| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * FP/SIMD context switching and fault handling |
| * |
| * Copyright (C) 2012 ARM Ltd. |
| * Author: Catalin Marinas <catalin.marinas@arm.com> |
| */ |
| |
| #include <linux/bitmap.h> |
| #include <linux/bitops.h> |
| #include <linux/bottom_half.h> |
| #include <linux/bug.h> |
| #include <linux/cache.h> |
| #include <linux/compat.h> |
| #include <linux/compiler.h> |
| #include <linux/cpu.h> |
| #include <linux/cpu_pm.h> |
| #include <linux/ctype.h> |
| #include <linux/kernel.h> |
| #include <linux/linkage.h> |
| #include <linux/irqflags.h> |
| #include <linux/init.h> |
| #include <linux/percpu.h> |
| #include <linux/prctl.h> |
| #include <linux/preempt.h> |
| #include <linux/ptrace.h> |
| #include <linux/sched/signal.h> |
| #include <linux/sched/task_stack.h> |
| #include <linux/signal.h> |
| #include <linux/slab.h> |
| #include <linux/stddef.h> |
| #include <linux/sysctl.h> |
| #include <linux/swab.h> |
| |
| #include <asm/esr.h> |
| #include <asm/exception.h> |
| #include <asm/fpsimd.h> |
| #include <asm/cpufeature.h> |
| #include <asm/cputype.h> |
| #include <asm/neon.h> |
| #include <asm/processor.h> |
| #include <asm/simd.h> |
| #include <asm/sigcontext.h> |
| #include <asm/sysreg.h> |
| #include <asm/traps.h> |
| #include <asm/virt.h> |
| |
| #define FPEXC_IOF (1 << 0) |
| #define FPEXC_DZF (1 << 1) |
| #define FPEXC_OFF (1 << 2) |
| #define FPEXC_UFF (1 << 3) |
| #define FPEXC_IXF (1 << 4) |
| #define FPEXC_IDF (1 << 7) |
| |
| /* |
| * (Note: in this discussion, statements about FPSIMD apply equally to SVE.) |
| * |
| * In order to reduce the number of times the FPSIMD state is needlessly saved |
| * and restored, we need to keep track of two things: |
| * (a) for each task, we need to remember which CPU was the last one to have |
| * the task's FPSIMD state loaded into its FPSIMD registers; |
| * (b) for each CPU, we need to remember which task's userland FPSIMD state has |
| * been loaded into its FPSIMD registers most recently, or whether it has |
| * been used to perform kernel mode NEON in the meantime. |
| * |
| * For (a), we add a fpsimd_cpu field to thread_struct, which gets updated to |
| * the id of the current CPU every time the state is loaded onto a CPU. For (b), |
| * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the |
| * address of the userland FPSIMD state of the task that was loaded onto the CPU |
| * the most recently, or NULL if kernel mode NEON has been performed after that. |
| * |
| * With this in place, we no longer have to restore the next FPSIMD state right |
| * when switching between tasks. Instead, we can defer this check to userland |
| * resume, at which time we verify whether the CPU's fpsimd_last_state and the |
| * task's fpsimd_cpu are still mutually in sync. If this is the case, we |
| * can omit the FPSIMD restore. |
| * |
| * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to |
| * indicate whether or not the userland FPSIMD state of the current task is |
| * present in the registers. The flag is set unless the FPSIMD registers of this |
| * CPU currently contain the most recent userland FPSIMD state of the current |
| * task. If the task is behaving as a VMM, then this is will be managed by |
| * KVM which will clear it to indicate that the vcpu FPSIMD state is currently |
| * loaded on the CPU, allowing the state to be saved if a FPSIMD-aware |
| * softirq kicks in. Upon vcpu_put(), KVM will save the vcpu FP state and |
| * flag the register state as invalid. |
| * |
| * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may be |
| * called from softirq context, which will save the task's FPSIMD context back |
| * to task_struct. To prevent this from racing with the manipulation of the |
| * task's FPSIMD state from task context and thereby corrupting the state, it |
| * is necessary to protect any manipulation of a task's fpsimd_state or |
| * TIF_FOREIGN_FPSTATE flag with get_cpu_fpsimd_context(), which will suspend |
| * softirq servicing entirely until put_cpu_fpsimd_context() is called. |
| * |
| * For a certain task, the sequence may look something like this: |
| * - the task gets scheduled in; if both the task's fpsimd_cpu field |
| * contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu |
| * variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is |
| * cleared, otherwise it is set; |
| * |
| * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's |
| * userland FPSIMD state is copied from memory to the registers, the task's |
| * fpsimd_cpu field is set to the id of the current CPU, the current |
| * CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the |
| * TIF_FOREIGN_FPSTATE flag is cleared; |
| * |
| * - the task executes an ordinary syscall; upon return to userland, the |
| * TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is |
| * restored; |
| * |
| * - the task executes a syscall which executes some NEON instructions; this is |
| * preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD |
| * register contents to memory, clears the fpsimd_last_state per-cpu variable |
| * and sets the TIF_FOREIGN_FPSTATE flag; |
| * |
| * - the task gets preempted after kernel_neon_end() is called; as we have not |
| * returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so |
| * whatever is in the FPSIMD registers is not saved to memory, but discarded. |
| */ |
| |
| static DEFINE_PER_CPU(struct cpu_fp_state, fpsimd_last_state); |
| |
| __ro_after_init struct vl_info vl_info[ARM64_VEC_MAX] = { |
| #ifdef CONFIG_ARM64_SVE |
| [ARM64_VEC_SVE] = { |
| .type = ARM64_VEC_SVE, |
| .name = "SVE", |
| .min_vl = SVE_VL_MIN, |
| .max_vl = SVE_VL_MIN, |
| .max_virtualisable_vl = SVE_VL_MIN, |
| }, |
| #endif |
| #ifdef CONFIG_ARM64_SME |
| [ARM64_VEC_SME] = { |
| .type = ARM64_VEC_SME, |
| .name = "SME", |
| }, |
| #endif |
| }; |
| |
| static unsigned int vec_vl_inherit_flag(enum vec_type type) |
| { |
| switch (type) { |
| case ARM64_VEC_SVE: |
| return TIF_SVE_VL_INHERIT; |
| case ARM64_VEC_SME: |
| return TIF_SME_VL_INHERIT; |
| default: |
| WARN_ON_ONCE(1); |
| return 0; |
| } |
| } |
| |
| struct vl_config { |
| int __default_vl; /* Default VL for tasks */ |
| }; |
| |
| static struct vl_config vl_config[ARM64_VEC_MAX]; |
| |
| static inline int get_default_vl(enum vec_type type) |
| { |
| return READ_ONCE(vl_config[type].__default_vl); |
| } |
| |
| #ifdef CONFIG_ARM64_SVE |
| |
| static inline int get_sve_default_vl(void) |
| { |
| return get_default_vl(ARM64_VEC_SVE); |
| } |
| |
| static inline void set_default_vl(enum vec_type type, int val) |
| { |
| WRITE_ONCE(vl_config[type].__default_vl, val); |
| } |
| |
| static inline void set_sve_default_vl(int val) |
| { |
| set_default_vl(ARM64_VEC_SVE, val); |
| } |
| |
| static void __percpu *efi_sve_state; |
| |
| #else /* ! CONFIG_ARM64_SVE */ |
| |
| /* Dummy declaration for code that will be optimised out: */ |
| extern void __percpu *efi_sve_state; |
| |
| #endif /* ! CONFIG_ARM64_SVE */ |
| |
| #ifdef CONFIG_ARM64_SME |
| |
| static int get_sme_default_vl(void) |
| { |
| return get_default_vl(ARM64_VEC_SME); |
| } |
| |
| static void set_sme_default_vl(int val) |
| { |
| set_default_vl(ARM64_VEC_SME, val); |
| } |
| |
| static void sme_free(struct task_struct *); |
| |
| #else |
| |
| static inline void sme_free(struct task_struct *t) { } |
| |
| #endif |
| |
| static void fpsimd_bind_task_to_cpu(void); |
| |
| /* |
| * Claim ownership of the CPU FPSIMD context for use by the calling context. |
| * |
| * The caller may freely manipulate the FPSIMD context metadata until |
| * put_cpu_fpsimd_context() is called. |
| * |
| * On RT kernels local_bh_disable() is not sufficient because it only |
| * serializes soft interrupt related sections via a local lock, but stays |
| * preemptible. Disabling preemption is the right choice here as bottom |
| * half processing is always in thread context on RT kernels so it |
| * implicitly prevents bottom half processing as well. |
| */ |
| static void get_cpu_fpsimd_context(void) |
| { |
| if (!IS_ENABLED(CONFIG_PREEMPT_RT)) |
| local_bh_disable(); |
| else |
| preempt_disable(); |
| } |
| |
