blob: 53f4273b657cecd197db44d22e719f4738d976b0 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2013-2015, The Linux Foundation. All rights reserved.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/dma/qcom_adm.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/of_dma.h>
#include <linux/platform_device.h>
#include <linux/reset.h>
#include <linux/scatterlist.h>
#include <linux/slab.h>
#include "../dmaengine.h"
#include "../virt-dma.h"
/* ADM registers - calculated from channel number and security domain */
#define ADM_CHAN_MULTI 0x4
#define ADM_CI_MULTI 0x4
#define ADM_CRCI_MULTI 0x4
#define ADM_EE_MULTI 0x800
#define ADM_CHAN_OFFS(chan) (ADM_CHAN_MULTI * (chan))
#define ADM_EE_OFFS(ee) (ADM_EE_MULTI * (ee))
#define ADM_CHAN_EE_OFFS(chan, ee) (ADM_CHAN_OFFS(chan) + ADM_EE_OFFS(ee))
#define ADM_CHAN_OFFS(chan) (ADM_CHAN_MULTI * (chan))
#define ADM_CI_OFFS(ci) (ADM_CHAN_OFF(ci))
#define ADM_CH_CMD_PTR(chan, ee) (ADM_CHAN_EE_OFFS(chan, ee))
#define ADM_CH_RSLT(chan, ee) (0x40 + ADM_CHAN_EE_OFFS(chan, ee))
#define ADM_CH_FLUSH_STATE0(chan, ee) (0x80 + ADM_CHAN_EE_OFFS(chan, ee))
#define ADM_CH_STATUS_SD(chan, ee) (0x200 + ADM_CHAN_EE_OFFS(chan, ee))
#define ADM_CH_CONF(chan) (0x240 + ADM_CHAN_OFFS(chan))
#define ADM_CH_RSLT_CONF(chan, ee) (0x300 + ADM_CHAN_EE_OFFS(chan, ee))
#define ADM_SEC_DOMAIN_IRQ_STATUS(ee) (0x380 + ADM_EE_OFFS(ee))
#define ADM_CI_CONF(ci) (0x390 + (ci) * ADM_CI_MULTI)
#define ADM_GP_CTL 0x3d8
#define ADM_CRCI_CTL(crci, ee) (0x400 + (crci) * ADM_CRCI_MULTI + \
ADM_EE_OFFS(ee))
/* channel status */
#define ADM_CH_STATUS_VALID BIT(1)
/* channel result */
#define ADM_CH_RSLT_VALID BIT(31)
#define ADM_CH_RSLT_ERR BIT(3)
#define ADM_CH_RSLT_FLUSH BIT(2)
#define ADM_CH_RSLT_TPD BIT(1)
/* channel conf */
#define ADM_CH_CONF_SHADOW_EN BIT(12)
#define ADM_CH_CONF_MPU_DISABLE BIT(11)
#define ADM_CH_CONF_PERM_MPU_CONF BIT(9)
#define ADM_CH_CONF_FORCE_RSLT_EN BIT(7)
#define ADM_CH_CONF_SEC_DOMAIN(ee) ((((ee) & 0x3) << 4) | (((ee) & 0x4) << 11))
/* channel result conf */
#define ADM_CH_RSLT_CONF_FLUSH_EN BIT(1)
#define ADM_CH_RSLT_CONF_IRQ_EN BIT(0)
/* CRCI CTL */
#define ADM_CRCI_CTL_MUX_SEL BIT(18)
#define ADM_CRCI_CTL_RST BIT(17)
/* CI configuration */
#define ADM_CI_RANGE_END(x) ((x) << 24)
#define ADM_CI_RANGE_START(x) ((x) << 16)
#define ADM_CI_BURST_4_WORDS BIT(2)
#define ADM_CI_BURST_8_WORDS BIT(3)
/* GP CTL */
#define ADM_GP_CTL_LP_EN BIT(12)
#define ADM_GP_CTL_LP_CNT(x) ((x) << 8)
/* Command pointer list entry */
#define ADM_CPLE_LP BIT(31)
#define ADM_CPLE_CMD_PTR_LIST BIT(29)
/* Command list entry */
#define ADM_CMD_LC BIT(31)
#define ADM_CMD_DST_CRCI(n) (((n) & 0xf) << 7)
#define ADM_CMD_SRC_CRCI(n) (((n) & 0xf) << 3)
#define ADM_CMD_TYPE_SINGLE 0x0
#define ADM_CMD_TYPE_BOX 0x3
#define ADM_CRCI_MUX_SEL BIT(4)
#define ADM_DESC_ALIGN 8
#define ADM_MAX_XFER (SZ_64K - 1)
#define ADM_MAX_ROWS (SZ_64K - 1)
#define ADM_MAX_CHANNELS 16
struct adm_desc_hw_box {
u32 cmd;
u32 src_addr;
u32 dst_addr;
u32 row_len;
u32 num_rows;
u32 row_offset;
};
struct adm_desc_hw_single {
u32 cmd;
u32 src_addr;
u32 dst_addr;
u32 len;
};
struct adm_async_desc {
struct virt_dma_desc vd;
struct adm_device *adev;
size_t length;
enum dma_transfer_direction dir;
dma_addr_t dma_addr;
size_t dma_len;
void *cpl;
dma_addr_t cp_addr;
u32 crci;
u32 mux;
u32 blk_size;
