blob: 105a548d0abeb3972487fd0ea527ef35efbe691f [file] [log] [blame]
// SPDX-License-Identifier: (GPL-2.0+ OR MIT)
/*
* Copyright (c) 2020 Rockchip Electronics Co., Ltd.
* Author: Andy Yan <andy.yan@rock-chips.com>
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/component.h>
#include <linux/delay.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/media-bus-format.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_graph.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/swab.h>
#include <drm/drm.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_uapi.h>
#include <drm/drm_blend.h>
#include <drm/drm_crtc.h>
#include <drm/drm_crtc_helper.h>
#include <drm/drm_debugfs.h>
#include <drm/drm_flip_work.h>
#include <drm/drm_framebuffer.h>
#include <drm/drm_probe_helper.h>
#include <drm/drm_vblank.h>
#include <uapi/linux/videodev2.h>
#include <dt-bindings/soc/rockchip,vop2.h>
#include "rockchip_drm_drv.h"
#include "rockchip_drm_gem.h"
#include "rockchip_drm_fb.h"
#include "rockchip_drm_vop2.h"
/*
* VOP2 architecture
*
+----------+ +-------------+ +-----------+
| Cluster | | Sel 1 from 6| | 1 from 3 |
| window0 | | Layer0 | | RGB |
+----------+ +-------------+ +---------------+ +-------------+ +-----------+
+----------+ +-------------+ |N from 6 layers| | |
| Cluster | | Sel 1 from 6| | Overlay0 +--->| Video Port0 | +-----------+
| window1 | | Layer1 | | | | | | 1 from 3 |
+----------+ +-------------+ +---------------+ +-------------+ | LVDS |
+----------+ +-------------+ +-----------+
| Esmart | | Sel 1 from 6|
| window0 | | Layer2 | +---------------+ +-------------+ +-----------+
+----------+ +-------------+ |N from 6 Layers| | | +--> | 1 from 3 |
+----------+ +-------------+ --------> | Overlay1 +--->| Video Port1 | | MIPI |
| Esmart | | Sel 1 from 6| --------> | | | | +-----------+
| Window1 | | Layer3 | +---------------+ +-------------+
+----------+ +-------------+ +-----------+
+----------+ +-------------+ | 1 from 3 |
| Smart | | Sel 1 from 6| +---------------+ +-------------+ | HDMI |
| Window0 | | Layer4 | |N from 6 Layers| | | +-----------+
+----------+ +-------------+ | Overlay2 +--->| Video Port2 |
+----------+ +-------------+ | | | | +-----------+
| Smart | | Sel 1 from 6| +---------------+ +-------------+ | 1 from 3 |
| Window1 | | Layer5 | | eDP |
+----------+ +-------------+ +-----------+
*
*/
enum vop2_data_format {
VOP2_FMT_ARGB8888 = 0,
VOP2_FMT_RGB888,
VOP2_FMT_RGB565,
VOP2_FMT_XRGB101010,
VOP2_FMT_YUV420SP,
VOP2_FMT_YUV422SP,
VOP2_FMT_YUV444SP,
VOP2_FMT_YUYV422 = 8,
VOP2_FMT_YUYV420,
VOP2_FMT_VYUY422,
VOP2_FMT_VYUY420,
VOP2_FMT_YUV420SP_TILE_8x4 = 0x10,
VOP2_FMT_YUV420SP_TILE_16x2,
VOP2_FMT_YUV422SP_TILE_8x4,
VOP2_FMT_YUV422SP_TILE_16x2,
VOP2_FMT_YUV420SP_10,
VOP2_FMT_YUV422SP_10,
VOP2_FMT_YUV444SP_10,
};
enum vop2_afbc_format {
VOP2_AFBC_FMT_RGB565,
VOP2_AFBC_FMT_ARGB2101010 = 2,
VOP2_AFBC_FMT_YUV420_10BIT,
VOP2_AFBC_FMT_RGB888,
VOP2_AFBC_FMT_ARGB8888,
VOP2_AFBC_FMT_YUV420 = 9,
VOP2_AFBC_FMT_YUV422 = 0xb,
VOP2_AFBC_FMT_YUV422_10BIT = 0xe,
VOP2_AFBC_FMT_INVALID = -1,
};
union vop2_alpha_ctrl {
u32 val;
struct {
/* [0:1] */
u32 color_mode:1;
u32 alpha_mode:1;
/* [2:3] */
u32 blend_mode:2;
u32 alpha_cal_mode:1;
/* [5:7] */
u32 factor_mode:3;
/* [8:9] */
u32 alpha_en:1;
u32 src_dst_swap:1;
u32 reserved:6;
/* [16:23] */
u32 glb_alpha:8;
} bits;
};
struct vop2_alpha {
union vop2_alpha_ctrl src_color_ctrl;
union vop2_alpha_ctrl dst_color_ctrl;
union vop2_alpha_ctrl src_alpha_ctrl;
union vop2_alpha_ctrl dst_alpha_ctrl;
};
struct vop2_alpha_config {
bool src_premulti_en;
bool dst_premulti_en;
bool src_pixel_alpha_en;
bool dst_pixel_alpha_en;
u16 src_glb_alpha_value;
u16 dst_glb_alpha_value;
};
struct vop2_win {
struct vop2 *vop2;
struct drm_plane base;
const struct vop2_win_data *data;
struct regmap_field *reg[VOP2_WIN_MAX_REG];
/**
* @win_id: graphic window id, a cluster may be split into two
* graphics windows.
*/
u8 win_id;
u8 delay;
u32 offset;
enum drm_plane_type type;
};
struct vop2_video_port {
struct drm_crtc crtc;
struct vop2 *vop2;
struct clk *dclk;
unsigned int id;
const struct vop2_video_port_regs *regs;
const struct vop2_video_port_data *data;
struct completion dsp_hold_completion;
/**
* @win_mask: Bitmask of windows attached to the video port;
*/
u32 win_mask;
struct vop2_win *primary_plane;
struct drm_pending_vblank_event *event;
unsigned int nlayers;
};
struct vop2 {
struct device *dev;
struct drm_device *drm;
struct vop2_video_port vps[ROCKCHIP_MAX_CRTC];
const struct vop2_data *data;
/*
* Number of windows that are registered as plane, may be less than the
* total number of hardware windows.
*/
u32 registered_num_wins;
void __iomem *regs;
struct regmap *map;
struct regmap *grf;
/* physical map length of vop2 register */
u32 len;
void __iomem *lut_regs;
/* protects crtc enable/disable */
struct mutex vop2_lock;
int irq;
/*
* Some global resources are shared between all video ports(crtcs), so
* we need a ref counter here.
*/
unsigned int enable_count;
struct clk *hclk;
struct clk *aclk;
/* must be put at the end of the struct */
struct vop2_win win[];
};
static struct vop2_video_port *to_vop2_video_port(struct drm_crtc *crtc)
{
return container_of(crtc, struct vop2_video_port, crtc);
}
static struct vop2_win *to_vop2_win(struct drm_plane *p)
{
return container_of(p, struct vop2_win, base);
}
static void vop2_lock(struct vop2 *vop2)
{
mutex_lock(&vop2->vop2_lock);
}
static void vop2_unlock(struct vop2 *vop2)
{
mutex_unlock(&vop2->vop2_lock);
}
static void vop2_writel(struct vop2 *vop2, u32 offset, u32 v)
{
regmap_write(vop2->map, offset, v);
}
static void vop2_vp_write(struct vop2_video_port *vp, u32 offset, u32 v)
{
regmap_write(vp->vop2->map, vp->data->offset + offset, v);
}
static u32 vop2_readl(struct vop2 *vop2, u32 offset)
{
u32 val;
regmap_read(vop2->map, offset, &val);
return val;
}
static void vop2_win_write(const struct vop2_win *win, unsigned int reg, u32 v)
{
regmap_field_write(win->reg[reg], v);
}
static bool vop2_cluster_window(const struct vop2_win *win)
{
return win->data->feature & WIN_FEATURE_CLUSTER;
}
static void vop2_cfg_done(struct vop2_video_port *vp)
{
struct vop2 *vop2 = vp->vop2;
regmap_set_bits(vop2->map, RK3568_REG_CFG_DONE,
BIT(vp->id) | RK3568_REG_CFG_DONE__GLB_CFG_DONE_EN);
}
static void vop2_win_disable(struct vop2_win *win)
{
vop2_win_write(win, VOP2_WIN_ENABLE, 0);
if (vop2_cluster_window(win))
vop2_win_write(win, VOP2_WIN_CLUSTER_ENABLE, 0);
}
static enum vop2_data_format vop2_convert_format(u32 format)
{
switch (format) {
case DRM_FORMAT_XRGB8888:
case DRM_FORMAT_ARGB8888:
case DRM_FORMAT_XBGR8888:
case DRM_FORMAT_ABGR8888:
return VOP2_FMT_ARGB8888;
case DRM_FORMAT_RGB888:
case DRM_FORMAT_BGR888:
return VOP2_FMT_RGB888;
case DRM_FORMAT_RGB565:
case DRM_FORMAT_BGR565:
return VOP2_FMT_RGB565;
case DRM_FORMAT_NV12:
return VOP2_FMT_YUV420SP;
case DRM_FORMAT_NV16:
return VOP2_FMT_YUV422SP;
case DRM_FORMAT_NV24:
return VOP2_FMT_YUV444SP;
case DRM_FORMAT_YUYV:
case DRM_FORMAT_YVYU:
return VOP2_FMT_VYUY422;
case DRM_FORMAT_VYUY:
case DRM_FORMAT_UYVY:
return VOP2_FMT_YUYV422;
default:
DRM_ERROR("unsupported format[%08x]\n", format);
return -EINVAL;
}
}
static enum vop2_afbc_format vop2_convert_afbc_format(u32 format)
{
switch (format) {
case DRM_FORMAT_XRGB8888:
case DRM_FORMAT_ARGB8888:
case DRM_FORMAT_XBGR8888:
case DRM_FORMAT_ABGR8888:
return VOP2_AFBC_FMT_ARGB8888;
case DRM_FORMAT_RGB888:
case DRM_FORMAT_BGR888:
return VOP2_AFBC_FMT_RGB888;
case DRM_FORMAT_RGB565:
case DRM_FORMAT_BGR565:
return VOP2_AFBC_FMT_RGB565;
case DRM_FORMAT_NV12:
return VOP2_AFBC_FMT_YUV420;
case DRM_FORMAT_NV16:
return VOP2_AFBC_FMT_YUV422;
default:
return VOP2_AFBC_FMT_INVALID;
}
return VOP2_AFBC_FMT_INVALID;
}
static bool vop2_win_rb_swap(u32 format)
{
switch (format) {
case DRM_FORMAT_XBGR8888:
case DRM_FORMAT_ABGR8888:
case DRM_FORMAT_BGR888:
case DRM_FORMAT_BGR565:
return true;
default:
return false;
}
}
static bool vop2_afbc_rb_swap(u32 format)
{
switch (format) {
case DRM_FORMAT_NV24:
return true;
default:
return false;
}
}
static bool vop2_afbc_uv_swap(u32 format)
{
switch (format) {
case DRM_FORMAT_NV12:
case DRM_FORMAT_NV16:
return true;
default:
return false;
}
}
static bool vop2_win_uv_swap(u32 format)
{
switch (format) {
case DRM_FORMAT_NV12:
case DRM_FORMAT_NV16:
case DRM_FORMAT_NV24:
return true;
default:
return false;
}
}
static bool vop2_win_dither_up(u32 format)
{
switch (format) {
case DRM_FORMAT_BGR565:
case DRM_FORMAT_RGB565:
return true;
default:
return false;
}
}
static bool vop2_output_uv_swap(u32 bus_format, u32 output_mode)
{
/*
* FIXME:
*
* There is no media type for YUV444 output,
* so when out_mode is AAAA or P888, assume output is YUV444 on
* yuv format.
*
* From H/W testing, YUV444 mode need a rb swap.