| /* |
| * Release the CPU FPSIMD context. |
| * |
| * Must be called from a context in which get_cpu_fpsimd_context() was |
| * previously called, with no call to put_cpu_fpsimd_context() in the |
| * meantime. |
| */ |
| static void put_cpu_fpsimd_context(void) |
| { |
| if (!IS_ENABLED(CONFIG_PREEMPT_RT)) |
| local_bh_enable(); |
| else |
| preempt_enable(); |
| } |
| |
| unsigned int task_get_vl(const struct task_struct *task, enum vec_type type) |
| { |
| return task->thread.vl[type]; |
| } |
| |
| void task_set_vl(struct task_struct *task, enum vec_type type, |
| unsigned long vl) |
| { |
| task->thread.vl[type] = vl; |
| } |
| |
| unsigned int task_get_vl_onexec(const struct task_struct *task, |
| enum vec_type type) |
| { |
| return task->thread.vl_onexec[type]; |
| } |
| |
| void task_set_vl_onexec(struct task_struct *task, enum vec_type type, |
| unsigned long vl) |
| { |
| task->thread.vl_onexec[type] = vl; |
| } |
| |
| /* |
| * TIF_SME controls whether a task can use SME without trapping while |
| * in userspace, when TIF_SME is set then we must have storage |
| * allocated in sve_state and sme_state to store the contents of both ZA |
| * and the SVE registers for both streaming and non-streaming modes. |
| * |
| * If both SVCR.ZA and SVCR.SM are disabled then at any point we |
| * may disable TIF_SME and reenable traps. |
| */ |
| |
| |
| /* |
| * TIF_SVE controls whether a task can use SVE without trapping while |
| * in userspace, and also (together with TIF_SME) the way a task's |
| * FPSIMD/SVE state is stored in thread_struct. |
| * |
| * The kernel uses this flag to track whether a user task is actively |
| * using SVE, and therefore whether full SVE register state needs to |
| * be tracked. If not, the cheaper FPSIMD context handling code can |
| * be used instead of the more costly SVE equivalents. |
| * |
| * * TIF_SVE or SVCR.SM set: |
| * |
| * The task can execute SVE instructions while in userspace without |
| * trapping to the kernel. |
| * |
| * During any syscall, the kernel may optionally clear TIF_SVE and |
| * discard the vector state except for the FPSIMD subset. |
| * |
| * * TIF_SVE clear: |
| * |
| * An attempt by the user task to execute an SVE instruction causes |
| * do_sve_acc() to be called, which does some preparation and then |
| * sets TIF_SVE. |
| * |
| * During any syscall, the kernel may optionally clear TIF_SVE and |
| * discard the vector state except for the FPSIMD subset. |
| * |
| * The data will be stored in one of two formats: |
| * |
| * * FPSIMD only - FP_STATE_FPSIMD: |
| * |
| * When the FPSIMD only state stored task->thread.fp_type is set to |
| * FP_STATE_FPSIMD, the FPSIMD registers V0-V31 are encoded in |
| * task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are |
| * logically zero but not stored anywhere; P0-P15 and FFR are not |
| * stored and have unspecified values from userspace's point of |
| * view. For hygiene purposes, the kernel zeroes them on next use, |
| * but userspace is discouraged from relying on this. |
| * |
| * task->thread.sve_state does not need to be non-NULL, valid or any |
| * particular size: it must not be dereferenced and any data stored |
| * there should be considered stale and not referenced. |
| * |
| * * SVE state - FP_STATE_SVE: |
| * |
| * When the full SVE state is stored task->thread.fp_type is set to |
| * FP_STATE_SVE and Z0-Z31 (incorporating Vn in bits[127:0] or the |
| * corresponding Zn), P0-P15 and FFR are encoded in in |
| * task->thread.sve_state, formatted appropriately for vector |
| * length task->thread.sve_vl or, if SVCR.SM is set, |
| * task->thread.sme_vl. The storage for the vector registers in |
| * task->thread.uw.fpsimd_state should be ignored. |
| * |
| * task->thread.sve_state must point to a valid buffer at least |
| * sve_state_size(task) bytes in size. The data stored in |
| * task->thread.uw.fpsimd_state.vregs should be considered stale |
| * and not referenced. |
| * |
| * * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state |
| * irrespective of whether TIF_SVE is clear or set, since these are |
| * not vector length dependent. |
| */ |
| |
| /* |
| * Update current's FPSIMD/SVE registers from thread_struct. |
| * |
| * This function should be called only when the FPSIMD/SVE state in |
| * thread_struct is known to be up to date, when preparing to enter |
| * userspace. |
| */ |
| static void task_fpsimd_load(void) |
| { |
| bool restore_sve_regs = false; |
| bool restore_ffr; |
| |
| WARN_ON(!system_supports_fpsimd()); |
| WARN_ON(preemptible()); |
| WARN_ON(test_thread_flag(TIF_KERNEL_FPSTATE)); |
| |
| if (system_supports_sve() || system_supports_sme()) { |
| switch (current->thread.fp_type) { |
| case FP_STATE_FPSIMD: |
| /* Stop tracking SVE for this task until next use. */ |
| if (test_and_clear_thread_flag(TIF_SVE)) |
| sve_user_disable(); |
| break; |
| case FP_STATE_SVE: |
| if (!thread_sm_enabled(¤t->thread) && |
| !WARN_ON_ONCE(!test_and_set_thread_flag(TIF_SVE))) |
| sve_user_enable(); |
| |
| if (test_thread_flag(TIF_SVE)) |
| sve_set_vq(sve_vq_from_vl(task_get_sve_vl(current)) - 1); |
| |
| restore_sve_regs = true; |
| restore_ffr = true; |
| break; |
| default: |
| /* |
| * This indicates either a bug in |
| * fpsimd_save_user_state() or memory corruption, we |
| * should always record an explicit format |
| * when we save. We always at least have the |
| * memory allocated for FPSMID registers so |
| * try that and hope for the best. |
| */ |
| WARN_ON_ONCE(1); |
| clear_thread_flag(TIF_SVE); |
| break; |
| } |
| } |
| |
| /* Restore SME, override SVE register configuration if needed */ |
| if (system_supports_sme()) { |
| unsigned long sme_vl = task_get_sme_vl(current); |
| |
| /* Ensure VL is set up for restoring data */ |
| if (test_thread_flag(TIF_SME)) |
| sme_set_vq(sve_vq_from_vl(sme_vl) - 1); |
| |
| write_sysreg_s(current->thread.svcr, SYS_SVCR); |
| |
| if (thread_za_enabled(¤t->thread)) |
| sme_load_state(current->thread.sme_state, |
| system_supports_sme2()); |
| |
| if (thread_sm_enabled(¤t->thread)) |
| restore_ffr = system_supports_fa64(); |
| } |
| |
| if (restore_sve_regs) { |
| WARN_ON_ONCE(current->thread.fp_type != FP_STATE_SVE); |
| sve_load_state(sve_pffr(¤t->thread), |
| ¤t->thread.uw.fpsimd_state.fpsr, |
| restore_ffr); |
| } else { |
| WARN_ON_ONCE(current->thread.fp_type != FP_STATE_FPSIMD); |
| fpsimd_load_state(¤t->thread.uw.fpsimd_state); |
| } |
| } |
| |
| /* |
| * Ensure FPSIMD/SVE storage in memory for the loaded context is up to |
| * date with respect to the CPU registers. Note carefully that the |
| * current context is the context last bound to the CPU stored in |
| * last, if KVM is involved this may be the guest VM context rather |
| * than the host thread for the VM pointed to by current. This means |
| * that we must always reference the state storage via last rather |
| * than via current, if we are saving KVM state then it will have |
| * ensured that the type of registers to save is set in last->to_save. |
| */ |
| static void fpsimd_save_user_state(void) |
| { |
| struct cpu_fp_state const *last = |
| this_cpu_ptr(&fpsimd_last_state); |
| /* set by fpsimd_bind_task_to_cpu() or fpsimd_bind_state_to_cpu() */ |
| bool save_sve_regs = false; |
| bool save_ffr; |
| unsigned int vl; |
| |
| WARN_ON(!system_supports_fpsimd()); |
| WARN_ON(preemptible()); |
| |
| if (test_thread_flag(TIF_FOREIGN_FPSTATE)) |
| return; |
| |
| /* |
| * If a task is in a syscall the ABI allows us to only |
| * preserve the state shared with FPSIMD so don't bother |
| * saving the full SVE state in that case. |
| */ |
| if ((last->to_save == FP_STATE_CURRENT && test_thread_flag(TIF_SVE) && |
| !in_syscall(current_pt_regs())) || |
| last->to_save == FP_STATE_SVE) { |
| save_sve_regs = true; |
| save_ffr = true; |
| vl = last->sve_vl; |
| } |
| |
| if (system_supports_sme()) { |
| u64 *svcr = last->svcr; |
| |
| *svcr = read_sysreg_s(SYS_SVCR); |
| |
| if (*svcr & SVCR_ZA_MASK) |
| sme_save_state(last->sme_state, |
| system_supports_sme2()); |
| |
| /* If we are in streaming mode override regular SVE. */ |
| if (*svcr & SVCR_SM_MASK) { |
| save_sve_regs = true; |
