| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Remote Processor Framework |
| * |
| * Copyright (C) 2011 Texas Instruments, Inc. |
| * Copyright (C) 2011 Google, Inc. |
| * |
| * Ohad Ben-Cohen <ohad@wizery.com> |
| * Brian Swetland <swetland@google.com> |
| * Mark Grosen <mgrosen@ti.com> |
| * Fernando Guzman Lugo <fernando.lugo@ti.com> |
| * Suman Anna <s-anna@ti.com> |
| * Robert Tivy <rtivy@ti.com> |
| * Armando Uribe De Leon <x0095078@ti.com> |
| */ |
| |
| #define pr_fmt(fmt) "%s: " fmt, __func__ |
| |
| #include <linux/delay.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/device.h> |
| #include <linux/panic_notifier.h> |
| #include <linux/slab.h> |
| #include <linux/mutex.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/firmware.h> |
| #include <linux/string.h> |
| #include <linux/debugfs.h> |
| #include <linux/rculist.h> |
| #include <linux/remoteproc.h> |
| #include <linux/iommu.h> |
| #include <linux/idr.h> |
| #include <linux/elf.h> |
| #include <linux/crc32.h> |
| #include <linux/of_reserved_mem.h> |
| #include <linux/virtio_ids.h> |
| #include <linux/virtio_ring.h> |
| #include <asm/byteorder.h> |
| #include <linux/platform_device.h> |
| |
| #include "remoteproc_internal.h" |
| |
| #define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL |
| |
| static DEFINE_MUTEX(rproc_list_mutex); |
| static LIST_HEAD(rproc_list); |
| static struct notifier_block rproc_panic_nb; |
| |
| typedef int (*rproc_handle_resource_t)(struct rproc *rproc, |
| void *, int offset, int avail); |
| |
| static int rproc_alloc_carveout(struct rproc *rproc, |
| struct rproc_mem_entry *mem); |
| static int rproc_release_carveout(struct rproc *rproc, |
| struct rproc_mem_entry *mem); |
| |
| /* Unique indices for remoteproc devices */ |
| static DEFINE_IDA(rproc_dev_index); |
| static struct workqueue_struct *rproc_recovery_wq; |
| |
| static const char * const rproc_crash_names[] = { |
| [RPROC_MMUFAULT] = "mmufault", |
| [RPROC_WATCHDOG] = "watchdog", |
| [RPROC_FATAL_ERROR] = "fatal error", |
| }; |
| |
| /* translate rproc_crash_type to string */ |
| static const char *rproc_crash_to_string(enum rproc_crash_type type) |
| { |
| if (type < ARRAY_SIZE(rproc_crash_names)) |
| return rproc_crash_names[type]; |
| return "unknown"; |
| } |
| |
| /* |
| * This is the IOMMU fault handler we register with the IOMMU API |
| * (when relevant; not all remote processors access memory through |
| * an IOMMU). |
| * |
| * IOMMU core will invoke this handler whenever the remote processor |
| * will try to access an unmapped device address. |
| */ |
| static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev, |
| unsigned long iova, int flags, void *token) |
| { |
| struct rproc *rproc = token; |
| |
| dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags); |
| |
| rproc_report_crash(rproc, RPROC_MMUFAULT); |
| |
| /* |
| * Let the iommu core know we're not really handling this fault; |
| * we just used it as a recovery trigger. |
| */ |
| return -ENOSYS; |
| } |
| |
| static int rproc_enable_iommu(struct rproc *rproc) |
| { |
| struct iommu_domain *domain; |
| struct device *dev = rproc->dev.parent; |
| int ret; |
| |
| if (!rproc->has_iommu) { |
| dev_dbg(dev, "iommu not present\n"); |
| return 0; |
| } |
| |
| domain = iommu_domain_alloc(dev->bus); |
| if (!domain) { |
| dev_err(dev, "can't alloc iommu domain\n"); |
| return -ENOMEM; |
| } |
| |
| iommu_set_fault_handler(domain, rproc_iommu_fault, rproc); |
| |
| ret = iommu_attach_device(domain, dev); |
| if (ret) { |
| dev_err(dev, "can't attach iommu device: %d\n", ret); |
| goto free_domain; |
| } |
| |
| rproc->domain = domain; |
| |
| return 0; |
| |
| free_domain: |
| iommu_domain_free(domain); |
| return ret; |
| } |
| |
| static void rproc_disable_iommu(struct rproc *rproc) |
| { |
| struct iommu_domain *domain = rproc->domain; |
| struct device *dev = rproc->dev.parent; |
| |
| if (!domain) |
| return; |
| |
| iommu_detach_device(domain, dev); |
| iommu_domain_free(domain); |
| } |
| |
| phys_addr_t rproc_va_to_pa(void *cpu_addr) |
| { |
| /* |
| * Return physical address according to virtual address location |
| * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent |
| * - in kernel: if region allocated in generic dma memory pool |
| */ |
| if (is_vmalloc_addr(cpu_addr)) { |
| return page_to_phys(vmalloc_to_page(cpu_addr)) + |
| offset_in_page(cpu_addr); |
| } |
| |
| WARN_ON(!virt_addr_valid(cpu_addr)); |
| return virt_to_phys(cpu_addr); |
| } |
| EXPORT_SYMBOL(rproc_va_to_pa); |
| |
| /** |
| * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address |
| * @rproc: handle of a remote processor |
| * @da: remoteproc device address to translate |
| * @len: length of the memory region @da is pointing to |
| * @is_iomem: optional pointer filled in to indicate if @da is iomapped memory |
| * |
| * Some remote processors will ask us to allocate them physically contiguous |
| * memory regions (which we call "carveouts"), and map them to specific |
| * device addresses (which are hardcoded in the firmware). They may also have |
| * dedicated memory regions internal to the processors, and use them either |
| * exclusively or alongside carveouts. |
| * |
| * They may then ask us to copy objects into specific device addresses (e.g. |
| * code/data sections) or expose us certain symbols in other device address |
| * (e.g. their trace buffer). |
| * |
| * This function is a helper function with which we can go over the allocated |
| * carveouts and translate specific device addresses to kernel virtual addresses |
| * so we can access the referenced memory. This function also allows to perform |
| * translations on the internal remoteproc memory regions through a platform |
| * implementation specific da_to_va ops, if present. |
| * |
| * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too, |
| * but only on kernel direct mapped RAM memory. Instead, we're just using |
| * here the output of the DMA API for the carveouts, which should be more |
| * correct. |
| * |
| * Return: a valid kernel address on success or NULL on failure |
| */ |
| void *rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem) |
| { |
| struct rproc_mem_entry *carveout; |
| void *ptr = NULL; |
| |
| if (rproc->ops->da_to_va) { |
| ptr = rproc->ops->da_to_va(rproc, da, len, is_iomem); |
| if (ptr) |
| goto out; |
| } |
| |
| list_for_each_entry(carveout, &rproc->carveouts, node) { |
| int offset = da - carveout->da; |
| |
| /* Verify that carveout is allocated */ |
| if (!carveout->va) |
| continue; |
| |
| /* try next carveout if da is too small */ |
| if (offset < 0) |
| continue; |
| |
| /* try next carveout if da is too large */ |
| if (offset + len > carveout->len) |
| continue; |
| |
| ptr = carveout->va + offset; |
| |
| if (is_iomem) |
| *is_iomem = carveout->is_iomem; |
| |
| break; |
| } |
| |
| out: |
| return ptr; |
| } |
| EXPORT_SYMBOL(rproc_da_to_va); |
| |
| /** |
| * rproc_find_carveout_by_name() - lookup the carveout region by a name |
| * @rproc: handle of a remote processor |
| * @name: carveout name to find (format string) |
| * @...: optional parameters matching @name string |
| * |
| * Platform driver has the capability to register some pre-allacoted carveout |
| * (physically contiguous memory regions) before rproc firmware loading and |
| * associated resource table analysis. These regions may be dedicated memory |
| * regions internal to the coprocessor or specified DDR region with specific |
| * attributes |
| * |
| * This function is a helper function with which we can go over the |
| * allocated carveouts and return associated region characteristics like |
| * coprocessor address, length or processor virtual address. |
| * |
| * Return: a valid pointer on carveout entry on success or NULL on failure. |
| */ |
| __printf(2, 3) |
| struct rproc_mem_entry * |
| rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...) |
| { |
| va_list args; |
| char _name[32]; |
| struct rproc_mem_entry *carveout, *mem = NULL; |
| |
| if (!name) |
| return NULL; |
| |
| va_start(args, name); |
| vsnprintf(_name, sizeof(_name), name, args); |
| va_end(args); |
| |
| list_for_each_entry(carveout, &rproc->carveouts, node) { |
| /* Compare carveout and requested names */ |
| if (!strcmp(carveout->name, _name)) { |
| mem = carveout; |
| break; |
| } |
| } |
| |
| return mem; |
| } |
| |
| /** |
| * rproc_check_carveout_da() - Check specified carveout da configuration |
| * @rproc: handle of a remote processor |
| * @mem: pointer on carveout to check |
| * @da: area device address |
| * @len: associated area size |
| * |
| * This function is a helper function to verify requested device area (couple |
| * da, len) is part of specified carveout. |
| * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is |
| * checked. |
| * |
| * Return: 0 if carveout matches request else error |
| */ |
| static int rproc_check_carveout_da(struct rproc *rproc, |
| struct rproc_mem_entry *mem, u32 da, u32 len) |
| { |
| struct device *dev = &rproc->dev; |
| int delta; |
| |
| /* Check requested resource length */ |
| if (len > mem->len) { |
| dev_err(dev, "Registered carveout doesn't fit len request\n"); |
| return -EINVAL; |
| } |
| |
| if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) { |
| /* Address doesn't match registered carveout configuration */ |
| return -EINVAL; |
| } else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) { |
| delta = da - mem->da; |
| |
| /* Check requested resource belongs to registered carveout */ |
| if (delta < 0) { |
| dev_err(dev, |
| "Registered carveout doesn't fit da request\n"); |
| return -EINVAL; |
| } |
| |
| if (delta + len > mem->len) { |
| dev_err(dev, |
| "Registered carveout doesn't fit len request\n"); |
| return -EINVAL; |
| } |
| } |
| |
| return 0; |
| } |
| |
| int rproc_alloc_vring(struct rproc_vdev *rvdev, int i) |
| { |
| struct rproc *rproc = rvdev->rproc; |
| struct device *dev = &rproc->dev; |
| struct rproc_vring *rvring = &rvdev->vring[i]; |