};
struct adm_chan {
struct virt_dma_chan vc;
struct adm_device *adev;
/* parsed from DT */
u32 id; /* channel id */
struct adm_async_desc *curr_txd;
struct dma_slave_config slave;
u32 crci;
u32 mux;
struct list_head node;
int error;
int initialized;
};
static inline struct adm_chan *to_adm_chan(struct dma_chan *common)
{
return container_of(common, struct adm_chan, vc.chan);
}
struct adm_device {
void __iomem *regs;
struct device *dev;
struct dma_device common;
struct device_dma_parameters dma_parms;
struct adm_chan *channels;
u32 ee;
struct clk *core_clk;
struct clk *iface_clk;
struct reset_control *clk_reset;
struct reset_control *c0_reset;
struct reset_control *c1_reset;
struct reset_control *c2_reset;
int irq;
};
/**
* adm_free_chan - Frees dma resources associated with the specific channel
*
* @chan: dma channel
*
* Free all allocated descriptors associated with this channel
*/
static void adm_free_chan(struct dma_chan *chan)
{
/* free all queued descriptors */
vchan_free_chan_resources(to_virt_chan(chan));
}
/**
* adm_get_blksize - Get block size from burst value
*
* @burst: Burst size of transaction
*/
static int adm_get_blksize(unsigned int burst)
{
int ret;
switch (burst) {
case 16:
case 32:
case 64:
case 128:
ret = ffs(burst >> 4) - 1;
break;
case 192:
ret = 4;
break;
case 256:
ret = 5;
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
/**
* adm_process_fc_descriptors - Process descriptors for flow controlled xfers
*
* @achan: ADM channel
* @desc: Descriptor memory pointer
* @sg: Scatterlist entry
* @crci: CRCI value
* @burst: Burst size of transaction
* @direction: DMA transfer direction
*/
static void *adm_process_fc_descriptors(struct adm_chan *achan, void *desc,
struct scatterlist *sg, u32 crci,
u32 burst,
enum dma_transfer_direction direction)
{
struct adm_desc_hw_box *box_desc = NULL;
struct adm_desc_hw_single *single_desc;
u32 remainder = sg_dma_len(sg);
u32 rows, row_offset, crci_cmd;
u32 mem_addr = sg_dma_address(sg);
u32 *incr_addr = &mem_addr;
u32 *src, *dst;
if (direction == DMA_DEV_TO_MEM) {
crci_cmd = ADM_CMD_SRC_CRCI(crci);
row_offset = burst;
src = &achan->slave.src_addr;
dst = &mem_addr;
} else {
crci_cmd = ADM_CMD_DST_CRCI(crci);
row_offset = burst << 16;
src = &mem_addr;
dst = &achan->slave.dst_addr;
}
while (remainder >= burst) {
box_desc = desc;
box_desc->cmd = ADM_CMD_TYPE_BOX | crci_cmd;
box_desc->row_offset = row_offset;
box_desc->src_addr = *src;
box_desc->dst_addr = *dst;
rows = remainder / burst;
rows = min_t(u32, rows, ADM_MAX_ROWS);
box_desc->num_rows = rows << 16 | rows;
box_desc->row_len = burst << 16 | burst;
*incr_addr += burst * rows;
remainder -= burst * rows;
desc += sizeof(*box_desc);
}
/* if leftover bytes, do one single descriptor */
if (remainder) {
single_desc = desc;
single_desc->cmd = ADM_CMD_TYPE_SINGLE | crci_cmd;
single_desc->len = remainder;
single_desc->src_addr = *src;
single_desc->dst_addr = *dst;
desc += sizeof(*single_desc);
if (sg_is_last(sg))
single_desc->cmd |= ADM_CMD_LC;
} else {
if (box_desc && sg_is_last(sg))
box_desc->cmd |= ADM_CMD_LC;
}
return desc;
}
/**
* adm_process_non_fc_descriptors - Process descriptors for non-fc xfers
*
* @achan: ADM channel
* @desc: Descriptor memory pointer
* @sg: Scatterlist entry
* @direction: DMA transfer direction
*/
