| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * TI K3 DSP Remote Processor(s) driver |
| * |
| * Copyright (C) 2018-2022 Texas Instruments Incorporated - https://www.ti.com/ |
| * Suman Anna <s-anna@ti.com> |
| */ |
| |
| #include <linux/io.h> |
| #include <linux/mailbox_client.h> |
| #include <linux/module.h> |
| #include <linux/of.h> |
| #include <linux/of_reserved_mem.h> |
| #include <linux/omap-mailbox.h> |
| #include <linux/platform_device.h> |
| #include <linux/remoteproc.h> |
| #include <linux/reset.h> |
| #include <linux/slab.h> |
| |
| #include "omap_remoteproc.h" |
| #include "remoteproc_internal.h" |
| #include "ti_sci_proc.h" |
| |
| #define KEYSTONE_RPROC_LOCAL_ADDRESS_MASK (SZ_16M - 1) |
| |
| /** |
| * struct k3_dsp_mem - internal memory structure |
| * @cpu_addr: MPU virtual address of the memory region |
| * @bus_addr: Bus address used to access the memory region |
| * @dev_addr: Device address of the memory region from DSP view |
| * @size: Size of the memory region |
| */ |
| struct k3_dsp_mem { |
| void __iomem *cpu_addr; |
| phys_addr_t bus_addr; |
| u32 dev_addr; |
| size_t size; |
| }; |
| |
| /** |
| * struct k3_dsp_mem_data - memory definitions for a DSP |
| * @name: name for this memory entry |
| * @dev_addr: device address for the memory entry |
| */ |
| struct k3_dsp_mem_data { |
| const char *name; |
| const u32 dev_addr; |
| }; |
| |
| /** |
| * struct k3_dsp_dev_data - device data structure for a DSP |
| * @mems: pointer to memory definitions for a DSP |
| * @num_mems: number of memory regions in @mems |
| * @boot_align_addr: boot vector address alignment granularity |
| * @uses_lreset: flag to denote the need for local reset management |
| */ |
| struct k3_dsp_dev_data { |
| const struct k3_dsp_mem_data *mems; |
| u32 num_mems; |
| u32 boot_align_addr; |
| bool uses_lreset; |
| }; |
| |
| /** |
| * struct k3_dsp_rproc - k3 DSP remote processor driver structure |
| * @dev: cached device pointer |
| * @rproc: remoteproc device handle |
| * @mem: internal memory regions data |
| * @num_mems: number of internal memory regions |
| * @rmem: reserved memory regions data |
| * @num_rmems: number of reserved memory regions |
| * @reset: reset control handle |
| * @data: pointer to DSP-specific device data |
| * @tsp: TI-SCI processor control handle |
| * @ti_sci: TI-SCI handle |
| * @ti_sci_id: TI-SCI device identifier |
| * @mbox: mailbox channel handle |
| * @client: mailbox client to request the mailbox channel |
| */ |
| struct k3_dsp_rproc { |
| struct device *dev; |
| struct rproc *rproc; |
| struct k3_dsp_mem *mem; |
| int num_mems; |
| struct k3_dsp_mem *rmem; |
| int num_rmems; |
| struct reset_control *reset; |
| const struct k3_dsp_dev_data *data; |
| struct ti_sci_proc *tsp; |
| const struct ti_sci_handle *ti_sci; |
| u32 ti_sci_id; |
| struct mbox_chan *mbox; |
| struct mbox_client client; |
| }; |
| |
| /** |
| * k3_dsp_rproc_mbox_callback() - inbound mailbox message handler |
| * @client: mailbox client pointer used for requesting the mailbox channel |
| * @data: mailbox payload |
| * |
| * This handler is invoked by the OMAP mailbox driver whenever a mailbox |
| * message is received. Usually, the mailbox payload simply contains |
| * the index of the virtqueue that is kicked by the remote processor, |
| * and we let remoteproc core handle it. |
| * |
| * In addition to virtqueue indices, we also have some out-of-band values |
| * that indicate different events. Those values are deliberately very |
