blob: 3a32faa86b5c4a2eee98de32951c18dc73052041 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* random utiility code, for bcache but in theory not specific to bcache
*
* Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
* Copyright 2012 Google, Inc.
*/
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/console.h>
#include <linux/ctype.h>
#include <linux/debugfs.h>
#include <linux/freezer.h>
#include <linux/kthread.h>
#include <linux/log2.h>
#include <linux/math64.h>
#include <linux/percpu.h>
#include <linux/preempt.h>
#include <linux/random.h>
#include <linux/seq_file.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/sched/clock.h>
#include "eytzinger.h"
#include "mean_and_variance.h"
#include "util.h"
static const char si_units[] = "?kMGTPEZY";
/* string_get_size units: */
static const char *const units_2[] = {
"B", "KiB", "MiB", "GiB", "TiB", "PiB", "EiB", "ZiB", "YiB"
};
static const char *const units_10[] = {
"B", "kB", "MB", "GB", "TB", "PB", "EB", "ZB", "YB"
};
static int parse_u64(const char *cp, u64 *res)
{
const char *start = cp;
u64 v = 0;
if (!isdigit(*cp))
return -EINVAL;
do {
if (v > U64_MAX / 10)
return -ERANGE;
v *= 10;
if (v > U64_MAX - (*cp - '0'))
return -ERANGE;
v += *cp - '0';
cp++;
} while (isdigit(*cp));
*res = v;
return cp - start;
}
static int bch2_pow(u64 n, u64 p, u64 *res)
{
*res = 1;
while (p--) {
if (*res > div_u64(U64_MAX, n))
return -ERANGE;
*res *= n;
}
return 0;
}
static int parse_unit_suffix(const char *cp, u64 *res)
{
const char *start = cp;
u64 base = 1024;
unsigned u;
int ret;
if (*cp == ' ')
cp++;
for (u = 1; u < strlen(si_units); u++)
if (*cp == si_units[u]) {
cp++;
goto got_unit;
}
for (u = 0; u < ARRAY_SIZE(units_2); u++)
if (!strncmp(cp, units_2[u], strlen(units_2[u]))) {
cp += strlen(units_2[u]);
goto got_unit;
}
for (u = 0; u < ARRAY_SIZE(units_10); u++)
if (!strncmp(cp, units_10[u], strlen(units_10[u]))) {
cp += strlen(units_10[u]);
base = 1000;
goto got_unit;
}
*res = 1;
return 0;
got_unit:
ret = bch2_pow(base, u, res);
if (ret)
return ret;
return cp - start;
}
#define parse_or_ret(cp, _f) \
do { \
int _ret = _f; \
if (_ret < 0) \
return _ret; \
cp += _ret; \
} while (0)
static int __bch2_strtou64_h(const char *cp, u64 *res)
{
const char *start = cp;
u64 v = 0, b, f_n = 0, f_d = 1;
int ret;
parse_or_ret(cp, parse_u64(cp, &v));
if (*cp == '.') {
cp++;
ret = parse_u64(cp, &f_n);
if (ret < 0)
return ret;
cp += ret;
ret = bch2_pow(10, ret, &f_d);
if (ret)
return ret;
}
parse_or_ret(cp, parse_unit_suffix(cp, &b));
if (v > div_u64(U64_MAX, b))
return -ERANGE;
v *= b;
if (f_n > div_u64(U64_MAX, b))
return -ERANGE;
f_n = div_u64(f_n * b, f_d);
if (v + f_n < v)
return -ERANGE;
v += f_n;
*res = v;
return cp - start;
}
static int __bch2_strtoh(const char *cp, u64 *res,
u64 t_max, bool t_signed)
{
bool positive = *cp != '-';
u64 v = 0;
if (*cp == '+' || *cp == '-')
cp++;
parse_or_ret(cp, __bch2_strtou64_h(cp, &v));
if (*cp == '\n')
cp++;
if (*cp)
return -EINVAL;
if (positive) {
if (v > t_max)
return -ERANGE;
} else {
if (v && !t_signed)
return -ERANGE;
if (v > t_max + 1)
return -ERANGE;
v = -v;
}
*res = v;
return 0;
}
#define STRTO_H(name, type) \
int bch2_ ## name ## _h(const char *cp, type *res) \
