blob: ca917583c41169df126e9e5943b4054c94068471 [file] [log] [blame]
/* i915_drv.c -- i830,i845,i855,i865,i915 driver -*- linux-c -*-
*/
/*
*
* Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <linux/acpi.h>
#include <linux/device.h>
#include <linux/oom.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/pm.h>
#include <linux/pm_runtime.h>
#include <linux/pnp.h>
#include <linux/slab.h>
#include <linux/vgaarb.h>
#include <linux/vga_switcheroo.h>
#include <linux/vt.h>
#include <acpi/video.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_ioctl.h>
#include <drm/drm_irq.h>
#include <drm/drm_probe_helper.h>
#include <drm/i915_drm.h>
#include "display/intel_acpi.h"
#include "display/intel_audio.h"
#include "display/intel_bw.h"
#include "display/intel_cdclk.h"
#include "display/intel_display_types.h"
#include "display/intel_dp.h"
#include "display/intel_fbdev.h"
#include "display/intel_gmbus.h"
#include "display/intel_hotplug.h"
#include "display/intel_overlay.h"
#include "display/intel_pipe_crc.h"
#include "display/intel_sprite.h"
#include "gem/i915_gem_context.h"
#include "gem/i915_gem_ioctls.h"
#include "gt/intel_gt.h"
#include "gt/intel_gt_pm.h"
#include "i915_debugfs.h"
#include "i915_drv.h"
#include "i915_irq.h"
#include "i915_memcpy.h"
#include "i915_perf.h"
#include "i915_query.h"
#include "i915_suspend.h"
#include "i915_sysfs.h"
#include "i915_trace.h"
#include "i915_vgpu.h"
#include "intel_csr.h"
#include "intel_pm.h"
static struct drm_driver driver;
static int i915_get_bridge_dev(struct drm_i915_private *dev_priv)
{
int domain = pci_domain_nr(dev_priv->drm.pdev->bus);
dev_priv->bridge_dev =
pci_get_domain_bus_and_slot(domain, 0, PCI_DEVFN(0, 0));
if (!dev_priv->bridge_dev) {
DRM_ERROR("bridge device not found\n");
return -1;
}
return 0;
}
/* Allocate space for the MCH regs if needed, return nonzero on error */
static int
intel_alloc_mchbar_resource(struct drm_i915_private *dev_priv)
{
int reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
u32 temp_lo, temp_hi = 0;
u64 mchbar_addr;
int ret;
if (INTEL_GEN(dev_priv) >= 4)
pci_read_config_dword(dev_priv->bridge_dev, reg + 4, &temp_hi);
pci_read_config_dword(dev_priv->bridge_dev, reg, &temp_lo);
mchbar_addr = ((u64)temp_hi << 32) | temp_lo;
/* If ACPI doesn't have it, assume we need to allocate it ourselves */
#ifdef CONFIG_PNP
if (mchbar_addr &&
pnp_range_reserved(mchbar_addr, mchbar_addr + MCHBAR_SIZE))
return 0;
#endif
/* Get some space for it */
dev_priv->mch_res.name = "i915 MCHBAR";
dev_priv->mch_res.flags = IORESOURCE_MEM;
ret = pci_bus_alloc_resource(dev_priv->bridge_dev->bus,
&dev_priv->mch_res,
MCHBAR_SIZE, MCHBAR_SIZE,
PCIBIOS_MIN_MEM,
0, pcibios_align_resource,
dev_priv->bridge_dev);
if (ret) {
DRM_DEBUG_DRIVER("failed bus alloc: %d\n", ret);
dev_priv->mch_res.start = 0;
return ret;
}
if (INTEL_GEN(dev_priv) >= 4)
pci_write_config_dword(dev_priv->bridge_dev, reg + 4,
upper_32_bits(dev_priv->mch_res.start));
pci_write_config_dword(dev_priv->bridge_dev, reg,
lower_32_bits(dev_priv->mch_res.start));
return 0;
}
/* Setup MCHBAR if possible, return true if we should disable it again */
static void
intel_setup_mchbar(struct drm_i915_private *dev_priv)
{
int mchbar_reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
u32 temp;
bool enabled;
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
return;
dev_priv->mchbar_need_disable = false;
if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
pci_read_config_dword(dev_priv->bridge_dev, DEVEN, &temp);
enabled = !!(temp & DEVEN_MCHBAR_EN);
} else {
pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
enabled = temp & 1;
}
/* If it's already enabled, don't have to do anything */
if (enabled)
return;
if (intel_alloc_mchbar_resource(dev_priv))
return;
dev_priv->mchbar_need_disable = true;
/* Space is allocated or reserved, so enable it. */
if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
temp | DEVEN_MCHBAR_EN);
} else {
pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg, temp | 1);
}
}
static void
intel_teardown_mchbar(struct drm_i915_private *dev_priv)
{
int mchbar_reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
if (dev_priv->mchbar_need_disable) {
if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
u32 deven_val;
pci_read_config_dword(dev_priv->bridge_dev, DEVEN,
&deven_val);
deven_val &= ~DEVEN_MCHBAR_EN;
pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
deven_val);
} else {
u32 mchbar_val;
pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg,
&mchbar_val);
mchbar_val &= ~1;
pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg,
mchbar_val);
}
}
if (dev_priv->mch_res.start)
release_resource(&dev_priv->mch_res);
}
/* true = enable decode, false = disable decoder */
static unsigned int i915_vga_set_decode(void *cookie, bool state)
{
struct drm_i915_private *dev_priv = cookie;
intel_modeset_vga_set_state(dev_priv, state);
if (state)
return VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM |
VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
else
return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
}
static int i915_resume_switcheroo(struct drm_i915_private *i915);
static int i915_suspend_switcheroo(struct drm_i915_private *i915,
pm_message_t state);
static void i915_switcheroo_set_state(struct pci_dev *pdev, enum vga_switcheroo_state state)
{
struct drm_i915_private *i915 = pdev_to_i915(pdev);
pm_message_t pmm = { .event = PM_EVENT_SUSPEND };
if (!i915) {
dev_err(&pdev->dev, "DRM not initialized, aborting switch.\n");
return;
}
if (state == VGA_SWITCHEROO_ON) {
pr_info("switched on\n");
i915->drm.switch_power_state = DRM_SWITCH_POWER_CHANGING;
/* i915 resume handler doesn't set to D0 */
pci_set_power_state(pdev, PCI_D0);
i915_resume_switcheroo(i915);
i915->drm.switch_power_state = DRM_SWITCH_POWER_ON;
} else {
pr_info("switched off\n");
i915->drm.switch_power_state = DRM_SWITCH_POWER_CHANGING;
i915_suspend_switcheroo(i915, pmm);
i915->drm.switch_power_state = DRM_SWITCH_POWER_OFF;
}
}
static bool i915_switcheroo_can_switch(struct pci_dev *pdev)
{
struct drm_i915_private *i915 = pdev_to_i915(pdev);
/*
* FIXME: open_count is protected by drm_global_mutex but that would lead to
* locking inversion with the driver load path. And the access here is
* completely racy anyway. So don't bother with locking for now.
*/
return i915 && i915->drm.open_count == 0;
}
static const struct vga_switcheroo_client_ops i915_switcheroo_ops = {
.set_gpu_state = i915_switcheroo_set_state,
.reprobe = NULL,
.can_switch = i915_switcheroo_can_switch,
};
static int i915_driver_modeset_probe(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
struct pci_dev *pdev = dev_priv->drm.pdev;
int ret;
if (i915_inject_probe_failure(dev_priv))
return -ENODEV;
if (HAS_DISPLAY(dev_priv)) {
ret = drm_vblank_init(&dev_priv->drm,
INTEL_INFO(dev_priv)->num_pipes);
if (ret)
goto out;
}
intel_bios_init(dev_priv);
/* If we have > 1 VGA cards, then we need to arbitrate access
* to the common VGA resources.
*
* If we are a secondary display controller (!PCI_DISPLAY_CLASS_VGA),
* then we do not take part in VGA arbitration and the
* vga_client_register() fails with -ENODEV.
*/
ret = vga_client_register(pdev, dev_priv, NULL, i915_vga_set_decode);
if (ret && ret != -ENODEV)
goto out;
intel_register_dsm_handler();
ret = vga_switcheroo_register_client(pdev, &i915_switcheroo_ops, false);
if (ret)
goto cleanup_vga_client;
/* must happen before intel_power_domains_init_hw() on VLV/CHV */
intel_update_rawclk(dev_priv);
intel_power_domains_init_hw(dev_priv, false);
intel_csr_ucode_init(dev_priv);
ret = intel_irq_install(dev_priv);
if (ret)
goto cleanup_csr;
intel_gmbus_setup(dev_priv);
/* Important: The output setup functions called by modeset_init need
* working irqs for e.g. gmbus and dp aux transfers. */
ret = intel_modeset_init(dev);
if (ret)
goto cleanup_irq;
ret = i915_gem_init(dev_priv);
if (ret)
goto cleanup_modeset;
intel_overlay_setup(dev_priv);
if (!HAS_DISPLAY(dev_priv))
return 0;
ret = intel_fbdev_init(dev);
if (ret)
goto cleanup_gem;
/* Only enable hotplug handling once the fbdev is fully set up. */
intel_hpd_init(dev_priv);
intel_init_ipc(dev_priv);
return 0;
cleanup_gem:
i915_gem_suspend(dev_priv);
i915_gem_driver_remove(dev_priv);
i915_gem_driver_release(dev_priv);
cleanup_modeset:
intel_modeset_driver_remove(dev);
cleanup_irq:
intel_irq_uninstall(dev_priv);
intel_gmbus_teardown(dev_priv);
cleanup_csr:
intel_csr_ucode_fini(dev_priv);
intel_power_domains_driver_remove(dev_priv);
vga_switcheroo_unregister_client(pdev);
cleanup_vga_client:
vga_client_register(pdev, NULL, NULL, NULL);
out:
return ret;
}
static int i915_kick_out_firmware_fb(struct drm_i915_private *dev_priv)
{
struct apertures_struct *ap;
struct pci_dev *pdev = dev_priv->drm.pdev;
struct i915_ggtt *ggtt = &dev_priv->ggtt;
bool primary;
int ret;
ap = alloc_apertures(1);
if (!ap)
return -ENOMEM;
ap->ranges[0].base = ggtt->gmadr.start;
ap->ranges[0].size = ggtt->mappable_end;
primary =
pdev->resource[PCI_ROM_RESOURCE].flags & IORESOURCE_ROM_SHADOW;
ret = drm_fb_helper_remove_conflicting_framebuffers(ap, "inteldrmfb", primary);
kfree(ap);
return ret;
}
static void intel_init_dpio(struct drm_i915_private *dev_priv)
{
/*
* IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
* CHV x1 PHY (DP/HDMI D)
* IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
*/
if (IS_CHERRYVIEW(dev_priv)) {
DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
} else if (IS_VALLEYVIEW(dev_priv)) {
DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
}
}
static int i915_workqueues_init(struct drm_i915_private *dev_priv)
{
/*
* The i915 workqueue is primarily used for batched retirement of
* requests (and thus managing bo) once the task has been completed
* by the GPU. i915_retire_requests() is called directly when we
* need high-priority retirement, such as waiting for an explicit
* bo.