| struct fw_rsc_vdev *rsc; |
| int ret, notifyid; |
| struct rproc_mem_entry *mem; |
| size_t size; |
| |
| /* actual size of vring (in bytes) */ |
| size = PAGE_ALIGN(vring_size(rvring->num, rvring->align)); |
| |
| rsc = (void *)rproc->table_ptr + rvdev->rsc_offset; |
| |
| /* Search for pre-registered carveout */ |
| mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index, |
| i); |
| if (mem) { |
| if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size)) |
| return -ENOMEM; |
| } else { |
| /* Register carveout in list */ |
| mem = rproc_mem_entry_init(dev, NULL, 0, |
| size, rsc->vring[i].da, |
| rproc_alloc_carveout, |
| rproc_release_carveout, |
| "vdev%dvring%d", |
| rvdev->index, i); |
| if (!mem) { |
| dev_err(dev, "Can't allocate memory entry structure\n"); |
| return -ENOMEM; |
| } |
| |
| rproc_add_carveout(rproc, mem); |
| } |
| |
| /* |
| * Assign an rproc-wide unique index for this vring |
| * TODO: assign a notifyid for rvdev updates as well |
| * TODO: support predefined notifyids (via resource table) |
| */ |
| ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL); |
| if (ret < 0) { |
| dev_err(dev, "idr_alloc failed: %d\n", ret); |
| return ret; |
| } |
| notifyid = ret; |
| |
| /* Potentially bump max_notifyid */ |
| if (notifyid > rproc->max_notifyid) |
| rproc->max_notifyid = notifyid; |
| |
| rvring->notifyid = notifyid; |
| |
| /* Let the rproc know the notifyid of this vring.*/ |
| rsc->vring[i].notifyid = notifyid; |
| return 0; |
| } |
| |
| int |
| rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i) |
| { |
| struct rproc *rproc = rvdev->rproc; |
| struct device *dev = &rproc->dev; |
| struct fw_rsc_vdev_vring *vring = &rsc->vring[i]; |
| struct rproc_vring *rvring = &rvdev->vring[i]; |
| |
| dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n", |
| i, vring->da, vring->num, vring->align); |
| |
| /* verify queue size and vring alignment are sane */ |
| if (!vring->num || !vring->align) { |
| dev_err(dev, "invalid qsz (%d) or alignment (%d)\n", |
| vring->num, vring->align); |
| return -EINVAL; |
| } |
| |
| rvring->num = vring->num; |
| rvring->align = vring->align; |
| rvring->rvdev = rvdev; |
| |
| return 0; |
| } |
| |
| void rproc_free_vring(struct rproc_vring *rvring) |
| { |
| struct rproc *rproc = rvring->rvdev->rproc; |
| int idx = rvring - rvring->rvdev->vring; |
| struct fw_rsc_vdev *rsc; |
| |
| idr_remove(&rproc->notifyids, rvring->notifyid); |
| |
| /* |
| * At this point rproc_stop() has been called and the installed resource |
| * table in the remote processor memory may no longer be accessible. As |
| * such and as per rproc_stop(), rproc->table_ptr points to the cached |
| * resource table (rproc->cached_table). The cached resource table is |
| * only available when a remote processor has been booted by the |
| * remoteproc core, otherwise it is NULL. |
| * |
| * Based on the above, reset the virtio device section in the cached |
| * resource table only if there is one to work with. |
| */ |
| if (rproc->table_ptr) { |
| rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset; |
| rsc->vring[idx].da = 0; |
| rsc->vring[idx].notifyid = -1; |
| } |
| } |
| |
| void rproc_add_rvdev(struct rproc *rproc, struct rproc_vdev *rvdev) |
| { |
| if (rvdev && rproc) |
| list_add_tail(&rvdev->node, &rproc->rvdevs); |
| } |
| |
| void rproc_remove_rvdev(struct rproc_vdev *rvdev) |
| { |
| if (rvdev) |
| list_del(&rvdev->node); |
| } |
| /** |
| * rproc_handle_vdev() - handle a vdev fw resource |
| * @rproc: the remote processor |
| * @ptr: the vring resource descriptor |
| * @offset: offset of the resource entry |
| * @avail: size of available data (for sanity checking the image) |
| * |
| * This resource entry requests the host to statically register a virtio |
| * device (vdev), and setup everything needed to support it. It contains |
| * everything needed to make it possible: the virtio device id, virtio |
| * device features, vrings information, virtio config space, etc... |
| * |
| * Before registering the vdev, the vrings are allocated from non-cacheable |
| * physically contiguous memory. Currently we only support two vrings per |
| * remote processor (temporary limitation). We might also want to consider |
| * doing the vring allocation only later when ->find_vqs() is invoked, and |
| * then release them upon ->del_vqs(). |
| * |
| * Note: @da is currently not really handled correctly: we dynamically |
| * allocate it using the DMA API, ignoring requested hard coded addresses, |
| * and we don't take care of any required IOMMU programming. This is all |
| * going to be taken care of when the generic iommu-based DMA API will be |
| * merged. Meanwhile, statically-addressed iommu-based firmware images should |
| * use RSC_DEVMEM resource entries to map their required @da to the physical |
| * address of their base CMA region (ouch, hacky!). |
| * |
| * Return: 0 on success, or an appropriate error code otherwise |
| */ |
| static int rproc_handle_vdev(struct rproc *rproc, void *ptr, |
| int offset, int avail) |
| { |
| struct fw_rsc_vdev *rsc = ptr; |
| struct device *dev = &rproc->dev; |
| struct rproc_vdev *rvdev; |
| size_t rsc_size; |
| struct rproc_vdev_data rvdev_data; |
| struct platform_device *pdev; |
| |
| /* make sure resource isn't truncated */ |
| rsc_size = struct_size(rsc, vring, rsc->num_of_vrings); |
| if (size_add(rsc_size, rsc->config_len) > avail) { |
| dev_err(dev, "vdev rsc is truncated\n"); |
| return -EINVAL; |
| } |
| |
| /* make sure reserved bytes are zeroes */ |
| if (rsc->reserved[0] || rsc->reserved[1]) { |
| dev_err(dev, "vdev rsc has non zero reserved bytes\n"); |
| return -EINVAL; |
| } |
| |
| dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n", |
| rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings); |
| |
| /* we currently support only two vrings per rvdev */ |
| if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) { |
| dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings); |
| return -EINVAL; |
| } |
| |
| rvdev_data.id = rsc->id; |
| rvdev_data.index = rproc->nb_vdev++; |
| rvdev_data.rsc_offset = offset; |
| rvdev_data.rsc = rsc; |
| |
| /* |
| * When there is more than one remote processor, rproc->nb_vdev number is |
| * same for each separate instances of "rproc". If rvdev_data.index is used |
| * as device id, then we get duplication in sysfs, so need to use |
| * PLATFORM_DEVID_AUTO to auto select device id. |
| */ |
| pdev = platform_device_register_data(dev, "rproc-virtio", PLATFORM_DEVID_AUTO, &rvdev_data, |
| sizeof(rvdev_data)); |
| if (IS_ERR(pdev)) { |
| dev_err(dev, "failed to create rproc-virtio device\n"); |
| return PTR_ERR(pdev); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * rproc_handle_trace() - handle a shared trace buffer resource |
| * @rproc: the remote processor |
| * @ptr: the trace resource descriptor |
| * @offset: offset of the resource entry |
| * @avail: size of available data (for sanity checking the image) |
| * |
| * In case the remote processor dumps trace logs into memory, |
| * export it via debugfs. |
| * |
| * Currently, the 'da' member of @rsc should contain the device address |
| * where the remote processor is dumping the traces. Later we could also |
| * support dynamically allocating this address using the generic |
| * DMA API (but currently there isn't a use case for that). |
| * |
| * Return: 0 on success, or an appropriate error code otherwise |
| */ |
| static int rproc_handle_trace(struct rproc *rproc, void *ptr, |
| int offset, int avail) |
| { |
| struct fw_rsc_trace *rsc = ptr; |
| struct rproc_debug_trace *trace; |
| struct device *dev = &rproc->dev; |
| char name[15]; |
| |
| if (sizeof(*rsc) > avail) { |
| dev_err(dev, "trace rsc is truncated\n"); |
| return -EINVAL; |
| } |
| |
| /* make sure reserved bytes are zeroes */ |
| if (rsc->reserved) { |
| dev_err(dev, "trace rsc has non zero reserved bytes\n"); |
| return -EINVAL; |
| } |
| |
| trace = kzalloc(sizeof(*trace), GFP_KERNEL); |
| if (!trace) |
| return -ENOMEM; |
| |
| /* set the trace buffer dma properties */ |
| trace->trace_mem.len = rsc->len; |
| trace->trace_mem.da = rsc->da; |
| |
| /* set pointer on rproc device */ |
| trace->rproc = rproc; |
| |
| /* make sure snprintf always null terminates, even if truncating */ |
| snprintf(name, sizeof(name), "trace%d", rproc->num_traces); |
| |
| /* create the debugfs entry */ |
| trace->tfile = rproc_create_trace_file(name, rproc, trace); |
| |
| list_add_tail(&trace->node, &rproc->traces); |
| |
| rproc->num_traces++; |
| |
| dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n", |
| name, rsc->da, rsc->len); |
| |
| return 0; |
| } |
| |
| /** |
| * rproc_handle_devmem() - handle devmem resource entry |
| * @rproc: remote processor handle |
| * @ptr: the devmem resource entry |
| * @offset: offset of the resource entry |
| * @avail: size of available data (for sanity checking the image) |
| * |
| * Remote processors commonly need to access certain on-chip peripherals. |
| * |
| * Some of these remote processors access memory via an iommu device, |
| * and might require us to configure their iommu before they can access |
| * the on-chip peripherals they need. |
| * |
| * This resource entry is a request to map such a peripheral device. |
| * |
| * These devmem entries will contain the physical address of the device in |
| * the 'pa' member. If a specific device address is expected, then 'da' will |
| * contain it (currently this is the only use case supported). 'len' will |
| * contain the size of the physical region we need to map. |
| * |
| * Currently we just "trust" those devmem entries to contain valid physical |
| * addresses, but this is going to change: we want the implementations to |
| * tell us ranges of physical addresses the firmware is allowed to request, |
| * and not allow firmwares to request access to physical addresses that |
| * are outside those ranges. |
| * |
| * Return: 0 on success, or an appropriate error code otherwise |
| */ |