{ \
u64 v = 0; \
int ret = __bch2_strtoh(cp, &v, ANYSINT_MAX(type), \
ANYSINT_MAX(type) != ((type) ~0ULL)); \
*res = v; \
return ret; \
}
STRTO_H(strtoint, int)
STRTO_H(strtouint, unsigned int)
STRTO_H(strtoll, long long)
STRTO_H(strtoull, unsigned long long)
STRTO_H(strtou64, u64)
u64 bch2_read_flag_list(char *opt, const char * const list[])
{
u64 ret = 0;
char *p, *s, *d = kstrdup(opt, GFP_KERNEL);
if (!d)
return -ENOMEM;
s = strim(d);
while ((p = strsep(&s, ","))) {
int flag = match_string(list, -1, p);
if (flag < 0) {
ret = -1;
break;
}
ret |= 1 << flag;
}
kfree(d);
return ret;
}
bool bch2_is_zero(const void *_p, size_t n)
{
const char *p = _p;
size_t i;
for (i = 0; i < n; i++)
if (p[i])
return false;
return true;
}
void bch2_prt_u64_base2_nbits(struct printbuf *out, u64 v, unsigned nr_bits)
{
while (nr_bits)
prt_char(out, '0' + ((v >> --nr_bits) & 1));
}
void bch2_prt_u64_base2(struct printbuf *out, u64 v)
{
bch2_prt_u64_base2_nbits(out, v, fls64(v) ?: 1);
}
void bch2_print_string_as_lines(const char *prefix, const char *lines)
{
const char *p;
if (!lines) {
printk("%s (null)\n", prefix);
return;
}
console_lock();
while (1) {
p = strchrnul(lines, '\n');
printk("%s%.*s\n", prefix, (int) (p - lines), lines);
if (!*p)
break;
lines = p + 1;
}
console_unlock();
}
int bch2_save_backtrace(bch_stacktrace *stack, struct task_struct *task, unsigned skipnr,
gfp_t gfp)
{
#ifdef CONFIG_STACKTRACE
unsigned nr_entries = 0;
stack->nr = 0;
int ret = darray_make_room_gfp(stack, 32, gfp);
if (ret)
return ret;
if (!down_read_trylock(&task->signal->exec_update_lock))
return -1;
do {
nr_entries = stack_trace_save_tsk(task, stack->data, stack->size, skipnr + 1);
} while (nr_entries == stack->size &&
!(ret = darray_make_room_gfp(stack, stack->size * 2, gfp)));
stack->nr = nr_entries;
up_read(&task->signal->exec_update_lock);
return ret;
#else
return 0;
#endif
}
void bch2_prt_backtrace(struct printbuf *out, bch_stacktrace *stack)
{
darray_for_each(*stack, i) {
prt_printf(out, "[<0>] %pB", (void *) *i);
prt_newline(out);
}
}
int bch2_prt_task_backtrace(struct printbuf *out, struct task_struct *task, unsigned skipnr, gfp_t gfp)
{
bch_stacktrace stack = { 0 };
int ret = bch2_save_backtrace(&stack, task, skipnr + 1, gfp);
bch2_prt_backtrace(out, &stack);
darray_exit(&stack);
return ret;
}
#ifndef __KERNEL__
#include <time.h>
void bch2_prt_datetime(struct printbuf *out, time64_t sec)
{
time_t t = sec;
char buf[64];
ctime_r(&t, buf);
strim(buf);
prt_str(out, buf);
}
#else
void bch2_prt_datetime(struct printbuf *out, time64_t sec)
{
char buf[64];
snprintf(buf, sizeof(buf), "%ptT", &sec);
prt_u64(out, sec);
}
#endif
static const struct time_unit {
const char *name;
u64 nsecs;
} time_units[] = {
{ "ns", 1 },
{ "us", NSEC_PER_USEC },
{ "ms", NSEC_PER_MSEC },
{ "s", NSEC_PER_SEC },
{ "m", (u64) NSEC_PER_SEC * 60},
{ "h", (u64) NSEC_PER_SEC * 3600},
{ "eon", U64_MAX },
};
static const struct time_unit *pick_time_units(u64 ns)
{
const struct time_unit *u;
for (u = time_units;
u + 1 < time_units + ARRAY_SIZE(time_units) &&
ns >= u[1].nsecs << 1;
u++)
;
return u;
}
void bch2_pr_time_units(struct printbuf *out, u64 ns)
{
const struct time_unit *u = pick_time_units(ns);