*/
if (bus_format == MEDIA_BUS_FMT_YVYU8_1X16 ||
bus_format == MEDIA_BUS_FMT_VYUY8_1X16 ||
bus_format == MEDIA_BUS_FMT_YVYU8_2X8 ||
bus_format == MEDIA_BUS_FMT_VYUY8_2X8 ||
((bus_format == MEDIA_BUS_FMT_YUV8_1X24 ||
bus_format == MEDIA_BUS_FMT_YUV10_1X30) &&
(output_mode == ROCKCHIP_OUT_MODE_AAAA ||
output_mode == ROCKCHIP_OUT_MODE_P888)))
return true;
else
return false;
}
static bool is_yuv_output(u32 bus_format)
{
switch (bus_format) {
case MEDIA_BUS_FMT_YUV8_1X24:
case MEDIA_BUS_FMT_YUV10_1X30:
case MEDIA_BUS_FMT_UYYVYY8_0_5X24:
case MEDIA_BUS_FMT_UYYVYY10_0_5X30:
case MEDIA_BUS_FMT_YUYV8_2X8:
case MEDIA_BUS_FMT_YVYU8_2X8:
case MEDIA_BUS_FMT_UYVY8_2X8:
case MEDIA_BUS_FMT_VYUY8_2X8:
case MEDIA_BUS_FMT_YUYV8_1X16:
case MEDIA_BUS_FMT_YVYU8_1X16:
case MEDIA_BUS_FMT_UYVY8_1X16:
case MEDIA_BUS_FMT_VYUY8_1X16:
return true;
default:
return false;
}
}
static bool rockchip_afbc(struct drm_plane *plane, u64 modifier)
{
int i;
if (modifier == DRM_FORMAT_MOD_LINEAR)
return false;
for (i = 0 ; i < plane->modifier_count; i++)
if (plane->modifiers[i] == modifier)
return true;
return false;
}
static bool rockchip_vop2_mod_supported(struct drm_plane *plane, u32 format,
u64 modifier)
{
struct vop2_win *win = to_vop2_win(plane);
struct vop2 *vop2 = win->vop2;
if (modifier == DRM_FORMAT_MOD_INVALID)
return false;
if (modifier == DRM_FORMAT_MOD_LINEAR)
return true;
if (!rockchip_afbc(plane, modifier)) {
drm_err(vop2->drm, "Unsupported format modifier 0x%llx\n",
modifier);
return false;
}
return vop2_convert_afbc_format(format) >= 0;
}
static u32 vop2_afbc_transform_offset(struct drm_plane_state *pstate,
bool afbc_half_block_en)
{
struct drm_rect *src = &pstate->src;
struct drm_framebuffer *fb = pstate->fb;
u32 bpp = fb->format->cpp[0] * 8;
u32 vir_width = (fb->pitches[0] << 3) / bpp;
u32 width = drm_rect_width(src) >> 16;
u32 height = drm_rect_height(src) >> 16;
u32 act_xoffset = src->x1 >> 16;
u32 act_yoffset = src->y1 >> 16;
u32 align16_crop = 0;
u32 align64_crop = 0;
u32 height_tmp;
u8 tx, ty;
u8 bottom_crop_line_num = 0;
/* 16 pixel align */
if (height & 0xf)
align16_crop = 16 - (height & 0xf);
height_tmp = height + align16_crop;
/* 64 pixel align */
if (height_tmp & 0x3f)
align64_crop = 64 - (height_tmp & 0x3f);
bottom_crop_line_num = align16_crop + align64_crop;
switch (pstate->rotation &
(DRM_MODE_REFLECT_X | DRM_MODE_REFLECT_Y |
DRM_MODE_ROTATE_90 | DRM_MODE_ROTATE_270)) {
case DRM_MODE_REFLECT_X | DRM_MODE_REFLECT_Y:
tx = 16 - ((act_xoffset + width) & 0xf);
ty = bottom_crop_line_num - act_yoffset;
break;
case DRM_MODE_REFLECT_X | DRM_MODE_ROTATE_90:
tx = bottom_crop_line_num - act_yoffset;
ty = vir_width - width - act_xoffset;
break;
case DRM_MODE_REFLECT_X | DRM_MODE_ROTATE_270:
tx = act_yoffset;
ty = act_xoffset;
break;
case DRM_MODE_REFLECT_X:
tx = 16 - ((act_xoffset + width) & 0xf);
ty = act_yoffset;
break;
case DRM_MODE_REFLECT_Y:
tx = act_xoffset;
ty = bottom_crop_line_num - act_yoffset;
break;
case DRM_MODE_ROTATE_90:
tx = bottom_crop_line_num - act_yoffset;
ty = act_xoffset;
break;
case DRM_MODE_ROTATE_270:
tx = act_yoffset;
ty = vir_width - width - act_xoffset;
break;
case 0:
tx = act_xoffset;
ty = act_yoffset;
break;
}
if (afbc_half_block_en)
ty &= 0x7f;
#define TRANSFORM_XOFFSET GENMASK(7, 0)
#define TRANSFORM_YOFFSET GENMASK(23, 16)
return FIELD_PREP(TRANSFORM_XOFFSET, tx) |
FIELD_PREP(TRANSFORM_YOFFSET, ty);
}
/*
* A Cluster window has 2048 x 16 line buffer, which can
* works at 2048 x 16(Full) or 4096 x 8 (Half) mode.
* for Cluster_lb_mode register:
* 0: half mode, for plane input width range 2048 ~ 4096
* 1: half mode, for cluster work at 2 * 2048 plane mode
* 2: half mode, for rotate_90/270 mode
*
*/
static int vop2_get_cluster_lb_mode(struct vop2_win *win,
struct drm_plane_state *pstate)
{
if ((pstate->rotation & DRM_MODE_ROTATE_270) ||
(pstate->rotation & DRM_MODE_ROTATE_90))
return 2;
else
return 0;
}
static u16 vop2_scale_factor(u32 src, u32 dst)
{
u32 fac;
int shift;
if (src == dst)
return 0;
if (dst < 2)
return U16_MAX;
if (src < 2)
return 0;
if (src > dst)
shift = 12;
else
shift = 16;
src--;
dst--;
fac = DIV_ROUND_UP(src << shift, dst) - 1;
if (fac > U16_MAX)
return U16_MAX;
return fac;
}
static void vop2_setup_scale(struct vop2 *vop2, const struct vop2_win *win,
u32 src_w, u32 src_h, u32 dst_w,
u32 dst_h, u32 pixel_format)
{
const struct drm_format_info *info;
u16 hor_scl_mode, ver_scl_mode;
u16 hscl_filter_mode, vscl_filter_mode;
u8 gt2 = 0;
u8 gt4 = 0;
u32 val;
info = drm_format_info(pixel_format);
if (src_h >= (4 * dst_h)) {
gt4 = 1;
src_h >>= 2;
} else if (src_h >= (2 * dst_h)) {
gt2 = 1;
src_h >>= 1;
}
hor_scl_mode = scl_get_scl_mode(src_w, dst_w);
ver_scl_mode = scl_get_scl_mode(src_h, dst_h);
if (hor_scl_mode == SCALE_UP)
hscl_filter_mode = VOP2_SCALE_UP_BIC;
else
hscl_filter_mode = VOP2_SCALE_DOWN_BIL;
if (ver_scl_mode == SCALE_UP)
vscl_filter_mode = VOP2_SCALE_UP_BIL;
else
vscl_filter_mode = VOP2_SCALE_DOWN_BIL;
/*
* RK3568 VOP Esmart/Smart dsp_w should be even pixel
* at scale down mode
*/
if (!(win->data->feature & WIN_FEATURE_AFBDC)) {
if ((hor_scl_mode == SCALE_DOWN) && (dst_w & 0x1)) {
drm_dbg(vop2->drm, "%s dst_w[%d] should align as 2 pixel\n",
win->data->name, dst_w);
dst_w++;
}
}
val = vop2_scale_factor(src_w, dst_w);
vop2_win_write(win, VOP2_WIN_SCALE_YRGB_X, val);
val = vop2_scale_factor(src_h, dst_h);
vop2_win_write(win, VOP2_WIN_SCALE_YRGB_Y, val);
vop2_win_write(win, VOP2_WIN_VSD_YRGB_GT4, gt4);
vop2_win_write(win, VOP2_WIN_VSD_YRGB_GT2, gt2);
vop2_win_write(win, VOP2_WIN_YRGB_HOR_SCL_MODE, hor_scl_mode);
vop2_win_write(win, VOP2_WIN_YRGB_VER_SCL_MODE, ver_scl_mode);
if (vop2_cluster_window(win))
return;
vop2_win_write(win, VOP2_WIN_YRGB_HSCL_FILTER_MODE, hscl_filter_mode);
vop2_win_write(win, VOP2_WIN_YRGB_VSCL_FILTER_MODE, vscl_filter_mode);
if (info->is_yuv) {
src_w /= info->hsub;
src_h /= info->vsub;
gt4 = 0;
gt2 = 0;
if (src_h >= (4 * dst_h)) {
gt4 = 1;
src_h >>= 2;
} else if (src_h >= (2 * dst_h)) {
gt2 = 1;
src_h >>= 1;
}
hor_scl_mode = scl_get_scl_mode(src_w, dst_w);
ver_scl_mode = scl_get_scl_mode(src_h, dst_h);
val = vop2_scale_factor(src_w, dst_w);
vop2_win_write(win, VOP2_WIN_SCALE_CBCR_X, val);
val = vop2_scale_factor(src_h, dst_h);
vop2_win_write(win, VOP2_WIN_SCALE_CBCR_Y, val);
vop2_win_write(win, VOP2_WIN_VSD_CBCR_GT4, gt4);
vop2_win_write(win, VOP2_WIN_VSD_CBCR_GT2, gt2);
vop2_win_write(win, VOP2_WIN_CBCR_HOR_SCL_MODE, hor_scl_mode);
vop2_win_write(win, VOP2_WIN_CBCR_VER_SCL_MODE, ver_scl_mode);
vop2_win_write(win, VOP2_WIN_CBCR_HSCL_FILTER_MODE, hscl_filter_mode);
vop2_win_write(win, VOP2_WIN_CBCR_VSCL_FILTER_MODE, vscl_filter_mode);
}
}
static int vop2_convert_csc_mode(int csc_mode)
{
switch (csc_mode) {
case V4L2_COLORSPACE_SMPTE170M:
case V4L2_COLORSPACE_470_SYSTEM_M:
case V4L2_COLORSPACE_470_SYSTEM_BG:
return CSC_BT601L;
case V4L2_COLORSPACE_REC709:
case V4L2_COLORSPACE_SMPTE240M:
case V4L2_COLORSPACE_DEFAULT:
return CSC_BT709L;
case V4L2_COLORSPACE_JPEG:
return CSC_BT601F;
case V4L2_COLORSPACE_BT2020:
return CSC_BT2020;
default:
return CSC_BT709L;
}
}
/*
* colorspace path:
* Input Win csc Output
* 1. YUV(2020) --> Y2R->2020To709->R2Y --> YUV_OUTPUT(601/709)
* RGB --> R2Y __/
*
* 2. YUV(2020) --> bypasss --> YUV_OUTPUT(2020)
* RGB --> 709To2020->R2Y __/
*
* 3. YUV(2020) --> Y2R->2020To709 --> RGB_OUTPUT(709)
* RGB --> R2Y __/
*
* 4. YUV(601/709)-> Y2R->709To2020->R2Y --> YUV_OUTPUT(2020)
* RGB --> 709To2020->R2Y __/
*
* 5. YUV(601/709)-> bypass --> YUV_OUTPUT(709)
* RGB --> R2Y __/
*
* 6. YUV(601/709)-> bypass --> YUV_OUTPUT(601)
* RGB --> R2Y(601) __/
*
* 7. YUV --> Y2R(709) --> RGB_OUTPUT(709)
* RGB --> bypass __/
*
* 8. RGB --> 709To2020->R2Y --> YUV_OUTPUT(2020)
*
* 9. RGB --> R2Y(709) --> YUV_OUTPUT(709)
*
* 10. RGB --> R2Y(601) --> YUV_OUTPUT(601)
*
* 11. RGB --> bypass --> RGB_OUTPUT(709)
*/
static void vop2_setup_csc_mode(struct vop2_video_port *vp,
struct vop2_win *win,
struct drm_plane_state *pstate)
{
struct rockchip_crtc_state *vcstate = to_rockchip_crtc_state(vp->crtc.state);
int is_input_yuv = pstate->fb->format->is_yuv;
int is_output_yuv = is_yuv_output(vcstate->bus_format);
int input_csc = V4L2_COLORSPACE_DEFAULT;
int output_csc = vcstate->color_space;
bool r2y_en, y2r_en;
int csc_mode;
if (is_input_yuv && !is_output_yuv) {
y2r_en = true;
r2y_en = false;
csc_mode = vop2_convert_csc_mode(input_csc);
} else if (!is_input_yuv && is_output_yuv) {
y2r_en = false;
r2y_en = true;
csc_mode = vop2_convert_csc_mode(output_csc);
} else {
y2r_en = false;
r2y_en = false;
csc_mode = false;
}
vop2_win_write(win, VOP2_WIN_Y2R_EN, y2r_en);
vop2_win_write(win, VOP2_WIN_R2Y_EN, r2y_en);
vop2_win_write(win, VOP2_WIN_CSC_MODE, csc_mode);
}
static void vop2_crtc_enable_irq(struct vop2_video_port *vp, u32 irq)
{
struct vop2 *vop2 = vp->vop2;
vop2_writel(vop2, RK3568_VP_INT_CLR(vp->id), irq << 16 | irq);
vop2_writel(vop2, RK3568_VP_INT_EN(vp->id), irq << 16 | irq);
}
static void vop2_crtc_disable_irq(struct vop2_video_port *vp, u32 irq)
{
struct vop2 *vop2 = vp->vop2;
vop2_writel(vop2, RK3568_VP_INT_EN(vp->id), irq << 16);
}
static int vop2_core_clks_prepare_enable(struct vop2 *vop2)
{
int ret;
ret = clk_prepare_enable(vop2->hclk);
if (ret < 0) {
drm_err(vop2->drm, "failed to enable hclk - %d\n", ret);
return ret;
}
ret = clk_prepare_enable(vop2->aclk);
if (ret < 0) {
drm_err(vop2->drm, "failed to enable aclk - %d\n", ret);
goto err;
}
return 0;
err:
clk_disable_unprepare(vop2->hclk);
return ret;
}
static void vop2_enable(struct vop2 *vop2)
{
int ret;
ret = pm_runtime_get_sync(vop2->dev);
if (ret < 0) {
drm_err(vop2->drm, "failed to get pm runtime: %d\n", ret);
return;
}
ret = vop2_core_clks_prepare_enable(vop2);
if (ret) {
pm_runtime_put_sync(vop2->dev);
return;
}
ret = rockchip_drm_dma_attach_device(vop2->drm, vop2->dev);
if (ret) {
drm_err(vop2->drm, "failed to attach dma mapping, %d\n", ret);
return;
}
if (vop2->data->soc_id == 3566)
vop2_writel(vop2, RK3568_OTP_WIN_EN, 1);
vop2_writel(vop2, RK3568_REG_CFG_DONE, RK3568_REG_CFG_DONE__GLB_CFG_DONE_EN);
/*
* Disable auto gating, this is a workaround to
* avoid display image shift when a window enabled.