| static int rproc_handle_devmem(struct rproc *rproc, void *ptr, |
| int offset, int avail) |
| { |
| struct fw_rsc_devmem *rsc = ptr; |
| struct rproc_mem_entry *mapping; |
| struct device *dev = &rproc->dev; |
| int ret; |
| |
| /* no point in handling this resource without a valid iommu domain */ |
| if (!rproc->domain) |
| return -EINVAL; |
| |
| if (sizeof(*rsc) > avail) { |
| dev_err(dev, "devmem rsc is truncated\n"); |
| return -EINVAL; |
| } |
| |
| /* make sure reserved bytes are zeroes */ |
| if (rsc->reserved) { |
| dev_err(dev, "devmem rsc has non zero reserved bytes\n"); |
| return -EINVAL; |
| } |
| |
| mapping = kzalloc(sizeof(*mapping), GFP_KERNEL); |
| if (!mapping) |
| return -ENOMEM; |
| |
| ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags, |
| GFP_KERNEL); |
| if (ret) { |
| dev_err(dev, "failed to map devmem: %d\n", ret); |
| goto out; |
| } |
| |
| /* |
| * We'll need this info later when we'll want to unmap everything |
| * (e.g. on shutdown). |
| * |
| * We can't trust the remote processor not to change the resource |
| * table, so we must maintain this info independently. |
| */ |
| mapping->da = rsc->da; |
| mapping->len = rsc->len; |
| list_add_tail(&mapping->node, &rproc->mappings); |
| |
| dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n", |
| rsc->pa, rsc->da, rsc->len); |
| |
| return 0; |
| |
| out: |
| kfree(mapping); |
| return ret; |
| } |
| |
| /** |
| * rproc_alloc_carveout() - allocated specified carveout |
| * @rproc: rproc handle |
| * @mem: the memory entry to allocate |
| * |
| * This function allocate specified memory entry @mem using |
| * dma_alloc_coherent() as default allocator |
| * |
| * Return: 0 on success, or an appropriate error code otherwise |
| */ |
| static int rproc_alloc_carveout(struct rproc *rproc, |
| struct rproc_mem_entry *mem) |
| { |
| struct rproc_mem_entry *mapping = NULL; |
| struct device *dev = &rproc->dev; |
| dma_addr_t dma; |
| void *va; |
| int ret; |
| |
| va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL); |
| if (!va) { |
| dev_err(dev->parent, |
| "failed to allocate dma memory: len 0x%zx\n", |
| mem->len); |
| return -ENOMEM; |
| } |
| |
| dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%zx\n", |
| va, &dma, mem->len); |
| |
| if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) { |
| /* |
| * Check requested da is equal to dma address |
| * and print a warn message in case of missalignment. |
| * Don't stop rproc_start sequence as coprocessor may |
| * build pa to da translation on its side. |
| */ |
| if (mem->da != (u32)dma) |
| dev_warn(dev->parent, |
| "Allocated carveout doesn't fit device address request\n"); |
| } |
| |
| /* |
| * Ok, this is non-standard. |
| * |
| * Sometimes we can't rely on the generic iommu-based DMA API |
| * to dynamically allocate the device address and then set the IOMMU |
| * tables accordingly, because some remote processors might |
| * _require_ us to use hard coded device addresses that their |
| * firmware was compiled with. |
| * |
| * In this case, we must use the IOMMU API directly and map |
| * the memory to the device address as expected by the remote |
| * processor. |
| * |
| * Obviously such remote processor devices should not be configured |
| * to use the iommu-based DMA API: we expect 'dma' to contain the |
| * physical address in this case. |
| */ |
| if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) { |
| mapping = kzalloc(sizeof(*mapping), GFP_KERNEL); |
| if (!mapping) { |
| ret = -ENOMEM; |
| goto dma_free; |
| } |
| |
| ret = iommu_map(rproc->domain, mem->da, dma, mem->len, |
| mem->flags, GFP_KERNEL); |
| if (ret) { |
| dev_err(dev, "iommu_map failed: %d\n", ret); |
| goto free_mapping; |
| } |
| |
| /* |
| * We'll need this info later when we'll want to unmap |
| * everything (e.g. on shutdown). |
| * |
| * We can't trust the remote processor not to change the |
| * resource table, so we must maintain this info independently. |
| */ |
| mapping->da = mem->da; |
| mapping->len = mem->len; |
| list_add_tail(&mapping->node, &rproc->mappings); |
| |
| dev_dbg(dev, "carveout mapped 0x%x to %pad\n", |
| mem->da, &dma); |
| } |
| |
| if (mem->da == FW_RSC_ADDR_ANY) { |
| /* Update device address as undefined by requester */ |
| if ((u64)dma & HIGH_BITS_MASK) |
| dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n"); |
| |
| mem->da = (u32)dma; |
| } |
| |
| mem->dma = dma; |
| mem->va = va; |
| |
| return 0; |
| |
| free_mapping: |
| kfree(mapping); |
| dma_free: |
| dma_free_coherent(dev->parent, mem->len, va, dma); |
| return ret; |
| } |
| |
| /** |
| * rproc_release_carveout() - release acquired carveout |
| * @rproc: rproc handle |
| * @mem: the memory entry to release |
| * |
| * This function releases specified memory entry @mem allocated via |
| * rproc_alloc_carveout() function by @rproc. |
| * |
| * Return: 0 on success, or an appropriate error code otherwise |
| */ |
| static int rproc_release_carveout(struct rproc *rproc, |
| struct rproc_mem_entry *mem) |
| { |
| struct device *dev = &rproc->dev; |
| |
| /* clean up carveout allocations */ |
| dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma); |
| return 0; |
| } |
| |
| /** |
| * rproc_handle_carveout() - handle phys contig memory allocation requests |
| * @rproc: rproc handle |
| * @ptr: the resource entry |
| * @offset: offset of the resource entry |
| * @avail: size of available data (for image validation) |
| * |
| * This function will handle firmware requests for allocation of physically |
| * contiguous memory regions. |
| * |
| * These request entries should come first in the firmware's resource table, |
| * as other firmware entries might request placing other data objects inside |
| * these memory regions (e.g. data/code segments, trace resource entries, ...). |
| * |
| * Allocating memory this way helps utilizing the reserved physical memory |
| * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries |
| * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB |
| * pressure is important; it may have a substantial impact on performance. |
| * |
| * Return: 0 on success, or an appropriate error code otherwise |
| */ |
| static int rproc_handle_carveout(struct rproc *rproc, |
| void *ptr, int offset, int avail) |
| { |
| struct fw_rsc_carveout *rsc = ptr; |
| struct rproc_mem_entry *carveout; |
| struct device *dev = &rproc->dev; |
| |
| if (sizeof(*rsc) > avail) { |
| dev_err(dev, "carveout rsc is truncated\n"); |
| return -EINVAL; |
| } |
| |
| /* make sure reserved bytes are zeroes */ |
| if (rsc->reserved) { |
| dev_err(dev, "carveout rsc has non zero reserved bytes\n"); |
| return -EINVAL; |
| } |
| |
| dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n", |
| rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags); |
| |
| /* |
| * Check carveout rsc already part of a registered carveout, |
| * Search by name, then check the da and length |
| */ |
| carveout = rproc_find_carveout_by_name(rproc, rsc->name); |
| |
| if (carveout) { |
| if (carveout->rsc_offset != FW_RSC_ADDR_ANY) { |
| dev_err(dev, |
| "Carveout already associated to resource table\n"); |
| return -ENOMEM; |
| } |
| |
| if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len)) |
| return -ENOMEM; |
| |
| /* Update memory carveout with resource table info */ |
| carveout->rsc_offset = offset; |
| carveout->flags = rsc->flags; |
| |
| return 0; |
| } |
| |
| /* Register carveout in list */ |
| carveout = rproc_mem_entry_init(dev, NULL, 0, rsc->len, rsc->da, |
| rproc_alloc_carveout, |
| rproc_release_carveout, rsc->name); |
| if (!carveout) { |
| dev_err(dev, "Can't allocate memory entry structure\n"); |
| return -ENOMEM; |
| } |
| |
| carveout->flags = rsc->flags; |
| carveout->rsc_offset = offset; |
| rproc_add_carveout(rproc, carveout); |
| |
| return 0; |
| } |
| |
| /** |
| * rproc_add_carveout() - register an allocated carveout region |
| * @rproc: rproc handle |
| * @mem: memory entry to register |
| * |
| * This function registers specified memory entry in @rproc carveouts list. |
| * Specified carveout should have been allocated before registering. |
| */ |
| void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem) |
| { |
| list_add_tail(&mem->node, &rproc->carveouts); |
| } |
| EXPORT_SYMBOL(rproc_add_carveout); |
| |
| /** |
| * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct |
| * @dev: pointer on device struct |
| * @va: virtual address |
| * @dma: dma address |
| * @len: memory carveout length |
| * @da: device address |
| * @alloc: memory carveout allocation function |
| * @release: memory carveout release function |
| * @name: carveout name |
| * |
| * This function allocates a rproc_mem_entry struct and fill it with parameters |
| * provided by client. |
| * |
| * Return: a valid pointer on success, or NULL on failure |
| */ |
| __printf(8, 9) |
| struct rproc_mem_entry * |
| rproc_mem_entry_init(struct device *dev, |
| void *va, dma_addr_t dma, size_t len, u32 da, |
| int (*alloc)(struct rproc *, struct rproc_mem_entry *), |
| int (*release)(struct rproc *, struct rproc_mem_entry *), |
| const char *name, ...) |
| { |
| struct rproc_mem_entry *mem; |
| va_list args; |
| |
| mem = kzalloc(sizeof(*mem), GFP_KERNEL); |
| if (!mem) |
| return mem; |
| |
| mem->va = va; |
| mem->dma = dma; |
| mem->da = da; |
| mem->len = len; |
| mem->alloc = alloc; |
| mem->release = release; |
| mem->rsc_offset = FW_RSC_ADDR_ANY; |
| mem->of_resm_idx = -1; |
| |
| va_start(args, name); |
| vsnprintf(mem->name, sizeof(mem->name), name, args); |
| va_end(args); |
| |
| return mem; |
| } |
| EXPORT_SYMBOL(rproc_mem_entry_init); |
| |
| /** |
| * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct |
| * from a reserved memory phandle |
| * @dev: pointer on device struct |
| * @of_resm_idx: reserved memory phandle index in "memory-region" |
| * @len: memory carveout length |
| * @da: device address |
| * @name: carveout name |
| * |
| * This function allocates a rproc_mem_entry struct and fill it with parameters |