| save_ffr = system_supports_fa64(); |
| vl = last->sme_vl; |
| } |
| } |
| |
| if (IS_ENABLED(CONFIG_ARM64_SVE) && save_sve_regs) { |
| /* Get the configured VL from RDVL, will account for SM */ |
| if (WARN_ON(sve_get_vl() != vl)) { |
| /* |
| * Can't save the user regs, so current would |
| * re-enter user with corrupt state. |
| * There's no way to recover, so kill it: |
| */ |
| force_signal_inject(SIGKILL, SI_KERNEL, 0, 0); |
| return; |
| } |
| |
| sve_save_state((char *)last->sve_state + |
| sve_ffr_offset(vl), |
| &last->st->fpsr, save_ffr); |
| *last->fp_type = FP_STATE_SVE; |
| } else { |
| fpsimd_save_state(last->st); |
| *last->fp_type = FP_STATE_FPSIMD; |
| } |
| } |
| |
| /* |
| * All vector length selection from userspace comes through here. |
| * We're on a slow path, so some sanity-checks are included. |
| * If things go wrong there's a bug somewhere, but try to fall back to a |
| * safe choice. |
| */ |
| static unsigned int find_supported_vector_length(enum vec_type type, |
| unsigned int vl) |
| { |
| struct vl_info *info = &vl_info[type]; |
| int bit; |
| int max_vl = info->max_vl; |
| |
| if (WARN_ON(!sve_vl_valid(vl))) |
| vl = info->min_vl; |
| |
| if (WARN_ON(!sve_vl_valid(max_vl))) |
| max_vl = info->min_vl; |
| |
| if (vl > max_vl) |
| vl = max_vl; |
| if (vl < info->min_vl) |
| vl = info->min_vl; |
| |
| bit = find_next_bit(info->vq_map, SVE_VQ_MAX, |
| __vq_to_bit(sve_vq_from_vl(vl))); |
| return sve_vl_from_vq(__bit_to_vq(bit)); |
| } |
| |
| #if defined(CONFIG_ARM64_SVE) && defined(CONFIG_SYSCTL) |
| |
| static int vec_proc_do_default_vl(struct ctl_table *table, int write, |
| void *buffer, size_t *lenp, loff_t *ppos) |
| { |
| struct vl_info *info = table->extra1; |
| enum vec_type type = info->type; |
| int ret; |
| int vl = get_default_vl(type); |
| struct ctl_table tmp_table = { |
| .data = &vl, |
| .maxlen = sizeof(vl), |
| }; |
| |
| ret = proc_dointvec(&tmp_table, write, buffer, lenp, ppos); |
| if (ret || !write) |
| return ret; |
| |
| /* Writing -1 has the special meaning "set to max": */ |
| if (vl == -1) |
| vl = info->max_vl; |
| |
| if (!sve_vl_valid(vl)) |
| return -EINVAL; |
| |
| set_default_vl(type, find_supported_vector_length(type, vl)); |
| return 0; |
| } |
| |
| static struct ctl_table sve_default_vl_table[] = { |
| { |
| .procname = "sve_default_vector_length", |
| .mode = 0644, |
| .proc_handler = vec_proc_do_default_vl, |
| .extra1 = &vl_info[ARM64_VEC_SVE], |
| }, |
| }; |
| |
| static int __init sve_sysctl_init(void) |
| { |
| if (system_supports_sve()) |
| if (!register_sysctl("abi", sve_default_vl_table)) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| #else /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */ |
| static int __init sve_sysctl_init(void) { return 0; } |
| #endif /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */ |
| |
| #if defined(CONFIG_ARM64_SME) && defined(CONFIG_SYSCTL) |
| static struct ctl_table sme_default_vl_table[] = { |
| { |
| .procname = "sme_default_vector_length", |
| .mode = 0644, |
| .proc_handler = vec_proc_do_default_vl, |
| .extra1 = &vl_info[ARM64_VEC_SME], |
| }, |
| }; |
| |
| static int __init sme_sysctl_init(void) |
| { |
| if (system_supports_sme()) |
| if (!register_sysctl("abi", sme_default_vl_table)) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| #else /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */ |
| static int __init sme_sysctl_init(void) { return 0; } |
| #endif /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */ |
| |
| #define ZREG(sve_state, vq, n) ((char *)(sve_state) + \ |
| (SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET)) |
| |
| #ifdef CONFIG_CPU_BIG_ENDIAN |
| static __uint128_t arm64_cpu_to_le128(__uint128_t x) |
| { |
| u64 a = swab64(x); |
| u64 b = swab64(x >> 64); |
| |
| return ((__uint128_t)a << 64) | b; |
| } |
| #else |
| static __uint128_t arm64_cpu_to_le128(__uint128_t x) |
| { |
| return x; |
| } |
| #endif |
| |
| #define arm64_le128_to_cpu(x) arm64_cpu_to_le128(x) |
| |
| static void __fpsimd_to_sve(void *sst, struct user_fpsimd_state const *fst, |
| unsigned int vq) |
| { |
| unsigned int i; |
| __uint128_t *p; |
| |
| for (i = 0; i < SVE_NUM_ZREGS; ++i) { |
| p = (__uint128_t *)ZREG(sst, vq, i); |
| *p = arm64_cpu_to_le128(fst->vregs[i]); |
| } |
| } |
| |
| /* |
| * Transfer the FPSIMD state in task->thread.uw.fpsimd_state to |
| * task->thread.sve_state. |
| * |
| * Task can be a non-runnable task, or current. In the latter case, |
| * the caller must have ownership of the cpu FPSIMD context before calling |
| * this function. |
| * task->thread.sve_state must point to at least sve_state_size(task) |
| * bytes of allocated kernel memory. |
| * task->thread.uw.fpsimd_state must be up to date before calling this |
| * function. |
| */ |
| static void fpsimd_to_sve(struct task_struct *task) |
| { |
| unsigned int vq; |
| void *sst = task->thread.sve_state; |
| struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state; |
| |
| if (!system_supports_sve() && !system_supports_sme()) |
| return; |
| |
| vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread)); |
| __fpsimd_to_sve(sst, fst, vq); |
| } |
| |
| /* |
| * Transfer the SVE state in task->thread.sve_state to |
| * task->thread.uw.fpsimd_state. |
| * |
| * Task can be a non-runnable task, or current. In the latter case, |
| * the caller must have ownership of the cpu FPSIMD context before calling |
| * this function. |
| * task->thread.sve_state must point to at least sve_state_size(task) |
| * bytes of allocated kernel memory. |
| * task->thread.sve_state must be up to date before calling this function. |
| */ |
| static void sve_to_fpsimd(struct task_struct *task) |
| { |
| unsigned int vq, vl; |
| void const *sst = task->thread.sve_state; |
| struct user_fpsimd_state *fst = &task->thread.uw.fpsimd_state; |
| unsigned int i; |
| __uint128_t const *p; |
| |
| if (!system_supports_sve() && !system_supports_sme()) |
| return; |
| |
| vl = thread_get_cur_vl(&task->thread); |
| vq = sve_vq_from_vl(vl); |
| for (i = 0; i < SVE_NUM_ZREGS; ++i) { |
| p = (__uint128_t const *)ZREG(sst, vq, i); |
| fst->vregs[i] = arm64_le128_to_cpu(*p); |
| } |
| } |
| |
| #ifdef CONFIG_ARM64_SVE |
| /* |
| * Call __sve_free() directly only if you know task can't be scheduled |
| * or preempted. |
| */ |
| static void __sve_free(struct task_struct *task) |
| { |
| kfree(task->thread.sve_state); |
| task->thread.sve_state = NULL; |
| } |
| |
| static void sve_free(struct task_struct *task) |
| { |
| WARN_ON(test_tsk_thread_flag(task, TIF_SVE)); |
| |
| __sve_free(task); |
| } |
| |
| /* |
| * Return how many bytes of memory are required to store the full SVE |
| * state for task, given task's currently configured vector length. |
| */ |
| size_t sve_state_size(struct task_struct const *task) |
| { |
| unsigned int vl = 0; |
| |
| if (system_supports_sve()) |
| vl = task_get_sve_vl(task); |
| if (system_supports_sme()) |
| vl = max(vl, task_get_sme_vl(task)); |
| |
| return SVE_SIG_REGS_SIZE(sve_vq_from_vl(vl)); |
| } |
| |
| /* |
| * Ensure that task->thread.sve_state is allocated and sufficiently large. |
| * |
| * This function should be used only in preparation for replacing |
| * task->thread.sve_state with new data. The memory is always zeroed |
| * here to prevent stale data from showing through: this is done in |
| * the interest of testability and predictability: except in the |
| * do_sve_acc() case, there is no ABI requirement to hide stale data |
| * written previously be task. |
| */ |
| void sve_alloc(struct task_struct *task, bool flush) |
| { |
| if (task->thread.sve_state) { |
| if (flush) |
| memset(task->thread.sve_state, 0, |
| sve_state_size(task)); |
| return; |
| } |
| |
| /* This is a small allocation (maximum ~8KB) and Should Not Fail. */ |
| task->thread.sve_state = |
| kzalloc(sve_state_size(task), GFP_KERNEL); |
| } |
| |
| |
| /* |
| * Force the FPSIMD state shared with SVE to be updated in the SVE state |
| * even if the SVE state is the current active state. |
| * |
| * This should only be called by ptrace. task must be non-runnable. |