prt_printf(out, "%llu %s", div_u64(ns, u->nsecs), u->name);
}
/* time stats: */
#ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT
static void bch2_quantiles_update(struct bch2_quantiles *q, u64 v)
{
unsigned i = 0;
while (i < ARRAY_SIZE(q->entries)) {
struct bch2_quantile_entry *e = q->entries + i;
if (unlikely(!e->step)) {
e->m = v;
e->step = max_t(unsigned, v / 2, 1024);
} else if (e->m > v) {
e->m = e->m >= e->step
? e->m - e->step
: 0;
} else if (e->m < v) {
e->m = e->m + e->step > e->m
? e->m + e->step
: U32_MAX;
}
if ((e->m > v ? e->m - v : v - e->m) < e->step)
e->step = max_t(unsigned, e->step / 2, 1);
if (v >= e->m)
break;
i = eytzinger0_child(i, v > e->m);
}
}
static inline void bch2_time_stats_update_one(struct bch2_time_stats *stats,
u64 start, u64 end)
{
u64 duration, freq;
if (time_after64(end, start)) {
duration = end - start;
mean_and_variance_update(&stats->duration_stats, duration);
mean_and_variance_weighted_update(&stats->duration_stats_weighted, duration);
stats->max_duration = max(stats->max_duration, duration);
stats->min_duration = min(stats->min_duration, duration);
stats->total_duration += duration;
bch2_quantiles_update(&stats->quantiles, duration);
}
if (stats->last_event && time_after64(end, stats->last_event)) {
freq = end - stats->last_event;
mean_and_variance_update(&stats->freq_stats, freq);
mean_and_variance_weighted_update(&stats->freq_stats_weighted, freq);
stats->max_freq = max(stats->max_freq, freq);
stats->min_freq = min(stats->min_freq, freq);
}
stats->last_event = end;
}
static void __bch2_time_stats_clear_buffer(struct bch2_time_stats *stats,
struct bch2_time_stat_buffer *b)
{
for (struct bch2_time_stat_buffer_entry *i = b->entries;
i < b->entries + ARRAY_SIZE(b->entries);
i++)
bch2_time_stats_update_one(stats, i->start, i->end);
b->nr = 0;
}
static noinline void bch2_time_stats_clear_buffer(struct bch2_time_stats *stats,
struct bch2_time_stat_buffer *b)
{
unsigned long flags;
spin_lock_irqsave(&stats->lock, flags);
__bch2_time_stats_clear_buffer(stats, b);
spin_unlock_irqrestore(&stats->lock, flags);
}
void __bch2_time_stats_update(struct bch2_time_stats *stats, u64 start, u64 end)
{
unsigned long flags;
WARN_ONCE(!stats->duration_stats_weighted.weight ||
!stats->freq_stats_weighted.weight,
"uninitialized time_stats");
if (!stats->buffer) {
spin_lock_irqsave(&stats->lock, flags);
bch2_time_stats_update_one(stats, start, end);
if (mean_and_variance_weighted_get_mean(stats->freq_stats_weighted) < 32 &&
stats->duration_stats.n > 1024)
stats->buffer =
alloc_percpu_gfp(struct bch2_time_stat_buffer,
GFP_ATOMIC);
spin_unlock_irqrestore(&stats->lock, flags);
} else {
struct bch2_time_stat_buffer *b;
preempt_disable();
b = this_cpu_ptr(stats->buffer);
BUG_ON(b->nr >= ARRAY_SIZE(b->entries));
b->entries[b->nr++] = (struct bch2_time_stat_buffer_entry) {
.start = start,
.end = end
};
if (unlikely(b->nr == ARRAY_SIZE(b->entries)))
bch2_time_stats_clear_buffer(stats, b);
preempt_enable();
}
}
static void bch2_pr_time_units_aligned(struct printbuf *out, u64 ns)
{
const struct time_unit *u = pick_time_units(ns);
prt_printf(out, "%llu ", div64_u64(ns, u->nsecs));
prt_tab_rjust(out);
prt_printf(out, "%s", u->name);
}