| * provided by client. |
| * |
| * Return: a valid pointer on success, or NULL on failure |
| */ |
| __printf(5, 6) |
| struct rproc_mem_entry * |
| rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, size_t len, |
| u32 da, const char *name, ...) |
| { |
| struct rproc_mem_entry *mem; |
| va_list args; |
| |
| mem = kzalloc(sizeof(*mem), GFP_KERNEL); |
| if (!mem) |
| return mem; |
| |
| mem->da = da; |
| mem->len = len; |
| mem->rsc_offset = FW_RSC_ADDR_ANY; |
| mem->of_resm_idx = of_resm_idx; |
| |
| va_start(args, name); |
| vsnprintf(mem->name, sizeof(mem->name), name, args); |
| va_end(args); |
| |
| return mem; |
| } |
| EXPORT_SYMBOL(rproc_of_resm_mem_entry_init); |
| |
| /** |
| * rproc_of_parse_firmware() - parse and return the firmware-name |
| * @dev: pointer on device struct representing a rproc |
| * @index: index to use for the firmware-name retrieval |
| * @fw_name: pointer to a character string, in which the firmware |
| * name is returned on success and unmodified otherwise. |
| * |
| * This is an OF helper function that parses a device's DT node for |
| * the "firmware-name" property and returns the firmware name pointer |
| * in @fw_name on success. |
| * |
| * Return: 0 on success, or an appropriate failure. |
| */ |
| int rproc_of_parse_firmware(struct device *dev, int index, const char **fw_name) |
| { |
| int ret; |
| |
| ret = of_property_read_string_index(dev->of_node, "firmware-name", |
| index, fw_name); |
| return ret ? ret : 0; |
| } |
| EXPORT_SYMBOL(rproc_of_parse_firmware); |
| |
| /* |
| * A lookup table for resource handlers. The indices are defined in |
| * enum fw_resource_type. |
| */ |
| static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = { |
| [RSC_CARVEOUT] = rproc_handle_carveout, |
| [RSC_DEVMEM] = rproc_handle_devmem, |
| [RSC_TRACE] = rproc_handle_trace, |
| [RSC_VDEV] = rproc_handle_vdev, |
| }; |
| |
| /* handle firmware resource entries before booting the remote processor */ |
| static int rproc_handle_resources(struct rproc *rproc, |
| rproc_handle_resource_t handlers[RSC_LAST]) |
| { |
| struct device *dev = &rproc->dev; |
| rproc_handle_resource_t handler; |
| int ret = 0, i; |
| |
| if (!rproc->table_ptr) |
| return 0; |
| |
| for (i = 0; i < rproc->table_ptr->num; i++) { |
| int offset = rproc->table_ptr->offset[i]; |
| struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset; |
| int avail = rproc->table_sz - offset - sizeof(*hdr); |
| void *rsc = (void *)hdr + sizeof(*hdr); |
| |
| /* make sure table isn't truncated */ |
| if (avail < 0) { |
| dev_err(dev, "rsc table is truncated\n"); |
| return -EINVAL; |
| } |
| |
| dev_dbg(dev, "rsc: type %d\n", hdr->type); |
| |
| if (hdr->type >= RSC_VENDOR_START && |
| hdr->type <= RSC_VENDOR_END) { |
| ret = rproc_handle_rsc(rproc, hdr->type, rsc, |
| offset + sizeof(*hdr), avail); |
| if (ret == RSC_HANDLED) |
| continue; |
| else if (ret < 0) |
| break; |
| |
| dev_warn(dev, "unsupported vendor resource %d\n", |
| hdr->type); |
| continue; |
| } |
| |
| if (hdr->type >= RSC_LAST) { |
| dev_warn(dev, "unsupported resource %d\n", hdr->type); |
| continue; |
| } |
| |
| handler = handlers[hdr->type]; |
| if (!handler) |
| continue; |
| |
| ret = handler(rproc, rsc, offset + sizeof(*hdr), avail); |
| if (ret) |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static int rproc_prepare_subdevices(struct rproc *rproc) |
| { |
| struct rproc_subdev *subdev; |
| int ret; |
| |
| list_for_each_entry(subdev, &rproc->subdevs, node) { |
| if (subdev->prepare) { |
| ret = subdev->prepare(subdev); |
| if (ret) |
| goto unroll_preparation; |
| } |
| } |
| |
| return 0; |
| |
| unroll_preparation: |
| list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) { |
| if (subdev->unprepare) |
| subdev->unprepare(subdev); |
| } |
| |
| return ret; |
| } |
| |
| static int rproc_start_subdevices(struct rproc *rproc) |
| { |
| struct rproc_subdev *subdev; |
| int ret; |
| |
| list_for_each_entry(subdev, &rproc->subdevs, node) { |
| if (subdev->start) { |
| ret = subdev->start(subdev); |
| if (ret) |
| goto unroll_registration; |
| } |
| } |
| |
| return 0; |
| |
| unroll_registration: |
| list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) { |
| if (subdev->stop) |
| subdev->stop(subdev, true); |
| } |
| |
| return ret; |
| } |
| |
| static void rproc_stop_subdevices(struct rproc *rproc, bool crashed) |
| { |
| struct rproc_subdev *subdev; |
| |
| list_for_each_entry_reverse(subdev, &rproc->subdevs, node) { |
| if (subdev->stop) |
| subdev->stop(subdev, crashed); |
| } |
| } |
| |
| static void rproc_unprepare_subdevices(struct rproc *rproc) |
| { |
| struct rproc_subdev *subdev; |
| |
| list_for_each_entry_reverse(subdev, &rproc->subdevs, node) { |
| if (subdev->unprepare) |
| subdev->unprepare(subdev); |
| } |
| } |
| |
| /** |
| * rproc_alloc_registered_carveouts() - allocate all carveouts registered |
| * in the list |
| * @rproc: the remote processor handle |
| * |
| * This function parses registered carveout list, performs allocation |
| * if alloc() ops registered and updates resource table information |
| * if rsc_offset set. |
| * |
| * Return: 0 on success |
| */ |
| static int rproc_alloc_registered_carveouts(struct rproc *rproc) |
| { |
| struct rproc_mem_entry *entry, *tmp; |
| struct fw_rsc_carveout *rsc; |
| struct device *dev = &rproc->dev; |
| u64 pa; |
| int ret; |
| |
| list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) { |
| if (entry->alloc) { |
| ret = entry->alloc(rproc, entry); |
| if (ret) { |
| dev_err(dev, "Unable to allocate carveout %s: %d\n", |
| entry->name, ret); |
| return -ENOMEM; |
| } |
| } |
| |
| if (entry->rsc_offset != FW_RSC_ADDR_ANY) { |
| /* update resource table */ |
| rsc = (void *)rproc->table_ptr + entry->rsc_offset; |
| |
| /* |
| * Some remote processors might need to know the pa |
| * even though they are behind an IOMMU. E.g., OMAP4's |
| * remote M3 processor needs this so it can control |
| * on-chip hardware accelerators that are not behind |
| * the IOMMU, and therefor must know the pa. |
| * |
| * Generally we don't want to expose physical addresses |
| * if we don't have to (remote processors are generally |
| * _not_ trusted), so we might want to do this only for |
| * remote processor that _must_ have this (e.g. OMAP4's |
| * dual M3 subsystem). |
| * |
| * Non-IOMMU processors might also want to have this info. |
| * In this case, the device address and the physical address |
| * are the same. |
| */ |
| |
| /* Use va if defined else dma to generate pa */ |
| if (entry->va) |
| pa = (u64)rproc_va_to_pa(entry->va); |
| else |
| pa = (u64)entry->dma; |
| |
| if (((u64)pa) & HIGH_BITS_MASK) |
| dev_warn(dev, |
| "Physical address cast in 32bit to fit resource table format\n"); |
| |
| rsc->pa = (u32)pa; |
| rsc->da = entry->da; |
| rsc->len = entry->len; |
| } |
| } |
| |
| return 0; |
| } |
| |
| |
| /** |
| * rproc_resource_cleanup() - clean up and free all acquired resources |
| * @rproc: rproc handle |
| * |
| * This function will free all resources acquired for @rproc, and it |
| * is called whenever @rproc either shuts down or fails to boot. |
| */ |
| void rproc_resource_cleanup(struct rproc *rproc) |
| { |
| struct rproc_mem_entry *entry, *tmp; |
| struct rproc_debug_trace *trace, *ttmp; |
| struct rproc_vdev *rvdev, *rvtmp; |
| struct device *dev = &rproc->dev; |
| |
| /* clean up debugfs trace entries */ |
| list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) { |
| rproc_remove_trace_file(trace->tfile); |
| rproc->num_traces--; |
| list_del(&trace->node); |
| kfree(trace); |
| } |
| |
| /* clean up iommu mapping entries */ |
| list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) { |
| size_t unmapped; |
| |
| unmapped = iommu_unmap(rproc->domain, entry->da, entry->len); |
| if (unmapped != entry->len) { |
| /* nothing much to do besides complaining */ |
| dev_err(dev, "failed to unmap %zx/%zu\n", entry->len, |
| unmapped); |
| } |
| |
| list_del(&entry->node); |
| kfree(entry); |
| } |
| |
| /* clean up carveout allocations */ |
| list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) { |
| if (entry->release) |
| entry->release(rproc, entry); |
| list_del(&entry->node); |
| kfree(entry); |
| } |
| |
| /* clean up remote vdev entries */ |
| list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node) |
| platform_device_unregister(rvdev->pdev); |
| |
| rproc_coredump_cleanup(rproc); |
| } |
| EXPORT_SYMBOL(rproc_resource_cleanup); |
| |
| static int rproc_start(struct rproc *rproc, const struct firmware *fw) |
| { |
| struct resource_table *loaded_table; |
| struct device *dev = &rproc->dev; |
| int ret; |
| |
| /* load the ELF segments to memory */ |
| ret = rproc_load_segments(rproc, fw); |
| if (ret) { |
| dev_err(dev, "Failed to load program segments: %d\n", ret); |
| return ret; |
| } |
| |
| /* |
| * The starting device has been given the rproc->cached_table as the |
| * resource table. The address of the vring along with the other |
| * allocated resources (carveouts etc) is stored in cached_table. |
| * In order to pass this information to the remote device we must copy |
| * this information to device memory. We also update the table_ptr so |
| * that any subsequent changes will be applied to the loaded version. |
| */ |
| loaded_table = rproc_find_loaded_rsc_table(rproc, fw); |
| if (loaded_table) { |
| memcpy(loaded_table, rproc->cached_table, rproc->table_sz); |
| rproc->table_ptr = loaded_table; |
| } |
| |
| ret = rproc_prepare_subdevices(rproc); |
| if (ret) { |
| dev_err(dev, "failed to prepare subdevices for %s: %d\n", |
| rproc->name, ret); |
| goto reset_table_ptr; |
| } |
| |
| /* power up the remote processor */ |
| ret = rproc->ops->start(rproc); |
| if (ret) { |
| dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret); |
| goto unprepare_subdevices; |
| } |
| |
| /* Start any subdevices for the remote processor */ |
| ret = rproc_start_subdevices(rproc); |
| if (ret) { |
| dev_err(dev, "failed to probe subdevices for %s: %d\n", |