| * task->thread.sve_state must point to at least sve_state_size(task) |
| * bytes of allocated kernel memory. |
| */ |
| void fpsimd_force_sync_to_sve(struct task_struct *task) |
| { |
| fpsimd_to_sve(task); |
| } |
| |
| /* |
| * Ensure that task->thread.sve_state is up to date with respect to |
| * the user task, irrespective of when SVE is in use or not. |
| * |
| * This should only be called by ptrace. task must be non-runnable. |
| * task->thread.sve_state must point to at least sve_state_size(task) |
| * bytes of allocated kernel memory. |
| */ |
| void fpsimd_sync_to_sve(struct task_struct *task) |
| { |
| if (!test_tsk_thread_flag(task, TIF_SVE) && |
| !thread_sm_enabled(&task->thread)) |
| fpsimd_to_sve(task); |
| } |
| |
| /* |
| * Ensure that task->thread.uw.fpsimd_state is up to date with respect to |
| * the user task, irrespective of whether SVE is in use or not. |
| * |
| * This should only be called by ptrace. task must be non-runnable. |
| * task->thread.sve_state must point to at least sve_state_size(task) |
| * bytes of allocated kernel memory. |
| */ |
| void sve_sync_to_fpsimd(struct task_struct *task) |
| { |
| if (task->thread.fp_type == FP_STATE_SVE) |
| sve_to_fpsimd(task); |
| } |
| |
| /* |
| * Ensure that task->thread.sve_state is up to date with respect to |
| * the task->thread.uw.fpsimd_state. |
| * |
| * This should only be called by ptrace to merge new FPSIMD register |
| * values into a task for which SVE is currently active. |
| * task must be non-runnable. |
| * task->thread.sve_state must point to at least sve_state_size(task) |
| * bytes of allocated kernel memory. |
| * task->thread.uw.fpsimd_state must already have been initialised with |
| * the new FPSIMD register values to be merged in. |
| */ |
| void sve_sync_from_fpsimd_zeropad(struct task_struct *task) |
| { |
| unsigned int vq; |
| void *sst = task->thread.sve_state; |
| struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state; |
| |
| if (!test_tsk_thread_flag(task, TIF_SVE) && |
| !thread_sm_enabled(&task->thread)) |
| return; |
| |
| vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread)); |
| |
| memset(sst, 0, SVE_SIG_REGS_SIZE(vq)); |
| __fpsimd_to_sve(sst, fst, vq); |
| } |
| |
| int vec_set_vector_length(struct task_struct *task, enum vec_type type, |
| unsigned long vl, unsigned long flags) |
| { |
| bool free_sme = false; |
| |
| if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT | |
| PR_SVE_SET_VL_ONEXEC)) |
| return -EINVAL; |
| |
| if (!sve_vl_valid(vl)) |
| return -EINVAL; |
| |
| /* |
| * Clamp to the maximum vector length that VL-agnostic code |
| * can work with. A flag may be assigned in the future to |
| * allow setting of larger vector lengths without confusing |
| * older software. |
| */ |
| if (vl > VL_ARCH_MAX) |
| vl = VL_ARCH_MAX; |
| |
| vl = find_supported_vector_length(type, vl); |
| |
| if (flags & (PR_SVE_VL_INHERIT | |
| PR_SVE_SET_VL_ONEXEC)) |
| task_set_vl_onexec(task, type, vl); |
| else |
| /* Reset VL to system default on next exec: */ |
| task_set_vl_onexec(task, type, 0); |
| |
| /* Only actually set the VL if not deferred: */ |
| if (flags & PR_SVE_SET_VL_ONEXEC) |
| goto out; |
| |
| if (vl == task_get_vl(task, type)) |
| goto out; |
| |
| /* |
| * To ensure the FPSIMD bits of the SVE vector registers are preserved, |
| * write any live register state back to task_struct, and convert to a |
| * regular FPSIMD thread. |
| */ |
| if (task == current) { |
| get_cpu_fpsimd_context(); |
| |
| fpsimd_save_user_state(); |
| } |
| |
| fpsimd_flush_task_state(task); |
| if (test_and_clear_tsk_thread_flag(task, TIF_SVE) || |
| thread_sm_enabled(&task->thread)) { |
| sve_to_fpsimd(task); |
| task->thread.fp_type = FP_STATE_FPSIMD; |
| } |
| |
| if (system_supports_sme()) { |
| if (type == ARM64_VEC_SME || |
| !(task->thread.svcr & (SVCR_SM_MASK | SVCR_ZA_MASK))) { |
| /* |
| * We are changing the SME VL or weren't using |
| * SME anyway, discard the state and force a |
| * reallocation. |
| */ |
| task->thread.svcr &= ~(SVCR_SM_MASK | |
| SVCR_ZA_MASK); |
| clear_tsk_thread_flag(task, TIF_SME); |
| free_sme = true; |
| } |
| } |
| |
| if (task == current) |
| put_cpu_fpsimd_context(); |
| |
| task_set_vl(task, type, vl); |
| |
| /* |
| * Free the changed states if they are not in use, SME will be |
| * reallocated to the correct size on next use and we just |
| * allocate SVE now in case it is needed for use in streaming |
| * mode. |
| */ |
| sve_free(task); |
| sve_alloc(task, true); |
| |
| if (free_sme) |
| sme_free(task); |
| |
| out: |
| update_tsk_thread_flag(task, vec_vl_inherit_flag(type), |
| flags & PR_SVE_VL_INHERIT); |
| |
| return 0; |
| } |
| |
| /* |
| * Encode the current vector length and flags for return. |
| * This is only required for prctl(): ptrace has separate fields. |
| * SVE and SME use the same bits for _ONEXEC and _INHERIT. |
| * |
| * flags are as for vec_set_vector_length(). |
| */ |
| static int vec_prctl_status(enum vec_type type, unsigned long flags) |
| { |
| int ret; |
| |
| if (flags & PR_SVE_SET_VL_ONEXEC) |
| ret = task_get_vl_onexec(current, type); |
| else |
| ret = task_get_vl(current, type); |
| |
| if (test_thread_flag(vec_vl_inherit_flag(type))) |
| ret |= PR_SVE_VL_INHERIT; |
| |
| return ret; |
| } |
| |
| /* PR_SVE_SET_VL */ |
| int sve_set_current_vl(unsigned long arg) |
| { |
| unsigned long vl, flags; |
| int ret; |
| |
| vl = arg & PR_SVE_VL_LEN_MASK; |
| flags = arg & ~vl; |
| |
| if (!system_supports_sve() || is_compat_task()) |
| return -EINVAL; |
| |
| ret = vec_set_vector_length(current, ARM64_VEC_SVE, vl, flags); |
| if (ret) |
| return ret; |
| |
| return vec_prctl_status(ARM64_VEC_SVE, flags); |
| } |
| |
| /* PR_SVE_GET_VL */ |
| int sve_get_current_vl(void) |
| { |
| if (!system_supports_sve() || is_compat_task()) |
| return -EINVAL; |
| |
| return vec_prctl_status(ARM64_VEC_SVE, 0); |
| } |
| |
| #ifdef CONFIG_ARM64_SME |
| /* PR_SME_SET_VL */ |
| int sme_set_current_vl(unsigned long arg) |
| { |
| unsigned long vl, flags; |
| int ret; |
| |
| vl = arg & PR_SME_VL_LEN_MASK; |
| flags = arg & ~vl; |
| |
| if (!system_supports_sme() || is_compat_task()) |
| return -EINVAL; |
| |
| ret = vec_set_vector_length(current, ARM64_VEC_SME, vl, flags); |
| if (ret) |
| return ret; |
| |
| return vec_prctl_status(ARM64_VEC_SME, flags); |
| } |
| |
| /* PR_SME_GET_VL */ |
| int sme_get_current_vl(void) |
| { |
| if (!system_supports_sme() || is_compat_task()) |
| return -EINVAL; |
| |
| return vec_prctl_status(ARM64_VEC_SME, 0); |
| } |
| #endif /* CONFIG_ARM64_SME */ |
| |
| static void vec_probe_vqs(struct vl_info *info, |
| DECLARE_BITMAP(map, SVE_VQ_MAX)) |
| { |
| unsigned int vq, vl; |
| |
| bitmap_zero(map, SVE_VQ_MAX); |
| |
| for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) { |
| write_vl(info->type, vq - 1); /* self-syncing */ |
| |
| switch (info->type) { |
| case ARM64_VEC_SVE: |
| vl = sve_get_vl(); |
| break; |
| case ARM64_VEC_SME: |
| vl = sme_get_vl(); |
| break; |
| default: |
| vl = 0; |
| break; |
| } |
| |
| /* Minimum VL identified? */ |
| if (sve_vq_from_vl(vl) > vq) |
| break; |
| |
| vq = sve_vq_from_vl(vl); /* skip intervening lengths */ |
| set_bit(__vq_to_bit(vq), map); |
| } |
| } |
| |
| /* |
| * Initialise the set of known supported VQs for the boot CPU. |
| * This is called during kernel boot, before secondary CPUs are brought up. |
| */ |
| void __init vec_init_vq_map(enum vec_type type) |
| { |
| struct vl_info *info = &vl_info[type]; |
| vec_probe_vqs(info, info->vq_map); |
| bitmap_copy(info->vq_partial_map, info->vq_map, SVE_VQ_MAX); |
| } |
| |
| /* |
| * If we haven't committed to the set of supported VQs yet, filter out |
| * those not supported by the current CPU. |
| * This function is called during the bring-up of early secondary CPUs only. |
| */ |
| void vec_update_vq_map(enum vec_type type) |
| { |
| struct vl_info *info = &vl_info[type]; |
| DECLARE_BITMAP(tmp_map, SVE_VQ_MAX); |
| |
| vec_probe_vqs(info, tmp_map); |
| bitmap_and(info->vq_map, info->vq_map, tmp_map, SVE_VQ_MAX); |
| bitmap_or(info->vq_partial_map, info->vq_partial_map, tmp_map, |
| SVE_VQ_MAX); |
| } |
| |
| /* |