static inline void pr_name_and_units(struct printbuf *out, const char *name, u64 ns)
{
prt_str(out, name);
prt_tab(out);
bch2_pr_time_units_aligned(out, ns);
prt_newline(out);
}
#define TABSTOP_SIZE 12
void bch2_time_stats_to_text(struct printbuf *out, struct bch2_time_stats *stats)
{
const struct time_unit *u;
s64 f_mean = 0, d_mean = 0;
u64 q, last_q = 0, f_stddev = 0, d_stddev = 0;
int i;
if (stats->buffer) {
int cpu;
spin_lock_irq(&stats->lock);
for_each_possible_cpu(cpu)
__bch2_time_stats_clear_buffer(stats, per_cpu_ptr(stats->buffer, cpu));
spin_unlock_irq(&stats->lock);
}
/*
* avoid divide by zero
*/
if (stats->freq_stats.n) {
f_mean = mean_and_variance_get_mean(stats->freq_stats);
f_stddev = mean_and_variance_get_stddev(stats->freq_stats);
d_mean = mean_and_variance_get_mean(stats->duration_stats);
d_stddev = mean_and_variance_get_stddev(stats->duration_stats);
}
printbuf_tabstop_push(out, out->indent + TABSTOP_SIZE);
prt_printf(out, "count:");
prt_tab(out);
prt_printf(out, "%llu ",
stats->duration_stats.n);
printbuf_tabstop_pop(out);
prt_newline(out);
printbuf_tabstops_reset(out);
printbuf_tabstop_push(out, out->indent + 20);
printbuf_tabstop_push(out, TABSTOP_SIZE + 2);
printbuf_tabstop_push(out, 0);
printbuf_tabstop_push(out, TABSTOP_SIZE + 2);
prt_tab(out);
prt_printf(out, "since mount");
prt_tab_rjust(out);
prt_tab(out);
prt_printf(out, "recent");
prt_tab_rjust(out);
prt_newline(out);
printbuf_tabstops_reset(out);
printbuf_tabstop_push(out, out->indent + 20);
printbuf_tabstop_push(out, TABSTOP_SIZE);
printbuf_tabstop_push(out, 2);
printbuf_tabstop_push(out, TABSTOP_SIZE);
prt_printf(out, "duration of events");
prt_newline(out);
printbuf_indent_add(out, 2);
pr_name_and_units(out, "min:", stats->min_duration);
pr_name_and_units(out, "max:", stats->max_duration);
pr_name_and_units(out, "total:", stats->total_duration);
prt_printf(out, "mean:");
prt_tab(out);
bch2_pr_time_units_aligned(out, d_mean);
prt_tab(out);
bch2_pr_time_units_aligned(out, mean_and_variance_weighted_get_mean(stats->duration_stats_weighted));
prt_newline(out);
prt_printf(out, "stddev:");
prt_tab(out);
bch2_pr_time_units_aligned(out, d_stddev);
prt_tab(out);
bch2_pr_time_units_aligned(out, mean_and_variance_weighted_get_stddev(stats->duration_stats_weighted));
printbuf_indent_sub(out, 2);
prt_newline(out);
prt_printf(out, "time between events");
prt_newline(out);
printbuf_indent_add(out, 2);
pr_name_and_units(out, "min:", stats->min_freq);
pr_name_and_units(out, "max:", stats->max_freq);
prt_printf(out, "mean:");
prt_tab(out);
bch2_pr_time_units_aligned(out, f_mean);
prt_tab(out);
bch2_pr_time_units_aligned(out, mean_and_variance_weighted_get_mean(stats->freq_stats_weighted));
prt_newline(out);
prt_printf(out, "stddev:");
prt_tab(out);
bch2_pr_time_units_aligned(out, f_stddev);
prt_tab(out);
bch2_pr_time_units_aligned(out, mean_and_variance_weighted_get_stddev(stats->freq_stats_weighted));
printbuf_indent_sub(out, 2);
prt_newline(out);
printbuf_tabstops_reset(out);
i = eytzinger0_first(NR_QUANTILES);
u = pick_time_units(stats->quantiles.entries[i].m);
prt_printf(out, "quantiles (%s):\t", u->name);
eytzinger0_for_each(i, NR_QUANTILES) {
bool is_last = eytzinger0_next(i, NR_QUANTILES) == -1;
