 		goto out_destroy_device; | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_destroy_device: | 
 | 	device_destroy(fc_class, MKDEV(0, 0)); | 
 | out_destroy_class: | 
 | 	class_destroy(fc_class); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void __exit nvme_fc_exit_module(void) | 
 | { | 
 | 	/* sanity check - all lports should be removed */ | 
 | 	if (!list_empty(&nvme_fc_lport_list)) | 
 | 		pr_warn("%s: localport list not empty\n", __func__); | 
 |  | 
 | 	nvmf_unregister_transport(&nvme_fc_transport); | 
 |  | 
 | 	ida_destroy(&nvme_fc_local_port_cnt); | 
 | 	ida_destroy(&nvme_fc_ctrl_cnt); | 
 |  | 
 | 	device_destroy(fc_class, MKDEV(0, 0)); | 
 | 	class_destroy(fc_class); | 
 | } | 
 |  | 
 | module_init(nvme_fc_init_module); | 
 | module_exit(nvme_fc_exit_module); | 
 |  | 
 | MODULE_LICENSE("GPL v2"); |