| * Check whether the current CPU supports all VQs in the committed set. |
| * This function is called during the bring-up of late secondary CPUs only. |
| */ |
| int vec_verify_vq_map(enum vec_type type) |
| { |
| struct vl_info *info = &vl_info[type]; |
| DECLARE_BITMAP(tmp_map, SVE_VQ_MAX); |
| unsigned long b; |
| |
| vec_probe_vqs(info, tmp_map); |
| |
| bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX); |
| if (bitmap_intersects(tmp_map, info->vq_map, SVE_VQ_MAX)) { |
| pr_warn("%s: cpu%d: Required vector length(s) missing\n", |
| info->name, smp_processor_id()); |
| return -EINVAL; |
| } |
| |
| if (!IS_ENABLED(CONFIG_KVM) || !is_hyp_mode_available()) |
| return 0; |
| |
| /* |
| * For KVM, it is necessary to ensure that this CPU doesn't |
| * support any vector length that guests may have probed as |
| * unsupported. |
| */ |
| |
| /* Recover the set of supported VQs: */ |
| bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX); |
| /* Find VQs supported that are not globally supported: */ |
| bitmap_andnot(tmp_map, tmp_map, info->vq_map, SVE_VQ_MAX); |
| |
| /* Find the lowest such VQ, if any: */ |
| b = find_last_bit(tmp_map, SVE_VQ_MAX); |
| if (b >= SVE_VQ_MAX) |
| return 0; /* no mismatches */ |
| |
| /* |
| * Mismatches above sve_max_virtualisable_vl are fine, since |
| * no guest is allowed to configure ZCR_EL2.LEN to exceed this: |
| */ |
| if (sve_vl_from_vq(__bit_to_vq(b)) <= info->max_virtualisable_vl) { |
| pr_warn("%s: cpu%d: Unsupported vector length(s) present\n", |
| info->name, smp_processor_id()); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static void __init sve_efi_setup(void) |
| { |
| int max_vl = 0; |
| int i; |
| |
| if (!IS_ENABLED(CONFIG_EFI)) |
| return; |
| |
| for (i = 0; i < ARRAY_SIZE(vl_info); i++) |
| max_vl = max(vl_info[i].max_vl, max_vl); |
| |
| /* |
| * alloc_percpu() warns and prints a backtrace if this goes wrong. |
| * This is evidence of a crippled system and we are returning void, |
| * so no attempt is made to handle this situation here. |
| */ |
| if (!sve_vl_valid(max_vl)) |
| goto fail; |
| |
| efi_sve_state = __alloc_percpu( |
| SVE_SIG_REGS_SIZE(sve_vq_from_vl(max_vl)), SVE_VQ_BYTES); |
| if (!efi_sve_state) |
| goto fail; |
| |
| return; |
| |
| fail: |
| panic("Cannot allocate percpu memory for EFI SVE save/restore"); |
| } |
| |
| void cpu_enable_sve(const struct arm64_cpu_capabilities *__always_unused p) |
| { |
| write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1); |
| isb(); |
| } |
| |
| void __init sve_setup(void) |
| { |
| struct vl_info *info = &vl_info[ARM64_VEC_SVE]; |
| DECLARE_BITMAP(tmp_map, SVE_VQ_MAX); |
| unsigned long b; |
| int max_bit; |
| |
| if (!system_supports_sve()) |
| return; |
| |
| /* |
| * The SVE architecture mandates support for 128-bit vectors, |
| * so sve_vq_map must have at least SVE_VQ_MIN set. |
| * If something went wrong, at least try to patch it up: |
| */ |
| if (WARN_ON(!test_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map))) |
| set_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map); |
| |
| max_bit = find_first_bit(info->vq_map, SVE_VQ_MAX); |
| info->max_vl = sve_vl_from_vq(__bit_to_vq(max_bit)); |
| |
| /* |
| * For the default VL, pick the maximum supported value <= 64. |
| * VL == 64 is guaranteed not to grow the signal frame. |
| */ |
| set_sve_default_vl(find_supported_vector_length(ARM64_VEC_SVE, 64)); |
| |
| bitmap_andnot(tmp_map, info->vq_partial_map, info->vq_map, |
| SVE_VQ_MAX); |
| |
| b = find_last_bit(tmp_map, SVE_VQ_MAX); |
| if (b >= SVE_VQ_MAX) |
| /* No non-virtualisable VLs found */ |
| info->max_virtualisable_vl = SVE_VQ_MAX; |
| else if (WARN_ON(b == SVE_VQ_MAX - 1)) |
| /* No virtualisable VLs? This is architecturally forbidden. */ |
| info->max_virtualisable_vl = SVE_VQ_MIN; |
| else /* b + 1 < SVE_VQ_MAX */ |
| info->max_virtualisable_vl = sve_vl_from_vq(__bit_to_vq(b + 1)); |
| |
| if (info->max_virtualisable_vl > info->max_vl) |
| info->max_virtualisable_vl = info->max_vl; |
| |
| pr_info("%s: maximum available vector length %u bytes per vector\n", |
| info->name, info->max_vl); |
| pr_info("%s: default vector length %u bytes per vector\n", |
| info->name, get_sve_default_vl()); |
| |
| /* KVM decides whether to support mismatched systems. Just warn here: */ |
| if (sve_max_virtualisable_vl() < sve_max_vl()) |
| pr_warn("%s: unvirtualisable vector lengths present\n", |
| info->name); |
| |
| sve_efi_setup(); |
| } |
| |
| /* |
| * Called from the put_task_struct() path, which cannot get here |
| * unless dead_task is really dead and not schedulable. |
| */ |
| void fpsimd_release_task(struct task_struct *dead_task) |
| { |
| __sve_free(dead_task); |
| sme_free(dead_task); |
| } |
| |
| #endif /* CONFIG_ARM64_SVE */ |
| |
| #ifdef CONFIG_ARM64_SME |
| |
| /* |
| * Ensure that task->thread.sme_state is allocated and sufficiently large. |
| * |
| * This function should be used only in preparation for replacing |
| * task->thread.sme_state with new data. The memory is always zeroed |
| * here to prevent stale data from showing through: this is done in |
| * the interest of testability and predictability, the architecture |
| * guarantees that when ZA is enabled it will be zeroed. |
| */ |
| void sme_alloc(struct task_struct *task, bool flush) |
| { |
| if (task->thread.sme_state) { |
| if (flush) |
| memset(task->thread.sme_state, 0, |
| sme_state_size(task)); |
| return; |
| } |
| |
| /* This could potentially be up to 64K. */ |
| task->thread.sme_state = |
| kzalloc(sme_state_size(task), GFP_KERNEL); |
| } |
| |
| static void sme_free(struct task_struct *task) |
| { |
| kfree(task->thread.sme_state); |
| task->thread.sme_state = NULL; |
| } |
| |
| void cpu_enable_sme(const struct arm64_cpu_capabilities *__always_unused p) |
| { |
| /* Set priority for all PEs to architecturally defined minimum */ |
| write_sysreg_s(read_sysreg_s(SYS_SMPRI_EL1) & ~SMPRI_EL1_PRIORITY_MASK, |
| SYS_SMPRI_EL1); |
| |
| /* Allow SME in kernel */ |
| write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_SMEN_EL1EN, CPACR_EL1); |
| isb(); |
| |
| /* Allow EL0 to access TPIDR2 */ |
| write_sysreg(read_sysreg(SCTLR_EL1) | SCTLR_ELx_ENTP2, SCTLR_EL1); |
| isb(); |
| } |
| |
| void cpu_enable_sme2(const struct arm64_cpu_capabilities *__always_unused p) |
| { |
| /* This must be enabled after SME */ |
| BUILD_BUG_ON(ARM64_SME2 <= ARM64_SME); |
| |
| /* Allow use of ZT0 */ |
| write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_EZT0_MASK, |
| SYS_SMCR_EL1); |
| } |
| |
| void cpu_enable_fa64(const struct arm64_cpu_capabilities *__always_unused p) |
| { |
| /* This must be enabled after SME */ |
| BUILD_BUG_ON(ARM64_SME_FA64 <= ARM64_SME); |
| |
| /* Allow use of FA64 */ |
| write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_FA64_MASK, |
| SYS_SMCR_EL1); |
| } |
| |
| void __init sme_setup(void) |
| { |
| struct vl_info *info = &vl_info[ARM64_VEC_SME]; |
| int min_bit, max_bit; |
| |
| if (!system_supports_sme()) |
| return; |
| |
| /* |
| * SME doesn't require any particular vector length be |
| * supported but it does require at least one. We should have |
| * disabled the feature entirely while bringing up CPUs but |
| * let's double check here. The bitmap is SVE_VQ_MAP sized for |
| * sharing with SVE. |
| */ |
| WARN_ON(bitmap_empty(info->vq_map, SVE_VQ_MAX)); |
| |
| min_bit = find_last_bit(info->vq_map, SVE_VQ_MAX); |
| info->min_vl = sve_vl_from_vq(__bit_to_vq(min_bit)); |
| |
| max_bit = find_first_bit(info->vq_map, SVE_VQ_MAX); |
| info->max_vl = sve_vl_from_vq(__bit_to_vq(max_bit)); |
| |
| WARN_ON(info->min_vl > info->max_vl); |
| |
| /* |
| * For the default VL, pick the maximum supported value <= 32 |
| * (256 bits) if there is one since this is guaranteed not to |
| * grow the signal frame when in streaming mode, otherwise the |
| * minimum available VL will be used. |
| */ |
| set_sme_default_vl(find_supported_vector_length(ARM64_VEC_SME, 32)); |
| |
| pr_info("SME: minimum available vector length %u bytes per vector\n", |
| info->min_vl); |
| pr_info("SME: maximum available vector length %u bytes per vector\n", |
| info->max_vl); |