*
* It is also used for periodic low-priority events, such as
* idle-timers and recording error state.
*
* All tasks on the workqueue are expected to acquire the dev mutex
* so there is no point in running more than one instance of the
* workqueue at any time. Use an ordered one.
*/
dev_priv->wq = alloc_ordered_workqueue("i915", 0);
if (dev_priv->wq == NULL)
goto out_err;
dev_priv->hotplug.dp_wq = alloc_ordered_workqueue("i915-dp", 0);
if (dev_priv->hotplug.dp_wq == NULL)
goto out_free_wq;
return 0;
out_free_wq:
destroy_workqueue(dev_priv->wq);
out_err:
DRM_ERROR("Failed to allocate workqueues.\n");
return -ENOMEM;
}
static void i915_workqueues_cleanup(struct drm_i915_private *dev_priv)
{
destroy_workqueue(dev_priv->hotplug.dp_wq);
destroy_workqueue(dev_priv->wq);
}
/*
* We don't keep the workarounds for pre-production hardware, so we expect our
* driver to fail on these machines in one way or another. A little warning on
* dmesg may help both the user and the bug triagers.
*
* Our policy for removing pre-production workarounds is to keep the
* current gen workarounds as a guide to the bring-up of the next gen
* (workarounds have a habit of persisting!). Anything older than that
* should be removed along with the complications they introduce.
*/
static void intel_detect_preproduction_hw(struct drm_i915_private *dev_priv)
{
bool pre = false;
pre |= IS_HSW_EARLY_SDV(dev_priv);
pre |= IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0);
pre |= IS_BXT_REVID(dev_priv, 0, BXT_REVID_B_LAST);
pre |= IS_KBL_REVID(dev_priv, 0, KBL_REVID_A0);
if (pre) {
DRM_ERROR("This is a pre-production stepping. "
"It may not be fully functional.\n");
add_taint(TAINT_MACHINE_CHECK, LOCKDEP_STILL_OK);
}
}
/**
* i915_driver_early_probe - setup state not requiring device access
* @dev_priv: device private
*
* Initialize everything that is a "SW-only" state, that is state not
* requiring accessing the device or exposing the driver via kernel internal
* or userspace interfaces. Example steps belonging here: lock initialization,
* system memory allocation, setting up device specific attributes and
* function hooks not requiring accessing the device.
*/
static int i915_driver_early_probe(struct drm_i915_private *dev_priv)
{
int ret = 0;
if (i915_inject_probe_failure(dev_priv))
return -ENODEV;
intel_device_info_subplatform_init(dev_priv);
intel_uncore_init_early(&dev_priv->uncore, dev_priv);
spin_lock_init(&dev_priv->irq_lock);
spin_lock_init(&dev_priv->gpu_error.lock);
mutex_init(&dev_priv->backlight_lock);
mutex_init(&dev_priv->sb_lock);
pm_qos_add_request(&dev_priv->sb_qos,
PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
mutex_init(&dev_priv->av_mutex);
mutex_init(&dev_priv->wm.wm_mutex);
mutex_init(&dev_priv->pps_mutex);
mutex_init(&dev_priv->hdcp_comp_mutex);
i915_memcpy_init_early(dev_priv);
intel_runtime_pm_init_early(&dev_priv->runtime_pm);
ret = i915_workqueues_init(dev_priv);
if (ret < 0)
return ret;
intel_wopcm_init_early(&dev_priv->wopcm);
intel_gt_init_early(&dev_priv->gt, dev_priv);
ret = i915_gem_init_early(dev_priv);
if (ret < 0)
goto err_workqueues;
/* This must be called before any calls to HAS_PCH_* */
intel_detect_pch(dev_priv);
intel_pm_setup(dev_priv);
intel_init_dpio(dev_priv);
ret = intel_power_domains_init(dev_priv);
if (ret < 0)
goto err_gem;
intel_irq_init(dev_priv);
intel_init_display_hooks(dev_priv);
intel_init_clock_gating_hooks(dev_priv);
intel_init_audio_hooks(dev_priv);
intel_display_crc_init(dev_priv);
intel_detect_preproduction_hw(dev_priv);
return 0;
err_gem:
i915_gem_cleanup_early(dev_priv);
err_workqueues:
intel_gt_driver_late_release(&dev_priv->gt);
i915_workqueues_cleanup(dev_priv);
return ret;
}
/**
* i915_driver_late_release - cleanup the setup done in
* i915_driver_early_probe()
* @dev_priv: device private
*/
static void i915_driver_late_release(struct drm_i915_private *dev_priv)
{
intel_irq_fini(dev_priv);
intel_power_domains_cleanup(dev_priv);
i915_gem_cleanup_early(dev_priv);
intel_gt_driver_late_release(&dev_priv->gt);
i915_workqueues_cleanup(dev_priv);
pm_qos_remove_request(&dev_priv->sb_qos);
mutex_destroy(&dev_priv->sb_lock);
}
/**
* i915_driver_mmio_probe - setup device MMIO
* @dev_priv: device private
*
* Setup minimal device state necessary for MMIO accesses later in the
* initialization sequence. The setup here should avoid any other device-wide
* side effects or exposing the driver via kernel internal or user space
* interfaces.
*/
static int i915_driver_mmio_probe(struct drm_i915_private *dev_priv)
{
int ret;
if (i915_inject_probe_failure(dev_priv))
return -ENODEV;
if (i915_get_bridge_dev(dev_priv))
return -EIO;
ret = intel_uncore_init_mmio(&dev_priv->uncore);
if (ret < 0)
goto err_bridge;
/* Try to make sure MCHBAR is enabled before poking at it */
intel_setup_mchbar(dev_priv);
intel_device_info_init_mmio(dev_priv);
intel_uncore_prune_mmio_domains(&dev_priv->uncore);
intel_uc_init_mmio(&dev_priv->gt.uc);
ret = intel_engines_init_mmio(dev_priv);
if (ret)
goto err_uncore;
i915_gem_init_mmio(dev_priv);
return 0;
err_uncore:
intel_teardown_mchbar(dev_priv);
intel_uncore_fini_mmio(&dev_priv->uncore);
err_bridge:
pci_dev_put(dev_priv->bridge_dev);
return ret;
}
/**
* i915_driver_mmio_release - cleanup the setup done in i915_driver_mmio_probe()
* @dev_priv: device private
*/
static void i915_driver_mmio_release(struct drm_i915_private *dev_priv)
{
intel_engines_cleanup(dev_priv);
intel_teardown_mchbar(dev_priv);
intel_uncore_fini_mmio(&dev_priv->uncore);
pci_dev_put(dev_priv->bridge_dev);
}
static void intel_sanitize_options(struct drm_i915_private *dev_priv)
{
intel_gvt_sanitize_options(dev_priv);
}
#define DRAM_TYPE_STR(type) [INTEL_DRAM_ ## type] = #type
static const char *intel_dram_type_str(enum intel_dram_type type)
{
static const char * const str[] = {
DRAM_TYPE_STR(UNKNOWN),
DRAM_TYPE_STR(DDR3),
DRAM_TYPE_STR(DDR4),
DRAM_TYPE_STR(LPDDR3),
DRAM_TYPE_STR(LPDDR4),
};
if (type >= ARRAY_SIZE(str))
type = INTEL_DRAM_UNKNOWN;
return str[type];
}
#undef DRAM_TYPE_STR
static int intel_dimm_num_devices(const struct dram_dimm_info *dimm)
{
return dimm->ranks * 64 / (dimm->width ?: 1);
}
/* Returns total GB for the whole DIMM */
static int skl_get_dimm_size(u16 val)
{
return val & SKL_DRAM_SIZE_MASK;
}
static int skl_get_dimm_width(u16 val)
{
if (skl_get_dimm_size(val) == 0)
return 0;
switch (val & SKL_DRAM_WIDTH_MASK) {
case SKL_DRAM_WIDTH_X8:
case SKL_DRAM_WIDTH_X16:
case SKL_DRAM_WIDTH_X32:
val = (val & SKL_DRAM_WIDTH_MASK) >> SKL_DRAM_WIDTH_SHIFT;
return 8 << val;
default:
MISSING_CASE(val);
return 0;
}
}
static int skl_get_dimm_ranks(u16 val)
{
if (skl_get_dimm_size(val) == 0)
return 0;
val = (val & SKL_DRAM_RANK_MASK) >> SKL_DRAM_RANK_SHIFT;
return val + 1;
}
/* Returns total GB for the whole DIMM */
static int cnl_get_dimm_size(u16 val)
{
return (val & CNL_DRAM_SIZE_MASK) / 2;
}
static int cnl_get_dimm_width(u16 val)
{
if (cnl_get_dimm_size(val) == 0)
return 0;
switch (val & CNL_DRAM_WIDTH_MASK) {
case CNL_DRAM_WIDTH_X8:
case CNL_DRAM_WIDTH_X16:
case CNL_DRAM_WIDTH_X32:
val = (val & CNL_DRAM_WIDTH_MASK) >> CNL_DRAM_WIDTH_SHIFT;
return 8 << val;
default:
MISSING_CASE(val);
return 0;
}
}
static int cnl_get_dimm_ranks(u16 val)
{
if (cnl_get_dimm_size(val) == 0)
return 0;
val = (val & CNL_DRAM_RANK_MASK) >> CNL_DRAM_RANK_SHIFT;
return val + 1;
}
static bool
skl_is_16gb_dimm(const struct dram_dimm_info *dimm)
{
/* Convert total GB to Gb per DRAM device */
return 8 * dimm->size / (intel_dimm_num_devices(dimm) ?: 1) == 16;
}
static void
skl_dram_get_dimm_info(struct drm_i915_private *dev_priv,
struct dram_dimm_info *dimm,
int channel, char dimm_name, u16 val)
{
if (INTEL_GEN(dev_priv) >= 10) {
dimm->size = cnl_get_dimm_size(val);
dimm->width = cnl_get_dimm_width(val);
dimm->ranks = cnl_get_dimm_ranks(val);
} else {
dimm->size = skl_get_dimm_size(val);
dimm->width = skl_get_dimm_width(val);
dimm->ranks = skl_get_dimm_ranks(val);
}
DRM_DEBUG_KMS("CH%u DIMM %c size: %u GB, width: X%u, ranks: %u, 16Gb DIMMs: %s\n",
channel, dimm_name, dimm->size, dimm->width, dimm->ranks,
yesno(skl_is_16gb_dimm(dimm)));
}
static int
skl_dram_get_channel_info(struct drm_i915_private *dev_priv,
struct dram_channel_info *ch,
int channel, u32 val)
{
skl_dram_get_dimm_info(dev_priv, &ch->dimm_l,
channel, 'L', val & 0xffff);
skl_dram_get_dimm_info(dev_priv, &ch->dimm_s,
channel, 'S', val >> 16);
if (ch->dimm_l.size == 0 && ch->dimm_s.size == 0) {
DRM_DEBUG_KMS("CH%u not populated\n", channel);
return -EINVAL;
}
if (ch->dimm_l.ranks == 2 || ch->dimm_s.ranks == 2)
ch->ranks = 2;
else if (ch->dimm_l.ranks == 1 && ch->dimm_s.ranks == 1)
ch->ranks = 2;
else
ch->ranks = 1;
ch->is_16gb_dimm =
skl_is_16gb_dimm(&ch->dimm_l) ||
skl_is_16gb_dimm(&ch->dimm_s);
DRM_DEBUG_KMS("CH%u ranks: %u, 16Gb DIMMs: %s\n",
channel, ch->ranks, yesno(ch->is_16gb_dimm));
return 0;
}
static bool
intel_is_dram_symmetric(const struct dram_channel_info *ch0,
const struct dram_channel_info *ch1)
{
return !memcmp(ch0, ch1, sizeof(*ch0)) &&
(ch0->dimm_s.size == 0 ||
!memcmp(&ch0->dimm_l, &ch0->dimm_s, sizeof(ch0->dimm_l)));
}
static int
skl_dram_get_channels_info(struct drm_i915_private *dev_priv)
{
struct dram_info *dram_info = &dev_priv->dram_info;
struct dram_channel_info ch0 = {}, ch1 = {};
u32 val;
int ret;
val = I915_READ(SKL_MAD_DIMM_CH0_0_0_0_MCHBAR_MCMAIN);
ret = skl_dram_get_channel_info(dev_priv, &ch0, 0, val);
if (ret == 0)
dram_info->num_channels++;
val = I915_READ(SKL_MAD_DIMM_CH1_0_0_0_MCHBAR_MCMAIN);
ret = skl_dram_get_channel_info(dev_priv, &ch1, 1, val);
if (ret == 0)
dram_info->num_channels++;
if (dram_info->num_channels == 0) {
DRM_INFO("Number of memory channels is zero\n");
return -EINVAL;
}
/*
* If any of the channel is single rank channel, worst case output
* will be same as if single rank memory, so consider single rank
* memory.