*/
regmap_clear_bits(vop2->map, RK3568_SYS_AUTO_GATING_CTRL,
RK3568_SYS_AUTO_GATING_CTRL__AUTO_GATING_EN);
vop2_writel(vop2, RK3568_SYS0_INT_CLR,
VOP2_INT_BUS_ERRPR << 16 | VOP2_INT_BUS_ERRPR);
vop2_writel(vop2, RK3568_SYS0_INT_EN,
VOP2_INT_BUS_ERRPR << 16 | VOP2_INT_BUS_ERRPR);
vop2_writel(vop2, RK3568_SYS1_INT_CLR,
VOP2_INT_BUS_ERRPR << 16 | VOP2_INT_BUS_ERRPR);
vop2_writel(vop2, RK3568_SYS1_INT_EN,
VOP2_INT_BUS_ERRPR << 16 | VOP2_INT_BUS_ERRPR);
}
static void vop2_disable(struct vop2 *vop2)
{
rockchip_drm_dma_detach_device(vop2->drm, vop2->dev);
pm_runtime_put_sync(vop2->dev);
clk_disable_unprepare(vop2->aclk);
clk_disable_unprepare(vop2->hclk);
}
static void vop2_crtc_atomic_disable(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct vop2_video_port *vp = to_vop2_video_port(crtc);
struct vop2 *vop2 = vp->vop2;
struct drm_crtc_state *old_crtc_state;
int ret;
vop2_lock(vop2);
old_crtc_state = drm_atomic_get_old_crtc_state(state, crtc);
drm_atomic_helper_disable_planes_on_crtc(old_crtc_state, false);
drm_crtc_vblank_off(crtc);
/*
* Vop standby will take effect at end of current frame,
* if dsp hold valid irq happen, it means standby complete.
*
* we must wait standby complete when we want to disable aclk,
* if not, memory bus maybe dead.
*/
reinit_completion(&vp->dsp_hold_completion);
vop2_crtc_enable_irq(vp, VP_INT_DSP_HOLD_VALID);
vop2_vp_write(vp, RK3568_VP_DSP_CTRL, RK3568_VP_DSP_CTRL__STANDBY);
ret = wait_for_completion_timeout(&vp->dsp_hold_completion,
msecs_to_jiffies(50));
if (!ret)
drm_info(vop2->drm, "wait for vp%d dsp_hold timeout\n", vp->id);
vop2_crtc_disable_irq(vp, VP_INT_DSP_HOLD_VALID);
clk_disable_unprepare(vp->dclk);
vop2->enable_count--;
if (!vop2->enable_count)
vop2_disable(vop2);
vop2_unlock(vop2);
if (crtc->state->event && !crtc->state->active) {
spin_lock_irq(&crtc->dev->event_lock);
drm_crtc_send_vblank_event(crtc, crtc->state->event);
spin_unlock_irq(&crtc->dev->event_lock);
crtc->state->event = NULL;
}
}
static int vop2_plane_atomic_check(struct drm_plane *plane,
struct drm_atomic_state *astate)
{
struct drm_plane_state *pstate = drm_atomic_get_new_plane_state(astate, plane);
struct drm_framebuffer *fb = pstate->fb;
struct drm_crtc *crtc = pstate->crtc;
struct drm_crtc_state *cstate;
struct vop2_video_port *vp;
struct vop2 *vop2;
const struct vop2_data *vop2_data;
struct drm_rect *dest = &pstate->dst;
struct drm_rect *src = &pstate->src;
int min_scale = FRAC_16_16(1, 8);
int max_scale = FRAC_16_16(8, 1);
int format;
int ret;
if (!crtc)
return 0;
vp = to_vop2_video_port(crtc);
vop2 = vp->vop2;
vop2_data = vop2->data;
cstate = drm_atomic_get_existing_crtc_state(pstate->state, crtc);
if (WARN_ON(!cstate))
return -EINVAL;
ret = drm_atomic_helper_check_plane_state(pstate, cstate,
min_scale, max_scale,
true, true);
if (ret)
return ret;
if (!pstate->visible)
return 0;
format = vop2_convert_format(fb->format->format);
if (format < 0)
return format;
if (drm_rect_width(src) >> 16 < 4 || drm_rect_height(src) >> 16 < 4 ||
drm_rect_width(dest) < 4 || drm_rect_width(dest) < 4) {
drm_err(vop2->drm, "Invalid size: %dx%d->%dx%d, min size is 4x4\n",
drm_rect_width(src) >> 16, drm_rect_height(src) >> 16,
drm_rect_width(dest), drm_rect_height(dest));
pstate->visible = false;
return 0;
}
if (drm_rect_width(src) >> 16 > vop2_data->max_input.width ||
drm_rect_height(src) >> 16 > vop2_data->max_input.height) {
drm_err(vop2->drm, "Invalid source: %dx%d. max input: %dx%d\n",
drm_rect_width(src) >> 16,
drm_rect_height(src) >> 16,
vop2_data->max_input.width,
vop2_data->max_input.height);
return -EINVAL;
}
/*
* Src.x1 can be odd when do clip, but yuv plane start point
* need align with 2 pixel.
*/
if (fb->format->is_yuv && ((pstate->src.x1 >> 16) % 2)) {
drm_err(vop2->drm, "Invalid Source: Yuv format not support odd xpos\n");
return -EINVAL;
}
return 0;
}
static void vop2_plane_atomic_disable(struct drm_plane *plane,
struct drm_atomic_state *state)
{
struct drm_plane_state *old_pstate = NULL;
struct vop2_win *win = to_vop2_win(plane);
struct vop2 *vop2 = win->vop2;
drm_dbg(vop2->drm, "%s disable\n", win->data->name);
if (state)
old_pstate = drm_atomic_get_old_plane_state(state, plane);
if (old_pstate && !old_pstate->crtc)
return;
vop2_win_disable(win);
vop2_win_write(win, VOP2_WIN_YUV_CLIP, 0);
}
/*
* The color key is 10 bit, so all format should
* convert to 10 bit here.
*/
static void vop2_plane_setup_color_key(struct drm_plane *plane, u32 color_key)
{
struct drm_plane_state *pstate = plane->state;
struct drm_framebuffer *fb = pstate->fb;
struct vop2_win *win = to_vop2_win(plane);
u32 color_key_en = 0;
u32 r = 0;
u32 g = 0;
u32 b = 0;
if (!(color_key & VOP2_COLOR_KEY_MASK) || fb->format->is_yuv) {
vop2_win_write(win, VOP2_WIN_COLOR_KEY_EN, 0);
return;
}
switch (fb->format->format) {
case DRM_FORMAT_RGB565:
case DRM_FORMAT_BGR565:
r = (color_key & 0xf800) >> 11;
g = (color_key & 0x7e0) >> 5;
b = (color_key & 0x1f);
r <<= 5;
g <<= 4;
b <<= 5;
color_key_en = 1;
break;
case DRM_FORMAT_XRGB8888:
case DRM_FORMAT_ARGB8888:
case DRM_FORMAT_XBGR8888:
case DRM_FORMAT_ABGR8888:
case DRM_FORMAT_RGB888:
case DRM_FORMAT_BGR888:
r = (color_key & 0xff0000) >> 16;
g = (color_key & 0xff00) >> 8;
b = (color_key & 0xff);
r <<= 2;
g <<= 2;
b <<= 2;
color_key_en = 1;
break;
}
vop2_win_write(win, VOP2_WIN_COLOR_KEY_EN, color_key_en);
vop2_win_write(win, VOP2_WIN_COLOR_KEY, (r << 20) | (g << 10) | b);
}
static void vop2_plane_atomic_update(struct drm_plane *plane,
struct drm_atomic_state *state)
{
struct drm_plane_state *pstate = plane->state;
struct drm_crtc *crtc = pstate->crtc;
struct vop2_win *win = to_vop2_win(plane);
struct vop2_video_port *vp = to_vop2_video_port(crtc);
struct drm_display_mode *adjusted_mode = &crtc->state->adjusted_mode;
struct vop2 *vop2 = win->vop2;
struct drm_framebuffer *fb = pstate->fb;
u32 bpp = fb->format->cpp[0] * 8;
u32 actual_w, actual_h, dsp_w, dsp_h;
u32 act_info, dsp_info;
u32 format;
u32 afbc_format;
u32 rb_swap;
u32 uv_swap;
struct drm_rect *src = &pstate->src;
struct drm_rect *dest = &pstate->dst;
u32 afbc_tile_num;
u32 transform_offset;
bool dither_up;
bool xmirror = pstate->rotation & DRM_MODE_REFLECT_X ? true : false;
bool ymirror = pstate->rotation & DRM_MODE_REFLECT_Y ? true : false;
bool rotate_270 = pstate->rotation & DRM_MODE_ROTATE_270;
bool rotate_90 = pstate->rotation & DRM_MODE_ROTATE_90;
struct rockchip_gem_object *rk_obj;
unsigned long offset;
bool afbc_en;
dma_addr_t yrgb_mst;
dma_addr_t uv_mst;
/*
* can't update plane when vop2 is disabled.