static void *adm_process_non_fc_descriptors(struct adm_chan *achan, void *desc,
struct scatterlist *sg,
enum dma_transfer_direction direction)
{
struct adm_desc_hw_single *single_desc;
u32 remainder = sg_dma_len(sg);
u32 mem_addr = sg_dma_address(sg);
u32 *incr_addr = &mem_addr;
u32 *src, *dst;
if (direction == DMA_DEV_TO_MEM) {
src = &achan->slave.src_addr;
dst = &mem_addr;
} else {
src = &mem_addr;
dst = &achan->slave.dst_addr;
}
do {
single_desc = desc;
single_desc->cmd = ADM_CMD_TYPE_SINGLE;
single_desc->src_addr = *src;
single_desc->dst_addr = *dst;
single_desc->len = (remainder > ADM_MAX_XFER) ?
ADM_MAX_XFER : remainder;
remainder -= single_desc->len;
*incr_addr += single_desc->len;
desc += sizeof(*single_desc);
} while (remainder);
/* set last command if this is the end of the whole transaction */
if (sg_is_last(sg))
single_desc->cmd |= ADM_CMD_LC;
return desc;
}
/**
* adm_prep_slave_sg - Prep slave sg transaction
*
* @chan: dma channel
* @sgl: scatter gather list
* @sg_len: length of sg
* @direction: DMA transfer direction
* @flags: DMA flags
* @context: transfer context (unused)
*/
static struct dma_async_tx_descriptor *adm_prep_slave_sg(struct dma_chan *chan,
struct scatterlist *sgl,
unsigned int sg_len,
enum dma_transfer_direction direction,
unsigned long flags,
void *context)
{
struct adm_chan *achan = to_adm_chan(chan);
struct adm_device *adev = achan->adev;
struct adm_async_desc *async_desc;
struct scatterlist *sg;
dma_addr_t cple_addr;
u32 i, burst;
u32 single_count = 0, box_count = 0, crci = 0;
void *desc;
u32 *cple;
int blk_size = 0;
if (!is_slave_direction(direction)) {
dev_err(adev->dev, "invalid dma direction\n");
return NULL;
}
/*
* get burst value from slave configuration
*/
burst = (direction == DMA_MEM_TO_DEV) ?
achan->slave.dst_maxburst :
achan->slave.src_maxburst;
/* if using flow control, validate burst and crci values */
if (achan->slave.device_fc) {
blk_size = adm_get_blksize(burst);
if (blk_size < 0) {
dev_err(adev->dev, "invalid burst value: %d\n",
burst);
return NULL;
}
crci = achan->crci & 0xf;
if (!crci || achan->crci > 0x1f) {
dev_err(adev->dev, "invalid crci value\n");
return NULL;
}
}
/* iterate through sgs and compute allocation size of structures */
for_each_sg(sgl, sg, sg_len, i) {
if (achan->slave.device_fc) {
box_count += DIV_ROUND_UP(sg_dma_len(sg) / burst,
ADM_MAX_ROWS);
if (sg_dma_len(sg) % burst)
single_count++;
} else {
single_count += DIV_ROUND_UP(sg_dma_len(sg),
ADM_MAX_XFER);
}
}
async_desc = kzalloc(sizeof(*async_desc), GFP_NOWAIT);
if (!async_desc) {
dev_err(adev->dev, "not enough memory for async_desc struct\n");
return NULL;
}
async_desc->mux = achan->mux ? ADM_CRCI_CTL_MUX_SEL : 0;
async_desc->crci = crci;
async_desc->blk_size = blk_size;
async_desc->dma_len = single_count * sizeof(struct adm_desc_hw_single) +
box_count * sizeof(struct adm_desc_hw_box) +
sizeof(*cple) + 2 * ADM_DESC_ALIGN;
async_desc->cpl = kzalloc(async_desc->dma_len, GFP_NOWAIT);
if (!async_desc->cpl) {
dev_err(adev->dev, "not enough memory for cpl struct\n");
goto free;
}
async_desc->adev = adev;
/* both command list entry and descriptors must be 8 byte aligned */
cple = PTR_ALIGN(async_desc->cpl, ADM_DESC_ALIGN);
desc = PTR_ALIGN(cple + 1, ADM_DESC_ALIGN);
for_each_sg(sgl, sg, sg_len, i) {
async_desc->length += sg_dma_len(sg);
if (achan->slave.device_fc)