*/
if (ch0.ranks == 1 || ch1.ranks == 1)
dram_info->ranks = 1;
else
dram_info->ranks = max(ch0.ranks, ch1.ranks);
if (dram_info->ranks == 0) {
DRM_INFO("couldn't get memory rank information\n");
return -EINVAL;
}
dram_info->is_16gb_dimm = ch0.is_16gb_dimm || ch1.is_16gb_dimm;
dram_info->symmetric_memory = intel_is_dram_symmetric(&ch0, &ch1);
DRM_DEBUG_KMS("Memory configuration is symmetric? %s\n",
yesno(dram_info->symmetric_memory));
return 0;
}
static enum intel_dram_type
skl_get_dram_type(struct drm_i915_private *dev_priv)
{
u32 val;
val = I915_READ(SKL_MAD_INTER_CHANNEL_0_0_0_MCHBAR_MCMAIN);
switch (val & SKL_DRAM_DDR_TYPE_MASK) {
case SKL_DRAM_DDR_TYPE_DDR3:
return INTEL_DRAM_DDR3;
case SKL_DRAM_DDR_TYPE_DDR4:
return INTEL_DRAM_DDR4;
case SKL_DRAM_DDR_TYPE_LPDDR3:
return INTEL_DRAM_LPDDR3;
case SKL_DRAM_DDR_TYPE_LPDDR4:
return INTEL_DRAM_LPDDR4;
default:
MISSING_CASE(val);
return INTEL_DRAM_UNKNOWN;
}
}
static int
skl_get_dram_info(struct drm_i915_private *dev_priv)
{
struct dram_info *dram_info = &dev_priv->dram_info;
u32 mem_freq_khz, val;
int ret;
dram_info->type = skl_get_dram_type(dev_priv);
DRM_DEBUG_KMS("DRAM type: %s\n", intel_dram_type_str(dram_info->type));
ret = skl_dram_get_channels_info(dev_priv);
if (ret)
return ret;
val = I915_READ(SKL_MC_BIOS_DATA_0_0_0_MCHBAR_PCU);
mem_freq_khz = DIV_ROUND_UP((val & SKL_REQ_DATA_MASK) *
SKL_MEMORY_FREQ_MULTIPLIER_HZ, 1000);
dram_info->bandwidth_kbps = dram_info->num_channels *
mem_freq_khz * 8;
if (dram_info->bandwidth_kbps == 0) {
DRM_INFO("Couldn't get system memory bandwidth\n");
return -EINVAL;
}
dram_info->valid = true;
return 0;
}
/* Returns Gb per DRAM device */
static int bxt_get_dimm_size(u32 val)
{
switch (val & BXT_DRAM_SIZE_MASK) {
case BXT_DRAM_SIZE_4GBIT:
return 4;
case BXT_DRAM_SIZE_6GBIT:
return 6;
case BXT_DRAM_SIZE_8GBIT:
return 8;
case BXT_DRAM_SIZE_12GBIT:
return 12;
case BXT_DRAM_SIZE_16GBIT:
return 16;
default:
MISSING_CASE(val);
return 0;
}
}
static int bxt_get_dimm_width(u32 val)
{
if (!bxt_get_dimm_size(val))
return 0;
val = (val & BXT_DRAM_WIDTH_MASK) >> BXT_DRAM_WIDTH_SHIFT;
return 8 << val;
}
static int bxt_get_dimm_ranks(u32 val)
{
if (!bxt_get_dimm_size(val))
return 0;
switch (val & BXT_DRAM_RANK_MASK) {
case BXT_DRAM_RANK_SINGLE:
return 1;
case BXT_DRAM_RANK_DUAL:
return 2;
default:
MISSING_CASE(val);
return 0;
}
}
static enum intel_dram_type bxt_get_dimm_type(u32 val)
{
if (!bxt_get_dimm_size(val))
return INTEL_DRAM_UNKNOWN;
switch (val & BXT_DRAM_TYPE_MASK) {
case BXT_DRAM_TYPE_DDR3:
return INTEL_DRAM_DDR3;
case BXT_DRAM_TYPE_LPDDR3:
return INTEL_DRAM_LPDDR3;
case BXT_DRAM_TYPE_DDR4:
return INTEL_DRAM_DDR4;
case BXT_DRAM_TYPE_LPDDR4:
return INTEL_DRAM_LPDDR4;
default:
MISSING_CASE(val);
return INTEL_DRAM_UNKNOWN;
}
}
static void bxt_get_dimm_info(struct dram_dimm_info *dimm,
u32 val)
{
dimm->width = bxt_get_dimm_width(val);
dimm->ranks = bxt_get_dimm_ranks(val);
/*
* Size in register is Gb per DRAM device. Convert to total
* GB to match the way we report this for non-LP platforms.
*/
dimm->size = bxt_get_dimm_size(val) * intel_dimm_num_devices(dimm) / 8;
}
static int
bxt_get_dram_info(struct drm_i915_private *dev_priv)
{
struct dram_info *dram_info = &dev_priv->dram_info;
u32 dram_channels;
u32 mem_freq_khz, val;
u8 num_active_channels;
int i;
val = I915_READ(BXT_P_CR_MC_BIOS_REQ_0_0_0);
mem_freq_khz = DIV_ROUND_UP((val & BXT_REQ_DATA_MASK) *
BXT_MEMORY_FREQ_MULTIPLIER_HZ, 1000);
dram_channels = val & BXT_DRAM_CHANNEL_ACTIVE_MASK;
num_active_channels = hweight32(dram_channels);
/* Each active bit represents 4-byte channel */
dram_info->bandwidth_kbps = (mem_freq_khz * num_active_channels * 4);
if (dram_info->bandwidth_kbps == 0) {
DRM_INFO("Couldn't get system memory bandwidth\n");
return -EINVAL;
}
/*
* Now read each DUNIT8/9/10/11 to check the rank of each dimms.
*/
for (i = BXT_D_CR_DRP0_DUNIT_START; i <= BXT_D_CR_DRP0_DUNIT_END; i++) {
struct dram_dimm_info dimm;
enum intel_dram_type type;
val = I915_READ(BXT_D_CR_DRP0_DUNIT(i));
if (val == 0xFFFFFFFF)
continue;
dram_info->num_channels++;
bxt_get_dimm_info(&dimm, val);
type = bxt_get_dimm_type(val);
WARN_ON(type != INTEL_DRAM_UNKNOWN &&
dram_info->type != INTEL_DRAM_UNKNOWN &&
dram_info->type != type);
DRM_DEBUG_KMS("CH%u DIMM size: %u GB, width: X%u, ranks: %u, type: %s\n",
i - BXT_D_CR_DRP0_DUNIT_START,
dimm.size, dimm.width, dimm.ranks,
intel_dram_type_str(type));
/*
* If any of the channel is single rank channel,
* worst case output will be same as if single rank
* memory, so consider single rank memory.
*/
if (dram_info->ranks == 0)
dram_info->ranks = dimm.ranks;
else if (dimm.ranks == 1)
dram_info->ranks = 1;
if (type != INTEL_DRAM_UNKNOWN)
dram_info->type = type;
}
if (dram_info->type == INTEL_DRAM_UNKNOWN ||
dram_info->ranks == 0) {
DRM_INFO("couldn't get memory information\n");
return -EINVAL;
}
dram_info->valid = true;
return 0;
}
static void
intel_get_dram_info(struct drm_i915_private *dev_priv)
{
struct dram_info *dram_info = &dev_priv->dram_info;
int ret;
/*
* Assume 16Gb DIMMs are present until proven otherwise.
* This is only used for the level 0 watermark latency
* w/a which does not apply to bxt/glk.
*/
dram_info->is_16gb_dimm = !IS_GEN9_LP(dev_priv);
if (INTEL_GEN(dev_priv) < 9)
return;
if (IS_GEN9_LP(dev_priv))
ret = bxt_get_dram_info(dev_priv);
else
ret = skl_get_dram_info(dev_priv);
if (ret)
return;
DRM_DEBUG_KMS("DRAM bandwidth: %u kBps, channels: %u\n",
dram_info->bandwidth_kbps,
dram_info->num_channels);
DRM_DEBUG_KMS("DRAM ranks: %u, 16Gb DIMMs: %s\n",
dram_info->ranks, yesno(dram_info->is_16gb_dimm));
}
static u32 gen9_edram_size_mb(struct drm_i915_private *dev_priv, u32 cap)
{
const unsigned int ways[8] = { 4, 8, 12, 16, 16, 16, 16, 16 };
const unsigned int sets[4] = { 1, 1, 2, 2 };
return EDRAM_NUM_BANKS(cap) *
ways[EDRAM_WAYS_IDX(cap)] *
sets[EDRAM_SETS_IDX(cap)];
}
static void edram_detect(struct drm_i915_private *dev_priv)
{
u32 edram_cap = 0;
if (!(IS_HASWELL(dev_priv) ||
IS_BROADWELL(dev_priv) ||
INTEL_GEN(dev_priv) >= 9))
return;
edram_cap = __raw_uncore_read32(&dev_priv->uncore, HSW_EDRAM_CAP);
/* NB: We can't write IDICR yet because we don't have gt funcs set up */
if (!(edram_cap & EDRAM_ENABLED))
return;
/*
* The needed capability bits for size calculation are not there with
* pre gen9 so return 128MB always.