| rproc->name, ret); |
| goto stop_rproc; |
| } |
| |
| rproc->state = RPROC_RUNNING; |
| |
| dev_info(dev, "remote processor %s is now up\n", rproc->name); |
| |
| return 0; |
| |
| stop_rproc: |
| rproc->ops->stop(rproc); |
| unprepare_subdevices: |
| rproc_unprepare_subdevices(rproc); |
| reset_table_ptr: |
| rproc->table_ptr = rproc->cached_table; |
| |
| return ret; |
| } |
| |
| static int __rproc_attach(struct rproc *rproc) |
| { |
| struct device *dev = &rproc->dev; |
| int ret; |
| |
| ret = rproc_prepare_subdevices(rproc); |
| if (ret) { |
| dev_err(dev, "failed to prepare subdevices for %s: %d\n", |
| rproc->name, ret); |
| goto out; |
| } |
| |
| /* Attach to the remote processor */ |
| ret = rproc_attach_device(rproc); |
| if (ret) { |
| dev_err(dev, "can't attach to rproc %s: %d\n", |
| rproc->name, ret); |
| goto unprepare_subdevices; |
| } |
| |
| /* Start any subdevices for the remote processor */ |
| ret = rproc_start_subdevices(rproc); |
| if (ret) { |
| dev_err(dev, "failed to probe subdevices for %s: %d\n", |
| rproc->name, ret); |
| goto stop_rproc; |
| } |
| |
| rproc->state = RPROC_ATTACHED; |
| |
| dev_info(dev, "remote processor %s is now attached\n", rproc->name); |
| |
| return 0; |
| |
| stop_rproc: |
| rproc->ops->stop(rproc); |
| unprepare_subdevices: |
| rproc_unprepare_subdevices(rproc); |
| out: |
| return ret; |
| } |
| |
| /* |
| * take a firmware and boot a remote processor with it. |
| */ |
| static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw) |
| { |
| struct device *dev = &rproc->dev; |
| const char *name = rproc->firmware; |
| int ret; |
| |
| ret = rproc_fw_sanity_check(rproc, fw); |
| if (ret) |
| return ret; |
| |
| dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size); |
| |
| /* |
| * if enabling an IOMMU isn't relevant for this rproc, this is |
| * just a nop |
| */ |
| ret = rproc_enable_iommu(rproc); |
| if (ret) { |
| dev_err(dev, "can't enable iommu: %d\n", ret); |
| return ret; |
| } |
| |
| /* Prepare rproc for firmware loading if needed */ |
| ret = rproc_prepare_device(rproc); |
| if (ret) { |
| dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret); |
| goto disable_iommu; |
| } |
| |
| rproc->bootaddr = rproc_get_boot_addr(rproc, fw); |
| |
| /* Load resource table, core dump segment list etc from the firmware */ |
| ret = rproc_parse_fw(rproc, fw); |
| if (ret) |
| goto unprepare_rproc; |
| |
| /* reset max_notifyid */ |
| rproc->max_notifyid = -1; |
| |
| /* reset handled vdev */ |
| rproc->nb_vdev = 0; |
| |
| /* handle fw resources which are required to boot rproc */ |
| ret = rproc_handle_resources(rproc, rproc_loading_handlers); |
| if (ret) { |
| dev_err(dev, "Failed to process resources: %d\n", ret); |
| goto clean_up_resources; |
| } |
| |
| /* Allocate carveout resources associated to rproc */ |
| ret = rproc_alloc_registered_carveouts(rproc); |
| if (ret) { |
| dev_err(dev, "Failed to allocate associated carveouts: %d\n", |
| ret); |
| goto clean_up_resources; |
| } |
| |
| ret = rproc_start(rproc, fw); |
| if (ret) |
| goto clean_up_resources; |
| |
| return 0; |
| |
| clean_up_resources: |
| rproc_resource_cleanup(rproc); |
| kfree(rproc->cached_table); |
| rproc->cached_table = NULL; |
| rproc->table_ptr = NULL; |
| unprepare_rproc: |
| /* release HW resources if needed */ |
| rproc_unprepare_device(rproc); |
| disable_iommu: |
| rproc_disable_iommu(rproc); |
| return ret; |
| } |
| |
| static int rproc_set_rsc_table(struct rproc *rproc) |
| { |
| struct resource_table *table_ptr; |
| struct device *dev = &rproc->dev; |
| size_t table_sz; |
| int ret; |
| |
| table_ptr = rproc_get_loaded_rsc_table(rproc, &table_sz); |
| if (!table_ptr) { |
| /* Not having a resource table is acceptable */ |
| return 0; |
| } |
| |
| if (IS_ERR(table_ptr)) { |
| ret = PTR_ERR(table_ptr); |
| dev_err(dev, "can't load resource table: %d\n", ret); |
| return ret; |
| } |
| |
| /* |
| * If it is possible to detach the remote processor, keep an untouched |
| * copy of the resource table. That way we can start fresh again when |
| * the remote processor is re-attached, that is: |
| * |
| * DETACHED -> ATTACHED -> DETACHED -> ATTACHED |
| * |
| * Free'd in rproc_reset_rsc_table_on_detach() and |
| * rproc_reset_rsc_table_on_stop(). |
| */ |
| if (rproc->ops->detach) { |
| rproc->clean_table = kmemdup(table_ptr, table_sz, GFP_KERNEL); |
| if (!rproc->clean_table) |
| return -ENOMEM; |
| } else { |
| rproc->clean_table = NULL; |
| } |
| |
| rproc->cached_table = NULL; |
| rproc->table_ptr = table_ptr; |
| rproc->table_sz = table_sz; |
| |
| return 0; |
| } |
| |
| static int rproc_reset_rsc_table_on_detach(struct rproc *rproc) |
| { |
| struct resource_table *table_ptr; |
| |
| /* A resource table was never retrieved, nothing to do here */ |
| if (!rproc->table_ptr) |
| return 0; |
| |
| /* |
| * If we made it to this point a clean_table _must_ have been |
| * allocated in rproc_set_rsc_table(). If one isn't present |
| * something went really wrong and we must complain. |
| */ |
| if (WARN_ON(!rproc->clean_table)) |
| return -EINVAL; |
| |
| /* Remember where the external entity installed the resource table */ |
| table_ptr = rproc->table_ptr; |
| |
| /* |
| * If we made it here the remote processor was started by another |
| * entity and a cache table doesn't exist. As such make a copy of |
| * the resource table currently used by the remote processor and |
| * use that for the rest of the shutdown process. The memory |
| * allocated here is free'd in rproc_detach(). |
| */ |
| rproc->cached_table = kmemdup(rproc->table_ptr, |
| rproc->table_sz, GFP_KERNEL); |
| if (!rproc->cached_table) |
| return -ENOMEM; |
| |
| /* |
| * Use a copy of the resource table for the remainder of the |
| * shutdown process. |
| */ |
| rproc->table_ptr = rproc->cached_table; |
| |
| /* |
| * Reset the memory area where the firmware loaded the resource table |
| * to its original value. That way when we re-attach the remote |
| * processor the resource table is clean and ready to be used again. |
| */ |
| memcpy(table_ptr, rproc->clean_table, rproc->table_sz); |
| |
| /* |
| * The clean resource table is no longer needed. Allocated in |
| * rproc_set_rsc_table(). |
| */ |
| kfree(rproc->clean_table); |
| |
| return 0; |
| } |
| |
| static int rproc_reset_rsc_table_on_stop(struct rproc *rproc) |
| { |
| /* A resource table was never retrieved, nothing to do here */ |
| if (!rproc->table_ptr) |
| return 0; |
| |
| /* |
| * If a cache table exists the remote processor was started by |
| * the remoteproc core. That cache table should be used for |
| * the rest of the shutdown process. |
| */ |
| if (rproc->cached_table) |
| goto out; |
| |
| /* |
| * If we made it here the remote processor was started by another |
| * entity and a cache table doesn't exist. As such make a copy of |
| * the resource table currently used by the remote processor and |
| * use that for the rest of the shutdown process. The memory |
| * allocated here is free'd in rproc_shutdown(). |
| */ |
| rproc->cached_table = kmemdup(rproc->table_ptr, |
| rproc->table_sz, GFP_KERNEL); |
| if (!rproc->cached_table) |
| return -ENOMEM; |
| |
| /* |
| * Since the remote processor is being switched off the clean table |
| * won't be needed. Allocated in rproc_set_rsc_table(). |
| */ |
| kfree(rproc->clean_table); |
| |
| out: |
| /* |
| * Use a copy of the resource table for the remainder of the |
| * shutdown process. |
| */ |
| rproc->table_ptr = rproc->cached_table; |
| return 0; |
| } |
| |
| /* |
| * Attach to remote processor - similar to rproc_fw_boot() but without |
| * the steps that deal with the firmware image. |
| */ |
| static int rproc_attach(struct rproc *rproc) |
| { |
| struct device *dev = &rproc->dev; |
| int ret; |
| |
| /* |
| * if enabling an IOMMU isn't relevant for this rproc, this is |
| * just a nop |
| */ |
| ret = rproc_enable_iommu(rproc); |
| if (ret) { |
| dev_err(dev, "can't enable iommu: %d\n", ret); |
| return ret; |
| } |
| |
| /* Do anything that is needed to boot the remote processor */ |
| ret = rproc_prepare_device(rproc); |
| if (ret) { |
| dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret); |
| goto disable_iommu; |
| } |
| |
| ret = rproc_set_rsc_table(rproc); |
| if (ret) { |
| dev_err(dev, "can't load resource table: %d\n", ret); |
| goto unprepare_device; |
| } |
| |
| /* reset max_notifyid */ |
| rproc->max_notifyid = -1; |
| |
| /* reset handled vdev */ |
| rproc->nb_vdev = 0; |
| |
| /* |
| * Handle firmware resources required to attach to a remote processor. |
| * Because we are attaching rather than booting the remote processor, |
| * we expect the platform driver to properly set rproc->table_ptr. |
| */ |
| ret = rproc_handle_resources(rproc, rproc_loading_handlers); |
| if (ret) { |
| dev_err(dev, "Failed to process resources: %d\n", ret); |
| goto unprepare_device; |
| } |
| |
| /* Allocate carveout resources associated to rproc */ |
| ret = rproc_alloc_registered_carveouts(rproc); |
| if (ret) { |
| dev_err(dev, "Failed to allocate associated carveouts: %d\n", |
| ret); |
| goto clean_up_resources; |
| } |
| |
| ret = __rproc_attach(rproc); |
| if (ret) |
| goto clean_up_resources; |
| |
| return 0; |
| |
| clean_up_resources: |
| rproc_resource_cleanup(rproc); |
| unprepare_device: |
| /* release HW resources if needed */ |
| rproc_unprepare_device(rproc); |
| disable_iommu: |
| rproc_disable_iommu(rproc); |
| return ret; |
| } |
| |
| /* |
| * take a firmware and boot it up. |
| * |
| * Note: this function is called asynchronously upon registration of the |
| * remote processor (so we must wait until it completes before we try |
| * to unregister the device. one other option is just to use kref here, |
| * that might be cleaner). |
| */ |
| static void rproc_auto_boot_callback(const struct firmware *fw, void *context) |
| { |
| struct rproc *rproc = context; |
| |
| rproc_boot(rproc); |
| |
| release_firmware(fw); |
| } |
| |
| static int rproc_trigger_auto_boot(struct rproc *rproc) |