| * large so they don't coincide with virtqueue indices. |
| */ |
| static void k3_dsp_rproc_mbox_callback(struct mbox_client *client, void *data) |
| { |
| struct k3_dsp_rproc *kproc = container_of(client, struct k3_dsp_rproc, |
| client); |
| struct device *dev = kproc->rproc->dev.parent; |
| const char *name = kproc->rproc->name; |
| u32 msg = omap_mbox_message(data); |
| |
| dev_dbg(dev, "mbox msg: 0x%x\n", msg); |
| |
| switch (msg) { |
| case RP_MBOX_CRASH: |
| /* |
| * remoteproc detected an exception, but error recovery is not |
| * supported. So, just log this for now |
| */ |
| dev_err(dev, "K3 DSP rproc %s crashed\n", name); |
| break; |
| case RP_MBOX_ECHO_REPLY: |
| dev_info(dev, "received echo reply from %s\n", name); |
| break; |
| default: |
| /* silently handle all other valid messages */ |
| if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG) |
| return; |
| if (msg > kproc->rproc->max_notifyid) { |
| dev_dbg(dev, "dropping unknown message 0x%x", msg); |
| return; |
| } |
| /* msg contains the index of the triggered vring */ |
| if (rproc_vq_interrupt(kproc->rproc, msg) == IRQ_NONE) |
| dev_dbg(dev, "no message was found in vqid %d\n", msg); |
| } |
| } |
| |
| /* |
| * Kick the remote processor to notify about pending unprocessed messages. |
| * The vqid usage is not used and is inconsequential, as the kick is performed |
| * through a simulated GPIO (a bit in an IPC interrupt-triggering register), |
| * the remote processor is expected to process both its Tx and Rx virtqueues. |
| */ |
| static void k3_dsp_rproc_kick(struct rproc *rproc, int vqid) |
| { |
| struct k3_dsp_rproc *kproc = rproc->priv; |
| struct device *dev = rproc->dev.parent; |
| mbox_msg_t msg = (mbox_msg_t)vqid; |
| int ret; |
| |
| /* send the index of the triggered virtqueue in the mailbox payload */ |
| ret = mbox_send_message(kproc->mbox, (void *)msg); |
| if (ret < 0) |
| dev_err(dev, "failed to send mailbox message (%pe)\n", |
| ERR_PTR(ret)); |
| } |
| |
| /* Put the DSP processor into reset */ |
| static int k3_dsp_rproc_reset(struct k3_dsp_rproc *kproc) |
| { |
| struct device *dev = kproc->dev; |
| int ret; |
| |
| ret = reset_control_assert(kproc->reset); |
| if (ret) { |
| dev_err(dev, "local-reset assert failed (%pe)\n", ERR_PTR(ret)); |
| return ret; |
| } |
| |
| if (kproc->data->uses_lreset) |
| return ret; |
| |
| ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci, |
| kproc->ti_sci_id); |
| if (ret) { |
| dev_err(dev, "module-reset assert failed (%pe)\n", ERR_PTR(ret)); |
| if (reset_control_deassert(kproc->reset)) |
| dev_warn(dev, "local-reset deassert back failed\n"); |
| } |
| |
| return ret; |
| } |
| |
| /* Release the DSP processor from reset */ |
| static int k3_dsp_rproc_release(struct k3_dsp_rproc *kproc) |
| { |
| struct device *dev = kproc->dev; |
| int ret; |
| |
| if (kproc->data->uses_lreset) |
| goto lreset; |
| |
| ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci, |
| kproc->ti_sci_id); |
| if (ret) { |
| dev_err(dev, "module-reset deassert failed (%pe)\n", ERR_PTR(ret)); |
| return ret; |
| } |
| |
| lreset: |
| ret = reset_control_deassert(kproc->reset); |
| if (ret) { |
| dev_err(dev, "local-reset deassert failed, (%pe)\n", ERR_PTR(ret)); |
| if (kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci, |
| kproc->ti_sci_id)) |
| dev_warn(dev, "module-reset assert back failed\n"); |
| } |
| |
| return ret; |
| } |
| |
| static int k3_dsp_rproc_request_mbox(struct rproc *rproc) |
| { |