*/
if (WARN_ON(!crtc))
return;
if (!pstate->visible) {
vop2_plane_atomic_disable(plane, state);
return;
}
afbc_en = rockchip_afbc(plane, fb->modifier);
offset = (src->x1 >> 16) * fb->format->cpp[0];
/*
* AFBC HDR_PTR must set to the zero offset of the framebuffer.
*/
if (afbc_en)
offset = 0;
else if (pstate->rotation & DRM_MODE_REFLECT_Y)
offset += ((src->y2 >> 16) - 1) * fb->pitches[0];
else
offset += (src->y1 >> 16) * fb->pitches[0];
rk_obj = to_rockchip_obj(fb->obj[0]);
yrgb_mst = rk_obj->dma_addr + offset + fb->offsets[0];
if (fb->format->is_yuv) {
int hsub = fb->format->hsub;
int vsub = fb->format->vsub;
offset = (src->x1 >> 16) * fb->format->cpp[1] / hsub;
offset += (src->y1 >> 16) * fb->pitches[1] / vsub;
if ((pstate->rotation & DRM_MODE_REFLECT_Y) && !afbc_en)
offset += fb->pitches[1] * ((pstate->src_h >> 16) - 2) / vsub;
rk_obj = to_rockchip_obj(fb->obj[0]);
uv_mst = rk_obj->dma_addr + offset + fb->offsets[1];
}
actual_w = drm_rect_width(src) >> 16;
actual_h = drm_rect_height(src) >> 16;
dsp_w = drm_rect_width(dest);
if (dest->x1 + dsp_w > adjusted_mode->hdisplay) {
drm_err(vop2->drm, "vp%d %s dest->x1[%d] + dsp_w[%d] exceed mode hdisplay[%d]\n",
vp->id, win->data->name, dest->x1, dsp_w, adjusted_mode->hdisplay);
dsp_w = adjusted_mode->hdisplay - dest->x1;
if (dsp_w < 4)
dsp_w = 4;
actual_w = dsp_w * actual_w / drm_rect_width(dest);
}
dsp_h = drm_rect_height(dest);
if (dest->y1 + dsp_h > adjusted_mode->vdisplay) {
drm_err(vop2->drm, "vp%d %s dest->y1[%d] + dsp_h[%d] exceed mode vdisplay[%d]\n",
vp->id, win->data->name, dest->y1, dsp_h, adjusted_mode->vdisplay);
dsp_h = adjusted_mode->vdisplay - dest->y1;
if (dsp_h < 4)
dsp_h = 4;
actual_h = dsp_h * actual_h / drm_rect_height(dest);
}
/*
* This is workaround solution for IC design:
* esmart can't support scale down when actual_w % 16 == 1.
*/
if (!(win->data->feature & WIN_FEATURE_AFBDC)) {
if (actual_w > dsp_w && (actual_w & 0xf) == 1) {
drm_err(vop2->drm, "vp%d %s act_w[%d] MODE 16 == 1\n",
vp->id, win->data->name, actual_w);
actual_w -= 1;
}
}
if (afbc_en && actual_w % 4) {
drm_err(vop2->drm, "vp%d %s actual_w[%d] not 4 pixel aligned\n",
vp->id, win->data->name, actual_w);
actual_w = ALIGN_DOWN(actual_w, 4);
}
act_info = (actual_h - 1) << 16 | ((actual_w - 1) & 0xffff);
dsp_info = (dsp_h - 1) << 16 | ((dsp_w - 1) & 0xffff);
format = vop2_convert_format(fb->format->format);
drm_dbg(vop2->drm, "vp%d update %s[%dx%d->%dx%d@%dx%d] fmt[%p4cc_%s] addr[%pad]\n",
vp->id, win->data->name, actual_w, actual_h, dsp_w, dsp_h,
dest->x1, dest->y1,
&fb->format->format,
afbc_en ? "AFBC" : "", &yrgb_mst);
if (afbc_en) {
u32 stride;
/* the afbc superblock is 16 x 16 */
afbc_format = vop2_convert_afbc_format(fb->format->format);
/* Enable color transform for YTR */
if (fb->modifier & AFBC_FORMAT_MOD_YTR)
afbc_format |= (1 << 4);
afbc_tile_num = ALIGN(actual_w, 16) >> 4;
/*
* AFBC pic_vir_width is count by pixel, this is different
* with WIN_VIR_STRIDE.
*/
stride = (fb->pitches[0] << 3) / bpp;
if ((stride & 0x3f) && (xmirror || rotate_90 || rotate_270))
drm_err(vop2->drm, "vp%d %s stride[%d] not 64 pixel aligned\n",
vp->id, win->data->name, stride);
rb_swap = vop2_afbc_rb_swap(fb->format->format);
uv_swap = vop2_afbc_uv_swap(fb->format->format);
/*
* This is a workaround for crazy IC design, Cluster
* and Esmart/Smart use different format configuration map:
* YUV420_10BIT: 0x10 for Cluster, 0x14 for Esmart/Smart.
*
* This is one thing we can make the convert simple:
* AFBCD decode all the YUV data to YUV444. So we just
* set all the yuv 10 bit to YUV444_10.
*/
if (fb->format->is_yuv && bpp == 10)
format = VOP2_CLUSTER_YUV444_10;
if (vop2_cluster_window(win))
vop2_win_write(win, VOP2_WIN_AFBC_ENABLE, 1);
vop2_win_write(win, VOP2_WIN_AFBC_FORMAT, afbc_format);
vop2_win_write(win, VOP2_WIN_AFBC_RB_SWAP, rb_swap);
vop2_win_write(win, VOP2_WIN_AFBC_UV_SWAP, uv_swap);
vop2_win_write(win, VOP2_WIN_AFBC_AUTO_GATING_EN, 0);
vop2_win_write(win, VOP2_WIN_AFBC_BLOCK_SPLIT_EN, 0);
if (pstate->rotation & (DRM_MODE_ROTATE_270 | DRM_MODE_ROTATE_90)) {
vop2_win_write(win, VOP2_WIN_AFBC_HALF_BLOCK_EN, 0);
transform_offset = vop2_afbc_transform_offset(pstate, false);
} else {
vop2_win_write(win, VOP2_WIN_AFBC_HALF_BLOCK_EN, 1);
transform_offset = vop2_afbc_transform_offset(pstate, true);
}
vop2_win_write(win, VOP2_WIN_AFBC_HDR_PTR, yrgb_mst);
vop2_win_write(win, VOP2_WIN_AFBC_PIC_SIZE, act_info);
vop2_win_write(win, VOP2_WIN_AFBC_TRANSFORM_OFFSET, transform_offset);
vop2_win_write(win, VOP2_WIN_AFBC_PIC_OFFSET, ((src->x1 >> 16) | src->y1));
vop2_win_write(win, VOP2_WIN_AFBC_DSP_OFFSET, (dest->x1 | (dest->y1 << 16)));
vop2_win_write(win, VOP2_WIN_AFBC_PIC_VIR_WIDTH, stride);
vop2_win_write(win, VOP2_WIN_AFBC_TILE_NUM, afbc_tile_num);
vop2_win_write(win, VOP2_WIN_XMIRROR, xmirror);
vop2_win_write(win, VOP2_WIN_AFBC_ROTATE_270, rotate_270);
vop2_win_write(win, VOP2_WIN_AFBC_ROTATE_90, rotate_90);
} else {
vop2_win_write(win, VOP2_WIN_YRGB_VIR, DIV_ROUND_UP(fb->pitches[0], 4));
}
vop2_win_write(win, VOP2_WIN_YMIRROR, ymirror);
if (rotate_90 || rotate_270) {
act_info = swahw32(act_info);
actual_w = drm_rect_height(src) >> 16;
actual_h = drm_rect_width(src) >> 16;
}
vop2_win_write(win, VOP2_WIN_FORMAT, format);
vop2_win_write(win, VOP2_WIN_YRGB_MST, yrgb_mst);
rb_swap = vop2_win_rb_swap(fb->format->format);
vop2_win_write(win, VOP2_WIN_RB_SWAP, rb_swap);
if (!vop2_cluster_window(win)) {
uv_swap = vop2_win_uv_swap(fb->format->format);
vop2_win_write(win, VOP2_WIN_UV_SWAP, uv_swap);
}
if (fb->format->is_yuv) {
vop2_win_write(win, VOP2_WIN_UV_VIR, DIV_ROUND_UP(fb->pitches[1], 4));
vop2_win_write(win, VOP2_WIN_UV_MST, uv_mst);
}
vop2_setup_scale(vop2, win, actual_w, actual_h, dsp_w, dsp_h, fb->format->format);
if (!vop2_cluster_window(win))
vop2_plane_setup_color_key(plane, 0);
vop2_win_write(win, VOP2_WIN_ACT_INFO, act_info);
vop2_win_write(win, VOP2_WIN_DSP_INFO, dsp_info);
vop2_win_write(win, VOP2_WIN_DSP_ST, dest->y1 << 16 | (dest->x1 & 0xffff));
vop2_setup_csc_mode(vp, win, pstate);
dither_up = vop2_win_dither_up(fb->format->format);
vop2_win_write(win, VOP2_WIN_DITHER_UP, dither_up);
vop2_win_write(win, VOP2_WIN_ENABLE, 1);
if (vop2_cluster_window(win)) {
int lb_mode = vop2_get_cluster_lb_mode(win, pstate);
vop2_win_write(win, VOP2_WIN_CLUSTER_LB_MODE, lb_mode);
vop2_win_write(win, VOP2_WIN_CLUSTER_ENABLE, 1);
}
}
static const struct drm_plane_helper_funcs vop2_plane_helper_funcs = {
.atomic_check = vop2_plane_atomic_check,
.atomic_update = vop2_plane_atomic_update,
.atomic_disable = vop2_plane_atomic_disable,
};
static const struct drm_plane_funcs vop2_plane_funcs = {
.update_plane = drm_atomic_helper_update_plane,
.disable_plane = drm_atomic_helper_disable_plane,
.destroy = drm_plane_cleanup,
.reset = drm_atomic_helper_plane_reset,
.atomic_duplicate_state = drm_atomic_helper_plane_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_plane_destroy_state,
.format_mod_supported = rockchip_vop2_mod_supported,
};
static int vop2_crtc_enable_vblank(struct drm_crtc *crtc)
{
struct vop2_video_port *vp = to_vop2_video_port(crtc);
vop2_crtc_enable_irq(vp, VP_INT_FS_FIELD);
return 0;
}
static void vop2_crtc_disable_vblank(struct drm_crtc *crtc)
{
struct vop2_video_port *vp = to_vop2_video_port(crtc);
vop2_crtc_disable_irq(vp, VP_INT_FS_FIELD);
}
static bool vop2_crtc_mode_fixup(struct drm_crtc *crtc,
const struct drm_display_mode *mode,
struct drm_display_mode *adj_mode)
{
drm_mode_set_crtcinfo(adj_mode, CRTC_INTERLACE_HALVE_V |
CRTC_STEREO_DOUBLE);
return true;
}
static void vop2_dither_setup(struct drm_crtc *crtc, u32 *dsp_ctrl)
{
struct rockchip_crtc_state *vcstate = to_rockchip_crtc_state(crtc->state);
switch (vcstate->bus_format) {
case MEDIA_BUS_FMT_RGB565_1X16:
*dsp_ctrl |= RK3568_VP_DSP_CTRL__DITHER_DOWN_EN;
break;
case MEDIA_BUS_FMT_RGB666_1X18:
case MEDIA_BUS_FMT_RGB666_1X24_CPADHI:
case MEDIA_BUS_FMT_RGB666_1X7X3_SPWG:
*dsp_ctrl |= RK3568_VP_DSP_CTRL__DITHER_DOWN_EN;
*dsp_ctrl |= RGB888_TO_RGB666;
break;
case MEDIA_BUS_FMT_YUV8_1X24:
case MEDIA_BUS_FMT_UYYVYY8_0_5X24:
*dsp_ctrl |= RK3568_VP_DSP_CTRL__PRE_DITHER_DOWN_EN;
break;
default:
break;
}
if (vcstate->output_mode != ROCKCHIP_OUT_MODE_AAAA)
*dsp_ctrl |= RK3568_VP_DSP_CTRL__PRE_DITHER_DOWN_EN;
*dsp_ctrl |= FIELD_PREP(RK3568_VP_DSP_CTRL__DITHER_DOWN_SEL,
DITHER_DOWN_ALLEGRO);
}
static void vop2_post_config(struct drm_crtc *crtc)
{
struct vop2_video_port *vp = to_vop2_video_port(crtc);
struct drm_display_mode *mode = &crtc->state->adjusted_mode;
u16 vtotal = mode->crtc_vtotal;