desc = adm_process_fc_descriptors(achan, desc, sg, crci,
burst, direction);
else
desc = adm_process_non_fc_descriptors(achan, desc, sg,
direction);
}
async_desc->dma_addr = dma_map_single(adev->dev, async_desc->cpl,
async_desc->dma_len,
DMA_TO_DEVICE);
if (dma_mapping_error(adev->dev, async_desc->dma_addr)) {
dev_err(adev->dev, "dma mapping error for cpl\n");
goto free;
}
cple_addr = async_desc->dma_addr + ((void *)cple - async_desc->cpl);
/* init cmd list */
dma_sync_single_for_cpu(adev->dev, cple_addr, sizeof(*cple),
DMA_TO_DEVICE);
*cple = ADM_CPLE_LP;
*cple |= (async_desc->dma_addr + ADM_DESC_ALIGN) >> 3;
dma_sync_single_for_device(adev->dev, cple_addr, sizeof(*cple),
DMA_TO_DEVICE);
return vchan_tx_prep(&achan->vc, &async_desc->vd, flags);
free:
kfree(async_desc);
return NULL;
}
/**
* adm_terminate_all - terminate all transactions on a channel
* @chan: dma channel
*
* Dequeues and frees all transactions, aborts current transaction
* No callbacks are done
*
*/
static int adm_terminate_all(struct dma_chan *chan)
{
struct adm_chan *achan = to_adm_chan(chan);
struct adm_device *adev = achan->adev;
unsigned long flags;
LIST_HEAD(head);
spin_lock_irqsave(&achan->vc.lock, flags);
vchan_get_all_descriptors(&achan->vc, &head);
/* send flush command to terminate current transaction */
writel_relaxed(0x0,
adev->regs + ADM_CH_FLUSH_STATE0(achan->id, adev->ee));
spin_unlock_irqrestore(&achan->vc.lock, flags);
vchan_dma_desc_free_list(&achan->vc, &head);
return 0;
}
static int adm_slave_config(struct dma_chan *chan, struct dma_slave_config *cfg)
{
struct adm_chan *achan = to_adm_chan(chan);
struct qcom_adm_peripheral_config *config = cfg->peripheral_config;
unsigned long flag;
spin_lock_irqsave(&achan->vc.lock, flag);
memcpy(&achan->slave, cfg, sizeof(struct dma_slave_config));
if (cfg->peripheral_size == sizeof(*config))
achan->crci = config->crci;
spin_unlock_irqrestore(&achan->vc.lock, flag);
return 0;
}
/**
* adm_start_dma - start next transaction
* @achan: ADM dma channel
*/
static void adm_start_dma(struct adm_chan *achan)
{
struct virt_dma_desc *vd = vchan_next_desc(&achan->vc);
struct adm_device *adev = achan->adev;
struct adm_async_desc *async_desc;
lockdep_assert_held(&achan->vc.lock);
if (!vd)
return;
list_del(&vd->node);
/* write next command list out to the CMD FIFO */
async_desc = container_of(vd, struct adm_async_desc, vd);
achan->curr_txd = async_desc;
/* reset channel error */
achan->error = 0;
if (!achan->initialized) {
/* enable interrupts */
writel(ADM_CH_CONF_SHADOW_EN |
ADM_CH_CONF_PERM_MPU_CONF |
ADM_CH_CONF_MPU_DISABLE |
ADM_CH_CONF_SEC_DOMAIN(adev->ee),
adev->regs + ADM_CH_CONF(achan->id));
writel(ADM_CH_RSLT_CONF_IRQ_EN | ADM_CH_RSLT_CONF_FLUSH_EN,
adev->regs + ADM_CH_RSLT_CONF(achan->id, adev->ee));
achan->initialized = 1;
}
/* set the crci block size if this transaction requires CRCI */
if (async_desc->crci) {
writel(async_desc->mux | async_desc->blk_size,
adev->regs + ADM_CRCI_CTL(async_desc->crci, adev->ee));
}
/* make sure IRQ enable doesn't get reordered */
wmb();
/* write next command list out to the CMD FIFO */
writel(ALIGN(async_desc->dma_addr, ADM_DESC_ALIGN) >> 3,
adev->regs + ADM_CH_CMD_PTR(achan->id, adev->ee));
}
/**
* adm_dma_irq - irq handler for ADM controller
* @irq: IRQ of interrupt
* @data: callback data
*