| struct k3_dsp_rproc *kproc = rproc->priv; |
| struct mbox_client *client = &kproc->client; |
| struct device *dev = kproc->dev; |
| int ret; |
| |
| client->dev = dev; |
| client->tx_done = NULL; |
| client->rx_callback = k3_dsp_rproc_mbox_callback; |
| client->tx_block = false; |
| client->knows_txdone = false; |
| |
| kproc->mbox = mbox_request_channel(client, 0); |
| if (IS_ERR(kproc->mbox)) { |
| ret = -EBUSY; |
| dev_err(dev, "mbox_request_channel failed: %ld\n", |
| PTR_ERR(kproc->mbox)); |
| return ret; |
| } |
| |
| /* |
| * Ping the remote processor, this is only for sanity-sake for now; |
| * there is no functional effect whatsoever. |
| * |
| * Note that the reply will _not_ arrive immediately: this message |
| * will wait in the mailbox fifo until the remote processor is booted. |
| */ |
| ret = mbox_send_message(kproc->mbox, (void *)RP_MBOX_ECHO_REQUEST); |
| if (ret < 0) { |
| dev_err(dev, "mbox_send_message failed (%pe)\n", ERR_PTR(ret)); |
| mbox_free_channel(kproc->mbox); |
| return ret; |
| } |
| |
| return 0; |
| } |
| /* |
| * The C66x DSP cores have a local reset that affects only the CPU, and a |
| * generic module reset that powers on the device and allows the DSP internal |
| * memories to be accessed while the local reset is asserted. This function is |
| * used to release the global reset on C66x DSPs to allow loading into the DSP |
| * internal RAMs. The .prepare() ops is invoked by remoteproc core before any |
| * firmware loading, and is followed by the .start() ops after loading to |
| * actually let the C66x DSP cores run. This callback is invoked only in |
| * remoteproc mode. |
| */ |
| static int k3_dsp_rproc_prepare(struct rproc *rproc) |
| { |
| struct k3_dsp_rproc *kproc = rproc->priv; |
| struct device *dev = kproc->dev; |
| int ret; |
| |
| ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci, |
| kproc->ti_sci_id); |
| if (ret) |
| dev_err(dev, "module-reset deassert failed, cannot enable internal RAM loading (%pe)\n", |
| ERR_PTR(ret)); |
| |
| return ret; |
| } |
| |
| /* |
| * This function implements the .unprepare() ops and performs the complimentary |
| * operations to that of the .prepare() ops. The function is used to assert the |
| * global reset on applicable C66x cores. This completes the second portion of |
| * powering down the C66x DSP cores. The cores themselves are only halted in the |
| * .stop() callback through the local reset, and the .unprepare() ops is invoked |
| * by the remoteproc core after the remoteproc is stopped to balance the global |
| * reset. This callback is invoked only in remoteproc mode. |
| */ |
| static int k3_dsp_rproc_unprepare(struct rproc *rproc) |
| { |
| struct k3_dsp_rproc *kproc = rproc->priv; |
| struct device *dev = kproc->dev; |
| int ret; |
| |
| ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci, |
| kproc->ti_sci_id); |
| if (ret) |
| dev_err(dev, "module-reset assert failed (%pe)\n", ERR_PTR(ret)); |
| |
| return ret; |
| } |
| |
| /* |
| * Power up the DSP remote processor. |
| * |
| * This function will be invoked only after the firmware for this rproc |
| * was loaded, parsed successfully, and all of its resource requirements |
| * were met. This callback is invoked only in remoteproc mode. |
| */ |
| static int k3_dsp_rproc_start(struct rproc *rproc) |
| { |
| struct k3_dsp_rproc *kproc = rproc->priv; |
| struct device *dev = kproc->dev; |
| u32 boot_addr; |
| int ret; |
| |
| ret = k3_dsp_rproc_request_mbox(rproc); |
| if (ret) |