u16 hdisplay = mode->crtc_hdisplay;
u16 hact_st = mode->crtc_htotal - mode->crtc_hsync_start;
u16 vdisplay = mode->crtc_vdisplay;
u16 vact_st = mode->crtc_vtotal - mode->crtc_vsync_start;
u32 left_margin = 100, right_margin = 100;
u32 top_margin = 100, bottom_margin = 100;
u16 hsize = hdisplay * (left_margin + right_margin) / 200;
u16 vsize = vdisplay * (top_margin + bottom_margin) / 200;
u16 hact_end, vact_end;
u32 val;
vsize = rounddown(vsize, 2);
hsize = rounddown(hsize, 2);
hact_st += hdisplay * (100 - left_margin) / 200;
hact_end = hact_st + hsize;
val = hact_st << 16;
val |= hact_end;
vop2_vp_write(vp, RK3568_VP_POST_DSP_HACT_INFO, val);
vact_st += vdisplay * (100 - top_margin) / 200;
vact_end = vact_st + vsize;
val = vact_st << 16;
val |= vact_end;
vop2_vp_write(vp, RK3568_VP_POST_DSP_VACT_INFO, val);
val = scl_cal_scale2(vdisplay, vsize) << 16;
val |= scl_cal_scale2(hdisplay, hsize);
vop2_vp_write(vp, RK3568_VP_POST_SCL_FACTOR_YRGB, val);
val = 0;
if (hdisplay != hsize)
val |= RK3568_VP_POST_SCL_CTRL__HSCALEDOWN;
if (vdisplay != vsize)
val |= RK3568_VP_POST_SCL_CTRL__VSCALEDOWN;
vop2_vp_write(vp, RK3568_VP_POST_SCL_CTRL, val);
if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
u16 vact_st_f1 = vtotal + vact_st + 1;
u16 vact_end_f1 = vact_st_f1 + vsize;
val = vact_st_f1 << 16 | vact_end_f1;
vop2_vp_write(vp, RK3568_VP_POST_DSP_VACT_INFO_F1, val);
}
vop2_vp_write(vp, RK3568_VP_DSP_BG, 0);
}
static void rk3568_set_intf_mux(struct vop2_video_port *vp, int id,
u32 polflags)
{
struct vop2 *vop2 = vp->vop2;
u32 die, dip;
die = vop2_readl(vop2, RK3568_DSP_IF_EN);
dip = vop2_readl(vop2, RK3568_DSP_IF_POL);
switch (id) {
case ROCKCHIP_VOP2_EP_RGB0:
die &= ~RK3568_SYS_DSP_INFACE_EN_RGB_MUX;
die |= RK3568_SYS_DSP_INFACE_EN_RGB |
FIELD_PREP(RK3568_SYS_DSP_INFACE_EN_RGB_MUX, vp->id);
if (polflags & POLFLAG_DCLK_INV)
regmap_write(vop2->grf, RK3568_GRF_VO_CON1, BIT(3 + 16) | BIT(3));
else
regmap_write(vop2->grf, RK3568_GRF_VO_CON1, BIT(3 + 16));
break;
case ROCKCHIP_VOP2_EP_HDMI0:
die &= ~RK3568_SYS_DSP_INFACE_EN_HDMI_MUX;
die |= RK3568_SYS_DSP_INFACE_EN_HDMI |
FIELD_PREP(RK3568_SYS_DSP_INFACE_EN_HDMI_MUX, vp->id);
dip &= ~RK3568_DSP_IF_POL__HDMI_PIN_POL;
dip |= FIELD_PREP(RK3568_DSP_IF_POL__HDMI_PIN_POL, polflags);
break;
case ROCKCHIP_VOP2_EP_EDP0:
die &= ~RK3568_SYS_DSP_INFACE_EN_EDP_MUX;
die |= RK3568_SYS_DSP_INFACE_EN_EDP |
FIELD_PREP(RK3568_SYS_DSP_INFACE_EN_EDP_MUX, vp->id);
dip &= ~RK3568_DSP_IF_POL__EDP_PIN_POL;
dip |= FIELD_PREP(RK3568_DSP_IF_POL__EDP_PIN_POL, polflags);
break;
case ROCKCHIP_VOP2_EP_MIPI0:
die &= ~RK3568_SYS_DSP_INFACE_EN_MIPI0_MUX;
die |= RK3568_SYS_DSP_INFACE_EN_MIPI0 |
FIELD_PREP(RK3568_SYS_DSP_INFACE_EN_MIPI0_MUX, vp->id);
dip &= ~RK3568_DSP_IF_POL__MIPI_PIN_POL;
dip |= FIELD_PREP(RK3568_DSP_IF_POL__MIPI_PIN_POL, polflags);
break;
case ROCKCHIP_VOP2_EP_MIPI1:
die &= ~RK3568_SYS_DSP_INFACE_EN_MIPI1_MUX;
die |= RK3568_SYS_DSP_INFACE_EN_MIPI1 |
FIELD_PREP(RK3568_SYS_DSP_INFACE_EN_MIPI1_MUX, vp->id);
dip &= ~RK3568_DSP_IF_POL__MIPI_PIN_POL;
dip |= FIELD_PREP(RK3568_DSP_IF_POL__MIPI_PIN_POL, polflags);
break;
case ROCKCHIP_VOP2_EP_LVDS0:
die &= ~RK3568_SYS_DSP_INFACE_EN_LVDS0_MUX;
die |= RK3568_SYS_DSP_INFACE_EN_LVDS0 |
FIELD_PREP(RK3568_SYS_DSP_INFACE_EN_LVDS0_MUX, vp->id);
dip &= ~RK3568_DSP_IF_POL__RGB_LVDS_PIN_POL;
dip |= FIELD_PREP(RK3568_DSP_IF_POL__RGB_LVDS_PIN_POL, polflags);
break;
case ROCKCHIP_VOP2_EP_LVDS1:
die &= ~RK3568_SYS_DSP_INFACE_EN_LVDS1_MUX;
die |= RK3568_SYS_DSP_INFACE_EN_LVDS1 |
FIELD_PREP(RK3568_SYS_DSP_INFACE_EN_LVDS1_MUX, vp->id);
dip &= ~RK3568_DSP_IF_POL__RGB_LVDS_PIN_POL;
dip |= FIELD_PREP(RK3568_DSP_IF_POL__RGB_LVDS_PIN_POL, polflags);
break;
default:
drm_err(vop2->drm, "Invalid interface id %d on vp%d\n", id, vp->id);
return;
}
dip |= RK3568_DSP_IF_POL__CFG_DONE_IMD;
vop2_writel(vop2, RK3568_DSP_IF_EN, die);
vop2_writel(vop2, RK3568_DSP_IF_POL, dip);
}
static int us_to_vertical_line(struct drm_display_mode *mode, int us)
{
return us * mode->clock / mode->htotal / 1000;
}
static void vop2_crtc_atomic_enable(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct vop2_video_port *vp = to_vop2_video_port(crtc);
struct vop2 *vop2 = vp->vop2;
const struct vop2_data *vop2_data = vop2->data;
const struct vop2_video_port_data *vp_data = &vop2_data->vp[vp->id];
struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
struct rockchip_crtc_state *vcstate = to_rockchip_crtc_state(crtc->state);
struct drm_display_mode *mode = &crtc->state->adjusted_mode;
unsigned long clock = mode->crtc_clock * 1000;
u16 hsync_len = mode->crtc_hsync_end - mode->crtc_hsync_start;
u16 hdisplay = mode->crtc_hdisplay;
u16 htotal = mode->crtc_htotal;
u16 hact_st = mode->crtc_htotal - mode->crtc_hsync_start;
u16 hact_end = hact_st + hdisplay;
u16 vdisplay = mode->crtc_vdisplay;
u16 vtotal = mode->crtc_vtotal;
u16 vsync_len = mode->crtc_vsync_end - mode->crtc_vsync_start;
u16 vact_st = mode->crtc_vtotal - mode->crtc_vsync_start;
u16 vact_end = vact_st + vdisplay;
u8 out_mode;
u32 dsp_ctrl = 0;
int act_end;
u32 val, polflags;
int ret;
struct drm_encoder *encoder;
drm_dbg(vop2->drm, "Update mode to %dx%d%s%d, type: %d for vp%d\n",
hdisplay, vdisplay, mode->flags & DRM_MODE_FLAG_INTERLACE ? "i" : "p",
drm_mode_vrefresh(mode), vcstate->output_type, vp->id);
vop2_lock(vop2);
ret = clk_prepare_enable(vp->dclk);
if (ret < 0) {
drm_err(vop2->drm, "failed to enable dclk for video port%d - %d\n",
vp->id, ret);
vop2_unlock(vop2);
return;
}
if (!vop2->enable_count)
vop2_enable(vop2);
vop2->enable_count++;
vop2_crtc_enable_irq(vp, VP_INT_POST_BUF_EMPTY);
polflags = 0;
if (vcstate->bus_flags & DRM_BUS_FLAG_PIXDATA_DRIVE_NEGEDGE)
polflags |= POLFLAG_DCLK_INV;
if (mode->flags & DRM_MODE_FLAG_PHSYNC)
polflags |= BIT(HSYNC_POSITIVE);
if (mode->flags & DRM_MODE_FLAG_PVSYNC)
polflags |= BIT(VSYNC_POSITIVE);
drm_for_each_encoder_mask(encoder, crtc->dev, crtc_state->encoder_mask) {
struct rockchip_encoder *rkencoder = to_rockchip_encoder(encoder);
rk3568_set_intf_mux(vp, rkencoder->crtc_endpoint_id, polflags);
}
if (vcstate->output_mode == ROCKCHIP_OUT_MODE_AAAA &&
!(vp_data->feature & VOP_FEATURE_OUTPUT_10BIT))
out_mode = ROCKCHIP_OUT_MODE_P888;
else
out_mode = vcstate->output_mode;
dsp_ctrl |= FIELD_PREP(RK3568_VP_DSP_CTRL__OUT_MODE, out_mode);
if (vop2_output_uv_swap(vcstate->bus_format, vcstate->output_mode))
dsp_ctrl |= RK3568_VP_DSP_CTRL__DSP_RB_SWAP;
if (is_yuv_output(vcstate->bus_format))
dsp_ctrl |= RK3568_VP_DSP_CTRL__POST_DSP_OUT_R2Y;
vop2_dither_setup(crtc, &dsp_ctrl);
vop2_vp_write(vp, RK3568_VP_DSP_HTOTAL_HS_END, (htotal << 16) | hsync_len);
val = hact_st << 16;
val |= hact_end;
vop2_vp_write(vp, RK3568_VP_DSP_HACT_ST_END, val);
val = vact_st << 16;
val |= vact_end;
vop2_vp_write(vp, RK3568_VP_DSP_VACT_ST_END, val);
if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
u16 vact_st_f1 = vtotal + vact_st + 1;
u16 vact_end_f1 = vact_st_f1 + vdisplay;
val = vact_st_f1 << 16 | vact_end_f1;
vop2_vp_write(vp, RK3568_VP_DSP_VACT_ST_END_F1, val);
val = vtotal << 16 | (vtotal + vsync_len);
vop2_vp_write(vp, RK3568_VP_DSP_VS_ST_END_F1, val);
dsp_ctrl |= RK3568_VP_DSP_CTRL__DSP_INTERLACE;
dsp_ctrl |= RK3568_VP_DSP_CTRL__DSP_FILED_POL;
dsp_ctrl |= RK3568_VP_DSP_CTRL__P2I_EN;
vtotal += vtotal + 1;
act_end = vact_end_f1;
} else {
act_end = vact_end;
}
vop2_writel(vop2, RK3568_VP_LINE_FLAG(vp->id),
(act_end - us_to_vertical_line(mode, 0)) << 16 | act_end);
vop2_vp_write(vp, RK3568_VP_DSP_VTOTAL_VS_END, vtotal << 16 | vsync_len);
if (mode->flags & DRM_MODE_FLAG_DBLCLK) {
dsp_ctrl |= RK3568_VP_DSP_CTRL__CORE_DCLK_DIV;
clock *= 2;
}
vop2_vp_write(vp, RK3568_VP_MIPI_CTRL, 0);
clk_set_rate(vp->dclk, clock);
vop2_post_config(crtc);
vop2_cfg_done(vp);
vop2_vp_write(vp, RK3568_VP_DSP_CTRL, dsp_ctrl);
drm_crtc_vblank_on(crtc);
vop2_unlock(vop2);
}
static int vop2_crtc_atomic_check(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct vop2_video_port *vp = to_vop2_video_port(crtc);
struct drm_plane *plane;
int nplanes = 0;
struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
drm_atomic_crtc_state_for_each_plane(plane, crtc_state)
nplanes++;
if (nplanes > vp->nlayers)
return -EINVAL;
return 0;
}
static bool is_opaque(u16 alpha)
{
return (alpha >> 8) == 0xff;
}
static void vop2_parse_alpha(struct vop2_alpha_config *alpha_config,
struct vop2_alpha *alpha)
{
int src_glb_alpha_en = is_opaque(alpha_config->src_glb_alpha_value) ? 0 : 1;
int dst_glb_alpha_en = is_opaque(alpha_config->dst_glb_alpha_value) ? 0 : 1;
int src_color_mode = alpha_config->src_premulti_en ?