* IRQ handler for the bam controller
*/
static irqreturn_t adm_dma_irq(int irq, void *data)
{
struct adm_device *adev = data;
u32 srcs, i;
struct adm_async_desc *async_desc;
unsigned long flags;
srcs = readl_relaxed(adev->regs +
ADM_SEC_DOMAIN_IRQ_STATUS(adev->ee));
for (i = 0; i < ADM_MAX_CHANNELS; i++) {
struct adm_chan *achan = &adev->channels[i];
u32 status, result;
if (srcs & BIT(i)) {
status = readl_relaxed(adev->regs +
ADM_CH_STATUS_SD(i, adev->ee));
/* if no result present, skip */
if (!(status & ADM_CH_STATUS_VALID))
continue;
result = readl_relaxed(adev->regs +
ADM_CH_RSLT(i, adev->ee));
/* no valid results, skip */
if (!(result & ADM_CH_RSLT_VALID))
continue;
/* flag error if transaction was flushed or failed */
if (result & (ADM_CH_RSLT_ERR | ADM_CH_RSLT_FLUSH))
achan->error = 1;
spin_lock_irqsave(&achan->vc.lock, flags);
async_desc = achan->curr_txd;
achan->curr_txd = NULL;
if (async_desc) {
vchan_cookie_complete(&async_desc->vd);
/* kick off next DMA */
adm_start_dma(achan);
}
spin_unlock_irqrestore(&achan->vc.lock, flags);
}
}
return IRQ_HANDLED;
}
/**
* adm_tx_status - returns status of transaction
* @chan: dma channel
* @cookie: transaction cookie
* @txstate: DMA transaction state
*
* Return status of dma transaction
*/
static enum dma_status adm_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
struct dma_tx_state *txstate)
{
struct adm_chan *achan = to_adm_chan(chan);
struct virt_dma_desc *vd;
enum dma_status ret;
unsigned long flags;
size_t residue = 0;
ret = dma_cookie_status(chan, cookie, txstate);
if (ret == DMA_COMPLETE || !txstate)
return ret;
spin_lock_irqsave(&achan->vc.lock, flags);
vd = vchan_find_desc(&achan->vc, cookie);
if (vd)
residue = container_of(vd, struct adm_async_desc, vd)->length;
spin_unlock_irqrestore(&achan->vc.lock, flags);
/*
* residue is either the full length if it is in the issued list, or 0
* if it is in progress. We have no reliable way of determining
* anything inbetween
*/
dma_set_residue(txstate, residue);
if (achan->error)
return DMA_ERROR;
return ret;
}
/**
* adm_issue_pending - starts pending transactions
* @chan: dma channel
*
* Issues all pending transactions and starts DMA
*/
static void adm_issue_pending(struct dma_chan *chan)
{
struct adm_chan *achan = to_adm_chan(chan);
unsigned long flags;
spin_lock_irqsave(&achan->vc.lock, flags);
if (vchan_issue_pending(&achan->vc) && !achan->curr_txd)
adm_start_dma(achan);
spin_unlock_irqrestore(&achan->vc.lock, flags);
}
/**
* adm_dma_free_desc - free descriptor memory
* @vd: virtual descriptor
*
*/
static void adm_dma_free_desc(struct virt_dma_desc *vd)
{
struct adm_async_desc *async_desc = container_of(vd,
struct adm_async_desc, vd);
dma_unmap_single(async_desc->adev->dev, async_desc->dma_addr,
async_desc->dma_len, DMA_TO_DEVICE);
kfree(async_desc->cpl);
kfree(async_desc);
}
static void adm_channel_init(struct adm_device *adev, struct adm_chan *achan,
u32 index)
{
achan->id = index;
achan->adev = adev;
vchan_init(&achan->vc, &adev->common);
achan->vc.desc_free = adm_dma_free_desc;
}
/**
* adm_dma_xlate
* @dma_spec: pointer to DMA specifier as found in the device tree
* @ofdma: pointer to DMA controller data
*
* This can use either 1-cell or 2-cell formats, the first cell
* identifies the slave device, while the optional second cell
* contains the crci value.