| return ret; |
| |
| boot_addr = rproc->bootaddr; |
| if (boot_addr & (kproc->data->boot_align_addr - 1)) { |
| dev_err(dev, "invalid boot address 0x%x, must be aligned on a 0x%x boundary\n", |
| boot_addr, kproc->data->boot_align_addr); |
| ret = -EINVAL; |
| goto put_mbox; |
| } |
| |
| dev_err(dev, "booting DSP core using boot addr = 0x%x\n", boot_addr); |
| ret = ti_sci_proc_set_config(kproc->tsp, boot_addr, 0, 0); |
| if (ret) |
| goto put_mbox; |
| |
| ret = k3_dsp_rproc_release(kproc); |
| if (ret) |
| goto put_mbox; |
| |
| return 0; |
| |
| put_mbox: |
| mbox_free_channel(kproc->mbox); |
| return ret; |
| } |
| |
| /* |
| * Stop the DSP remote processor. |
| * |
| * This function puts the DSP processor into reset, and finishes processing |
| * of any pending messages. This callback is invoked only in remoteproc mode. |
| */ |
| static int k3_dsp_rproc_stop(struct rproc *rproc) |
| { |
| struct k3_dsp_rproc *kproc = rproc->priv; |
| |
| mbox_free_channel(kproc->mbox); |
| |
| k3_dsp_rproc_reset(kproc); |
| |
| return 0; |
| } |
| |
| /* |
| * Attach to a running DSP remote processor (IPC-only mode) |
| * |
| * This rproc attach callback only needs to request the mailbox, the remote |
| * processor is already booted, so there is no need to issue any TI-SCI |
| * commands to boot the DSP core. This callback is invoked only in IPC-only |
| * mode. |
| */ |
| static int k3_dsp_rproc_attach(struct rproc *rproc) |
| { |
| struct k3_dsp_rproc *kproc = rproc->priv; |
| struct device *dev = kproc->dev; |
| int ret; |
| |
| ret = k3_dsp_rproc_request_mbox(rproc); |
| if (ret) |
| return ret; |
| |
| dev_info(dev, "DSP initialized in IPC-only mode\n"); |
| return 0; |
| } |
| |
| /* |
| * Detach from a running DSP remote processor (IPC-only mode) |
| * |
| * This rproc detach callback performs the opposite operation to attach callback |
| * and only needs to release the mailbox, the DSP core is not stopped and will |
| * be left to continue to run its booted firmware. This callback is invoked only |
| * in IPC-only mode. |
| */ |
| static int k3_dsp_rproc_detach(struct rproc *rproc) |
| { |
| struct k3_dsp_rproc *kproc = rproc->priv; |
| struct device *dev = kproc->dev; |
| |
| mbox_free_channel(kproc->mbox); |
| dev_info(dev, "DSP deinitialized in IPC-only mode\n"); |
| return 0; |
| } |
| |
| /* |
| * This function implements the .get_loaded_rsc_table() callback and is used |
| * to provide the resource table for a booted DSP in IPC-only mode. The K3 DSP |
| * firmwares follow a design-by-contract approach and are expected to have the |
| * resource table at the base of the DDR region reserved for firmware usage. |
| * This provides flexibility for the remote processor to be booted by different |
| * bootloaders that may or may not have the ability to publish the resource table |
| * address and size through a DT property. This callback is invoked only in |
| * IPC-only mode. |
| */ |
| static struct resource_table *k3_dsp_get_loaded_rsc_table(struct rproc *rproc, |
| size_t *rsc_table_sz) |
| { |
| struct k3_dsp_rproc *kproc = rproc->priv; |
| struct device *dev = kproc->dev; |
| |
| if (!kproc->rmem[0].cpu_addr) { |
| dev_err(dev, "memory-region #1 does not exist, loaded rsc table can't be found"); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| /* |
| * NOTE: The resource table size is currently hard-coded to a maximum |
| * of 256 bytes. The most common resource table usage for K3 firmwares |