*/
if (INTEL_GEN(dev_priv) < 9)
dev_priv->edram_size_mb = 128;
else
dev_priv->edram_size_mb =
gen9_edram_size_mb(dev_priv, edram_cap);
DRM_INFO("Found %uMB of eDRAM\n", dev_priv->edram_size_mb);
}
/**
* i915_driver_hw_probe - setup state requiring device access
* @dev_priv: device private
*
* Setup state that requires accessing the device, but doesn't require
* exposing the driver via kernel internal or userspace interfaces.
*/
static int i915_driver_hw_probe(struct drm_i915_private *dev_priv)
{
struct pci_dev *pdev = dev_priv->drm.pdev;
int ret;
if (i915_inject_probe_failure(dev_priv))
return -ENODEV;
intel_device_info_runtime_init(dev_priv);
if (HAS_PPGTT(dev_priv)) {
if (intel_vgpu_active(dev_priv) &&
!intel_vgpu_has_full_ppgtt(dev_priv)) {
i915_report_error(dev_priv,
"incompatible vGPU found, support for isolated ppGTT required\n");
return -ENXIO;
}
}
if (HAS_EXECLISTS(dev_priv)) {
/*
* Older GVT emulation depends upon intercepting CSB mmio,
* which we no longer use, preferring to use the HWSP cache
* instead.
*/
if (intel_vgpu_active(dev_priv) &&
!intel_vgpu_has_hwsp_emulation(dev_priv)) {
i915_report_error(dev_priv,
"old vGPU host found, support for HWSP emulation required\n");
return -ENXIO;
}
}
intel_sanitize_options(dev_priv);
/* needs to be done before ggtt probe */
edram_detect(dev_priv);
i915_perf_init(dev_priv);
ret = i915_ggtt_probe_hw(dev_priv);
if (ret)
goto err_perf;
/*
* WARNING: Apparently we must kick fbdev drivers before vgacon,
* otherwise the vga fbdev driver falls over.
*/
ret = i915_kick_out_firmware_fb(dev_priv);
if (ret) {
DRM_ERROR("failed to remove conflicting framebuffer drivers\n");
goto err_ggtt;
}
ret = vga_remove_vgacon(pdev);
if (ret) {
DRM_ERROR("failed to remove conflicting VGA console\n");
goto err_ggtt;
}
ret = i915_ggtt_init_hw(dev_priv);
if (ret)
goto err_ggtt;
intel_gt_init_hw(dev_priv);
ret = i915_ggtt_enable_hw(dev_priv);
if (ret) {
DRM_ERROR("failed to enable GGTT\n");
goto err_ggtt;
}
pci_set_master(pdev);
/* overlay on gen2 is broken and can't address above 1G */
if (IS_GEN(dev_priv, 2)) {
ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(30));
if (ret) {
DRM_ERROR("failed to set DMA mask\n");
goto err_ggtt;
}
}
/* 965GM sometimes incorrectly writes to hardware status page (HWS)
* using 32bit addressing, overwriting memory if HWS is located
* above 4GB.
*
* The documentation also mentions an issue with undefined
* behaviour if any general state is accessed within a page above 4GB,
* which also needs to be handled carefully.
*/
if (IS_I965G(dev_priv) || IS_I965GM(dev_priv)) {
ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
if (ret) {
DRM_ERROR("failed to set DMA mask\n");
goto err_ggtt;
}
}
pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY,
PM_QOS_DEFAULT_VALUE);
/* BIOS often leaves RC6 enabled, but disable it for hw init */
intel_sanitize_gt_powersave(dev_priv);
intel_gt_init_workarounds(dev_priv);
/* On the 945G/GM, the chipset reports the MSI capability on the
* integrated graphics even though the support isn't actually there
* according to the published specs. It doesn't appear to function
* correctly in testing on 945G.
* This may be a side effect of MSI having been made available for PEG
* and the registers being closely associated.
*
* According to chipset errata, on the 965GM, MSI interrupts may
* be lost or delayed, and was defeatured. MSI interrupts seem to
* get lost on g4x as well, and interrupt delivery seems to stay
* properly dead afterwards. So we'll just disable them for all
* pre-gen5 chipsets.
*
* dp aux and gmbus irq on gen4 seems to be able to generate legacy
* interrupts even when in MSI mode. This results in spurious
* interrupt warnings if the legacy irq no. is shared with another
* device. The kernel then disables that interrupt source and so
* prevents the other device from working properly.
*/
if (INTEL_GEN(dev_priv) >= 5) {
if (pci_enable_msi(pdev) < 0)
DRM_DEBUG_DRIVER("can't enable MSI");
}
ret = intel_gvt_init(dev_priv);
if (ret)
goto err_msi;
intel_opregion_setup(dev_priv);
/*
* Fill the dram structure to get the system raw bandwidth and
* dram info. This will be used for memory latency calculation.
*/
intel_get_dram_info(dev_priv);
intel_bw_init_hw(dev_priv);
return 0;
err_msi:
if (pdev->msi_enabled)
pci_disable_msi(pdev);
pm_qos_remove_request(&dev_priv->pm_qos);
err_ggtt:
i915_ggtt_driver_release(dev_priv);
err_perf:
i915_perf_fini(dev_priv);
return ret;
}
/**
* i915_driver_hw_remove - cleanup the setup done in i915_driver_hw_probe()
* @dev_priv: device private
*/
static void i915_driver_hw_remove(struct drm_i915_private *dev_priv)
{
struct pci_dev *pdev = dev_priv->drm.pdev;
i915_perf_fini(dev_priv);
if (pdev->msi_enabled)
pci_disable_msi(pdev);
pm_qos_remove_request(&dev_priv->pm_qos);
}
/**
* i915_driver_register - register the driver with the rest of the system
* @dev_priv: device private
*
* Perform any steps necessary to make the driver available via kernel
* internal or userspace interfaces.
*/
static void i915_driver_register(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = &dev_priv->drm;
i915_gem_driver_register(dev_priv);
i915_pmu_register(dev_priv);
/*
* Notify a valid surface after modesetting,
* when running inside a VM.
*/
if (intel_vgpu_active(dev_priv))
I915_WRITE(vgtif_reg(display_ready), VGT_DRV_DISPLAY_READY);
/* Reveal our presence to userspace */
if (drm_dev_register(dev, 0) == 0) {
i915_debugfs_register(dev_priv);
i915_setup_sysfs(dev_priv);
/* Depends on sysfs having been initialized */
i915_perf_register(dev_priv);
} else
DRM_ERROR("Failed to register driver for userspace access!\n");
if (HAS_DISPLAY(dev_priv)) {
/* Must be done after probing outputs */
intel_opregion_register(dev_priv);
acpi_video_register();
}
if (IS_GEN(dev_priv, 5))
intel_gpu_ips_init(dev_priv);
intel_audio_init(dev_priv);
/*
* Some ports require correctly set-up hpd registers for detection to
* work properly (leading to ghost connected connector status), e.g. VGA
* on gm45. Hence we can only set up the initial fbdev config after hpd
* irqs are fully enabled. We do it last so that the async config
* cannot run before the connectors are registered.
*/
intel_fbdev_initial_config_async(dev);
/*
* We need to coordinate the hotplugs with the asynchronous fbdev
* configuration, for which we use the fbdev->async_cookie.
*/
if (HAS_DISPLAY(dev_priv))
drm_kms_helper_poll_init(dev);
intel_power_domains_enable(dev_priv);
intel_runtime_pm_enable(&dev_priv->runtime_pm);
}
/**
* i915_driver_unregister - cleanup the registration done in i915_driver_regiser()
* @dev_priv: device private
*/
static void i915_driver_unregister(struct drm_i915_private *dev_priv)
{
intel_runtime_pm_disable(&dev_priv->runtime_pm);
intel_power_domains_disable(dev_priv);
intel_fbdev_unregister(dev_priv);
intel_audio_deinit(dev_priv);
/*
* After flushing the fbdev (incl. a late async config which will
* have delayed queuing of a hotplug event), then flush the hotplug
* events.
*/
drm_kms_helper_poll_fini(&dev_priv->drm);
intel_gpu_ips_teardown();
acpi_video_unregister();
intel_opregion_unregister(dev_priv);
i915_perf_unregister(dev_priv);
i915_pmu_unregister(dev_priv);
i915_teardown_sysfs(dev_priv);
drm_dev_unplug(&dev_priv->drm);
i915_gem_driver_unregister(dev_priv);
}
static void i915_welcome_messages(struct drm_i915_private *dev_priv)
{
if (drm_debug & DRM_UT_DRIVER) {
struct drm_printer p = drm_debug_printer("i915 device info:");
drm_printf(&p, "pciid=0x%04x rev=0x%02x platform=%s (subplatform=0x%x) gen=%i\n",
INTEL_DEVID(dev_priv),
INTEL_REVID(dev_priv),
intel_platform_name(INTEL_INFO(dev_priv)->platform),
intel_subplatform(RUNTIME_INFO(dev_priv),
INTEL_INFO(dev_priv)->platform),
INTEL_GEN(dev_priv));
intel_device_info_dump_flags(INTEL_INFO(dev_priv), &p);
intel_device_info_dump_runtime(RUNTIME_INFO(dev_priv), &p);
}
if (IS_ENABLED(CONFIG_DRM_I915_DEBUG))
DRM_INFO("DRM_I915_DEBUG enabled\n");
if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
DRM_INFO("DRM_I915_DEBUG_GEM enabled\n");
if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM))
DRM_INFO("DRM_I915_DEBUG_RUNTIME_PM enabled\n");
}
static struct drm_i915_private *
i915_driver_create(struct pci_dev *pdev, const struct pci_device_id *ent)
{
const struct intel_device_info *match_info =
(struct intel_device_info *)ent->driver_data;
struct intel_device_info *device_info;
struct drm_i915_private *i915;
int err;
i915 = kzalloc(sizeof(*i915), GFP_KERNEL);
if (!i915)
return ERR_PTR(-ENOMEM);
err = drm_dev_init(&i915->drm, &driver, &pdev->dev);
if (err) {
kfree(i915);
return ERR_PTR(err);
}
i915->drm.dev_private = i915;
i915->drm.pdev = pdev;
pci_set_drvdata(pdev, i915);
/* Setup the write-once "constant" device info */
device_info = mkwrite_device_info(i915);
memcpy(device_info, match_info, sizeof(*device_info));
RUNTIME_INFO(i915)->device_id = pdev->device;
BUG_ON(device_info->gen > BITS_PER_TYPE(device_info->gen_mask));
return i915;
}
static void i915_driver_destroy(struct drm_i915_private *i915)
{
struct pci_dev *pdev = i915->drm.pdev;
drm_dev_fini(&i915->drm);
kfree(i915);
/* And make sure we never chase our dangling pointer from pci_dev */
pci_set_drvdata(pdev, NULL);
}
/**
* i915_driver_probe - setup chip and create an initial config
* @pdev: PCI device
* @ent: matching PCI ID entry
*
* The driver probe routine has to do several things:
* - drive output discovery via intel_modeset_init()
* - initialize the memory manager
* - allocate initial config memory
* - setup the DRM framebuffer with the allocated memory
*/
int i915_driver_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
const struct intel_device_info *match_info =
(struct intel_device_info *)ent->driver_data;
struct drm_i915_private *dev_priv;
int ret;
dev_priv = i915_driver_create(pdev, ent);
if (IS_ERR(dev_priv))
return PTR_ERR(dev_priv);
/* Disable nuclear pageflip by default on pre-ILK */
if (!i915_modparams.nuclear_pageflip && match_info->gen < 5)
dev_priv->drm.driver_features &= ~DRIVER_ATOMIC;
ret = pci_enable_device(pdev);
if (ret)
goto out_fini;
ret = i915_driver_early_probe(dev_priv);
if (ret < 0)
goto out_pci_disable;
disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
i915_detect_vgpu(dev_priv);
ret = i915_driver_mmio_probe(dev_priv);
if (ret < 0)
goto out_runtime_pm_put;
ret = i915_driver_hw_probe(dev_priv);
if (ret < 0)
goto out_cleanup_mmio;
ret = i915_driver_modeset_probe(&dev_priv->drm);
if (ret < 0)
goto out_cleanup_hw;
i915_driver_register(dev_priv);
enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
i915_welcome_messages(dev_priv);
return 0;
out_cleanup_hw:
i915_driver_hw_remove(dev_priv);
i915_ggtt_driver_release(dev_priv);
/* Paranoia: make sure we have disabled everything before we exit. */
intel_sanitize_gt_powersave(dev_priv);
out_cleanup_mmio:
i915_driver_mmio_release(dev_priv);
out_runtime_pm_put:
enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
i915_driver_late_release(dev_priv);
out_pci_disable:
pci_disable_device(pdev);
out_fini:
i915_probe_error(dev_priv, "Device initialization failed (%d)\n", ret);
i915_driver_destroy(dev_priv);
return ret;
}
void i915_driver_remove(struct drm_i915_private *i915)
{
struct pci_dev *pdev = i915->drm.pdev;
disable_rpm_wakeref_asserts(&i915->runtime_pm);
i915_driver_unregister(i915);
/*
* After unregistering the device to prevent any new users, cancel
* all in-flight requests so that we can quickly unbind the active
* resources.