ALPHA_SRC_PRE_MUL : ALPHA_SRC_NO_PRE_MUL;
int dst_color_mode = alpha_config->dst_premulti_en ?
ALPHA_SRC_PRE_MUL : ALPHA_SRC_NO_PRE_MUL;
alpha->src_color_ctrl.val = 0;
alpha->dst_color_ctrl.val = 0;
alpha->src_alpha_ctrl.val = 0;
alpha->dst_alpha_ctrl.val = 0;
if (!alpha_config->src_pixel_alpha_en)
alpha->src_color_ctrl.bits.blend_mode = ALPHA_GLOBAL;
else if (alpha_config->src_pixel_alpha_en && !src_glb_alpha_en)
alpha->src_color_ctrl.bits.blend_mode = ALPHA_PER_PIX;
else
alpha->src_color_ctrl.bits.blend_mode = ALPHA_PER_PIX_GLOBAL;
alpha->src_color_ctrl.bits.alpha_en = 1;
if (alpha->src_color_ctrl.bits.blend_mode == ALPHA_GLOBAL) {
alpha->src_color_ctrl.bits.color_mode = src_color_mode;
alpha->src_color_ctrl.bits.factor_mode = SRC_FAC_ALPHA_SRC_GLOBAL;
} else if (alpha->src_color_ctrl.bits.blend_mode == ALPHA_PER_PIX) {
alpha->src_color_ctrl.bits.color_mode = src_color_mode;
alpha->src_color_ctrl.bits.factor_mode = SRC_FAC_ALPHA_ONE;
} else {
alpha->src_color_ctrl.bits.color_mode = ALPHA_SRC_PRE_MUL;
alpha->src_color_ctrl.bits.factor_mode = SRC_FAC_ALPHA_SRC_GLOBAL;
}
alpha->src_color_ctrl.bits.glb_alpha = alpha_config->src_glb_alpha_value >> 8;
alpha->src_color_ctrl.bits.alpha_mode = ALPHA_STRAIGHT;
alpha->src_color_ctrl.bits.alpha_cal_mode = ALPHA_SATURATION;
alpha->dst_color_ctrl.bits.alpha_mode = ALPHA_STRAIGHT;
alpha->dst_color_ctrl.bits.alpha_cal_mode = ALPHA_SATURATION;
alpha->dst_color_ctrl.bits.blend_mode = ALPHA_GLOBAL;
alpha->dst_color_ctrl.bits.glb_alpha = alpha_config->dst_glb_alpha_value >> 8;
alpha->dst_color_ctrl.bits.color_mode = dst_color_mode;
alpha->dst_color_ctrl.bits.factor_mode = ALPHA_SRC_INVERSE;
alpha->src_alpha_ctrl.bits.alpha_mode = ALPHA_STRAIGHT;
alpha->src_alpha_ctrl.bits.blend_mode = alpha->src_color_ctrl.bits.blend_mode;
alpha->src_alpha_ctrl.bits.alpha_cal_mode = ALPHA_SATURATION;
alpha->src_alpha_ctrl.bits.factor_mode = ALPHA_ONE;
alpha->dst_alpha_ctrl.bits.alpha_mode = ALPHA_STRAIGHT;
if (alpha_config->dst_pixel_alpha_en && !dst_glb_alpha_en)
alpha->dst_alpha_ctrl.bits.blend_mode = ALPHA_PER_PIX;
else
alpha->dst_alpha_ctrl.bits.blend_mode = ALPHA_PER_PIX_GLOBAL;
alpha->dst_alpha_ctrl.bits.alpha_cal_mode = ALPHA_NO_SATURATION;
alpha->dst_alpha_ctrl.bits.factor_mode = ALPHA_SRC_INVERSE;
}
static int vop2_find_start_mixer_id_for_vp(struct vop2 *vop2, u8 port_id)
{
struct vop2_video_port *vp;
int used_layer = 0;
int i;
for (i = 0; i < port_id; i++) {
vp = &vop2->vps[i];
used_layer += hweight32(vp->win_mask);
}
return used_layer;
}
static void vop2_setup_cluster_alpha(struct vop2 *vop2, struct vop2_win *main_win)
{
u32 offset = (main_win->data->phys_id * 0x10);
struct vop2_alpha_config alpha_config;
struct vop2_alpha alpha;
struct drm_plane_state *bottom_win_pstate;
bool src_pixel_alpha_en = false;
u16 src_glb_alpha_val, dst_glb_alpha_val;
bool premulti_en = false;
bool swap = false;
/* At one win mode, win0 is dst/bottom win, and win1 is a all zero src/top win */
bottom_win_pstate = main_win->base.state;
src_glb_alpha_val = 0;
dst_glb_alpha_val = main_win->base.state->alpha;
if (!bottom_win_pstate->fb)
return;
alpha_config.src_premulti_en = premulti_en;
alpha_config.dst_premulti_en = false;
alpha_config.src_pixel_alpha_en = src_pixel_alpha_en;
alpha_config.dst_pixel_alpha_en = true; /* alpha value need transfer to next mix */
alpha_config.src_glb_alpha_value = src_glb_alpha_val;
alpha_config.dst_glb_alpha_value = dst_glb_alpha_val;
vop2_parse_alpha(&alpha_config, &alpha);
alpha.src_color_ctrl.bits.src_dst_swap = swap;
vop2_writel(vop2, RK3568_CLUSTER0_MIX_SRC_COLOR_CTRL + offset,
alpha.src_color_ctrl.val);
vop2_writel(vop2, RK3568_CLUSTER0_MIX_DST_COLOR_CTRL + offset,
alpha.dst_color_ctrl.val);
vop2_writel(vop2, RK3568_CLUSTER0_MIX_SRC_ALPHA_CTRL + offset,
alpha.src_alpha_ctrl.val);
vop2_writel(vop2, RK3568_CLUSTER0_MIX_DST_ALPHA_CTRL + offset,
alpha.dst_alpha_ctrl.val);
}
static void vop2_setup_alpha(struct vop2_video_port *vp)
{
struct vop2 *vop2 = vp->vop2;
struct drm_framebuffer *fb;
struct vop2_alpha_config alpha_config;
struct vop2_alpha alpha;
struct drm_plane *plane;
int pixel_alpha_en;
int premulti_en, gpremulti_en = 0;
int mixer_id;
u32 offset;
bool bottom_layer_alpha_en = false;
u32 dst_global_alpha = DRM_BLEND_ALPHA_OPAQUE;
mixer_id = vop2_find_start_mixer_id_for_vp(vop2, vp->id);
alpha_config.dst_pixel_alpha_en = true; /* alpha value need transfer to next mix */
drm_atomic_crtc_for_each_plane(plane, &vp->crtc) {
struct vop2_win *win = to_vop2_win(plane);
if (plane->state->normalized_zpos == 0 &&
!is_opaque(plane->state->alpha) &&
!vop2_cluster_window(win)) {
/*
* If bottom layer have global alpha effect [except cluster layer,
* because cluster have deal with bottom layer global alpha value
* at cluster mix], bottom layer mix need deal with global alpha.