| * is to only have the vdev resource entry and an optional trace entry. |
| * The exact size could be computed based on resource table address, but |
| * the hard-coded value suffices to support the IPC-only mode. |
| */ |
| *rsc_table_sz = 256; |
| return (struct resource_table *)kproc->rmem[0].cpu_addr; |
| } |
| |
| /* |
| * Custom function to translate a DSP device address (internal RAMs only) to a |
| * kernel virtual address. The DSPs can access their RAMs at either an internal |
| * address visible only from a DSP, or at the SoC-level bus address. Both these |
| * addresses need to be looked through for translation. The translated addresses |
| * can be used either by the remoteproc core for loading (when using kernel |
| * remoteproc loader), or by any rpmsg bus drivers. |
| */ |
| static void *k3_dsp_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem) |
| { |
| struct k3_dsp_rproc *kproc = rproc->priv; |
| void __iomem *va = NULL; |
| phys_addr_t bus_addr; |
| u32 dev_addr, offset; |
| size_t size; |
| int i; |
| |
| if (len == 0) |
| return NULL; |
| |
| for (i = 0; i < kproc->num_mems; i++) { |
| bus_addr = kproc->mem[i].bus_addr; |
| dev_addr = kproc->mem[i].dev_addr; |
| size = kproc->mem[i].size; |
| |
| if (da < KEYSTONE_RPROC_LOCAL_ADDRESS_MASK) { |
| /* handle DSP-view addresses */ |
| if (da >= dev_addr && |
| ((da + len) <= (dev_addr + size))) { |
| offset = da - dev_addr; |
| va = kproc->mem[i].cpu_addr + offset; |
| return (__force void *)va; |
| } |
| } else { |
| /* handle SoC-view addresses */ |
| if (da >= bus_addr && |
| (da + len) <= (bus_addr + size)) { |
| offset = da - bus_addr; |
| va = kproc->mem[i].cpu_addr + offset; |
| return (__force void *)va; |
| } |
| } |
| } |
| |
| /* handle static DDR reserved memory regions */ |
| for (i = 0; i < kproc->num_rmems; i++) { |
| dev_addr = kproc->rmem[i].dev_addr; |
| size = kproc->rmem[i].size; |
| |
| if (da >= dev_addr && ((da + len) <= (dev_addr + size))) { |
| offset = da - dev_addr; |
| va = kproc->rmem[i].cpu_addr + offset; |
| return (__force void *)va; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| static const struct rproc_ops k3_dsp_rproc_ops = { |
| .start = k3_dsp_rproc_start, |
| .stop = k3_dsp_rproc_stop, |
| .kick = k3_dsp_rproc_kick, |
| .da_to_va = k3_dsp_rproc_da_to_va, |
| }; |
| |
| static int k3_dsp_rproc_of_get_memories(struct platform_device *pdev, |
| struct k3_dsp_rproc *kproc) |
| { |
| const struct k3_dsp_dev_data *data = kproc->data; |
| struct device *dev = &pdev->dev; |
| struct resource *res; |
| int num_mems = 0; |
| int i; |
| |
| num_mems = kproc->data->num_mems; |
| kproc->mem = devm_kcalloc(kproc->dev, num_mems, |
| sizeof(*kproc->mem), GFP_KERNEL); |
| if (!kproc->mem) |
| return -ENOMEM; |
| |
| for (i = 0; i < num_mems; i++) { |
| res = platform_get_resource_byname(pdev, IORESOURCE_MEM, |
| data->mems[i].name); |
| if (!res) { |
| dev_err(dev, "found no memory resource for %s\n", |
| data->mems[i].name); |
| return -EINVAL; |
| } |
| if (!devm_request_mem_region(dev, res->start, |
| resource_size(res), |
| dev_name(dev))) { |
| dev_err(dev, "could not request %s region for resource\n", |
| data->mems[i].name); |
| return -EBUSY; |
| } |
| |
| kproc->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start, |
| resource_size(res)); |
| if (!kproc->mem[i].cpu_addr) { |
| dev_err(dev, "failed to map %s memory\n", |
| data->mems[i].name); |
| return -ENOMEM; |
| } |
| kproc->mem[i].bus_addr = res->start; |
| kproc->mem[i].dev_addr = data->mems[i].dev_addr; |