*/
intel_gt_set_wedged(&i915->gt);
/* Flush any external code that still may be under the RCU lock */
synchronize_rcu();
i915_gem_suspend(i915);
drm_atomic_helper_shutdown(&i915->drm);
intel_gvt_driver_remove(i915);
intel_modeset_driver_remove(&i915->drm);
intel_bios_driver_remove(i915);
vga_switcheroo_unregister_client(pdev);
vga_client_register(pdev, NULL, NULL, NULL);
intel_csr_ucode_fini(i915);
/* Free error state after interrupts are fully disabled. */
cancel_delayed_work_sync(&i915->gt.hangcheck.work);
i915_reset_error_state(i915);
i915_gem_driver_remove(i915);
intel_power_domains_driver_remove(i915);
i915_driver_hw_remove(i915);
enable_rpm_wakeref_asserts(&i915->runtime_pm);
}
static void i915_driver_release(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
disable_rpm_wakeref_asserts(rpm);
i915_gem_driver_release(dev_priv);
i915_ggtt_driver_release(dev_priv);
/* Paranoia: make sure we have disabled everything before we exit. */
intel_sanitize_gt_powersave(dev_priv);
i915_driver_mmio_release(dev_priv);
enable_rpm_wakeref_asserts(rpm);
intel_runtime_pm_driver_release(rpm);
i915_driver_late_release(dev_priv);
i915_driver_destroy(dev_priv);
}
static int i915_driver_open(struct drm_device *dev, struct drm_file *file)
{
struct drm_i915_private *i915 = to_i915(dev);
int ret;
ret = i915_gem_open(i915, file);
if (ret)
return ret;
return 0;
}
/**
* i915_driver_lastclose - clean up after all DRM clients have exited
* @dev: DRM device
*
* Take care of cleaning up after all DRM clients have exited. In the
* mode setting case, we want to restore the kernel's initial mode (just
* in case the last client left us in a bad state).
*
* Additionally, in the non-mode setting case, we'll tear down the GTT
* and DMA structures, since the kernel won't be using them, and clea
* up any GEM state.
*/
static void i915_driver_lastclose(struct drm_device *dev)
{
intel_fbdev_restore_mode(dev);
vga_switcheroo_process_delayed_switch();
}
static void i915_driver_postclose(struct drm_device *dev, struct drm_file *file)
{
struct drm_i915_file_private *file_priv = file->driver_priv;
mutex_lock(&dev->struct_mutex);
i915_gem_context_close(file);
i915_gem_release(dev, file);
mutex_unlock(&dev->struct_mutex);
kfree(file_priv);
/* Catch up with all the deferred frees from "this" client */
i915_gem_flush_free_objects(to_i915(dev));
}
static void intel_suspend_encoders(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = &dev_priv->drm;
struct intel_encoder *encoder;
drm_modeset_lock_all(dev);
for_each_intel_encoder(dev, encoder)
if (encoder->suspend)
encoder->suspend(encoder);
drm_modeset_unlock_all(dev);
}
static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
bool rpm_resume);
static int vlv_suspend_complete(struct drm_i915_private *dev_priv);
static bool suspend_to_idle(struct drm_i915_private *dev_priv)
{
#if IS_ENABLED(CONFIG_ACPI_SLEEP)
if (acpi_target_system_state() < ACPI_STATE_S3)
return true;
#endif
return false;
}
static int i915_drm_prepare(struct drm_device *dev)
{
struct drm_i915_private *i915 = to_i915(dev);
/*
* NB intel_display_suspend() may issue new requests after we've
* ostensibly marked the GPU as ready-to-sleep here. We need to
* split out that work and pull it forward so that after point,
* the GPU is not woken again.
*/
i915_gem_suspend(i915);
return 0;
}
static int i915_drm_suspend(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
struct pci_dev *pdev = dev_priv->drm.pdev;
pci_power_t opregion_target_state;
disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
/* We do a lot of poking in a lot of registers, make sure they work
* properly. */
intel_power_domains_disable(dev_priv);
drm_kms_helper_poll_disable(dev);
pci_save_state(pdev);
intel_display_suspend(dev);
intel_dp_mst_suspend(dev_priv);
intel_runtime_pm_disable_interrupts(dev_priv);
intel_hpd_cancel_work(dev_priv);
intel_suspend_encoders(dev_priv);
intel_suspend_hw(dev_priv);
i915_gem_suspend_gtt_mappings(dev_priv);
i915_save_state(dev_priv);
opregion_target_state = suspend_to_idle(dev_priv) ? PCI_D1 : PCI_D3cold;
intel_opregion_suspend(dev_priv, opregion_target_state);
intel_fbdev_set_suspend(dev, FBINFO_STATE_SUSPENDED, true);
dev_priv->suspend_count++;
intel_csr_ucode_suspend(dev_priv);
enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
return 0;
}
static enum i915_drm_suspend_mode
get_suspend_mode(struct drm_i915_private *dev_priv, bool hibernate)
{
if (hibernate)
return I915_DRM_SUSPEND_HIBERNATE;
if (suspend_to_idle(dev_priv))
return I915_DRM_SUSPEND_IDLE;
return I915_DRM_SUSPEND_MEM;
}
static int i915_drm_suspend_late(struct drm_device *dev, bool hibernation)
{
struct drm_i915_private *dev_priv = to_i915(dev);
struct pci_dev *pdev = dev_priv->drm.pdev;
struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
int ret = 0;
disable_rpm_wakeref_asserts(rpm);
i915_gem_suspend_late(dev_priv);
intel_uncore_suspend(&dev_priv->uncore);
intel_power_domains_suspend(dev_priv,
get_suspend_mode(dev_priv, hibernation));
intel_display_power_suspend_late(dev_priv);
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
ret = vlv_suspend_complete(dev_priv);
if (ret) {
DRM_ERROR("Suspend complete failed: %d\n", ret);
intel_power_domains_resume(dev_priv);
goto out;
}
pci_disable_device(pdev);
/*
* During hibernation on some platforms the BIOS may try to access
* the device even though it's already in D3 and hang the machine. So
* leave the device in D0 on those platforms and hope the BIOS will
* power down the device properly. The issue was seen on multiple old
* GENs with different BIOS vendors, so having an explicit blacklist
* is inpractical; apply the workaround on everything pre GEN6. The
* platforms where the issue was seen:
* Lenovo Thinkpad X301, X61s, X60, T60, X41
* Fujitsu FSC S7110
* Acer Aspire 1830T
*/
if (!(hibernation && INTEL_GEN(dev_priv) < 6))
pci_set_power_state(pdev, PCI_D3hot);
out:
enable_rpm_wakeref_asserts(rpm);
if (!dev_priv->uncore.user_forcewake.count)
intel_runtime_pm_driver_release(rpm);
return ret;
}
static int
i915_suspend_switcheroo(struct drm_i915_private *i915, pm_message_t state)
{
int error;
if (WARN_ON_ONCE(state.event != PM_EVENT_SUSPEND &&
state.event != PM_EVENT_FREEZE))
return -EINVAL;
if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
return 0;
error = i915_drm_suspend(&i915->drm);
if (error)
return error;
return i915_drm_suspend_late(&i915->drm, false);
}
static int i915_drm_resume(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
int ret;
disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
intel_sanitize_gt_powersave(dev_priv);
i915_gem_sanitize(dev_priv);
ret = i915_ggtt_enable_hw(dev_priv);
if (ret)
DRM_ERROR("failed to re-enable GGTT\n");
intel_csr_ucode_resume(dev_priv);
i915_restore_state(dev_priv);
intel_pps_unlock_regs_wa(dev_priv);
intel_init_pch_refclk(dev_priv);
/*
* Interrupts have to be enabled before any batches are run. If not the
* GPU will hang. i915_gem_init_hw() will initiate batches to
* update/restore the context.
*
* drm_mode_config_reset() needs AUX interrupts.
*
* Modeset enabling in intel_modeset_init_hw() also needs working
* interrupts.
*/
intel_runtime_pm_enable_interrupts(dev_priv);
drm_mode_config_reset(dev);
i915_gem_resume(dev_priv);
intel_modeset_init_hw(dev);
intel_init_clock_gating(dev_priv);
spin_lock_irq(&dev_priv->irq_lock);
if (dev_priv->display.hpd_irq_setup)
dev_priv->display.hpd_irq_setup(dev_priv);
spin_unlock_irq(&dev_priv->irq_lock);
intel_dp_mst_resume(dev_priv);
intel_display_resume(dev);
drm_kms_helper_poll_enable(dev);
/*
* ... but also need to make sure that hotplug processing
* doesn't cause havoc. Like in the driver load code we don't
* bother with the tiny race here where we might lose hotplug
* notifications.
* */
intel_hpd_init(dev_priv);
intel_opregion_resume(dev_priv);
intel_fbdev_set_suspend(dev, FBINFO_STATE_RUNNING, false);
intel_power_domains_enable(dev_priv);
enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
return 0;
}
static int i915_drm_resume_early(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
struct pci_dev *pdev = dev_priv->drm.pdev;
int ret;
/*
* We have a resume ordering issue with the snd-hda driver also
* requiring our device to be power up. Due to the lack of a
* parent/child relationship we currently solve this with an early
* resume hook.