*/
bottom_layer_alpha_en = true;
dst_global_alpha = plane->state->alpha;
}
}
drm_atomic_crtc_for_each_plane(plane, &vp->crtc) {
struct vop2_win *win = to_vop2_win(plane);
int zpos = plane->state->normalized_zpos;
if (plane->state->pixel_blend_mode == DRM_MODE_BLEND_PREMULTI)
premulti_en = 1;
else
premulti_en = 0;
plane = &win->base;
fb = plane->state->fb;
pixel_alpha_en = fb->format->has_alpha;
alpha_config.src_premulti_en = premulti_en;
if (bottom_layer_alpha_en && zpos == 1) {
gpremulti_en = premulti_en;
/* Cd = Cs + (1 - As) * Cd * Agd */
alpha_config.dst_premulti_en = false;
alpha_config.src_pixel_alpha_en = pixel_alpha_en;
alpha_config.src_glb_alpha_value = plane->state->alpha;
alpha_config.dst_glb_alpha_value = dst_global_alpha;
} else if (vop2_cluster_window(win)) {
/* Mix output data only have pixel alpha */
alpha_config.dst_premulti_en = true;
alpha_config.src_pixel_alpha_en = true;
alpha_config.src_glb_alpha_value = DRM_BLEND_ALPHA_OPAQUE;
alpha_config.dst_glb_alpha_value = DRM_BLEND_ALPHA_OPAQUE;
} else {
/* Cd = Cs + (1 - As) * Cd */
alpha_config.dst_premulti_en = true;
alpha_config.src_pixel_alpha_en = pixel_alpha_en;
alpha_config.src_glb_alpha_value = plane->state->alpha;
alpha_config.dst_glb_alpha_value = DRM_BLEND_ALPHA_OPAQUE;
}
vop2_parse_alpha(&alpha_config, &alpha);
offset = (mixer_id + zpos - 1) * 0x10;
vop2_writel(vop2, RK3568_MIX0_SRC_COLOR_CTRL + offset,
alpha.src_color_ctrl.val);
vop2_writel(vop2, RK3568_MIX0_DST_COLOR_CTRL + offset,
alpha.dst_color_ctrl.val);
vop2_writel(vop2, RK3568_MIX0_SRC_ALPHA_CTRL + offset,
alpha.src_alpha_ctrl.val);
vop2_writel(vop2, RK3568_MIX0_DST_ALPHA_CTRL + offset,
alpha.dst_alpha_ctrl.val);
}
if (vp->id == 0) {
if (bottom_layer_alpha_en) {
/* Transfer pixel alpha to hdr mix */
alpha_config.src_premulti_en = gpremulti_en;
alpha_config.dst_premulti_en = true;
alpha_config.src_pixel_alpha_en = true;
alpha_config.src_glb_alpha_value = DRM_BLEND_ALPHA_OPAQUE;
alpha_config.dst_glb_alpha_value = DRM_BLEND_ALPHA_OPAQUE;
vop2_parse_alpha(&alpha_config, &alpha);
vop2_writel(vop2, RK3568_HDR0_SRC_COLOR_CTRL,
alpha.src_color_ctrl.val);
vop2_writel(vop2, RK3568_HDR0_DST_COLOR_CTRL,
alpha.dst_color_ctrl.val);
vop2_writel(vop2, RK3568_HDR0_SRC_ALPHA_CTRL,
alpha.src_alpha_ctrl.val);
vop2_writel(vop2, RK3568_HDR0_DST_ALPHA_CTRL,
alpha.dst_alpha_ctrl.val);
} else {
vop2_writel(vop2, RK3568_HDR0_SRC_COLOR_CTRL, 0);
}
}
}
static void vop2_setup_layer_mixer(struct vop2_video_port *vp)
{
struct vop2 *vop2 = vp->vop2;
struct drm_plane *plane;
u32 layer_sel = 0;
u32 port_sel;
unsigned int nlayer, ofs;
struct drm_display_mode *adjusted_mode;
u16 hsync_len;
u16 hdisplay;
u32 bg_dly;
u32 pre_scan_dly;
int i;
struct vop2_video_port *vp0 = &vop2->vps[0];
struct vop2_video_port *vp1 = &vop2->vps[1];
struct vop2_video_port *vp2 = &vop2->vps[2];
adjusted_mode = &vp->crtc.state->adjusted_mode;
hsync_len = adjusted_mode->crtc_hsync_end - adjusted_mode->crtc_hsync_start;
hdisplay = adjusted_mode->crtc_hdisplay;
bg_dly = vp->data->pre_scan_max_dly[3];
vop2_writel(vop2, RK3568_VP_BG_MIX_CTRL(vp->id),
FIELD_PREP(RK3568_VP_BG_MIX_CTRL__BG_DLY, bg_dly));
pre_scan_dly = ((bg_dly + (hdisplay >> 1) - 1) << 16) | hsync_len;
vop2_vp_write(vp, RK3568_VP_PRE_SCAN_HTIMING, pre_scan_dly);
vop2_writel(vop2, RK3568_OVL_CTRL, 0);
port_sel = vop2_readl(vop2, RK3568_OVL_PORT_SEL);
port_sel &= RK3568_OVL_PORT_SEL__SEL_PORT;
if (vp0->nlayers)
port_sel |= FIELD_PREP(RK3568_OVL_PORT_SET__PORT0_MUX,
vp0->nlayers - 1);
else
port_sel |= FIELD_PREP(RK3568_OVL_PORT_SET__PORT0_MUX, 8);
if (vp1->nlayers)
port_sel |= FIELD_PREP(RK3568_OVL_PORT_SET__PORT1_MUX,
(vp0->nlayers + vp1->nlayers - 1));
else
port_sel |= FIELD_PREP(RK3568_OVL_PORT_SET__PORT1_MUX, 8);
if (vp2->nlayers)
port_sel |= FIELD_PREP(RK3568_OVL_PORT_SET__PORT2_MUX,
(vp2->nlayers + vp1->nlayers + vp0->nlayers - 1));
else
port_sel |= FIELD_PREP(RK3568_OVL_PORT_SET__PORT1_MUX, 8);
layer_sel = vop2_readl(vop2, RK3568_OVL_LAYER_SEL);
ofs = 0;
for (i = 0; i < vp->id; i++)
ofs += vop2->vps[i].nlayers;
nlayer = 0;
drm_atomic_crtc_for_each_plane(plane, &vp->crtc) {
struct vop2_win *win = to_vop2_win(plane);
switch (win->data->phys_id) {
case ROCKCHIP_VOP2_CLUSTER0:
port_sel &= ~RK3568_OVL_PORT_SEL__CLUSTER0;
port_sel |= FIELD_PREP(RK3568_OVL_PORT_SEL__CLUSTER0, vp->id);
break;
case ROCKCHIP_VOP2_CLUSTER1:
port_sel &= ~RK3568_OVL_PORT_SEL__CLUSTER1;
port_sel |= FIELD_PREP(RK3568_OVL_PORT_SEL__CLUSTER1, vp->id);
break;
case ROCKCHIP_VOP2_ESMART0:
port_sel &= ~RK3568_OVL_PORT_SEL__ESMART0;
port_sel |= FIELD_PREP(RK3568_OVL_PORT_SEL__ESMART0, vp->id);
break;
case ROCKCHIP_VOP2_ESMART1:
port_sel &= ~RK3568_OVL_PORT_SEL__ESMART1;
port_sel |= FIELD_PREP(RK3568_OVL_PORT_SEL__ESMART1, vp->id);
break;
case ROCKCHIP_VOP2_SMART0:
port_sel &= ~RK3568_OVL_PORT_SEL__SMART0;
port_sel |= FIELD_PREP(RK3568_OVL_PORT_SEL__SMART0, vp->id);
break;
case ROCKCHIP_VOP2_SMART1:
port_sel &= ~RK3568_OVL_PORT_SEL__SMART1;
port_sel |= FIELD_PREP(RK3568_OVL_PORT_SEL__SMART1, vp->id);
break;
}
layer_sel &= ~RK3568_OVL_LAYER_SEL__LAYER(plane->state->normalized_zpos + ofs,
0x7);
layer_sel |= RK3568_OVL_LAYER_SEL__LAYER(plane->state->normalized_zpos + ofs,
win->data->layer_sel_id);
nlayer++;
}
/* configure unused layers to 0x5 (reserved) */
for (; nlayer < vp->nlayers; nlayer++) {
layer_sel &= ~RK3568_OVL_LAYER_SEL__LAYER(nlayer + ofs, 0x7);
layer_sel |= RK3568_OVL_LAYER_SEL__LAYER(nlayer + ofs, 5);
}
vop2_writel(vop2, RK3568_OVL_LAYER_SEL, layer_sel);
vop2_writel(vop2, RK3568_OVL_PORT_SEL, port_sel);
vop2_writel(vop2, RK3568_OVL_CTRL, RK3568_OVL_CTRL__LAYERSEL_REGDONE_IMD);
}
static void vop2_setup_dly_for_windows(struct vop2 *vop2)
{
struct vop2_win *win;
int i = 0;
u32 cdly = 0, sdly = 0;
for (i = 0; i < vop2->data->win_size; i++) {
u32 dly;
win = &vop2->win[i];
dly = win->delay;
switch (win->data->phys_id) {
case ROCKCHIP_VOP2_CLUSTER0:
cdly |= FIELD_PREP(RK3568_CLUSTER_DLY_NUM__CLUSTER0_0, dly);
cdly |= FIELD_PREP(RK3568_CLUSTER_DLY_NUM__CLUSTER0_1, dly);
break;
case ROCKCHIP_VOP2_CLUSTER1:
cdly |= FIELD_PREP(RK3568_CLUSTER_DLY_NUM__CLUSTER1_0, dly);
cdly |= FIELD_PREP(RK3568_CLUSTER_DLY_NUM__CLUSTER1_1, dly);
break;
case ROCKCHIP_VOP2_ESMART0:
sdly |= FIELD_PREP(RK3568_SMART_DLY_NUM__ESMART0, dly);
break;
case ROCKCHIP_VOP2_ESMART1:
sdly |= FIELD_PREP(RK3568_SMART_DLY_NUM__ESMART1, dly);
break;
case ROCKCHIP_VOP2_SMART0:
sdly |= FIELD_PREP(RK3568_SMART_DLY_NUM__SMART0, dly);
break;
case ROCKCHIP_VOP2_SMART1:
sdly |= FIELD_PREP(RK3568_SMART_DLY_NUM__SMART1, dly);
break;
}
}
vop2_writel(vop2, RK3568_CLUSTER_DLY_NUM, cdly);
vop2_writel(vop2, RK3568_SMART_DLY_NUM, sdly);
}
static void vop2_crtc_atomic_begin(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct vop2_video_port *vp = to_vop2_video_port(crtc);
struct vop2 *vop2 = vp->vop2;
struct drm_plane *plane;
vp->win_mask = 0;
drm_atomic_crtc_for_each_plane(plane, crtc) {
struct vop2_win *win = to_vop2_win(plane);
win->delay = win->data->dly[VOP2_DLY_MODE_DEFAULT];
vp->win_mask |= BIT(win->data->phys_id);
if (vop2_cluster_window(win))
vop2_setup_cluster_alpha(vop2, win);
}
if (!vp->win_mask)
return;
vop2_setup_layer_mixer(vp);
vop2_setup_alpha(vp);
vop2_setup_dly_for_windows(vop2);
}
static void vop2_crtc_atomic_flush(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct vop2_video_port *vp = to_vop2_video_port(crtc);
vop2_post_config(crtc);
vop2_cfg_done(vp);
spin_lock_irq(&crtc->dev->event_lock);
if (crtc->state->event) {
WARN_ON(drm_crtc_vblank_get(crtc));
vp->event = crtc->state->event;
crtc->state->event = NULL;
}
spin_unlock_irq(&crtc->dev->event_lock);
}
static const struct drm_crtc_helper_funcs vop2_crtc_helper_funcs = {
.mode_fixup = vop2_crtc_mode_fixup,
.atomic_check = vop2_crtc_atomic_check,
.atomic_begin = vop2_crtc_atomic_begin,
.atomic_flush = vop2_crtc_atomic_flush,
.atomic_enable = vop2_crtc_atomic_enable,
.atomic_disable = vop2_crtc_atomic_disable,
};
static void vop2_crtc_reset(struct drm_crtc *crtc)
{
struct rockchip_crtc_state *vcstate = to_rockchip_crtc_state(crtc->state);
if (crtc->state) {
__drm_atomic_helper_crtc_destroy_state(crtc->state);
kfree(vcstate);
}
vcstate = kzalloc(sizeof(*vcstate), GFP_KERNEL);
if (!vcstate)
return;
crtc->state = &vcstate->base;
crtc->state->crtc = crtc;
}
static struct drm_crtc_state *vop2_crtc_duplicate_state(struct drm_crtc *crtc)
{
struct rockchip_crtc_state *vcstate, *old_vcstate;
old_vcstate = to_rockchip_crtc_state(crtc->state);
vcstate = kmemdup(old_vcstate, sizeof(*old_vcstate), GFP_KERNEL);
if (!vcstate)
return NULL;
__drm_atomic_helper_crtc_duplicate_state(crtc, &vcstate->base);
return &vcstate->base;
}
static void vop2_crtc_destroy_state(struct drm_crtc *crtc,
struct drm_crtc_state *state)
{
struct rockchip_crtc_state *vcstate = to_rockchip_crtc_state(state);
__drm_atomic_helper_crtc_destroy_state(&vcstate->base);
kfree(vcstate);
}
static const struct drm_crtc_funcs vop2_crtc_funcs = {
.set_config = drm_atomic_helper_set_config,
.page_flip = drm_atomic_helper_page_flip,
.destroy = drm_crtc_cleanup,
.reset = vop2_crtc_reset,
.atomic_duplicate_state = vop2_crtc_duplicate_state,
.atomic_destroy_state = vop2_crtc_destroy_state,
.enable_vblank = vop2_crtc_enable_vblank,
.disable_vblank = vop2_crtc_disable_vblank,
};
static irqreturn_t vop2_isr(int irq, void *data)
{
struct vop2 *vop2 = data;
const struct vop2_data *vop2_data = vop2->data;
u32 axi_irqs[VOP2_SYS_AXI_BUS_NUM];
int ret = IRQ_NONE;
int i;
/*
* The irq is shared with the iommu. If the runtime-pm state of the
* vop2-device is disabled the irq has to be targeted at the iommu.