| { |
| int ret; |
| |
| /* |
| * Since the remote processor is in a detached state, it has already |
| * been booted by another entity. As such there is no point in waiting |
| * for a firmware image to be loaded, we can simply initiate the process |
| * of attaching to it immediately. |
| */ |
| if (rproc->state == RPROC_DETACHED) |
| return rproc_boot(rproc); |
| |
| /* |
| * We're initiating an asynchronous firmware loading, so we can |
| * be built-in kernel code, without hanging the boot process. |
| */ |
| ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT, |
| rproc->firmware, &rproc->dev, GFP_KERNEL, |
| rproc, rproc_auto_boot_callback); |
| if (ret < 0) |
| dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret); |
| |
| return ret; |
| } |
| |
| static int rproc_stop(struct rproc *rproc, bool crashed) |
| { |
| struct device *dev = &rproc->dev; |
| int ret; |
| |
| /* No need to continue if a stop() operation has not been provided */ |
| if (!rproc->ops->stop) |
| return -EINVAL; |
| |
| /* Stop any subdevices for the remote processor */ |
| rproc_stop_subdevices(rproc, crashed); |
| |
| /* the installed resource table is no longer accessible */ |
| ret = rproc_reset_rsc_table_on_stop(rproc); |
| if (ret) { |
| dev_err(dev, "can't reset resource table: %d\n", ret); |
| return ret; |
| } |
| |
| |
| /* power off the remote processor */ |
| ret = rproc->ops->stop(rproc); |
| if (ret) { |
| dev_err(dev, "can't stop rproc: %d\n", ret); |
| return ret; |
| } |
| |
| rproc_unprepare_subdevices(rproc); |
| |
| rproc->state = RPROC_OFFLINE; |
| |
| dev_info(dev, "stopped remote processor %s\n", rproc->name); |
| |
| return 0; |
| } |
| |
| /* |
| * __rproc_detach(): Does the opposite of __rproc_attach() |
| */ |
| static int __rproc_detach(struct rproc *rproc) |
| { |
| struct device *dev = &rproc->dev; |
| int ret; |
| |
| /* No need to continue if a detach() operation has not been provided */ |
| if (!rproc->ops->detach) |
| return -EINVAL; |
| |
| /* Stop any subdevices for the remote processor */ |
| rproc_stop_subdevices(rproc, false); |
| |
| /* the installed resource table is no longer accessible */ |
| ret = rproc_reset_rsc_table_on_detach(rproc); |
| if (ret) { |
| dev_err(dev, "can't reset resource table: %d\n", ret); |
| return ret; |
| } |
| |
| /* Tell the remote processor the core isn't available anymore */ |
| ret = rproc->ops->detach(rproc); |
| if (ret) { |
| dev_err(dev, "can't detach from rproc: %d\n", ret); |
| return ret; |
| } |
| |
| rproc_unprepare_subdevices(rproc); |
| |
| rproc->state = RPROC_DETACHED; |
| |
| dev_info(dev, "detached remote processor %s\n", rproc->name); |
| |
| return 0; |
| } |
| |
| static int rproc_attach_recovery(struct rproc *rproc) |
| { |
| int ret; |
| |
| ret = __rproc_detach(rproc); |
| if (ret) |
| return ret; |
| |
| return __rproc_attach(rproc); |
| } |
| |
| static int rproc_boot_recovery(struct rproc *rproc) |
| { |
| const struct firmware *firmware_p; |
| struct device *dev = &rproc->dev; |
| int ret; |
| |
| ret = rproc_stop(rproc, true); |
| if (ret) |
| return ret; |
| |
| /* generate coredump */ |
| rproc->ops->coredump(rproc); |
| |
| /* load firmware */ |
| ret = request_firmware(&firmware_p, rproc->firmware, dev); |
| if (ret < 0) { |
| dev_err(dev, "request_firmware failed: %d\n", ret); |
| return ret; |
| } |
| |
| /* boot the remote processor up again */ |
| ret = rproc_start(rproc, firmware_p); |
| |
| release_firmware(firmware_p); |
| |
| return ret; |
| } |
| |
| /** |
| * rproc_trigger_recovery() - recover a remoteproc |
| * @rproc: the remote processor |
| * |
| * The recovery is done by resetting all the virtio devices, that way all the |
| * rpmsg drivers will be reseted along with the remote processor making the |
| * remoteproc functional again. |
| * |
| * This function can sleep, so it cannot be called from atomic context. |
| * |
| * Return: 0 on success or a negative value upon failure |
| */ |
| int rproc_trigger_recovery(struct rproc *rproc) |
| { |
| struct device *dev = &rproc->dev; |
| int ret; |
| |
| ret = mutex_lock_interruptible(&rproc->lock); |
| if (ret) |
| return ret; |
| |
| /* State could have changed before we got the mutex */ |
| if (rproc->state != RPROC_CRASHED) |
| goto unlock_mutex; |
| |
| dev_err(dev, "recovering %s\n", rproc->name); |
| |
| if (rproc_has_feature(rproc, RPROC_FEAT_ATTACH_ON_RECOVERY)) |
| ret = rproc_attach_recovery(rproc); |
| else |
| ret = rproc_boot_recovery(rproc); |
| |
| unlock_mutex: |
| mutex_unlock(&rproc->lock); |
| return ret; |
| } |
| |
| /** |
| * rproc_crash_handler_work() - handle a crash |
| * @work: work treating the crash |
| * |
| * This function needs to handle everything related to a crash, like cpu |
| * registers and stack dump, information to help to debug the fatal error, etc. |
| */ |
| static void rproc_crash_handler_work(struct work_struct *work) |
| { |
| struct rproc *rproc = container_of(work, struct rproc, crash_handler); |
| struct device *dev = &rproc->dev; |
| |
| dev_dbg(dev, "enter %s\n", __func__); |
| |
| mutex_lock(&rproc->lock); |
| |
| if (rproc->state == RPROC_CRASHED) { |
| /* handle only the first crash detected */ |
| mutex_unlock(&rproc->lock); |
| return; |
| } |
| |
| if (rproc->state == RPROC_OFFLINE) { |
| /* Don't recover if the remote processor was stopped */ |
| mutex_unlock(&rproc->lock); |
| goto out; |
| } |
| |
| rproc->state = RPROC_CRASHED; |
| dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt, |
| rproc->name); |
| |
| mutex_unlock(&rproc->lock); |
| |
| if (!rproc->recovery_disabled) |
| rproc_trigger_recovery(rproc); |
| |
| out: |
| pm_relax(rproc->dev.parent); |
| } |
| |
| /** |
| * rproc_boot() - boot a remote processor |
| * @rproc: handle of a remote processor |
| * |
| * Boot a remote processor (i.e. load its firmware, power it on, ...). |
| * |
| * If the remote processor is already powered on, this function immediately |
| * returns (successfully). |
| * |
| * Return: 0 on success, and an appropriate error value otherwise |
| */ |
| int rproc_boot(struct rproc *rproc) |
| { |
| const struct firmware *firmware_p; |
| struct device *dev; |
| int ret; |
| |
| if (!rproc) { |
| pr_err("invalid rproc handle\n"); |
| return -EINVAL; |
| } |
| |
| dev = &rproc->dev; |
| |
| ret = mutex_lock_interruptible(&rproc->lock); |
| if (ret) { |
| dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); |
| return ret; |
| } |
| |
| if (rproc->state == RPROC_DELETED) { |
| ret = -ENODEV; |
| dev_err(dev, "can't boot deleted rproc %s\n", rproc->name); |
| goto unlock_mutex; |
| } |
| |
| /* skip the boot or attach process if rproc is already powered up */ |
| if (atomic_inc_return(&rproc->power) > 1) { |
| ret = 0; |
| goto unlock_mutex; |
| } |
| |
| if (rproc->state == RPROC_DETACHED) { |
| dev_info(dev, "attaching to %s\n", rproc->name); |
| |
| ret = rproc_attach(rproc); |
| } else { |
| dev_info(dev, "powering up %s\n", rproc->name); |
| |
| /* load firmware */ |
| ret = request_firmware(&firmware_p, rproc->firmware, dev); |
| if (ret < 0) { |
| dev_err(dev, "request_firmware failed: %d\n", ret); |
| goto downref_rproc; |
| } |
| |
| ret = rproc_fw_boot(rproc, firmware_p); |
| |
| release_firmware(firmware_p); |
| } |
| |
| downref_rproc: |
| if (ret) |
| atomic_dec(&rproc->power); |
| unlock_mutex: |
| mutex_unlock(&rproc->lock); |
| return ret; |
| } |
| EXPORT_SYMBOL(rproc_boot); |
| |
| /** |
| * rproc_shutdown() - power off the remote processor |
| * @rproc: the remote processor |
| * |
| * Power off a remote processor (previously booted with rproc_boot()). |
| * |
| * In case @rproc is still being used by an additional user(s), then |
| * this function will just decrement the power refcount and exit, |
| * without really powering off the device. |
| * |
| * Every call to rproc_boot() must (eventually) be accompanied by a call |
| * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug. |
| * |
| * Notes: |
| * - we're not decrementing the rproc's refcount, only the power refcount. |
| * which means that the @rproc handle stays valid even after rproc_shutdown() |
| * returns, and users can still use it with a subsequent rproc_boot(), if |
| * needed. |
| * |
| * Return: 0 on success, and an appropriate error value otherwise |
| */ |
| int rproc_shutdown(struct rproc *rproc) |
| { |
| struct device *dev = &rproc->dev; |
| int ret = 0; |
| |
| ret = mutex_lock_interruptible(&rproc->lock); |
| if (ret) { |
| dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); |
| return ret; |
| } |
| |
| if (rproc->state != RPROC_RUNNING && |
| rproc->state != RPROC_ATTACHED) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| /* if the remote proc is still needed, bail out */ |
| if (!atomic_dec_and_test(&rproc->power)) |
| goto out; |
| |
| ret = rproc_stop(rproc, false); |
| if (ret) { |
| atomic_inc(&rproc->power); |
| goto out; |
| } |
| |
| /* clean up all acquired resources */ |
| rproc_resource_cleanup(rproc); |
| |
| /* release HW resources if needed */ |
| rproc_unprepare_device(rproc); |
| |
| rproc_disable_iommu(rproc); |
| |
| /* Free the copy of the resource table */ |
| kfree(rproc->cached_table); |
| rproc->cached_table = NULL; |
| rproc->table_ptr = NULL; |
| out: |
| mutex_unlock(&rproc->lock); |
| return ret; |
| } |
| EXPORT_SYMBOL(rproc_shutdown); |
| |
| /** |
| * rproc_detach() - Detach the remote processor from the |
| * remoteproc core |
| * |
| * @rproc: the remote processor |
| * |
| * Detach a remote processor (previously attached to with rproc_attach()). |
| * |
| * In case @rproc is still being used by an additional user(s), then |
| * this function will just decrement the power refcount and exit, |
| * without disconnecting the device. |
| * |
| * Function rproc_detach() calls __rproc_detach() in order to let a remote |
| * processor know that services provided by the application processor are |
| * no longer available. From there it should be possible to remove the |
| * platform driver and even power cycle the application processor (if the HW |