*
* FIXME: This should be solved with a special hdmi sink device or
* similar so that power domains can be employed.
*/
/*
* Note that we need to set the power state explicitly, since we
* powered off the device during freeze and the PCI core won't power
* it back up for us during thaw. Powering off the device during
* freeze is not a hard requirement though, and during the
* suspend/resume phases the PCI core makes sure we get here with the
* device powered on. So in case we change our freeze logic and keep
* the device powered we can also remove the following set power state
* call.
*/
ret = pci_set_power_state(pdev, PCI_D0);
if (ret) {
DRM_ERROR("failed to set PCI D0 power state (%d)\n", ret);
return ret;
}
/*
* Note that pci_enable_device() first enables any parent bridge
* device and only then sets the power state for this device. The
* bridge enabling is a nop though, since bridge devices are resumed
* first. The order of enabling power and enabling the device is
* imposed by the PCI core as described above, so here we preserve the
* same order for the freeze/thaw phases.
*
* TODO: eventually we should remove pci_disable_device() /
* pci_enable_enable_device() from suspend/resume. Due to how they
* depend on the device enable refcount we can't anyway depend on them
* disabling/enabling the device.
*/
if (pci_enable_device(pdev))
return -EIO;
pci_set_master(pdev);
disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
ret = vlv_resume_prepare(dev_priv, false);
if (ret)
DRM_ERROR("Resume prepare failed: %d, continuing anyway\n",
ret);
intel_uncore_resume_early(&dev_priv->uncore);
intel_gt_check_and_clear_faults(&dev_priv->gt);
intel_display_power_resume_early(dev_priv);
intel_sanitize_gt_powersave(dev_priv);
intel_power_domains_resume(dev_priv);
intel_gt_sanitize(&dev_priv->gt, true);
enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
return ret;
}
static int i915_resume_switcheroo(struct drm_i915_private *i915)
{
int ret;
if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
return 0;
ret = i915_drm_resume_early(&i915->drm);
if (ret)
return ret;
return i915_drm_resume(&i915->drm);
}
static int i915_pm_prepare(struct device *kdev)
{
struct drm_i915_private *i915 = kdev_to_i915(kdev);
if (!i915) {
dev_err(kdev, "DRM not initialized, aborting suspend.\n");
return -ENODEV;
}
if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
return 0;
return i915_drm_prepare(&i915->drm);
}
static int i915_pm_suspend(struct device *kdev)
{
struct drm_i915_private *i915 = kdev_to_i915(kdev);
if (!i915) {
dev_err(kdev, "DRM not initialized, aborting suspend.\n");
return -ENODEV;
}
if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
return 0;
return i915_drm_suspend(&i915->drm);
}
static int i915_pm_suspend_late(struct device *kdev)
{
struct drm_i915_private *i915 = kdev_to_i915(kdev);
/*
* We have a suspend ordering issue with the snd-hda driver also
* requiring our device to be power up. Due to the lack of a
* parent/child relationship we currently solve this with an late
* suspend hook.
*
* FIXME: This should be solved with a special hdmi sink device or
* similar so that power domains can be employed.
*/
if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
return 0;
return i915_drm_suspend_late(&i915->drm, false);
}
static int i915_pm_poweroff_late(struct device *kdev)
{
struct drm_i915_private *i915 = kdev_to_i915(kdev);
if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
return 0;
return i915_drm_suspend_late(&i915->drm, true);
}
static int i915_pm_resume_early(struct device *kdev)
{
struct drm_i915_private *i915 = kdev_to_i915(kdev);
if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
return 0;
return i915_drm_resume_early(&i915->drm);
}
static int i915_pm_resume(struct device *kdev)
{
struct drm_i915_private *i915 = kdev_to_i915(kdev);
if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
return 0;
return i915_drm_resume(&i915->drm);
}
/* freeze: before creating the hibernation_image */
static int i915_pm_freeze(struct device *kdev)
{
struct drm_i915_private *i915 = kdev_to_i915(kdev);
int ret;
if (i915->drm.switch_power_state != DRM_SWITCH_POWER_OFF) {
ret = i915_drm_suspend(&i915->drm);
if (ret)
return ret;
}
ret = i915_gem_freeze(i915);
if (ret)
return ret;
return 0;
}
static int i915_pm_freeze_late(struct device *kdev)
{
struct drm_i915_private *i915 = kdev_to_i915(kdev);
int ret;
if (i915->drm.switch_power_state != DRM_SWITCH_POWER_OFF) {
ret = i915_drm_suspend_late(&i915->drm, true);
if (ret)
return ret;
}
ret = i915_gem_freeze_late(i915);
if (ret)
return ret;
return 0;
}
/* thaw: called after creating the hibernation image, but before turning off. */
static int i915_pm_thaw_early(struct device *kdev)
{
return i915_pm_resume_early(kdev);
}
static int i915_pm_thaw(struct device *kdev)
{
return i915_pm_resume(kdev);
}
/* restore: called after loading the hibernation image. */
static int i915_pm_restore_early(struct device *kdev)
{
return i915_pm_resume_early(kdev);
}
static int i915_pm_restore(struct device *kdev)
{
return i915_pm_resume(kdev);
}
/*
* Save all Gunit registers that may be lost after a D3 and a subsequent
* S0i[R123] transition. The list of registers needing a save/restore is
* defined in the VLV2_S0IXRegs document. This documents marks all Gunit
* registers in the following way:
* - Driver: saved/restored by the driver
* - Punit : saved/restored by the Punit firmware
* - No, w/o marking: no need to save/restore, since the register is R/O or
* used internally by the HW in a way that doesn't depend
* keeping the content across a suspend/resume.
* - Debug : used for debugging
*
* We save/restore all registers marked with 'Driver', with the following
* exceptions:
* - Registers out of use, including also registers marked with 'Debug'.
* These have no effect on the driver's operation, so we don't save/restore
* them to reduce the overhead.
* - Registers that are fully setup by an initialization function called from
* the resume path. For example many clock gating and RPS/RC6 registers.
* - Registers that provide the right functionality with their reset defaults.
*
* TODO: Except for registers that based on the above 3 criteria can be safely
* ignored, we save/restore all others, practically treating the HW context as
* a black-box for the driver. Further investigation is needed to reduce the
* saved/restored registers even further, by following the same 3 criteria.
*/
static void vlv_save_gunit_s0ix_state(struct drm_i915_private *dev_priv)
{
struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
int i;
/* GAM 0x4000-0x4770 */
s->wr_watermark = I915_READ(GEN7_WR_WATERMARK);
s->gfx_prio_ctrl = I915_READ(GEN7_GFX_PRIO_CTRL);
s->arb_mode = I915_READ(ARB_MODE);
s->gfx_pend_tlb0 = I915_READ(GEN7_GFX_PEND_TLB0);
s->gfx_pend_tlb1 = I915_READ(GEN7_GFX_PEND_TLB1);
for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
s->lra_limits[i] = I915_READ(GEN7_LRA_LIMITS(i));
s->media_max_req_count = I915_READ(GEN7_MEDIA_MAX_REQ_COUNT);
s->gfx_max_req_count = I915_READ(GEN7_GFX_MAX_REQ_COUNT);
s->render_hwsp = I915_READ(RENDER_HWS_PGA_GEN7);
s->ecochk = I915_READ(GAM_ECOCHK);
s->bsd_hwsp = I915_READ(BSD_HWS_PGA_GEN7);
s->blt_hwsp = I915_READ(BLT_HWS_PGA_GEN7);
s->tlb_rd_addr = I915_READ(GEN7_TLB_RD_ADDR);
/* MBC 0x9024-0x91D0, 0x8500 */
s->g3dctl = I915_READ(VLV_G3DCTL);
s->gsckgctl = I915_READ(VLV_GSCKGCTL);
s->mbctl = I915_READ(GEN6_MBCTL);
/* GCP 0x9400-0x9424, 0x8100-0x810C */
s->ucgctl1 = I915_READ(GEN6_UCGCTL1);
s->ucgctl3 = I915_READ(GEN6_UCGCTL3);
s->rcgctl1 = I915_READ(GEN6_RCGCTL1);
s->rcgctl2 = I915_READ(GEN6_RCGCTL2);
s->rstctl = I915_READ(GEN6_RSTCTL);
s->misccpctl = I915_READ(GEN7_MISCCPCTL);
/* GPM 0xA000-0xAA84, 0x8000-0x80FC */
s->gfxpause = I915_READ(GEN6_GFXPAUSE);
s->rpdeuhwtc = I915_READ(GEN6_RPDEUHWTC);
s->rpdeuc = I915_READ(GEN6_RPDEUC);
s->ecobus = I915_READ(ECOBUS);
s->pwrdwnupctl = I915_READ(VLV_PWRDWNUPCTL);
s->rp_down_timeout = I915_READ(GEN6_RP_DOWN_TIMEOUT);
s->rp_deucsw = I915_READ(GEN6_RPDEUCSW);
s->rcubmabdtmr = I915_READ(GEN6_RCUBMABDTMR);
s->rcedata = I915_READ(VLV_RCEDATA);
s->spare2gh = I915_READ(VLV_SPAREG2H);
/* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
s->gt_imr = I915_READ(GTIMR);
s->gt_ier = I915_READ(GTIER);
s->pm_imr = I915_READ(GEN6_PMIMR);
s->pm_ier = I915_READ(GEN6_PMIER);
for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
s->gt_scratch[i] = I915_READ(GEN7_GT_SCRATCH(i));
/* GT SA CZ domain, 0x100000-0x138124 */
s->tilectl = I915_READ(TILECTL);
s->gt_fifoctl = I915_READ(GTFIFOCTL);
s->gtlc_wake_ctrl = I915_READ(VLV_GTLC_WAKE_CTRL);
s->gtlc_survive = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
s->pmwgicz = I915_READ(VLV_PMWGICZ);
/* Gunit-Display CZ domain, 0x182028-0x1821CF */
s->gu_ctl0 = I915_READ(VLV_GU_CTL0);
s->gu_ctl1 = I915_READ(VLV_GU_CTL1);
s->pcbr = I915_READ(VLV_PCBR);
s->clock_gate_dis2 = I915_READ(VLV_GUNIT_CLOCK_GATE2);
/*
* Not saving any of:
* DFT, 0x9800-0x9EC0
* SARB, 0xB000-0xB1FC
* GAC, 0x5208-0x524C, 0x14000-0x14C000
* PCI CFG
*/
}
static void vlv_restore_gunit_s0ix_state(struct drm_i915_private *dev_priv)
{
struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
u32 val;
int i;
/* GAM 0x4000-0x4770 */
I915_WRITE(GEN7_WR_WATERMARK, s->wr_watermark);
I915_WRITE(GEN7_GFX_PRIO_CTRL, s->gfx_prio_ctrl);
I915_WRITE(ARB_MODE, s->arb_mode | (0xffff << 16));
I915_WRITE(GEN7_GFX_PEND_TLB0, s->gfx_pend_tlb0);
I915_WRITE(GEN7_GFX_PEND_TLB1, s->gfx_pend_tlb1);
for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
I915_WRITE(GEN7_LRA_LIMITS(i), s->lra_limits[i]);
I915_WRITE(GEN7_MEDIA_MAX_REQ_COUNT, s->media_max_req_count);
I915_WRITE(GEN7_GFX_MAX_REQ_COUNT, s->gfx_max_req_count);
I915_WRITE(RENDER_HWS_PGA_GEN7, s->render_hwsp);
I915_WRITE(GAM_ECOCHK, s->ecochk);
I915_WRITE(BSD_HWS_PGA_GEN7, s->bsd_hwsp);
I915_WRITE(BLT_HWS_PGA_GEN7, s->blt_hwsp);
I915_WRITE(GEN7_TLB_RD_ADDR, s->tlb_rd_addr);
/* MBC 0x9024-0x91D0, 0x8500 */
I915_WRITE(VLV_G3DCTL, s->g3dctl);
I915_WRITE(VLV_GSCKGCTL, s->gsckgctl);
I915_WRITE(GEN6_MBCTL, s->mbctl);
/* GCP 0x9400-0x9424, 0x8100-0x810C */
I915_WRITE(GEN6_UCGCTL1, s->ucgctl1);
I915_WRITE(GEN6_UCGCTL3, s->ucgctl3);
I915_WRITE(GEN6_RCGCTL1, s->rcgctl1);
I915_WRITE(GEN6_RCGCTL2, s->rcgctl2);
I915_WRITE(GEN6_RSTCTL, s->rstctl);
I915_WRITE(GEN7_MISCCPCTL, s->misccpctl);
/* GPM 0xA000-0xAA84, 0x8000-0x80FC */
I915_WRITE(GEN6_GFXPAUSE, s->gfxpause);
I915_WRITE(GEN6_RPDEUHWTC, s->rpdeuhwtc);
I915_WRITE(GEN6_RPDEUC, s->rpdeuc);
I915_WRITE(ECOBUS, s->ecobus);
I915_WRITE(VLV_PWRDWNUPCTL, s->pwrdwnupctl);
I915_WRITE(GEN6_RP_DOWN_TIMEOUT,s->rp_down_timeout);
I915_WRITE(GEN6_RPDEUCSW, s->rp_deucsw);
I915_WRITE(GEN6_RCUBMABDTMR, s->rcubmabdtmr);
I915_WRITE(VLV_RCEDATA, s->rcedata);
I915_WRITE(VLV_SPAREG2H, s->spare2gh);
/* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
I915_WRITE(GTIMR, s->gt_imr);
I915_WRITE(GTIER, s->gt_ier);
I915_WRITE(GEN6_PMIMR, s->pm_imr);
I915_WRITE(GEN6_PMIER, s->pm_ier);
for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
I915_WRITE(GEN7_GT_SCRATCH(i), s->gt_scratch[i]);
/* GT SA CZ domain, 0x100000-0x138124 */
I915_WRITE(TILECTL, s->tilectl);
I915_WRITE(GTFIFOCTL, s->gt_fifoctl);
/*
* Preserve the GT allow wake and GFX force clock bit, they are not
* be restored, as they are used to control the s0ix suspend/resume
* sequence by the caller.