| kproc->mem[i].size = resource_size(res); |
| |
| dev_dbg(dev, "memory %8s: bus addr %pa size 0x%zx va %pK da 0x%x\n", |
| data->mems[i].name, &kproc->mem[i].bus_addr, |
| kproc->mem[i].size, kproc->mem[i].cpu_addr, |
| kproc->mem[i].dev_addr); |
| } |
| kproc->num_mems = num_mems; |
| |
| return 0; |
| } |
| |
| static int k3_dsp_reserved_mem_init(struct k3_dsp_rproc *kproc) |
| { |
| struct device *dev = kproc->dev; |
| struct device_node *np = dev->of_node; |
| struct device_node *rmem_np; |
| struct reserved_mem *rmem; |
| int num_rmems; |
| int ret, i; |
| |
| num_rmems = of_property_count_elems_of_size(np, "memory-region", |
| sizeof(phandle)); |
| if (num_rmems < 0) { |
| dev_err(dev, "device does not reserved memory regions (%pe)\n", |
| ERR_PTR(num_rmems)); |
| return -EINVAL; |
| } |
| if (num_rmems < 2) { |
| dev_err(dev, "device needs at least two memory regions to be defined, num = %d\n", |
| num_rmems); |
| return -EINVAL; |
| } |
| |
| /* use reserved memory region 0 for vring DMA allocations */ |
| ret = of_reserved_mem_device_init_by_idx(dev, np, 0); |
| if (ret) { |
| dev_err(dev, "device cannot initialize DMA pool (%pe)\n", |
| ERR_PTR(ret)); |
| return ret; |
| } |
| |
| num_rmems--; |
| kproc->rmem = kcalloc(num_rmems, sizeof(*kproc->rmem), GFP_KERNEL); |
| if (!kproc->rmem) { |
| ret = -ENOMEM; |
| goto release_rmem; |
| } |
| |
| /* use remaining reserved memory regions for static carveouts */ |
| for (i = 0; i < num_rmems; i++) { |
| rmem_np = of_parse_phandle(np, "memory-region", i + 1); |
| if (!rmem_np) { |
| ret = -EINVAL; |
| goto unmap_rmem; |
| } |
| |
| rmem = of_reserved_mem_lookup(rmem_np); |
| if (!rmem) { |
| of_node_put(rmem_np); |
| ret = -EINVAL; |
| goto unmap_rmem; |
| } |
| of_node_put(rmem_np); |
| |
| kproc->rmem[i].bus_addr = rmem->base; |
| /* 64-bit address regions currently not supported */ |
| kproc->rmem[i].dev_addr = (u32)rmem->base; |
| kproc->rmem[i].size = rmem->size; |
| kproc->rmem[i].cpu_addr = ioremap_wc(rmem->base, rmem->size); |
| if (!kproc->rmem[i].cpu_addr) { |
| dev_err(dev, "failed to map reserved memory#%d at %pa of size %pa\n", |
| i + 1, &rmem->base, &rmem->size); |
| ret = -ENOMEM; |
| goto unmap_rmem; |
| } |
| |
| dev_dbg(dev, "reserved memory%d: bus addr %pa size 0x%zx va %pK da 0x%x\n", |
| i + 1, &kproc->rmem[i].bus_addr, |
| kproc->rmem[i].size, kproc->rmem[i].cpu_addr, |
| kproc->rmem[i].dev_addr); |
| } |
| kproc->num_rmems = num_rmems; |
| |
| return 0; |
| |
| unmap_rmem: |
| for (i--; i >= 0; i--) |
| iounmap(kproc->rmem[i].cpu_addr); |
| kfree(kproc->rmem); |
| release_rmem: |
| of_reserved_mem_device_release(kproc->dev); |
| return ret; |
| } |
| |
| static void k3_dsp_reserved_mem_exit(struct k3_dsp_rproc *kproc) |
| { |
| int i; |
| |
| for (i = 0; i < kproc->num_rmems; i++) |
| iounmap(kproc->rmem[i].cpu_addr); |
| kfree(kproc->rmem); |
| |
| of_reserved_mem_device_release(kproc->dev); |
| } |
| |
| static |
| struct ti_sci_proc *k3_dsp_rproc_of_get_tsp(struct device *dev, |
| const struct ti_sci_handle *sci) |
| { |
| struct ti_sci_proc *tsp; |
| u32 temp[2]; |
| int ret; |
| |
| ret = of_property_read_u32_array(dev->of_node, "ti,sci-proc-ids", |
| temp, 2); |
| if (ret < 0) |
| return ERR_PTR(ret); |
| |
| tsp = kzalloc(sizeof(*tsp), GFP_KERNEL); |
| if (!tsp) |
| return ERR_PTR(-ENOMEM); |
| |
| tsp->dev = dev; |
| tsp->sci = sci; |
| tsp->ops = &sci->ops.proc_ops; |
| tsp->proc_id = temp[0]; |
| tsp->host_id = temp[1]; |
| |
| return tsp; |