q = max(stats->quantiles.entries[i].m, last_q);
prt_printf(out, "%llu ",
div_u64(q, u->nsecs));
if (is_last)
prt_newline(out);
last_q = q;
}
}
#else
void bch2_time_stats_to_text(struct printbuf *out, struct bch2_time_stats *stats) {}
#endif
void bch2_time_stats_exit(struct bch2_time_stats *stats)
{
free_percpu(stats->buffer);
}
void bch2_time_stats_init(struct bch2_time_stats *stats)
{
memset(stats, 0, sizeof(*stats));
stats->duration_stats_weighted.weight = 8;
stats->freq_stats_weighted.weight = 8;
stats->min_duration = U64_MAX;
stats->min_freq = U64_MAX;
spin_lock_init(&stats->lock);
}
/* ratelimit: */
/**
* bch2_ratelimit_delay() - return how long to delay until the next time to do
* some work
* @d: the struct bch_ratelimit to update
* Returns: the amount of time to delay by, in jiffies
*/
u64 bch2_ratelimit_delay(struct bch_ratelimit *d)
{
u64 now = local_clock();
return time_after64(d->next, now)
? nsecs_to_jiffies(d->next - now)
: 0;
}
/**
* bch2_ratelimit_increment() - increment @d by the amount of work done
* @d: the struct bch_ratelimit to update
* @done: the amount of work done, in arbitrary units
*/
void bch2_ratelimit_increment(struct bch_ratelimit *d, u64 done)
{
u64 now = local_clock();
d->next += div_u64(done * NSEC_PER_SEC, d->rate);
if (time_before64(now + NSEC_PER_SEC, d->next))
d->next = now + NSEC_PER_SEC;
if (time_after64(now - NSEC_PER_SEC * 2, d->next))
d->next = now - NSEC_PER_SEC * 2;
}
/* pd controller: */
/*
* Updates pd_controller. Attempts to scale inputed values to units per second.
* @target: desired value
* @actual: current value
*
* @sign: 1 or -1; 1 if increasing the rate makes actual go up, -1 if increasing
* it makes actual go down.
*/
void bch2_pd_controller_update(struct bch_pd_controller *pd,
s64 target, s64 actual, int sign)
{
s64 proportional, derivative, change;
unsigned long seconds_since_update = (jiffies - pd->last_update) / HZ;
if (seconds_since_update == 0)
return;
pd->last_update = jiffies;
proportional = actual - target;
proportional *= seconds_since_update;
proportional = div_s64(proportional, pd->p_term_inverse);
derivative = actual - pd->last_actual;
derivative = div_s64(derivative, seconds_since_update);
derivative = ewma_add(pd->smoothed_derivative, derivative,
(pd->d_term / seconds_since_update) ?: 1);
derivative = derivative * pd->d_term;
derivative = div_s64(derivative, pd->p_term_inverse);
change = proportional + derivative;
/* Don't increase rate if not keeping up */
if (change > 0 &&
pd->backpressure &&
time_after64(local_clock(),
pd->rate.next + NSEC_PER_MSEC))
change = 0;
change *= (sign * -1);
pd->rate.rate = clamp_t(s64, (s64) pd->rate.rate + change,
1, UINT_MAX);
pd->last_actual = actual;
pd->last_derivative = derivative;
pd->last_proportional = proportional;
pd->last_change = change;
pd->last_target = target;
}
void bch2_pd_controller_init(struct bch_pd_controller *pd)
{
pd->rate.rate = 1024;
pd->last_update = jiffies;
pd->p_term_inverse = 6000;
pd->d_term = 30;
pd->d_smooth = pd->d_term;
pd->backpressure = 1;
}
void bch2_pd_controller_debug_to_text(struct printbuf *out, struct bch_pd_controller *pd)
{
if (!out->nr_tabstops)
printbuf_tabstop_push(out, 20);
prt_printf(out, "rate:");