*/
val = I915_READ(VLV_GTLC_WAKE_CTRL);
val &= VLV_GTLC_ALLOWWAKEREQ;
val |= s->gtlc_wake_ctrl & ~VLV_GTLC_ALLOWWAKEREQ;
I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
val &= VLV_GFX_CLK_FORCE_ON_BIT;
val |= s->gtlc_survive & ~VLV_GFX_CLK_FORCE_ON_BIT;
I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
I915_WRITE(VLV_PMWGICZ, s->pmwgicz);
/* Gunit-Display CZ domain, 0x182028-0x1821CF */
I915_WRITE(VLV_GU_CTL0, s->gu_ctl0);
I915_WRITE(VLV_GU_CTL1, s->gu_ctl1);
I915_WRITE(VLV_PCBR, s->pcbr);
I915_WRITE(VLV_GUNIT_CLOCK_GATE2, s->clock_gate_dis2);
}
static int vlv_wait_for_pw_status(struct drm_i915_private *i915,
u32 mask, u32 val)
{
i915_reg_t reg = VLV_GTLC_PW_STATUS;
u32 reg_value;
int ret;
/* The HW does not like us polling for PW_STATUS frequently, so
* use the sleeping loop rather than risk the busy spin within
* intel_wait_for_register().
*
* Transitioning between RC6 states should be at most 2ms (see
* valleyview_enable_rps) so use a 3ms timeout.
*/
ret = wait_for(((reg_value =
intel_uncore_read_notrace(&i915->uncore, reg)) & mask)
== val, 3);
/* just trace the final value */
trace_i915_reg_rw(false, reg, reg_value, sizeof(reg_value), true);
return ret;
}
int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool force_on)
{
u32 val;
int err;
val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
val &= ~VLV_GFX_CLK_FORCE_ON_BIT;
if (force_on)
val |= VLV_GFX_CLK_FORCE_ON_BIT;
I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
if (!force_on)
return 0;
err = intel_wait_for_register(&dev_priv->uncore,
VLV_GTLC_SURVIVABILITY_REG,
VLV_GFX_CLK_STATUS_BIT,
VLV_GFX_CLK_STATUS_BIT,
20);
if (err)
DRM_ERROR("timeout waiting for GFX clock force-on (%08x)\n",
I915_READ(VLV_GTLC_SURVIVABILITY_REG));
return err;
}
static int vlv_allow_gt_wake(struct drm_i915_private *dev_priv, bool allow)
{
u32 mask;
u32 val;
int err;
val = I915_READ(VLV_GTLC_WAKE_CTRL);
val &= ~VLV_GTLC_ALLOWWAKEREQ;
if (allow)
val |= VLV_GTLC_ALLOWWAKEREQ;
I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
POSTING_READ(VLV_GTLC_WAKE_CTRL);
mask = VLV_GTLC_ALLOWWAKEACK;
val = allow ? mask : 0;
err = vlv_wait_for_pw_status(dev_priv, mask, val);
if (err)
DRM_ERROR("timeout disabling GT waking\n");
return err;
}
static void vlv_wait_for_gt_wells(struct drm_i915_private *dev_priv,
bool wait_for_on)
{
u32 mask;
u32 val;
mask = VLV_GTLC_PW_MEDIA_STATUS_MASK | VLV_GTLC_PW_RENDER_STATUS_MASK;
val = wait_for_on ? mask : 0;
/*
* RC6 transitioning can be delayed up to 2 msec (see
* valleyview_enable_rps), use 3 msec for safety.
*
* This can fail to turn off the rc6 if the GPU is stuck after a failed
* reset and we are trying to force the machine to sleep.
*/
if (vlv_wait_for_pw_status(dev_priv, mask, val))
DRM_DEBUG_DRIVER("timeout waiting for GT wells to go %s\n",
onoff(wait_for_on));
}
static void vlv_check_no_gt_access(struct drm_i915_private *dev_priv)
{
if (!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEERR))
return;
DRM_DEBUG_DRIVER("GT register access while GT waking disabled\n");
I915_WRITE(VLV_GTLC_PW_STATUS, VLV_GTLC_ALLOWWAKEERR);
}
static int vlv_suspend_complete(struct drm_i915_private *dev_priv)
{
u32 mask;
int err;
/*
* Bspec defines the following GT well on flags as debug only, so
* don't treat them as hard failures.
*/
vlv_wait_for_gt_wells(dev_priv, false);
mask = VLV_GTLC_RENDER_CTX_EXISTS | VLV_GTLC_MEDIA_CTX_EXISTS;
WARN_ON((I915_READ(VLV_GTLC_WAKE_CTRL) & mask) != mask);
vlv_check_no_gt_access(dev_priv);
err = vlv_force_gfx_clock(dev_priv, true);
if (err)
goto err1;
err = vlv_allow_gt_wake(dev_priv, false);
if (err)
goto err2;
if (!IS_CHERRYVIEW(dev_priv))
vlv_save_gunit_s0ix_state(dev_priv);
err = vlv_force_gfx_clock(dev_priv, false);
if (err)
goto err2;
return 0;
err2:
/* For safety always re-enable waking and disable gfx clock forcing */
vlv_allow_gt_wake(dev_priv, true);
err1:
vlv_force_gfx_clock(dev_priv, false);
return err;
}
static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
bool rpm_resume)
{
int err;
int ret;
/*
* If any of the steps fail just try to continue, that's the best we
* can do at this point. Return the first error code (which will also
* leave RPM permanently disabled).
*/
ret = vlv_force_gfx_clock(dev_priv, true);
if (!IS_CHERRYVIEW(dev_priv))
vlv_restore_gunit_s0ix_state(dev_priv);
err = vlv_allow_gt_wake(dev_priv, true);
if (!ret)
ret = err;
err = vlv_force_gfx_clock(dev_priv, false);
if (!ret)
ret = err;
vlv_check_no_gt_access(dev_priv);
if (rpm_resume)
intel_init_clock_gating(dev_priv);
return ret;
}
static int intel_runtime_suspend(struct device *kdev)
{
struct drm_i915_private *dev_priv = kdev_to_i915(kdev);
struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
int ret = 0;
if (WARN_ON_ONCE(!(dev_priv->gt_pm.rc6.enabled && HAS_RC6(dev_priv))))
return -ENODEV;
if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
return -ENODEV;
DRM_DEBUG_KMS("Suspending device\n");
disable_rpm_wakeref_asserts(rpm);
/*
* We are safe here against re-faults, since the fault handler takes
* an RPM reference.
*/
i915_gem_runtime_suspend(dev_priv);
intel_gt_runtime_suspend(&dev_priv->gt);
intel_runtime_pm_disable_interrupts(dev_priv);
intel_uncore_suspend(&dev_priv->uncore);
intel_display_power_suspend(dev_priv);
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
ret = vlv_suspend_complete(dev_priv);
if (ret) {
DRM_ERROR("Runtime suspend failed, disabling it (%d)\n", ret);
intel_uncore_runtime_resume(&dev_priv->uncore);
intel_runtime_pm_enable_interrupts(dev_priv);
intel_gt_runtime_resume(&dev_priv->gt);
i915_gem_restore_fences(dev_priv);
enable_rpm_wakeref_asserts(rpm);
return ret;
}
enable_rpm_wakeref_asserts(rpm);
intel_runtime_pm_driver_release(rpm);
if (intel_uncore_arm_unclaimed_mmio_detection(&dev_priv->uncore))
DRM_ERROR("Unclaimed access detected prior to suspending\n");
rpm->suspended = true;
/*
* FIXME: We really should find a document that references the arguments
* used below!
*/
if (IS_BROADWELL(dev_priv)) {
/*
* On Broadwell, if we use PCI_D1 the PCH DDI ports will stop
* being detected, and the call we do at intel_runtime_resume()
* won't be able to restore them. Since PCI_D3hot matches the
* actual specification and appears to be working, use it.