| pr_info("SME: default vector length %u bytes per vector\n", |
| get_sme_default_vl()); |
| } |
| |
| void sme_suspend_exit(void) |
| { |
| u64 smcr = 0; |
| |
| if (!system_supports_sme()) |
| return; |
| |
| if (system_supports_fa64()) |
| smcr |= SMCR_ELx_FA64; |
| if (system_supports_sme2()) |
| smcr |= SMCR_ELx_EZT0; |
| |
| write_sysreg_s(smcr, SYS_SMCR_EL1); |
| write_sysreg_s(0, SYS_SMPRI_EL1); |
| } |
| |
| #endif /* CONFIG_ARM64_SME */ |
| |
| static void sve_init_regs(void) |
| { |
| /* |
| * Convert the FPSIMD state to SVE, zeroing all the state that |
| * is not shared with FPSIMD. If (as is likely) the current |
| * state is live in the registers then do this there and |
| * update our metadata for the current task including |
| * disabling the trap, otherwise update our in-memory copy. |
| * We are guaranteed to not be in streaming mode, we can only |
| * take a SVE trap when not in streaming mode and we can't be |
| * in streaming mode when taking a SME trap. |
| */ |
| if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) { |
| unsigned long vq_minus_one = |
| sve_vq_from_vl(task_get_sve_vl(current)) - 1; |
| sve_set_vq(vq_minus_one); |
| sve_flush_live(true, vq_minus_one); |
| fpsimd_bind_task_to_cpu(); |
| } else { |
| fpsimd_to_sve(current); |
| current->thread.fp_type = FP_STATE_SVE; |
| } |
| } |
| |
| /* |
| * Trapped SVE access |
| * |
| * Storage is allocated for the full SVE state, the current FPSIMD |
| * register contents are migrated across, and the access trap is |
| * disabled. |
| * |
| * TIF_SVE should be clear on entry: otherwise, fpsimd_restore_current_state() |
| * would have disabled the SVE access trap for userspace during |
| * ret_to_user, making an SVE access trap impossible in that case. |
| */ |
| void do_sve_acc(unsigned long esr, struct pt_regs *regs) |
| { |
| /* Even if we chose not to use SVE, the hardware could still trap: */ |
| if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) { |
| force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0); |
| return; |
| } |
| |
| sve_alloc(current, true); |
| if (!current->thread.sve_state) { |
| force_sig(SIGKILL); |
| return; |
| } |
| |
| get_cpu_fpsimd_context(); |
| |
| if (test_and_set_thread_flag(TIF_SVE)) |
| WARN_ON(1); /* SVE access shouldn't have trapped */ |
| |
| /* |
| * Even if the task can have used streaming mode we can only |
| * generate SVE access traps in normal SVE mode and |
| * transitioning out of streaming mode may discard any |
| * streaming mode state. Always clear the high bits to avoid |
| * any potential errors tracking what is properly initialised. |
| */ |
| sve_init_regs(); |
| |
| put_cpu_fpsimd_context(); |
| } |
| |
| /* |
| * Trapped SME access |
| * |
| * Storage is allocated for the full SVE and SME state, the current |
| * FPSIMD register contents are migrated to SVE if SVE is not already |
| * active, and the access trap is disabled. |
| * |
| * TIF_SME should be clear on entry: otherwise, fpsimd_restore_current_state() |
| * would have disabled the SME access trap for userspace during |
| * ret_to_user, making an SME access trap impossible in that case. |
| */ |
| void do_sme_acc(unsigned long esr, struct pt_regs *regs) |
| { |
| /* Even if we chose not to use SME, the hardware could still trap: */ |
| if (unlikely(!system_supports_sme()) || WARN_ON(is_compat_task())) { |
| force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0); |
| return; |
| } |
| |
| /* |
| * If this not a trap due to SME being disabled then something |
| * is being used in the wrong mode, report as SIGILL. |
| */ |
| if (ESR_ELx_ISS(esr) != ESR_ELx_SME_ISS_SME_DISABLED) { |
| force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0); |
| return; |
| } |
| |
| sve_alloc(current, false); |
| sme_alloc(current, true); |
| if (!current->thread.sve_state || !current->thread.sme_state) { |
| force_sig(SIGKILL); |
| return; |
| } |
| |
| get_cpu_fpsimd_context(); |
| |
| /* With TIF_SME userspace shouldn't generate any traps */ |
| if (test_and_set_thread_flag(TIF_SME)) |
| WARN_ON(1); |
| |
| if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) { |
| unsigned long vq_minus_one = |
| sve_vq_from_vl(task_get_sme_vl(current)) - 1; |
| sme_set_vq(vq_minus_one); |
| |
| fpsimd_bind_task_to_cpu(); |
| } |
| |
| put_cpu_fpsimd_context(); |
| } |
| |
| /* |
| * Trapped FP/ASIMD access. |
| */ |
| void do_fpsimd_acc(unsigned long esr, struct pt_regs *regs) |
| { |
| /* Even if we chose not to use FPSIMD, the hardware could still trap: */ |
| if (!system_supports_fpsimd()) { |
| force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0); |
| return; |
| } |
| |
| /* |
| * When FPSIMD is enabled, we should never take a trap unless something |
| * has gone very wrong. |
| */ |
| BUG(); |
| } |
| |
| /* |
| * Raise a SIGFPE for the current process. |
| */ |
| void do_fpsimd_exc(unsigned long esr, struct pt_regs *regs) |
| { |
| unsigned int si_code = FPE_FLTUNK; |
| |
| if (esr & ESR_ELx_FP_EXC_TFV) { |
| if (esr & FPEXC_IOF) |
| si_code = FPE_FLTINV; |
| else if (esr & FPEXC_DZF) |
| si_code = FPE_FLTDIV; |
| else if (esr & FPEXC_OFF) |
| si_code = FPE_FLTOVF; |
| else if (esr & FPEXC_UFF) |
| si_code = FPE_FLTUND; |
| else if (esr & FPEXC_IXF) |
| si_code = FPE_FLTRES; |
| } |
| |
| send_sig_fault(SIGFPE, si_code, |
| (void __user *)instruction_pointer(regs), |
| current); |
| } |
| |
| static void fpsimd_load_kernel_state(struct task_struct *task) |
| { |
| struct cpu_fp_state *last = this_cpu_ptr(&fpsimd_last_state); |
| |
| /* |
| * Elide the load if this CPU holds the most recent kernel mode |
| * FPSIMD context of the current task. |
| */ |
| if (last->st == &task->thread.kernel_fpsimd_state && |
| task->thread.kernel_fpsimd_cpu == smp_processor_id()) |
| return; |
| |
| fpsimd_load_state(&task->thread.kernel_fpsimd_state); |
| } |
| |
| static void fpsimd_save_kernel_state(struct task_struct *task) |
| { |
| struct cpu_fp_state cpu_fp_state = { |
| .st = &task->thread.kernel_fpsimd_state, |
| .to_save = FP_STATE_FPSIMD, |
| }; |
| |
| fpsimd_save_state(&task->thread.kernel_fpsimd_state); |
| fpsimd_bind_state_to_cpu(&cpu_fp_state); |
| |
| task->thread.kernel_fpsimd_cpu = smp_processor_id(); |
| } |
| |
| void fpsimd_thread_switch(struct task_struct *next) |
| { |
| bool wrong_task, wrong_cpu; |
| |
| if (!system_supports_fpsimd()) |
| return; |
| |
| WARN_ON_ONCE(!irqs_disabled()); |
| |
| /* Save unsaved fpsimd state, if any: */ |
| if (test_thread_flag(TIF_KERNEL_FPSTATE)) |
| fpsimd_save_kernel_state(current); |
| else |
| fpsimd_save_user_state(); |
| |
| if (test_tsk_thread_flag(next, TIF_KERNEL_FPSTATE)) { |
| fpsimd_load_kernel_state(next); |
| set_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE); |
| } else { |
| /* |
| * Fix up TIF_FOREIGN_FPSTATE to correctly describe next's |
| * state. For kernel threads, FPSIMD registers are never |
| * loaded with user mode FPSIMD state and so wrong_task and |
| * wrong_cpu will always be true. |
| */ |
| wrong_task = __this_cpu_read(fpsimd_last_state.st) != |
| &next->thread.uw.fpsimd_state; |
| wrong_cpu = next->thread.fpsimd_cpu != smp_processor_id(); |
| |
| update_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE, |
| wrong_task || wrong_cpu); |
| } |
| } |
| |
| static void fpsimd_flush_thread_vl(enum vec_type type) |
| { |
| int vl, supported_vl; |
| |
| /* |
| * Reset the task vector length as required. This is where we |
| * ensure that all user tasks have a valid vector length |
| * configured: no kernel task can become a user task without |
| * an exec and hence a call to this function. By the time the |
| * first call to this function is made, all early hardware |
| * probing is complete, so __sve_default_vl should be valid. |
| * If a bug causes this to go wrong, we make some noise and |
| * try to fudge thread.sve_vl to a safe value here. |
| */ |
| vl = task_get_vl_onexec(current, type); |
| if (!vl) |
| vl = get_default_vl(type); |
| |
| if (WARN_ON(!sve_vl_valid(vl))) |
| vl = vl_info[type].min_vl; |
| |
| supported_vl = find_supported_vector_length(type, vl); |
| if (WARN_ON(supported_vl != vl)) |
| vl = supported_vl; |
| |
| task_set_vl(current, type, vl); |