*
* Returns pointer to appropriate dma channel on success or NULL on error.
*/
static struct dma_chan *adm_dma_xlate(struct of_phandle_args *dma_spec,
struct of_dma *ofdma)
{
struct dma_device *dev = ofdma->of_dma_data;
struct dma_chan *chan, *candidate = NULL;
struct adm_chan *achan;
if (!dev || dma_spec->args_count > 2)
return NULL;
list_for_each_entry(chan, &dev->channels, device_node)
if (chan->chan_id == dma_spec->args[0]) {
candidate = chan;
break;
}
if (!candidate)
return NULL;
achan = to_adm_chan(candidate);
if (dma_spec->args_count == 2)
achan->crci = dma_spec->args[1];
else
achan->crci = 0;
return dma_get_slave_channel(candidate);
}
static int adm_dma_probe(struct platform_device *pdev)
{
struct adm_device *adev;
int ret;
u32 i;
adev = devm_kzalloc(&pdev->dev, sizeof(*adev), GFP_KERNEL);
if (!adev)
return -ENOMEM;
adev->dev = &pdev->dev;
adev->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(adev->regs))
return PTR_ERR(adev->regs);
adev->irq = platform_get_irq(pdev, 0);
if (adev->irq < 0)
return adev->irq;
ret = of_property_read_u32(pdev->dev.of_node, "qcom,ee", &adev->ee);
if (ret) {
dev_err(adev->dev, "Execution environment unspecified\n");
return ret;
}
adev->core_clk = devm_clk_get(adev->dev, "core");
if (IS_ERR(adev->core_clk))
return PTR_ERR(adev->core_clk);
adev->iface_clk = devm_clk_get(adev->dev, "iface");
if (IS_ERR(adev->iface_clk))
return PTR_ERR(adev->iface_clk);
adev->clk_reset = devm_reset_control_get_exclusive(&pdev->dev, "clk");
if (IS_ERR(adev->clk_reset)) {
dev_err(adev->dev, "failed to get ADM0 reset\n");
return PTR_ERR(adev->clk_reset);
}
adev->c0_reset = devm_reset_control_get_exclusive(&pdev->dev, "c0");
if (IS_ERR(adev->c0_reset)) {
dev_err(adev->dev, "failed to get ADM0 C0 reset\n");
return PTR_ERR(adev->c0_reset);
}
adev->c1_reset = devm_reset_control_get_exclusive(&pdev->dev, "c1");
if (IS_ERR(adev->c1_reset)) {
dev_err(adev->dev, "failed to get ADM0 C1 reset\n");
return PTR_ERR(adev->c1_reset);
}
adev->c2_reset = devm_reset_control_get_exclusive(&pdev->dev, "c2");
if (IS_ERR(adev->c2_reset)) {
dev_err(adev->dev, "failed to get ADM0 C2 reset\n");
return PTR_ERR(adev->c2_reset);
}
ret = clk_prepare_enable(adev->core_clk);
if (ret) {
dev_err(adev->dev, "failed to prepare/enable core clock\n");
return ret;
}
ret = clk_prepare_enable(adev->iface_clk);
if (ret) {
dev_err(adev->dev, "failed to prepare/enable iface clock\n");
goto err_disable_core_clk;
}
reset_control_assert(adev->clk_reset);
reset_control_assert(adev->c0_reset);
reset_control_assert(adev->c1_reset);
reset_control_assert(adev->c2_reset);
udelay(2);
reset_control_deassert(adev->clk_reset);
reset_control_deassert(adev->c0_reset);
reset_control_deassert(adev->c1_reset);
reset_control_deassert(adev->c2_reset);
adev->channels = devm_kcalloc(adev->dev, ADM_MAX_CHANNELS,
sizeof(*adev->channels), GFP_KERNEL);
if (!adev->channels) {
ret = -ENOMEM;
goto err_disable_clks;
}
/* allocate and initialize channels */
INIT_LIST_HEAD(&adev->common.channels);
for (i = 0; i < ADM_MAX_CHANNELS; i++)
adm_channel_init(adev, &adev->channels[i], i);