| } |
| |
| static int k3_dsp_rproc_probe(struct platform_device *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| struct device_node *np = dev->of_node; |
| const struct k3_dsp_dev_data *data; |
| struct k3_dsp_rproc *kproc; |
| struct rproc *rproc; |
| const char *fw_name; |
| bool p_state = false; |
| int ret = 0; |
| int ret1; |
| |
| data = of_device_get_match_data(dev); |
| if (!data) |
| return -ENODEV; |
| |
| ret = rproc_of_parse_firmware(dev, 0, &fw_name); |
| if (ret) |
| return dev_err_probe(dev, ret, "failed to parse firmware-name property\n"); |
| |
| rproc = rproc_alloc(dev, dev_name(dev), &k3_dsp_rproc_ops, fw_name, |
| sizeof(*kproc)); |
| if (!rproc) |
| return -ENOMEM; |
| |
| rproc->has_iommu = false; |
| rproc->recovery_disabled = true; |
| if (data->uses_lreset) { |
| rproc->ops->prepare = k3_dsp_rproc_prepare; |
| rproc->ops->unprepare = k3_dsp_rproc_unprepare; |
| } |
| kproc = rproc->priv; |
| kproc->rproc = rproc; |
| kproc->dev = dev; |
| kproc->data = data; |
| |
| kproc->ti_sci = ti_sci_get_by_phandle(np, "ti,sci"); |
| if (IS_ERR(kproc->ti_sci)) { |
| ret = dev_err_probe(dev, PTR_ERR(kproc->ti_sci), |
| "failed to get ti-sci handle\n"); |
| kproc->ti_sci = NULL; |
| goto free_rproc; |
| } |
| |
| ret = of_property_read_u32(np, "ti,sci-dev-id", &kproc->ti_sci_id); |
| if (ret) { |
| dev_err_probe(dev, ret, "missing 'ti,sci-dev-id' property\n"); |
| goto put_sci; |
| } |
| |
| kproc->reset = devm_reset_control_get_exclusive(dev, NULL); |
| if (IS_ERR(kproc->reset)) { |
| ret = dev_err_probe(dev, PTR_ERR(kproc->reset), |
| "failed to get reset\n"); |
| goto put_sci; |
| } |
| |
| kproc->tsp = k3_dsp_rproc_of_get_tsp(dev, kproc->ti_sci); |
| if (IS_ERR(kproc->tsp)) { |
| ret = dev_err_probe(dev, PTR_ERR(kproc->tsp), |
| "failed to construct ti-sci proc control\n"); |
| goto put_sci; |
| } |
| |
| ret = ti_sci_proc_request(kproc->tsp); |
| if (ret < 0) { |
| dev_err_probe(dev, ret, "ti_sci_proc_request failed\n"); |
| goto free_tsp; |
| } |
| |
| ret = k3_dsp_rproc_of_get_memories(pdev, kproc); |
| if (ret) |
| goto release_tsp; |
| |
| ret = k3_dsp_reserved_mem_init(kproc); |
| if (ret) { |
| dev_err_probe(dev, ret, "reserved memory init failed\n"); |
| goto release_tsp; |
| } |
| |
| ret = kproc->ti_sci->ops.dev_ops.is_on(kproc->ti_sci, kproc->ti_sci_id, |
| NULL, &p_state); |
| if (ret) { |
| dev_err_probe(dev, ret, "failed to get initial state, mode cannot be determined\n"); |
| goto release_mem; |
| } |
| |
| /* configure J721E devices for either remoteproc or IPC-only mode */ |
| if (p_state) { |
| dev_info(dev, "configured DSP for IPC-only mode\n"); |
| rproc->state = RPROC_DETACHED; |
| /* override rproc ops with only required IPC-only mode ops */ |
| rproc->ops->prepare = NULL; |
| rproc->ops->unprepare = NULL; |
| rproc->ops->start = NULL; |
| rproc->ops->stop = NULL; |
| rproc->ops->attach = k3_dsp_rproc_attach; |
| rproc->ops->detach = k3_dsp_rproc_detach; |
| rproc->ops->get_loaded_rsc_table = k3_dsp_get_loaded_rsc_table; |
| } else { |
| dev_info(dev, "configured DSP for remoteproc mode\n"); |
| /* |
| * ensure the DSP local reset is asserted to ensure the DSP |
| * doesn't execute bogus code in .prepare() when the module |
| * reset is released. |
| */ |
| if (data->uses_lreset) { |
| ret = reset_control_status(kproc->reset); |
| if (ret < 0) { |
| dev_err_probe(dev, ret, "failed to get reset status\n"); |
| goto release_mem; |
| } else if (ret == 0) { |
| dev_warn(dev, "local reset is deasserted for device\n"); |