| |
| /* |
| * If the task is not set to inherit, ensure that the vector |
| * length will be reset by a subsequent exec: |
| */ |
| if (!test_thread_flag(vec_vl_inherit_flag(type))) |
| task_set_vl_onexec(current, type, 0); |
| } |
| |
| void fpsimd_flush_thread(void) |
| { |
| void *sve_state = NULL; |
| void *sme_state = NULL; |
| |
| if (!system_supports_fpsimd()) |
| return; |
| |
| get_cpu_fpsimd_context(); |
| |
| fpsimd_flush_task_state(current); |
| memset(¤t->thread.uw.fpsimd_state, 0, |
| sizeof(current->thread.uw.fpsimd_state)); |
| |
| if (system_supports_sve()) { |
| clear_thread_flag(TIF_SVE); |
| |
| /* Defer kfree() while in atomic context */ |
| sve_state = current->thread.sve_state; |
| current->thread.sve_state = NULL; |
| |
| fpsimd_flush_thread_vl(ARM64_VEC_SVE); |
| } |
| |
| if (system_supports_sme()) { |
| clear_thread_flag(TIF_SME); |
| |
| /* Defer kfree() while in atomic context */ |
| sme_state = current->thread.sme_state; |
| current->thread.sme_state = NULL; |
| |
| fpsimd_flush_thread_vl(ARM64_VEC_SME); |
| current->thread.svcr = 0; |
| } |
| |
| current->thread.fp_type = FP_STATE_FPSIMD; |
| |
| put_cpu_fpsimd_context(); |
| kfree(sve_state); |
| kfree(sme_state); |
| } |
| |
| /* |
| * Save the userland FPSIMD state of 'current' to memory, but only if the state |
| * currently held in the registers does in fact belong to 'current' |
| */ |
| void fpsimd_preserve_current_state(void) |
| { |
| if (!system_supports_fpsimd()) |
| return; |
| |
| get_cpu_fpsimd_context(); |
| fpsimd_save_user_state(); |
| put_cpu_fpsimd_context(); |
| } |
| |
| /* |
| * Like fpsimd_preserve_current_state(), but ensure that |
| * current->thread.uw.fpsimd_state is updated so that it can be copied to |
| * the signal frame. |
| */ |
| void fpsimd_signal_preserve_current_state(void) |
| { |
| fpsimd_preserve_current_state(); |
| if (current->thread.fp_type == FP_STATE_SVE) |
| sve_to_fpsimd(current); |
| } |
| |
| /* |
| * Called by KVM when entering the guest. |
| */ |
| void fpsimd_kvm_prepare(void) |
| { |
| if (!system_supports_sve()) |
| return; |
| |
| /* |
| * KVM does not save host SVE state since we can only enter |
| * the guest from a syscall so the ABI means that only the |
| * non-saved SVE state needs to be saved. If we have left |
| * SVE enabled for performance reasons then update the task |
| * state to be FPSIMD only. |
| */ |
| get_cpu_fpsimd_context(); |
| |
| if (test_and_clear_thread_flag(TIF_SVE)) { |
| sve_to_fpsimd(current); |
| current->thread.fp_type = FP_STATE_FPSIMD; |
| } |
| |
| put_cpu_fpsimd_context(); |
| } |
| |
| /* |
| * Associate current's FPSIMD context with this cpu |
| * The caller must have ownership of the cpu FPSIMD context before calling |
| * this function. |
| */ |
| static void fpsimd_bind_task_to_cpu(void) |
| { |
| struct cpu_fp_state *last = this_cpu_ptr(&fpsimd_last_state); |
| |
| WARN_ON(!system_supports_fpsimd()); |
| last->st = ¤t->thread.uw.fpsimd_state; |
| last->sve_state = current->thread.sve_state; |
| last->sme_state = current->thread.sme_state; |
| last->sve_vl = task_get_sve_vl(current); |
| last->sme_vl = task_get_sme_vl(current); |
| last->svcr = ¤t->thread.svcr; |
| last->fp_type = ¤t->thread.fp_type; |
| last->to_save = FP_STATE_CURRENT; |
| current->thread.fpsimd_cpu = smp_processor_id(); |
| |
| /* |
| * Toggle SVE and SME trapping for userspace if needed, these |
| * are serialsied by ret_to_user(). |
| */ |
| if (system_supports_sme()) { |
| if (test_thread_flag(TIF_SME)) |
| sme_user_enable(); |
| else |
| sme_user_disable(); |
| } |
| |
| if (system_supports_sve()) { |
| if (test_thread_flag(TIF_SVE)) |
| sve_user_enable(); |
| else |
| sve_user_disable(); |
| } |
| } |
| |
| void fpsimd_bind_state_to_cpu(struct cpu_fp_state *state) |
| { |
| struct cpu_fp_state *last = this_cpu_ptr(&fpsimd_last_state); |
| |
| WARN_ON(!system_supports_fpsimd()); |
| WARN_ON(!in_softirq() && !irqs_disabled()); |
| |
| *last = *state; |
| } |
| |
| /* |
| * Load the userland FPSIMD state of 'current' from memory, but only if the |
| * FPSIMD state already held in the registers is /not/ the most recent FPSIMD |
| * state of 'current'. This is called when we are preparing to return to |
| * userspace to ensure that userspace sees a good register state. |
| */ |
| void fpsimd_restore_current_state(void) |
| { |
| /* |
| * TIF_FOREIGN_FPSTATE is set on the init task and copied by |
| * arch_dup_task_struct() regardless of whether FP/SIMD is detected. |
| * Thus user threads can have this set even when FP/SIMD hasn't been |
| * detected. |
| * |
| * When FP/SIMD is detected, begin_new_exec() will set |
| * TIF_FOREIGN_FPSTATE via flush_thread() -> fpsimd_flush_thread(), |
| * and fpsimd_thread_switch() will set TIF_FOREIGN_FPSTATE when |
| * switching tasks. We detect FP/SIMD before we exec the first user |
| * process, ensuring this has TIF_FOREIGN_FPSTATE set and |
| * do_notify_resume() will call fpsimd_restore_current_state() to |
| * install the user FP/SIMD context. |
| * |
| * When FP/SIMD is not detected, nothing else will clear or set |
| * TIF_FOREIGN_FPSTATE prior to the first return to userspace, and |
| * we must clear TIF_FOREIGN_FPSTATE to avoid do_notify_resume() |
| * looping forever calling fpsimd_restore_current_state(). |
| */ |
| if (!system_supports_fpsimd()) { |
| clear_thread_flag(TIF_FOREIGN_FPSTATE); |
| return; |
| } |
| |
| get_cpu_fpsimd_context(); |
| |
| if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) { |
| task_fpsimd_load(); |
| fpsimd_bind_task_to_cpu(); |
| } |
| |
| put_cpu_fpsimd_context(); |
| } |
| |
| /* |
| * Load an updated userland FPSIMD state for 'current' from memory and set the |
| * flag that indicates that the FPSIMD register contents are the most recent |
| * FPSIMD state of 'current'. This is used by the signal code to restore the |
| * register state when returning from a signal handler in FPSIMD only cases, |
| * any SVE context will be discarded. |
| */ |
| void fpsimd_update_current_state(struct user_fpsimd_state const *state) |
| { |
| if (WARN_ON(!system_supports_fpsimd())) |
| return; |
| |
| get_cpu_fpsimd_context(); |
| |
| current->thread.uw.fpsimd_state = *state; |
| if (test_thread_flag(TIF_SVE)) |
| fpsimd_to_sve(current); |
| |
| task_fpsimd_load(); |
| fpsimd_bind_task_to_cpu(); |
| |
| clear_thread_flag(TIF_FOREIGN_FPSTATE); |
| |
| put_cpu_fpsimd_context(); |
| } |
| |
| /* |
| * Invalidate live CPU copies of task t's FPSIMD state |
| * |
| * This function may be called with preemption enabled. The barrier() |
| * ensures that the assignment to fpsimd_cpu is visible to any |
| * preemption/softirq that could race with set_tsk_thread_flag(), so |
| * that TIF_FOREIGN_FPSTATE cannot be spuriously re-cleared. |
| * |
| * The final barrier ensures that TIF_FOREIGN_FPSTATE is seen set by any |
| * subsequent code. |
| */ |
| void fpsimd_flush_task_state(struct task_struct *t) |
| { |
| t->thread.fpsimd_cpu = NR_CPUS; |
| /* |
| * If we don't support fpsimd, bail out after we have |
| * reset the fpsimd_cpu for this task and clear the |
| * FPSTATE. |
| */ |
| if (!system_supports_fpsimd()) |
| return; |
| barrier(); |
| set_tsk_thread_flag(t, TIF_FOREIGN_FPSTATE); |
| |
| barrier(); |
| } |
| |
| /* |
| * Invalidate any task's FPSIMD state that is present on this cpu. |
| * The FPSIMD context should be acquired with get_cpu_fpsimd_context() |
| * before calling this function. |
| */ |
| static void fpsimd_flush_cpu_state(void) |
| { |
| WARN_ON(!system_supports_fpsimd()); |
| __this_cpu_write(fpsimd_last_state.st, NULL); |
| |
| /* |
| * Leaving streaming mode enabled will cause issues for any kernel |
| * NEON and leaving streaming mode or ZA enabled may increase power |
| * consumption. |
| */ |
| if (system_supports_sme()) |
| sme_smstop(); |
| |
| set_thread_flag(TIF_FOREIGN_FPSTATE); |
| } |
| |
| /* |
| * Save the FPSIMD state to memory and invalidate cpu view. |
| * This function must be called with preemption disabled. |
| */ |
| void fpsimd_save_and_flush_cpu_state(void) |
| { |
| unsigned long flags; |
| |
| if (!system_supports_fpsimd()) |
| return; |
| WARN_ON(preemptible()); |