/* reset CRCIs */
for (i = 0; i < 16; i++)
writel(ADM_CRCI_CTL_RST, adev->regs +
ADM_CRCI_CTL(i, adev->ee));
/* configure client interfaces */
writel(ADM_CI_RANGE_START(0x40) | ADM_CI_RANGE_END(0xb0) |
ADM_CI_BURST_8_WORDS, adev->regs + ADM_CI_CONF(0));
writel(ADM_CI_RANGE_START(0x2a) | ADM_CI_RANGE_END(0x2c) |
ADM_CI_BURST_8_WORDS, adev->regs + ADM_CI_CONF(1));
writel(ADM_CI_RANGE_START(0x12) | ADM_CI_RANGE_END(0x28) |
ADM_CI_BURST_8_WORDS, adev->regs + ADM_CI_CONF(2));
writel(ADM_GP_CTL_LP_EN | ADM_GP_CTL_LP_CNT(0xf),
adev->regs + ADM_GP_CTL);
ret = devm_request_irq(adev->dev, adev->irq, adm_dma_irq,
0, "adm_dma", adev);
if (ret)
goto err_disable_clks;
platform_set_drvdata(pdev, adev);
adev->common.dev = adev->dev;
adev->common.dev->dma_parms = &adev->dma_parms;
/* set capabilities */
dma_cap_zero(adev->common.cap_mask);
dma_cap_set(DMA_SLAVE, adev->common.cap_mask);
dma_cap_set(DMA_PRIVATE, adev->common.cap_mask);
/* initialize dmaengine apis */
adev->common.directions = BIT(DMA_DEV_TO_MEM | DMA_MEM_TO_DEV);
adev->common.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
adev->common.src_addr_widths = DMA_SLAVE_BUSWIDTH_4_BYTES;
adev->common.dst_addr_widths = DMA_SLAVE_BUSWIDTH_4_BYTES;
adev->common.device_free_chan_resources = adm_free_chan;
adev->common.device_prep_slave_sg = adm_prep_slave_sg;
adev->common.device_issue_pending = adm_issue_pending;
adev->common.device_tx_status = adm_tx_status;
adev->common.device_terminate_all = adm_terminate_all;
adev->common.device_config = adm_slave_config;
ret = dma_async_device_register(&adev->common);
if (ret) {
dev_err(adev->dev, "failed to register dma async device\n");
goto err_disable_clks;
}
ret = of_dma_controller_register(pdev->dev.of_node, adm_dma_xlate,
&adev->common);
if (ret)
goto err_unregister_dma;
return 0;
err_unregister_dma:
dma_async_device_unregister(&adev->common);
err_disable_clks:
clk_disable_unprepare(adev->iface_clk);
err_disable_core_clk:
clk_disable_unprepare(adev->core_clk);
return ret;
}
static void adm_dma_remove(struct platform_device *pdev)
{
struct adm_device *adev = platform_get_drvdata(pdev);
struct adm_chan *achan;
u32 i;
of_dma_controller_free(pdev->dev.of_node);
dma_async_device_unregister(&adev->common);
for (i = 0; i < ADM_MAX_CHANNELS; i++) {
achan = &adev->channels[i];
/* mask IRQs for this channel/EE pair */
writel(0, adev->regs + ADM_CH_RSLT_CONF(achan->id, adev->ee));
tasklet_kill(&adev->channels[i].vc.task);
adm_terminate_all(&adev->channels[i].vc.chan);
}
devm_free_irq(adev->dev, adev->irq, adev);
clk_disable_unprepare(adev->core_clk);
clk_disable_unprepare(adev->iface_clk);
}
static const struct of_device_id adm_of_match[] = {
{ .compatible = "qcom,adm", },
{}
};
MODULE_DEVICE_TABLE(of, adm_of_match);
static struct platform_driver adm_dma_driver = {
.probe = adm_dma_probe,
.remove_new = adm_dma_remove,
.driver = {
.name = "adm-dma-engine",
.of_match_table = adm_of_match,
},
};
module_platform_driver(adm_dma_driver);
MODULE_AUTHOR("Andy Gross <agross@codeaurora.org>");
MODULE_DESCRIPTION("QCOM ADM DMA engine driver");
MODULE_LICENSE("GPL v2");