| * supports it) without needing to switch off the remote processor. |
| * |
| * Return: 0 on success, and an appropriate error value otherwise |
| */ |
| int rproc_detach(struct rproc *rproc) |
| { |
| struct device *dev = &rproc->dev; |
| int ret; |
| |
| ret = mutex_lock_interruptible(&rproc->lock); |
| if (ret) { |
| dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); |
| return ret; |
| } |
| |
| if (rproc->state != RPROC_ATTACHED) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| /* if the remote proc is still needed, bail out */ |
| if (!atomic_dec_and_test(&rproc->power)) { |
| ret = 0; |
| goto out; |
| } |
| |
| ret = __rproc_detach(rproc); |
| if (ret) { |
| atomic_inc(&rproc->power); |
| goto out; |
| } |
| |
| /* clean up all acquired resources */ |
| rproc_resource_cleanup(rproc); |
| |
| /* release HW resources if needed */ |
| rproc_unprepare_device(rproc); |
| |
| rproc_disable_iommu(rproc); |
| |
| /* Free the copy of the resource table */ |
| kfree(rproc->cached_table); |
| rproc->cached_table = NULL; |
| rproc->table_ptr = NULL; |
| out: |
| mutex_unlock(&rproc->lock); |
| return ret; |
| } |
| EXPORT_SYMBOL(rproc_detach); |
| |
| /** |
| * rproc_get_by_phandle() - find a remote processor by phandle |
| * @phandle: phandle to the rproc |
| * |
| * Finds an rproc handle using the remote processor's phandle, and then |
| * return a handle to the rproc. |
| * |
| * This function increments the remote processor's refcount, so always |
| * use rproc_put() to decrement it back once rproc isn't needed anymore. |
| * |
| * Return: rproc handle on success, and NULL on failure |
| */ |
| #ifdef CONFIG_OF |
| struct rproc *rproc_get_by_phandle(phandle phandle) |
| { |
| struct rproc *rproc = NULL, *r; |
| struct device_node *np; |
| |
| np = of_find_node_by_phandle(phandle); |
| if (!np) |
| return NULL; |
| |
| rcu_read_lock(); |
| list_for_each_entry_rcu(r, &rproc_list, node) { |
| if (r->dev.parent && device_match_of_node(r->dev.parent, np)) { |
| /* prevent underlying implementation from being removed */ |
| if (!try_module_get(r->dev.parent->driver->owner)) { |
| dev_err(&r->dev, "can't get owner\n"); |
| break; |
| } |
| |
| rproc = r; |
| get_device(&rproc->dev); |
| break; |
| } |
| } |
| rcu_read_unlock(); |
| |
| of_node_put(np); |
| |
| return rproc; |
| } |
| #else |
| struct rproc *rproc_get_by_phandle(phandle phandle) |
| { |
| return NULL; |
| } |
| #endif |
| EXPORT_SYMBOL(rproc_get_by_phandle); |
| |
| /** |
| * rproc_set_firmware() - assign a new firmware |
| * @rproc: rproc handle to which the new firmware is being assigned |
| * @fw_name: new firmware name to be assigned |
| * |
| * This function allows remoteproc drivers or clients to configure a custom |
| * firmware name that is different from the default name used during remoteproc |
| * registration. The function does not trigger a remote processor boot, |
| * only sets the firmware name used for a subsequent boot. This function |
| * should also be called only when the remote processor is offline. |
| * |
| * This allows either the userspace to configure a different name through |
| * sysfs or a kernel-level remoteproc or a remoteproc client driver to set |
| * a specific firmware when it is controlling the boot and shutdown of the |
| * remote processor. |
| * |
| * Return: 0 on success or a negative value upon failure |
| */ |
| int rproc_set_firmware(struct rproc *rproc, const char *fw_name) |
| { |
| struct device *dev; |
| int ret, len; |
| char *p; |
| |
| if (!rproc || !fw_name) |
| return -EINVAL; |
| |
| dev = rproc->dev.parent; |
| |
| ret = mutex_lock_interruptible(&rproc->lock); |
| if (ret) { |
| dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); |
| return -EINVAL; |
| } |
| |
| if (rproc->state != RPROC_OFFLINE) { |
| dev_err(dev, "can't change firmware while running\n"); |
| ret = -EBUSY; |
| goto out; |
| } |
| |
| len = strcspn(fw_name, "\n"); |
| if (!len) { |
| dev_err(dev, "can't provide empty string for firmware name\n"); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| p = kstrndup(fw_name, len, GFP_KERNEL); |
| if (!p) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| kfree_const(rproc->firmware); |
| rproc->firmware = p; |
| |
| out: |
| mutex_unlock(&rproc->lock); |
| return ret; |
| } |
| EXPORT_SYMBOL(rproc_set_firmware); |
| |
| static int rproc_validate(struct rproc *rproc) |
| { |
| switch (rproc->state) { |
| case RPROC_OFFLINE: |
| /* |
| * An offline processor without a start() |
| * function makes no sense. |
| */ |
| if (!rproc->ops->start) |
| return -EINVAL; |
| break; |
| case RPROC_DETACHED: |
| /* |
| * A remote processor in a detached state without an |
| * attach() function makes not sense. |
| */ |
| if (!rproc->ops->attach) |
| return -EINVAL; |
| /* |
| * When attaching to a remote processor the device memory |
| * is already available and as such there is no need to have a |
| * cached table. |
| */ |
| if (rproc->cached_table) |
| return -EINVAL; |
| break; |
| default: |
| /* |
| * When adding a remote processor, the state of the device |
| * can be offline or detached, nothing else. |
| */ |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * rproc_add() - register a remote processor |
| * @rproc: the remote processor handle to register |
| * |
| * Registers @rproc with the remoteproc framework, after it has been |
| * allocated with rproc_alloc(). |
| * |
| * This is called by the platform-specific rproc implementation, whenever |
| * a new remote processor device is probed. |
| * |
| * Note: this function initiates an asynchronous firmware loading |
| * context, which will look for virtio devices supported by the rproc's |
| * firmware. |
| * |
| * If found, those virtio devices will be created and added, so as a result |
| * of registering this remote processor, additional virtio drivers might be |
| * probed. |
| * |
| * Return: 0 on success and an appropriate error code otherwise |
| */ |
| int rproc_add(struct rproc *rproc) |
| { |
| struct device *dev = &rproc->dev; |
| int ret; |
| |
| ret = rproc_validate(rproc); |
| if (ret < 0) |
| return ret; |
| |
| /* add char device for this remoteproc */ |
| ret = rproc_char_device_add(rproc); |
| if (ret < 0) |
| return ret; |
| |
| ret = device_add(dev); |
| if (ret < 0) { |
| put_device(dev); |
| goto rproc_remove_cdev; |
| } |
| |
| dev_info(dev, "%s is available\n", rproc->name); |
| |
| /* create debugfs entries */ |
| rproc_create_debug_dir(rproc); |
| |
| /* if rproc is marked always-on, request it to boot */ |
| if (rproc->auto_boot) { |
| ret = rproc_trigger_auto_boot(rproc); |
| if (ret < 0) |
| goto rproc_remove_dev; |
| } |
| |
| /* expose to rproc_get_by_phandle users */ |
| mutex_lock(&rproc_list_mutex); |
| list_add_rcu(&rproc->node, &rproc_list); |
| mutex_unlock(&rproc_list_mutex); |
| |
| return 0; |
| |
| rproc_remove_dev: |
| rproc_delete_debug_dir(rproc); |
| device_del(dev); |
| rproc_remove_cdev: |
| rproc_char_device_remove(rproc); |
| return ret; |
| } |
| EXPORT_SYMBOL(rproc_add); |
| |
| static void devm_rproc_remove(void *rproc) |
| { |
| rproc_del(rproc); |
| } |
| |
| /** |
| * devm_rproc_add() - resource managed rproc_add() |
| * @dev: the underlying device |
| * @rproc: the remote processor handle to register |
| * |
| * This function performs like rproc_add() but the registered rproc device will |
| * automatically be removed on driver detach. |
| * |
| * Return: 0 on success, negative errno on failure |
| */ |
| int devm_rproc_add(struct device *dev, struct rproc *rproc) |
| { |
| int err; |
| |
| err = rproc_add(rproc); |
| if (err) |
| return err; |
| |
| return devm_add_action_or_reset(dev, devm_rproc_remove, rproc); |
| } |
| EXPORT_SYMBOL(devm_rproc_add); |
| |
| /** |
| * rproc_type_release() - release a remote processor instance |
| * @dev: the rproc's device |
| * |
| * This function should _never_ be called directly. |
| * |
| * It will be called by the driver core when no one holds a valid pointer |
| * to @dev anymore. |
| */ |
| static void rproc_type_release(struct device *dev) |
| { |
| struct rproc *rproc = container_of(dev, struct rproc, dev); |
| |
| dev_info(&rproc->dev, "releasing %s\n", rproc->name); |
| |
| idr_destroy(&rproc->notifyids); |
| |
| if (rproc->index >= 0) |
| ida_free(&rproc_dev_index, rproc->index); |
| |
| kfree_const(rproc->firmware); |
| kfree_const(rproc->name); |
| kfree(rproc->ops); |
| kfree(rproc); |
| } |
| |
| static const struct device_type rproc_type = { |
| .name = "remoteproc", |
| .release = rproc_type_release, |
| }; |
| |
| static int rproc_alloc_firmware(struct rproc *rproc, |
| const char *name, const char *firmware) |
| { |
| const char *p; |
| |
| /* |
| * Allocate a firmware name if the caller gave us one to work |
| * with. Otherwise construct a new one using a default pattern. |
| */ |
| if (firmware) |
| p = kstrdup_const(firmware, GFP_KERNEL); |
| else |
| p = kasprintf(GFP_KERNEL, "rproc-%s-fw", name); |
| |
| if (!p) |
| return -ENOMEM; |
| |
| rproc->firmware = p; |
| |
| return 0; |
| } |
| |
| static int rproc_alloc_ops(struct rproc *rproc, const struct rproc_ops *ops) |
| { |
| rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL); |
| if (!rproc->ops) |
| return -ENOMEM; |
| |
| /* Default to rproc_coredump if no coredump function is specified */ |
| if (!rproc->ops->coredump) |
| rproc->ops->coredump = rproc_coredump; |
| |
| if (rproc->ops->load) |
| return 0; |
| |
| /* Default to ELF loader if no load function is specified */ |
| rproc->ops->load = rproc_elf_load_segments; |
| rproc->ops->parse_fw = rproc_elf_load_rsc_table; |
| rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table; |
| rproc->ops->sanity_check = rproc_elf_sanity_check; |
| rproc->ops->get_boot_addr = rproc_elf_get_boot_addr; |
| |
| return 0; |
| } |
| |
| /** |
| * rproc_alloc() - allocate a remote processor handle |
| * @dev: the underlying device |
| * @name: name of this remote processor |
| * @ops: platform-specific handlers (mainly start/stop) |