| local_irq_save(flags); |
| fpsimd_save_user_state(); |
| fpsimd_flush_cpu_state(); |
| local_irq_restore(flags); |
| } |
| |
| #ifdef CONFIG_KERNEL_MODE_NEON |
| |
| /* |
| * Kernel-side NEON support functions |
| */ |
| |
| /* |
| * kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling |
| * context |
| * |
| * Must not be called unless may_use_simd() returns true. |
| * Task context in the FPSIMD registers is saved back to memory as necessary. |
| * |
| * A matching call to kernel_neon_end() must be made before returning from the |
| * calling context. |
| * |
| * The caller may freely use the FPSIMD registers until kernel_neon_end() is |
| * called. |
| */ |
| void kernel_neon_begin(void) |
| { |
| if (WARN_ON(!system_supports_fpsimd())) |
| return; |
| |
| BUG_ON(!may_use_simd()); |
| |
| get_cpu_fpsimd_context(); |
| |
| /* Save unsaved fpsimd state, if any: */ |
| if (test_thread_flag(TIF_KERNEL_FPSTATE)) { |
| BUG_ON(IS_ENABLED(CONFIG_PREEMPT_RT) || !in_serving_softirq()); |
| fpsimd_save_kernel_state(current); |
| } else { |
| fpsimd_save_user_state(); |
| |
| /* |
| * Set the thread flag so that the kernel mode FPSIMD state |
| * will be context switched along with the rest of the task |
| * state. |
| * |
| * On non-PREEMPT_RT, softirqs may interrupt task level kernel |
| * mode FPSIMD, but the task will not be preemptible so setting |
| * TIF_KERNEL_FPSTATE for those would be both wrong (as it |
| * would mark the task context FPSIMD state as requiring a |
| * context switch) and unnecessary. |
| * |
| * On PREEMPT_RT, softirqs are serviced from a separate thread, |
| * which is scheduled as usual, and this guarantees that these |
| * softirqs are not interrupting use of the FPSIMD in kernel |
| * mode in task context. So in this case, setting the flag here |
| * is always appropriate. |
| */ |
| if (IS_ENABLED(CONFIG_PREEMPT_RT) || !in_serving_softirq()) |
| set_thread_flag(TIF_KERNEL_FPSTATE); |
| } |
| |
| /* Invalidate any task state remaining in the fpsimd regs: */ |
| fpsimd_flush_cpu_state(); |
| |
| put_cpu_fpsimd_context(); |
| } |
| EXPORT_SYMBOL_GPL(kernel_neon_begin); |
| |
| /* |
| * kernel_neon_end(): give the CPU FPSIMD registers back to the current task |
| * |
| * Must be called from a context in which kernel_neon_begin() was previously |
| * called, with no call to kernel_neon_end() in the meantime. |
| * |
| * The caller must not use the FPSIMD registers after this function is called, |
| * unless kernel_neon_begin() is called again in the meantime. |
| */ |
| void kernel_neon_end(void) |
| { |
| if (!system_supports_fpsimd()) |
| return; |
| |
| /* |
| * If we are returning from a nested use of kernel mode FPSIMD, restore |
| * the task context kernel mode FPSIMD state. This can only happen when |
| * running in softirq context on non-PREEMPT_RT. |
| */ |
| if (!IS_ENABLED(CONFIG_PREEMPT_RT) && in_serving_softirq() && |
| test_thread_flag(TIF_KERNEL_FPSTATE)) |
| fpsimd_load_kernel_state(current); |
| else |
| clear_thread_flag(TIF_KERNEL_FPSTATE); |
| } |
| EXPORT_SYMBOL_GPL(kernel_neon_end); |
| |
| #ifdef CONFIG_EFI |
| |
| static DEFINE_PER_CPU(struct user_fpsimd_state, efi_fpsimd_state); |
| static DEFINE_PER_CPU(bool, efi_fpsimd_state_used); |
| static DEFINE_PER_CPU(bool, efi_sve_state_used); |
| static DEFINE_PER_CPU(bool, efi_sm_state); |
| |
| /* |
| * EFI runtime services support functions |
| * |
| * The ABI for EFI runtime services allows EFI to use FPSIMD during the call. |
| * This means that for EFI (and only for EFI), we have to assume that FPSIMD |
| * is always used rather than being an optional accelerator. |
| * |
| * These functions provide the necessary support for ensuring FPSIMD |
| * save/restore in the contexts from which EFI is used. |
| * |
| * Do not use them for any other purpose -- if tempted to do so, you are |
| * either doing something wrong or you need to propose some refactoring. |
| */ |
| |
| /* |
| * __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call |
| */ |
| void __efi_fpsimd_begin(void) |
| { |
| if (!system_supports_fpsimd()) |
| return; |
| |
| WARN_ON(preemptible()); |
| |
| if (may_use_simd()) { |
| kernel_neon_begin(); |
| } else { |
| /* |
| * If !efi_sve_state, SVE can't be in use yet and doesn't need |
| * preserving: |
| */ |
| if (system_supports_sve() && likely(efi_sve_state)) { |
| char *sve_state = this_cpu_ptr(efi_sve_state); |
| bool ffr = true; |
| u64 svcr; |
| |
| __this_cpu_write(efi_sve_state_used, true); |
| |
| if (system_supports_sme()) { |
| svcr = read_sysreg_s(SYS_SVCR); |
| |
| __this_cpu_write(efi_sm_state, |
| svcr & SVCR_SM_MASK); |
| |
| /* |
| * Unless we have FA64 FFR does not |
| * exist in streaming mode. |
| */ |
| if (!system_supports_fa64()) |
| ffr = !(svcr & SVCR_SM_MASK); |
| } |
| |
| sve_save_state(sve_state + sve_ffr_offset(sve_max_vl()), |
| &this_cpu_ptr(&efi_fpsimd_state)->fpsr, |
| ffr); |
| |
| if (system_supports_sme()) |
| sysreg_clear_set_s(SYS_SVCR, |
| SVCR_SM_MASK, 0); |
| |
| } else { |
| fpsimd_save_state(this_cpu_ptr(&efi_fpsimd_state)); |
| } |
| |
| __this_cpu_write(efi_fpsimd_state_used, true); |
| } |
| } |
| |
| /* |
| * __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call |
| */ |
| void __efi_fpsimd_end(void) |
| { |
| if (!system_supports_fpsimd()) |
| return; |
| |
| if (!__this_cpu_xchg(efi_fpsimd_state_used, false)) { |
| kernel_neon_end(); |
| } else { |
| if (system_supports_sve() && |
| likely(__this_cpu_read(efi_sve_state_used))) { |
| char const *sve_state = this_cpu_ptr(efi_sve_state); |
| bool ffr = true; |
| |
| /* |
| * Restore streaming mode; EFI calls are |
| * normal function calls so should not return in |
| * streaming mode. |
| */ |
| if (system_supports_sme()) { |
| if (__this_cpu_read(efi_sm_state)) { |
| sysreg_clear_set_s(SYS_SVCR, |
| 0, |
| SVCR_SM_MASK); |
| |
| /* |
| * Unless we have FA64 FFR does not |
| * exist in streaming mode. |
| */ |
| if (!system_supports_fa64()) |
| ffr = false; |
| } |
| } |
| |
| sve_load_state(sve_state + sve_ffr_offset(sve_max_vl()), |
| &this_cpu_ptr(&efi_fpsimd_state)->fpsr, |
| ffr); |
| |
| __this_cpu_write(efi_sve_state_used, false); |
| } else { |
| fpsimd_load_state(this_cpu_ptr(&efi_fpsimd_state)); |
| } |
| } |
| } |
| |
| #endif /* CONFIG_EFI */ |
| |
| #endif /* CONFIG_KERNEL_MODE_NEON */ |
| |
| #ifdef CONFIG_CPU_PM |
| static int fpsimd_cpu_pm_notifier(struct notifier_block *self, |
| unsigned long cmd, void *v) |
| { |
| switch (cmd) { |
| case CPU_PM_ENTER: |
| fpsimd_save_and_flush_cpu_state(); |
| break; |
| case CPU_PM_EXIT: |
| break; |
| case CPU_PM_ENTER_FAILED: |
| default: |
| return NOTIFY_DONE; |
| } |
| return NOTIFY_OK; |
| } |
| |
| static struct notifier_block fpsimd_cpu_pm_notifier_block = { |
| .notifier_call = fpsimd_cpu_pm_notifier, |
| }; |
| |
| static void __init fpsimd_pm_init(void) |
| { |
| cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block); |
| } |
| |
| #else |
| static inline void fpsimd_pm_init(void) { } |
| #endif /* CONFIG_CPU_PM */ |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| static int fpsimd_cpu_dead(unsigned int cpu) |
| { |
| per_cpu(fpsimd_last_state.st, cpu) = NULL; |
| return 0; |
| } |
| |
| static inline void fpsimd_hotplug_init(void) |
| { |
| cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead", |
| NULL, fpsimd_cpu_dead); |
| } |
| |
| #else |
| static inline void fpsimd_hotplug_init(void) { } |
| #endif |
| |
| void cpu_enable_fpsimd(const struct arm64_cpu_capabilities *__always_unused p) |
| { |
| unsigned long enable = CPACR_EL1_FPEN_EL1EN | CPACR_EL1_FPEN_EL0EN; |
| write_sysreg(read_sysreg(CPACR_EL1) | enable, CPACR_EL1); |
| isb(); |
| } |
| |
| /* |
| * FP/SIMD support code initialisation. |
| */ |
| static int __init fpsimd_init(void) |
| { |
| if (cpu_have_named_feature(FP)) { |
| fpsimd_pm_init(); |
| fpsimd_hotplug_init(); |
| } else { |
| pr_notice("Floating-point is not implemented\n"); |
| } |
| |
| if (!cpu_have_named_feature(ASIMD)) |
| pr_notice("Advanced SIMD is not implemented\n"); |
| |
| |
| sve_sysctl_init(); |
| sme_sysctl_init(); |
| |
| return 0; |
| } |
| core_initcall(fpsimd_init); |