| k3_dsp_rproc_reset(kproc); |
| } |
| } |
| } |
| |
| ret = rproc_add(rproc); |
| if (ret) { |
| dev_err_probe(dev, ret, "failed to add register device with remoteproc core\n"); |
| goto release_mem; |
| } |
| |
| platform_set_drvdata(pdev, kproc); |
| |
| return 0; |
| |
| release_mem: |
| k3_dsp_reserved_mem_exit(kproc); |
| release_tsp: |
| ret1 = ti_sci_proc_release(kproc->tsp); |
| if (ret1) |
| dev_err(dev, "failed to release proc (%pe)\n", ERR_PTR(ret1)); |
| free_tsp: |
| kfree(kproc->tsp); |
| put_sci: |
| ret1 = ti_sci_put_handle(kproc->ti_sci); |
| if (ret1) |
| dev_err(dev, "failed to put ti_sci handle (%pe)\n", ERR_PTR(ret1)); |
| free_rproc: |
| rproc_free(rproc); |
| return ret; |
| } |
| |
| static void k3_dsp_rproc_remove(struct platform_device *pdev) |
| { |
| struct k3_dsp_rproc *kproc = platform_get_drvdata(pdev); |
| struct rproc *rproc = kproc->rproc; |
| struct device *dev = &pdev->dev; |
| int ret; |
| |
| if (rproc->state == RPROC_ATTACHED) { |
| ret = rproc_detach(rproc); |
| if (ret) { |
| /* Note this error path leaks resources */ |
| dev_err(dev, "failed to detach proc (%pe)\n", ERR_PTR(ret)); |
| return; |
| } |
| } |
| |
| rproc_del(kproc->rproc); |
| |
| ret = ti_sci_proc_release(kproc->tsp); |
| if (ret) |
| dev_err(dev, "failed to release proc (%pe)\n", ERR_PTR(ret)); |
| |
| kfree(kproc->tsp); |
| |
| ret = ti_sci_put_handle(kproc->ti_sci); |
| if (ret) |
| dev_err(dev, "failed to put ti_sci handle (%pe)\n", ERR_PTR(ret)); |
| |
| k3_dsp_reserved_mem_exit(kproc); |
| rproc_free(kproc->rproc); |
| } |
| |
| static const struct k3_dsp_mem_data c66_mems[] = { |
| { .name = "l2sram", .dev_addr = 0x800000 }, |
| { .name = "l1pram", .dev_addr = 0xe00000 }, |
| { .name = "l1dram", .dev_addr = 0xf00000 }, |
| }; |
| |
| /* C71x cores only have a L1P Cache, there are no L1P SRAMs */ |
| static const struct k3_dsp_mem_data c71_mems[] = { |
| { .name = "l2sram", .dev_addr = 0x800000 }, |
| { .name = "l1dram", .dev_addr = 0xe00000 }, |
| }; |
| |
| static const struct k3_dsp_mem_data c7xv_mems[] = { |
| { .name = "l2sram", .dev_addr = 0x800000 }, |
| }; |
| |
| static const struct k3_dsp_dev_data c66_data = { |
| .mems = c66_mems, |
| .num_mems = ARRAY_SIZE(c66_mems), |
| .boot_align_addr = SZ_1K, |
| .uses_lreset = true, |
| }; |
| |
| static const struct k3_dsp_dev_data c71_data = { |
| .mems = c71_mems, |
| .num_mems = ARRAY_SIZE(c71_mems), |
| .boot_align_addr = SZ_2M, |
| .uses_lreset = false, |
| }; |
| |
| static const struct k3_dsp_dev_data c7xv_data = { |
| .mems = c7xv_mems, |
| .num_mems = ARRAY_SIZE(c7xv_mems), |
| .boot_align_addr = SZ_2M, |
| .uses_lreset = false, |
| }; |
| |
| static const struct of_device_id k3_dsp_of_match[] = { |
| { .compatible = "ti,j721e-c66-dsp", .data = &c66_data, }, |
| { .compatible = "ti,j721e-c71-dsp", .data = &c71_data, }, |
| { .compatible = "ti,j721s2-c71-dsp", .data = &c71_data, }, |
| { .compatible = "ti,am62a-c7xv-dsp", .data = &c7xv_data, }, |
| { /* sentinel */ }, |
| }; |
| MODULE_DEVICE_TABLE(of, k3_dsp_of_match); |
| |
| static struct platform_driver k3_dsp_rproc_driver = { |
| .probe = k3_dsp_rproc_probe, |
| .remove_new = k3_dsp_rproc_remove, |
| .driver = { |
| .name = "k3-dsp-rproc", |
| .of_match_table = k3_dsp_of_match, |
| }, |
| }; |
| |
| module_platform_driver(k3_dsp_rproc_driver); |
| |
| MODULE_AUTHOR("Suman Anna <s-anna@ti.com>"); |
| MODULE_LICENSE("GPL v2"); |
| MODULE_DESCRIPTION("TI K3 DSP Remoteproc driver"); |