*/
intel_opregion_notify_adapter(dev_priv, PCI_D3hot);
} else {
/*
* current versions of firmware which depend on this opregion
* notification have repurposed the D1 definition to mean
* "runtime suspended" vs. what you would normally expect (D3)
* to distinguish it from notifications that might be sent via
* the suspend path.
*/
intel_opregion_notify_adapter(dev_priv, PCI_D1);
}
assert_forcewakes_inactive(&dev_priv->uncore);
if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
intel_hpd_poll_init(dev_priv);
DRM_DEBUG_KMS("Device suspended\n");
return 0;
}
static int intel_runtime_resume(struct device *kdev)
{
struct drm_i915_private *dev_priv = kdev_to_i915(kdev);
struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
int ret = 0;
if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
return -ENODEV;
DRM_DEBUG_KMS("Resuming device\n");
WARN_ON_ONCE(atomic_read(&rpm->wakeref_count));
disable_rpm_wakeref_asserts(rpm);
intel_opregion_notify_adapter(dev_priv, PCI_D0);
rpm->suspended = false;
if (intel_uncore_unclaimed_mmio(&dev_priv->uncore))
DRM_DEBUG_DRIVER("Unclaimed access during suspend, bios?\n");
intel_display_power_resume(dev_priv);
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
ret = vlv_resume_prepare(dev_priv, true);
intel_uncore_runtime_resume(&dev_priv->uncore);
intel_runtime_pm_enable_interrupts(dev_priv);
/*
* No point of rolling back things in case of an error, as the best
* we can do is to hope that things will still work (and disable RPM).
*/
intel_gt_runtime_resume(&dev_priv->gt);
i915_gem_restore_fences(dev_priv);
/*
* On VLV/CHV display interrupts are part of the display
* power well, so hpd is reinitialized from there. For
* everyone else do it here.
*/
if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
intel_hpd_init(dev_priv);
intel_enable_ipc(dev_priv);
enable_rpm_wakeref_asserts(rpm);
if (ret)
DRM_ERROR("Runtime resume failed, disabling it (%d)\n", ret);
else
DRM_DEBUG_KMS("Device resumed\n");
return ret;
}
const struct dev_pm_ops i915_pm_ops = {
/*
* S0ix (via system suspend) and S3 event handlers [PMSG_SUSPEND,
* PMSG_RESUME]
*/
.prepare = i915_pm_prepare,
.suspend = i915_pm_suspend,
.suspend_late = i915_pm_suspend_late,
.resume_early = i915_pm_resume_early,
.resume = i915_pm_resume,
/*
* S4 event handlers
* @freeze, @freeze_late : called (1) before creating the
* hibernation image [PMSG_FREEZE] and
* (2) after rebooting, before restoring
* the image [PMSG_QUIESCE]
* @thaw, @thaw_early : called (1) after creating the hibernation
* image, before writing it [PMSG_THAW]
* and (2) after failing to create or
* restore the image [PMSG_RECOVER]
* @poweroff, @poweroff_late: called after writing the hibernation
* image, before rebooting [PMSG_HIBERNATE]
* @restore, @restore_early : called after rebooting and restoring the
* hibernation image [PMSG_RESTORE]
*/
.freeze = i915_pm_freeze,
.freeze_late = i915_pm_freeze_late,
.thaw_early = i915_pm_thaw_early,
.thaw = i915_pm_thaw,
.poweroff = i915_pm_suspend,
.poweroff_late = i915_pm_poweroff_late,
.restore_early = i915_pm_restore_early,
.restore = i915_pm_restore,
/* S0ix (via runtime suspend) event handlers */
.runtime_suspend = intel_runtime_suspend,
.runtime_resume = intel_runtime_resume,
};
static const struct vm_operations_struct i915_gem_vm_ops = {
.fault = i915_gem_fault,
.open = drm_gem_vm_open,
.close = drm_gem_vm_close,
};
static const struct file_operations i915_driver_fops = {
.owner = THIS_MODULE,
.open = drm_open,
.release = drm_release,
.unlocked_ioctl = drm_ioctl,
.mmap = drm_gem_mmap,
.poll = drm_poll,
.read = drm_read,
.compat_ioctl = i915_compat_ioctl,
.llseek = noop_llseek,
};
static int
i915_gem_reject_pin_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
return -ENODEV;
}
static const struct drm_ioctl_desc i915_ioctls[] = {
DRM_IOCTL_DEF_DRV(I915_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
DRM_IOCTL_DEF_DRV(I915_FLUSH, drm_noop, DRM_AUTH),
DRM_IOCTL_DEF_DRV(I915_FLIP, drm_noop, DRM_AUTH),
DRM_IOCTL_DEF_DRV(I915_BATCHBUFFER, drm_noop, DRM_AUTH),
DRM_IOCTL_DEF_DRV(I915_IRQ_EMIT, drm_noop, DRM_AUTH),
DRM_IOCTL_DEF_DRV(I915_IRQ_WAIT, drm_noop, DRM_AUTH),
DRM_IOCTL_DEF_DRV(I915_GETPARAM, i915_getparam_ioctl, DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(I915_SETPARAM, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
DRM_IOCTL_DEF_DRV(I915_ALLOC, drm_noop, DRM_AUTH),
DRM_IOCTL_DEF_DRV(I915_FREE, drm_noop, DRM_AUTH),
DRM_IOCTL_DEF_DRV(I915_INIT_HEAP, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
DRM_IOCTL_DEF_DRV(I915_CMDBUFFER, drm_noop, DRM_AUTH),
DRM_IOCTL_DEF_DRV(I915_DESTROY_HEAP, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
DRM_IOCTL_DEF_DRV(I915_SET_VBLANK_PIPE, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
DRM_IOCTL_DEF_DRV(I915_GET_VBLANK_PIPE, drm_noop, DRM_AUTH),
DRM_IOCTL_DEF_DRV(I915_VBLANK_SWAP, drm_noop, DRM_AUTH),
DRM_IOCTL_DEF_DRV(I915_HWS_ADDR, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
DRM_IOCTL_DEF_DRV(I915_GEM_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER, i915_gem_execbuffer_ioctl, DRM_AUTH),
DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER2_WR, i915_gem_execbuffer2_ioctl, DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(I915_GEM_PIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
DRM_IOCTL_DEF_DRV(I915_GEM_UNPIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
DRM_IOCTL_DEF_DRV(I915_GEM_BUSY, i915_gem_busy_ioctl, DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(I915_GEM_SET_CACHING, i915_gem_set_caching_ioctl, DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(I915_GEM_GET_CACHING, i915_gem_get_caching_ioctl, DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(I915_GEM_THROTTLE, i915_gem_throttle_ioctl, DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(I915_GEM_ENTERVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
DRM_IOCTL_DEF_DRV(I915_GEM_LEAVEVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
DRM_IOCTL_DEF_DRV(I915_GEM_CREATE, i915_gem_create_ioctl, DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(I915_GEM_PREAD, i915_gem_pread_ioctl, DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(I915_GEM_PWRITE, i915_gem_pwrite_ioctl, DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(I915_GEM_MMAP, i915_gem_mmap_ioctl, DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(I915_GEM_MMAP_GTT, i915_gem_mmap_gtt_ioctl, DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(I915_GEM_SET_DOMAIN, i915_gem_set_domain_ioctl, DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(I915_GEM_SW_FINISH, i915_gem_sw_finish_ioctl, DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(I915_GEM_SET_TILING, i915_gem_set_tiling_ioctl, DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(I915_GEM_GET_TILING, i915_gem_get_tiling_ioctl, DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(I915_GEM_GET_APERTURE, i915_gem_get_aperture_ioctl, DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(I915_GET_PIPE_FROM_CRTC_ID, intel_get_pipe_from_crtc_id_ioctl, 0),
DRM_IOCTL_DEF_DRV(I915_GEM_MADVISE, i915_gem_madvise_ioctl, DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(I915_OVERLAY_PUT_IMAGE, intel_overlay_put_image_ioctl, DRM_MASTER),
DRM_IOCTL_DEF_DRV(I915_OVERLAY_ATTRS, intel_overlay_attrs_ioctl, DRM_MASTER),
DRM_IOCTL_DEF_DRV(I915_SET_SPRITE_COLORKEY, intel_sprite_set_colorkey_ioctl, DRM_MASTER),
DRM_IOCTL_DEF_DRV(I915_GET_SPRITE_COLORKEY, drm_noop, DRM_MASTER),
DRM_IOCTL_DEF_DRV(I915_GEM_WAIT, i915_gem_wait_ioctl, DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_CREATE_EXT, i915_gem_context_create_ioctl, DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_DESTROY, i915_gem_context_destroy_ioctl, DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(I915_REG_READ, i915_reg_read_ioctl, DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(I915_GET_RESET_STATS, i915_gem_context_reset_stats_ioctl, DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(I915_GEM_USERPTR, i915_gem_userptr_ioctl, DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_GETPARAM, i915_gem_context_getparam_ioctl, DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_SETPARAM, i915_gem_context_setparam_ioctl, DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(I915_PERF_OPEN, i915_perf_open_ioctl, DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(I915_PERF_ADD_CONFIG, i915_perf_add_config_ioctl, DRM_UNLOCKED|DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(I915_PERF_REMOVE_CONFIG, i915_perf_remove_config_ioctl, DRM_UNLOCKED|DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(I915_QUERY, i915_query_ioctl, DRM_UNLOCKED|DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(I915_GEM_VM_CREATE, i915_gem_vm_create_ioctl, DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(I915_GEM_VM_DESTROY, i915_gem_vm_destroy_ioctl, DRM_RENDER_ALLOW),
};
static struct drm_driver driver = {
/* Don't use MTRRs here; the Xserver or userspace app should
* deal with them for Intel hardware.
*/
.driver_features =
DRIVER_GEM | DRIVER_PRIME |
DRIVER_RENDER | DRIVER_MODESET | DRIVER_ATOMIC | DRIVER_SYNCOBJ,
.release = i915_driver_release,
.open = i915_driver_open,
.lastclose = i915_driver_lastclose,
.postclose = i915_driver_postclose,
.gem_close_object = i915_gem_close_object,
.gem_free_object_unlocked = i915_gem_free_object,
.gem_vm_ops = &i915_gem_vm_ops,
.prime_handle_to_fd = drm_gem_prime_handle_to_fd,
.prime_fd_to_handle = drm_gem_prime_fd_to_handle,
.gem_prime_export = i915_gem_prime_export,
.gem_prime_import = i915_gem_prime_import,
.get_vblank_timestamp = drm_calc_vbltimestamp_from_scanoutpos,
.get_scanout_position = i915_get_crtc_scanoutpos,
.dumb_create = i915_gem_dumb_create,
.dumb_map_offset = i915_gem_mmap_gtt,
.ioctls = i915_ioctls,
.num_ioctls = ARRAY_SIZE(i915_ioctls),
.fops = &i915_driver_fops,
.name = DRIVER_NAME,
.desc = DRIVER_DESC,
.date = DRIVER_DATE,
.major = DRIVER_MAJOR,
.minor = DRIVER_MINOR,
.patchlevel = DRIVER_PATCHLEVEL,
};
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_drm.c"
#endif