prt_tab(out);
prt_human_readable_s64(out, pd->rate.rate);
prt_newline(out);
prt_printf(out, "target:");
prt_tab(out);
prt_human_readable_u64(out, pd->last_target);
prt_newline(out);
prt_printf(out, "actual:");
prt_tab(out);
prt_human_readable_u64(out, pd->last_actual);
prt_newline(out);
prt_printf(out, "proportional:");
prt_tab(out);
prt_human_readable_s64(out, pd->last_proportional);
prt_newline(out);
prt_printf(out, "derivative:");
prt_tab(out);
prt_human_readable_s64(out, pd->last_derivative);
prt_newline(out);
prt_printf(out, "change:");
prt_tab(out);
prt_human_readable_s64(out, pd->last_change);
prt_newline(out);
prt_printf(out, "next io:");
prt_tab(out);
prt_printf(out, "%llims", div64_s64(pd->rate.next - local_clock(), NSEC_PER_MSEC));
prt_newline(out);
}
/* misc: */
void bch2_bio_map(struct bio *bio, void *base, size_t size)
{
while (size) {
struct page *page = is_vmalloc_addr(base)
? vmalloc_to_page(base)
: virt_to_page(base);
unsigned offset = offset_in_page(base);
unsigned len = min_t(size_t, PAGE_SIZE - offset, size);
BUG_ON(!bio_add_page(bio, page, len, offset));
size -= len;
base += len;
}
}
int bch2_bio_alloc_pages(struct bio *bio, size_t size, gfp_t gfp_mask)
{
while (size) {
struct page *page = alloc_pages(gfp_mask, 0);
unsigned len = min_t(size_t, PAGE_SIZE, size);
if (!page)
return -ENOMEM;
if (unlikely(!bio_add_page(bio, page, len, 0))) {
__free_page(page);
break;
}
size -= len;
}
return 0;
}
size_t bch2_rand_range(size_t max)
{
size_t rand;
if (!max)
return 0;
do {
rand = get_random_long();
rand &= roundup_pow_of_two(max) - 1;
} while (rand >= max);
return rand;
}
void memcpy_to_bio(struct bio *dst, struct bvec_iter dst_iter, const void *src)
{
struct bio_vec bv;
struct bvec_iter iter;
__bio_for_each_segment(bv, dst, iter, dst_iter) {
void *dstp = kmap_local_page(bv.bv_page);
memcpy(dstp + bv.bv_offset, src, bv.bv_len);
kunmap_local(dstp);
src += bv.bv_len;
}
}
void memcpy_from_bio(void *dst, struct bio *src, struct bvec_iter src_iter)
{
struct bio_vec bv;
struct bvec_iter iter;
__bio_for_each_segment(bv, src, iter, src_iter) {
void *srcp = kmap_local_page(bv.bv_page);
memcpy(dst, srcp + bv.bv_offset, bv.bv_len);
kunmap_local(srcp);
dst += bv.bv_len;
}
}
static int alignment_ok(const void *base, size_t align)
{
return IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) ||
((unsigned long)base & (align - 1)) == 0;
}
static void u32_swap(void *a, void *b, size_t size)
{
u32 t = *(u32 *)a;
*(u32 *)a = *(u32 *)b;
*(u32 *)b = t;
}
static void u64_swap(void *a, void *b, size_t size)
{
u64 t = *(u64 *)a;
*(u64 *)a = *(u64 *)b;
*(u64 *)b = t;
}
static void generic_swap(void *a, void *b, size_t size)
{
char t;
do {
t = *(char *)a;
*(char *)a++ = *(char *)b;
*(char *)b++ = t;
} while (--size > 0);
}
static inline int do_cmp(void *base, size_t n, size_t size,
int (*cmp_func)(const void *, const void *, size_t),
size_t l, size_t r)
{
return cmp_func(base + inorder_to_eytzinger0(l, n) * size,
base + inorder_to_eytzinger0(r, n) * size,
size);
}
static inline void do_swap(void *base, size_t n, size_t size,
void (*swap_func)(void *, void *, size_t),
size_t l, size_t r)
{
swap_func(base + inorder_to_eytzinger0(l, n) * size,