| * @firmware: name of firmware file to load, can be NULL |
| * @len: length of private data needed by the rproc driver (in bytes) |
| * |
| * Allocates a new remote processor handle, but does not register |
| * it yet. if @firmware is NULL, a default name is used. |
| * |
| * This function should be used by rproc implementations during initialization |
| * of the remote processor. |
| * |
| * After creating an rproc handle using this function, and when ready, |
| * implementations should then call rproc_add() to complete |
| * the registration of the remote processor. |
| * |
| * Note: _never_ directly deallocate @rproc, even if it was not registered |
| * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free(). |
| * |
| * Return: new rproc pointer on success, and NULL on failure |
| */ |
| struct rproc *rproc_alloc(struct device *dev, const char *name, |
| const struct rproc_ops *ops, |
| const char *firmware, int len) |
| { |
| struct rproc *rproc; |
| |
| if (!dev || !name || !ops) |
| return NULL; |
| |
| rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL); |
| if (!rproc) |
| return NULL; |
| |
| rproc->priv = &rproc[1]; |
| rproc->auto_boot = true; |
| rproc->elf_class = ELFCLASSNONE; |
| rproc->elf_machine = EM_NONE; |
| |
| device_initialize(&rproc->dev); |
| rproc->dev.parent = dev; |
| rproc->dev.type = &rproc_type; |
| rproc->dev.class = &rproc_class; |
| rproc->dev.driver_data = rproc; |
| idr_init(&rproc->notifyids); |
| |
| rproc->name = kstrdup_const(name, GFP_KERNEL); |
| if (!rproc->name) |
| goto put_device; |
| |
| if (rproc_alloc_firmware(rproc, name, firmware)) |
| goto put_device; |
| |
| if (rproc_alloc_ops(rproc, ops)) |
| goto put_device; |
| |
| /* Assign a unique device index and name */ |
| rproc->index = ida_alloc(&rproc_dev_index, GFP_KERNEL); |
| if (rproc->index < 0) { |
| dev_err(dev, "ida_alloc failed: %d\n", rproc->index); |
| goto put_device; |
| } |
| |
| dev_set_name(&rproc->dev, "remoteproc%d", rproc->index); |
| |
| atomic_set(&rproc->power, 0); |
| |
| mutex_init(&rproc->lock); |
| |
| INIT_LIST_HEAD(&rproc->carveouts); |
| INIT_LIST_HEAD(&rproc->mappings); |
| INIT_LIST_HEAD(&rproc->traces); |
| INIT_LIST_HEAD(&rproc->rvdevs); |
| INIT_LIST_HEAD(&rproc->subdevs); |
| INIT_LIST_HEAD(&rproc->dump_segments); |
| |
| INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work); |
| |
| rproc->state = RPROC_OFFLINE; |
| |
| return rproc; |
| |
| put_device: |
| put_device(&rproc->dev); |
| return NULL; |
| } |
| EXPORT_SYMBOL(rproc_alloc); |
| |
| /** |
| * rproc_free() - unroll rproc_alloc() |
| * @rproc: the remote processor handle |
| * |
| * This function decrements the rproc dev refcount. |
| * |
| * If no one holds any reference to rproc anymore, then its refcount would |
| * now drop to zero, and it would be freed. |
| */ |
| void rproc_free(struct rproc *rproc) |
| { |
| put_device(&rproc->dev); |
| } |
| EXPORT_SYMBOL(rproc_free); |
| |
| /** |
| * rproc_put() - release rproc reference |
| * @rproc: the remote processor handle |
| * |
| * This function decrements the rproc dev refcount. |
| * |
| * If no one holds any reference to rproc anymore, then its refcount would |
| * now drop to zero, and it would be freed. |
| */ |
| void rproc_put(struct rproc *rproc) |
| { |
| module_put(rproc->dev.parent->driver->owner); |
| put_device(&rproc->dev); |
| } |
| EXPORT_SYMBOL(rproc_put); |
| |
| /** |
| * rproc_del() - unregister a remote processor |
| * @rproc: rproc handle to unregister |
| * |
| * This function should be called when the platform specific rproc |
| * implementation decides to remove the rproc device. it should |
| * _only_ be called if a previous invocation of rproc_add() |
| * has completed successfully. |
| * |
| * After rproc_del() returns, @rproc isn't freed yet, because |
| * of the outstanding reference created by rproc_alloc. To decrement that |
| * one last refcount, one still needs to call rproc_free(). |
| * |
| * Return: 0 on success and -EINVAL if @rproc isn't valid |
| */ |
| int rproc_del(struct rproc *rproc) |
| { |
| if (!rproc) |
| return -EINVAL; |
| |
| /* TODO: make sure this works with rproc->power > 1 */ |
| rproc_shutdown(rproc); |
| |
| mutex_lock(&rproc->lock); |
| rproc->state = RPROC_DELETED; |
| mutex_unlock(&rproc->lock); |
| |
| rproc_delete_debug_dir(rproc); |
| |
| /* the rproc is downref'ed as soon as it's removed from the klist */ |
| mutex_lock(&rproc_list_mutex); |
| list_del_rcu(&rproc->node); |
| mutex_unlock(&rproc_list_mutex); |
| |
| /* Ensure that no readers of rproc_list are still active */ |
| synchronize_rcu(); |
| |
| device_del(&rproc->dev); |
| rproc_char_device_remove(rproc); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(rproc_del); |
| |
| static void devm_rproc_free(struct device *dev, void *res) |
| { |
| rproc_free(*(struct rproc **)res); |
| } |
| |
| /** |
| * devm_rproc_alloc() - resource managed rproc_alloc() |
| * @dev: the underlying device |
| * @name: name of this remote processor |
| * @ops: platform-specific handlers (mainly start/stop) |
| * @firmware: name of firmware file to load, can be NULL |
| * @len: length of private data needed by the rproc driver (in bytes) |
| * |
| * This function performs like rproc_alloc() but the acquired rproc device will |
| * automatically be released on driver detach. |
| * |
| * Return: new rproc instance, or NULL on failure |
| */ |
| struct rproc *devm_rproc_alloc(struct device *dev, const char *name, |
| const struct rproc_ops *ops, |
| const char *firmware, int len) |
| { |
| struct rproc **ptr, *rproc; |
| |
| ptr = devres_alloc(devm_rproc_free, sizeof(*ptr), GFP_KERNEL); |
| if (!ptr) |
| return NULL; |
| |
| rproc = rproc_alloc(dev, name, ops, firmware, len); |
| if (rproc) { |
| *ptr = rproc; |
| devres_add(dev, ptr); |
| } else { |
| devres_free(ptr); |
| } |
| |
| return rproc; |
| } |
| EXPORT_SYMBOL(devm_rproc_alloc); |
| |
| /** |
| * rproc_add_subdev() - add a subdevice to a remoteproc |
| * @rproc: rproc handle to add the subdevice to |
| * @subdev: subdev handle to register |
| * |
| * Caller is responsible for populating optional subdevice function pointers. |
| */ |
| void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev) |
| { |
| list_add_tail(&subdev->node, &rproc->subdevs); |
| } |
| EXPORT_SYMBOL(rproc_add_subdev); |
| |
| /** |
| * rproc_remove_subdev() - remove a subdevice from a remoteproc |
| * @rproc: rproc handle to remove the subdevice from |
| * @subdev: subdev handle, previously registered with rproc_add_subdev() |
| */ |
| void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev) |
| { |
| list_del(&subdev->node); |
| } |
| EXPORT_SYMBOL(rproc_remove_subdev); |
| |
| /** |
| * rproc_get_by_child() - acquire rproc handle of @dev's ancestor |
| * @dev: child device to find ancestor of |
| * |
| * Return: the ancestor rproc instance, or NULL if not found |
| */ |
| struct rproc *rproc_get_by_child(struct device *dev) |
| { |
| for (dev = dev->parent; dev; dev = dev->parent) { |
| if (dev->type == &rproc_type) |
| return dev->driver_data; |
| } |
| |
| return NULL; |
| } |
| EXPORT_SYMBOL(rproc_get_by_child); |
| |
| /** |
| * rproc_report_crash() - rproc crash reporter function |
| * @rproc: remote processor |
| * @type: crash type |
| * |
| * This function must be called every time a crash is detected by the low-level |
| * drivers implementing a specific remoteproc. This should not be called from a |
| * non-remoteproc driver. |
| * |
| * This function can be called from atomic/interrupt context. |
| */ |
| void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type) |
| { |
| if (!rproc) { |
| pr_err("NULL rproc pointer\n"); |
| return; |
| } |
| |
| /* Prevent suspend while the remoteproc is being recovered */ |
| pm_stay_awake(rproc->dev.parent); |
| |
| dev_err(&rproc->dev, "crash detected in %s: type %s\n", |
| rproc->name, rproc_crash_to_string(type)); |
| |
| queue_work(rproc_recovery_wq, &rproc->crash_handler); |
| } |
| EXPORT_SYMBOL(rproc_report_crash); |
| |
| static int rproc_panic_handler(struct notifier_block *nb, unsigned long event, |
| void *ptr) |
| { |
| unsigned int longest = 0; |
| struct rproc *rproc; |
| unsigned int d; |
| |
| rcu_read_lock(); |
| list_for_each_entry_rcu(rproc, &rproc_list, node) { |
| if (!rproc->ops->panic) |
| continue; |
| |
| if (rproc->state != RPROC_RUNNING && |
| rproc->state != RPROC_ATTACHED) |
| continue; |
| |
| d = rproc->ops->panic(rproc); |
| longest = max(longest, d); |
| } |
| rcu_read_unlock(); |
| |
| /* |
| * Delay for the longest requested duration before returning. This can |
| * be used by the remoteproc drivers to give the remote processor time |
| * to perform any requested operations (such as flush caches), when |
| * it's not possible to signal the Linux side due to the panic. |
| */ |
| mdelay(longest); |
| |
| return NOTIFY_DONE; |
| } |
| |
| static void __init rproc_init_panic(void) |
| { |
| rproc_panic_nb.notifier_call = rproc_panic_handler; |
| atomic_notifier_chain_register(&panic_notifier_list, &rproc_panic_nb); |
| } |
| |
| static void __exit rproc_exit_panic(void) |
| { |
| atomic_notifier_chain_unregister(&panic_notifier_list, &rproc_panic_nb); |
| } |
| |
| static int __init remoteproc_init(void) |
| { |
| rproc_recovery_wq = alloc_workqueue("rproc_recovery_wq", |
| WQ_UNBOUND | WQ_FREEZABLE, 0); |
| if (!rproc_recovery_wq) { |
| pr_err("remoteproc: creation of rproc_recovery_wq failed\n"); |
| return -ENOMEM; |
| } |
| |
| rproc_init_sysfs(); |
| rproc_init_debugfs(); |
| rproc_init_cdev(); |
| rproc_init_panic(); |
| |
| return 0; |
| } |
| subsys_initcall(remoteproc_init); |
| |
| static void __exit remoteproc_exit(void) |
| { |
| ida_destroy(&rproc_dev_index); |
| |
| if (!rproc_recovery_wq) |
| return; |
| |
| rproc_exit_panic(); |
| rproc_exit_debugfs(); |
| rproc_exit_sysfs(); |
| destroy_workqueue(rproc_recovery_wq); |
| } |
| module_exit(remoteproc_exit); |
| |
| MODULE_DESCRIPTION("Generic Remote Processor Framework"); |