base + inorder_to_eytzinger0(r, n) * size,
size);
}
void eytzinger0_sort(void *base, size_t n, size_t size,
int (*cmp_func)(const void *, const void *, size_t),
void (*swap_func)(void *, void *, size_t))
{
int i, c, r;
if (!swap_func) {
if (size == 4 && alignment_ok(base, 4))
swap_func = u32_swap;
else if (size == 8 && alignment_ok(base, 8))
swap_func = u64_swap;
else
swap_func = generic_swap;
}
/* heapify */
for (i = n / 2 - 1; i >= 0; --i) {
for (r = i; r * 2 + 1 < n; r = c) {
c = r * 2 + 1;
if (c + 1 < n &&
do_cmp(base, n, size, cmp_func, c, c + 1) < 0)
c++;
if (do_cmp(base, n, size, cmp_func, r, c) >= 0)
break;
do_swap(base, n, size, swap_func, r, c);
}
}
/* sort */
for (i = n - 1; i > 0; --i) {
do_swap(base, n, size, swap_func, 0, i);
for (r = 0; r * 2 + 1 < i; r = c) {
c = r * 2 + 1;
if (c + 1 < i &&
do_cmp(base, n, size, cmp_func, c, c + 1) < 0)
c++;
if (do_cmp(base, n, size, cmp_func, r, c) >= 0)
break;
do_swap(base, n, size, swap_func, r, c);
}
}
}
void sort_cmp_size(void *base, size_t num, size_t size,
int (*cmp_func)(const void *, const void *, size_t),
void (*swap_func)(void *, void *, size_t size))
{
/* pre-scale counters for performance */
int i = (num/2 - 1) * size, n = num * size, c, r;
if (!swap_func) {
if (size == 4 && alignment_ok(base, 4))
swap_func = u32_swap;
else if (size == 8 && alignment_ok(base, 8))
swap_func = u64_swap;
else
swap_func = generic_swap;
}
/* heapify */
for ( ; i >= 0; i -= size) {
for (r = i; r * 2 + size < n; r = c) {
c = r * 2 + size;
if (c < n - size &&
cmp_func(base + c, base + c + size, size) < 0)
c += size;
if (cmp_func(base + r, base + c, size) >= 0)
break;
swap_func(base + r, base + c, size);
}
}
/* sort */
for (i = n - size; i > 0; i -= size) {
swap_func(base, base + i, size);
for (r = 0; r * 2 + size < i; r = c) {
c = r * 2 + size;
if (c < i - size &&
cmp_func(base + c, base + c + size, size) < 0)
c += size;
if (cmp_func(base + r, base + c, size) >= 0)
break;
swap_func(base + r, base + c, size);
}
}
}
static void mempool_free_vp(void *element, void *pool_data)
{
size_t size = (size_t) pool_data;
vpfree(element, size);
}
static void *mempool_alloc_vp(gfp_t gfp_mask, void *pool_data)
{
size_t size = (size_t) pool_data;
return vpmalloc(size, gfp_mask);
}
int mempool_init_kvpmalloc_pool(mempool_t *pool, int min_nr, size_t size)
{
return size < PAGE_SIZE
? mempool_init_kmalloc_pool(pool, min_nr, size)
: mempool_init(pool, min_nr, mempool_alloc_vp,
mempool_free_vp, (void *) size);
}
#if 0
void eytzinger1_test(void)
{
unsigned inorder, eytz, size;
pr_info("1 based eytzinger test:");
for (size = 2;
size < 65536;
size++) {
unsigned extra = eytzinger1_extra(size);
if (!(size % 4096))
pr_info("tree size %u", size);
BUG_ON(eytzinger1_prev(0, size) != eytzinger1_last(size));
BUG_ON(eytzinger1_next(0, size) != eytzinger1_first(size));
BUG_ON(eytzinger1_prev(eytzinger1_first(size), size) != 0);
BUG_ON(eytzinger1_next(eytzinger1_last(size), size) != 0);
inorder = 1;
eytzinger1_for_each(eytz, size) {
BUG_ON(__inorder_to_eytzinger1(inorder, size, extra) != eytz);
BUG_ON(__eytzinger1_to_inorder(eytz, size, extra) != inorder);
BUG_ON(eytz != eytzinger1_last(size) &&
eytzinger1_prev(eytzinger1_next(eytz, size), size) != eytz);
inorder++;
}
}
}
void eytzinger0_test(void)
{
unsigned inorder, eytz, size;
pr_info("0 based eytzinger test:");
for (size = 1;
size < 65536;
size++) {
unsigned extra = eytzinger0_extra(size);
if (!(size % 4096))
pr_info("tree size %u", size);
BUG_ON(eytzinger0_prev(-1, size) != eytzinger0_last(size));
BUG_ON(eytzinger0_next(-1, size) != eytzinger0_first(size));
BUG_ON(eytzinger0_prev(eytzinger0_first(size), size) != -1);
BUG_ON(eytzinger0_next(eytzinger0_last(size), size) != -1);
inorder = 0;
eytzinger0_for_each(eytz, size) {
BUG_ON(__inorder_to_eytzinger0(inorder, size, extra) != eytz);
BUG_ON(__eytzinger0_to_inorder(eytz, size, extra) != inorder);
BUG_ON(eytz != eytzinger0_last(size) &&
eytzinger0_prev(eytzinger0_next(eytz, size), size) != eytz);
inorder++;
}
}
}
static inline int cmp_u16(const void *_l, const void *_r, size_t size)
{
const u16 *l = _l, *r = _r;
return (*l > *r) - (*r - *l);
}
static void eytzinger0_find_test_val(u16 *test_array, unsigned nr, u16 search)
{
int i, c1 = -1, c2 = -1;
ssize_t r;
r = eytzinger0_find_le(test_array, nr,
sizeof(test_array[0]),
cmp_u16, &search);
if (r >= 0)
c1 = test_array[r];
for (i = 0; i < nr; i++)
if (test_array[i] <= search && test_array[i] > c2)
c2 = test_array[i];
if (c1 != c2) {
eytzinger0_for_each(i, nr)
pr_info("[%3u] = %12u", i, test_array[i]);
pr_info("find_le(%2u) -> [%2zi] = %2i should be %2i",
i, r, c1, c2);
}
}
void eytzinger0_find_test(void)
{
unsigned i, nr, allocated = 1 << 12;
u16 *test_array = kmalloc_array(allocated, sizeof(test_array[0]), GFP_KERNEL);
for (nr = 1; nr < allocated; nr++) {
pr_info("testing %u elems", nr);
get_random_bytes(test_array, nr * sizeof(test_array[0]));
eytzinger0_sort(test_array, nr, sizeof(test_array[0]), cmp_u16, NULL);
/* verify array is sorted correctly: */
eytzinger0_for_each(i, nr)
BUG_ON(i != eytzinger0_last(nr) &&
test_array[i] > test_array[eytzinger0_next(i, nr)]);
for (i = 0; i < U16_MAX; i += 1 << 12)
eytzinger0_find_test_val(test_array, nr, i);
for (i = 0; i < nr; i++) {
eytzinger0_find_test_val(test_array, nr, test_array[i] - 1);
eytzinger0_find_test_val(test_array, nr, test_array[i]);
eytzinger0_find_test_val(test_array, nr, test_array[i] + 1);
}
}
kfree(test_array);
}
#endif
/*
* Accumulate percpu counters onto one cpu's copy - only valid when access
* against any percpu counter is guarded against
*/
u64 *bch2_acc_percpu_u64s(u64 __percpu *p, unsigned nr)
{
u64 *ret;
int cpu;
/* access to pcpu vars has to be blocked by other locking */
preempt_disable();
ret = this_cpu_ptr(p);
preempt_enable();
for_each_possible_cpu(cpu) {
u64 *i = per_cpu_ptr(p, cpu);
if (i != ret) {
acc_u64s(ret, i, nr);
memset(i, 0, nr * sizeof(u64));
}
}
return ret;
}
void bch2_darray_str_exit(darray_str *d)
{
darray_for_each(*d, i)
kfree(*i);
darray_exit(d);
}
int bch2_split_devs(const char *_dev_name, darray_str *ret)
{
darray_init(ret);
char *dev_name, *s, *orig;
dev_name = orig = kstrdup(_dev_name, GFP_KERNEL);
if (!dev_name)
return -ENOMEM;
while ((s = strsep(&dev_name, ":"))) {
char *p = kstrdup(s, GFP_KERNEL);
if (!p)
goto err;
if (darray_push(ret, p)) {
kfree(p);
goto err;
}
}
kfree(orig);
return 0;
err:
bch2_darray_str_exit(ret);
kfree(orig);
return -ENOMEM;
}