*/
if (!pm_runtime_get_if_in_use(vop2->dev))
return IRQ_NONE;
for (i = 0; i < vop2_data->nr_vps; i++) {
struct vop2_video_port *vp = &vop2->vps[i];
struct drm_crtc *crtc = &vp->crtc;
u32 irqs;
irqs = vop2_readl(vop2, RK3568_VP_INT_STATUS(vp->id));
vop2_writel(vop2, RK3568_VP_INT_CLR(vp->id), irqs << 16 | irqs);
if (irqs & VP_INT_DSP_HOLD_VALID) {
complete(&vp->dsp_hold_completion);
ret = IRQ_HANDLED;
}
if (irqs & VP_INT_FS_FIELD) {
drm_crtc_handle_vblank(crtc);
spin_lock(&crtc->dev->event_lock);
if (vp->event) {
u32 val = vop2_readl(vop2, RK3568_REG_CFG_DONE);
if (!(val & BIT(vp->id))) {
drm_crtc_send_vblank_event(crtc, vp->event);
vp->event = NULL;
drm_crtc_vblank_put(crtc);
}
}
spin_unlock(&crtc->dev->event_lock);
ret = IRQ_HANDLED;
}
if (irqs & VP_INT_POST_BUF_EMPTY) {
drm_err_ratelimited(vop2->drm,
"POST_BUF_EMPTY irq err at vp%d\n",
vp->id);
ret = IRQ_HANDLED;
}
}
axi_irqs[0] = vop2_readl(vop2, RK3568_SYS0_INT_STATUS);
vop2_writel(vop2, RK3568_SYS0_INT_CLR, axi_irqs[0] << 16 | axi_irqs[0]);
axi_irqs[1] = vop2_readl(vop2, RK3568_SYS1_INT_STATUS);
vop2_writel(vop2, RK3568_SYS1_INT_CLR, axi_irqs[1] << 16 | axi_irqs[1]);
for (i = 0; i < ARRAY_SIZE(axi_irqs); i++) {
if (axi_irqs[i] & VOP2_INT_BUS_ERRPR) {
drm_err_ratelimited(vop2->drm, "BUS_ERROR irq err\n");
ret = IRQ_HANDLED;
}
}
pm_runtime_put(vop2->dev);
return ret;
}
static int vop2_plane_init(struct vop2 *vop2, struct vop2_win *win,
unsigned long possible_crtcs)
{
const struct vop2_win_data *win_data = win->data;
unsigned int blend_caps = BIT(DRM_MODE_BLEND_PIXEL_NONE) |
BIT(DRM_MODE_BLEND_PREMULTI) |
BIT(DRM_MODE_BLEND_COVERAGE);
int ret;
ret = drm_universal_plane_init(vop2->drm, &win->base, possible_crtcs,
&vop2_plane_funcs, win_data->formats,
win_data->nformats,
win_data->format_modifiers,
win->type, win_data->name);
if (ret) {
drm_err(vop2->drm, "failed to initialize plane %d\n", ret);
return ret;
}
drm_plane_helper_add(&win->base, &vop2_plane_helper_funcs);
if (win->data->supported_rotations)
drm_plane_create_rotation_property(&win->base, DRM_MODE_ROTATE_0,
DRM_MODE_ROTATE_0 |
win->data->supported_rotations);
drm_plane_create_alpha_property(&win->base);
drm_plane_create_blend_mode_property(&win->base, blend_caps);
drm_plane_create_zpos_property(&win->base, win->win_id, 0,
vop2->registered_num_wins - 1);
return 0;
}
static struct vop2_video_port *find_vp_without_primary(struct vop2 *vop2)
{
int i;
for (i = 0; i < vop2->data->nr_vps; i++) {
struct vop2_video_port *vp = &vop2->vps[i];
if (!vp->crtc.port)
continue;
if (vp->primary_plane)
continue;
return vp;
}
return NULL;
}
#define NR_LAYERS 6
static int vop2_create_crtc(struct vop2 *vop2)
{
const struct vop2_data *vop2_data = vop2->data;
struct drm_device *drm = vop2->drm;
struct device *dev = vop2->dev;
struct drm_plane *plane;
struct device_node *port;
struct vop2_video_port *vp;
int i, nvp, nvps = 0;
int ret;
for (i = 0; i < vop2_data->nr_vps; i++) {
const struct vop2_video_port_data *vp_data;
struct device_node *np;
char dclk_name[9];
vp_data = &vop2_data->vp[i];
vp = &vop2->vps[i];
vp->vop2 = vop2;
vp->id = vp_data->id;
vp->regs = vp_data->regs;
vp->data = vp_data;
snprintf(dclk_name, sizeof(dclk_name), "dclk_vp%d", vp->id);
vp->dclk = devm_clk_get(vop2->dev, dclk_name);
if (IS_ERR(vp->dclk)) {
drm_err(vop2->drm, "failed to get %s\n", dclk_name);
return PTR_ERR(vp->dclk);
}
np = of_graph_get_remote_node(dev->of_node, i, -1);
if (!np) {
drm_dbg(vop2->drm, "%s: No remote for vp%d\n", __func__, i);
continue;
}
of_node_put(np);
port = of_graph_get_port_by_id(dev->of_node, i);
if (!port) {
drm_err(vop2->drm, "no port node found for video_port%d\n", i);
return -ENOENT;
}
vp->crtc.port = port;
nvps++;
}
nvp = 0;
for (i = 0; i < vop2->registered_num_wins; i++) {
struct vop2_win *win = &vop2->win[i];
u32 possible_crtcs;
if (vop2->data->soc_id == 3566) {
/*
* On RK3566 these windows don't have an independent
* framebuffer. They share the framebuffer with smart0,
* esmart0 and cluster0 respectively.
*/
switch (win->data->phys_id) {
case ROCKCHIP_VOP2_SMART1:
case ROCKCHIP_VOP2_ESMART1:
case ROCKCHIP_VOP2_CLUSTER1:
continue;
}
}
if (win->type == DRM_PLANE_TYPE_PRIMARY) {
vp = find_vp_without_primary(vop2);
if (vp) {
possible_crtcs = BIT(nvp);
vp->primary_plane = win;
nvp++;
} else {
/* change the unused primary window to overlay window */
win->type = DRM_PLANE_TYPE_OVERLAY;
}
}
if (win->type == DRM_PLANE_TYPE_OVERLAY)
possible_crtcs = (1 << nvps) - 1;
ret = vop2_plane_init(vop2, win, possible_crtcs);
if (ret) {
drm_err(vop2->drm, "failed to init plane %s: %d\n",
win->data->name, ret);
return ret;
}
}
for (i = 0; i < vop2_data->nr_vps; i++) {
vp = &vop2->vps[i];
if (!vp->crtc.port)
continue;
plane = &vp->primary_plane->base;
ret = drm_crtc_init_with_planes(drm, &vp->crtc, plane, NULL,
&vop2_crtc_funcs,
"video_port%d", vp->id);
if (ret) {
drm_err(vop2->drm, "crtc init for video_port%d failed\n", i);
return ret;
}
drm_crtc_helper_add(&vp->crtc, &vop2_crtc_helper_funcs);
init_completion(&vp->dsp_hold_completion);
}
/*
* On the VOP2 it's very hard to change the number of layers on a VP
* during runtime, so we distribute the layers equally over the used
* VPs
*/
for (i = 0; i < vop2->data->nr_vps; i++) {
struct vop2_video_port *vp = &vop2->vps[i];
if (vp->crtc.port)
vp->nlayers = NR_LAYERS / nvps;
}
return 0;
}
static void vop2_destroy_crtc(struct drm_crtc *crtc)
{
of_node_put(crtc->port);
/*
* Destroy CRTC after vop2_plane_destroy() since vop2_disable_plane()
* references the CRTC.
*/
drm_crtc_cleanup(crtc);
}
static struct reg_field vop2_cluster_regs[VOP2_WIN_MAX_REG] = {
[VOP2_WIN_ENABLE] = REG_FIELD(RK3568_CLUSTER_WIN_CTRL0, 0, 0),
[VOP2_WIN_FORMAT] = REG_FIELD(RK3568_CLUSTER_WIN_CTRL0, 1, 5),
[VOP2_WIN_RB_SWAP] = REG_FIELD(RK3568_CLUSTER_WIN_CTRL0, 14, 14),
[VOP2_WIN_DITHER_UP] = REG_FIELD(RK3568_CLUSTER_WIN_CTRL0, 18, 18),
[VOP2_WIN_ACT_INFO] = REG_FIELD(RK3568_CLUSTER_WIN_ACT_INFO, 0, 31),
[VOP2_WIN_DSP_INFO] = REG_FIELD(RK3568_CLUSTER_WIN_DSP_INFO, 0, 31),
[VOP2_WIN_DSP_ST] = REG_FIELD(RK3568_CLUSTER_WIN_DSP_ST, 0, 31),
[VOP2_WIN_YRGB_MST] = REG_FIELD(RK3568_CLUSTER_WIN_YRGB_MST, 0, 31),
[VOP2_WIN_UV_MST] = REG_FIELD(RK3568_CLUSTER_WIN_CBR_MST, 0, 31),
[VOP2_WIN_YUV_CLIP] = REG_FIELD(RK3568_CLUSTER_WIN_CTRL0, 19, 19),
[VOP2_WIN_YRGB_VIR] = REG_FIELD(RK3568_CLUSTER_WIN_VIR, 0, 15),
[VOP2_WIN_UV_VIR] = REG_FIELD(RK3568_CLUSTER_WIN_VIR, 16, 31),
[VOP2_WIN_Y2R_EN] = REG_FIELD(RK3568_CLUSTER_WIN_CTRL0, 8, 8),
[VOP2_WIN_R2Y_EN] = REG_FIELD(RK3568_CLUSTER_WIN_CTRL0, 9, 9),
[VOP2_WIN_CSC_MODE] = REG_FIELD(RK3568_CLUSTER_WIN_CTRL0, 10, 11),
/* Scale */
[VOP2_WIN_SCALE_YRGB_X] = REG_FIELD(RK3568_CLUSTER_WIN_SCL_FACTOR_YRGB, 0, 15),
[VOP2_WIN_SCALE_YRGB_Y] = REG_FIELD(RK3568_CLUSTER_WIN_SCL_FACTOR_YRGB, 16, 31),
[VOP2_WIN_YRGB_VER_SCL_MODE] = REG_FIELD(RK3568_CLUSTER_WIN_CTRL1, 14, 15),
[VOP2_WIN_YRGB_HOR_SCL_MODE] = REG_FIELD(RK3568_CLUSTER_WIN_CTRL1, 12, 13),
[VOP2_WIN_BIC_COE_SEL] = REG_FIELD(RK3568_CLUSTER_WIN_CTRL1, 2, 3),
[VOP2_WIN_VSD_YRGB_GT2] = REG_FIELD(RK3568_CLUSTER_WIN_CTRL1, 28, 28),
[VOP2_WIN_VSD_YRGB_GT4] = REG_FIELD(RK3568_CLUSTER_WIN_CTRL1, 29, 29),
/* cluster regs */
[VOP2_WIN_AFBC_ENABLE] = REG_FIELD(RK3568_CLUSTER_CTRL, 1, 1),
[VOP2_WIN_CLUSTER_ENABLE] = REG_FIELD(RK3568_CLUSTER_CTRL, 0, 0),
[VOP2_WIN_CLUSTER_LB_MODE] = REG_FIELD(RK3568_CLUSTER_CTRL, 4, 7),
/* afbc regs */
[VOP2_WIN_AFBC_FORMAT] = REG_FIELD(RK3568_CLUSTER_WIN_AFBCD_CTRL, 2, 6),
[VOP2_WIN_AFBC_RB_SWAP] = REG_FIELD(RK3568_CLUSTER_WIN_AFBCD_CTRL, 9, 9),
[VOP2_WIN_AFBC_UV_SWAP] = REG_FIELD(RK3568_CLUSTER_WIN_AFBCD_CTRL, 10, 10),
[VOP2_WIN_AFBC_AUTO_GATING_EN] = REG_FIELD(RK3568_CLUSTER_WIN_AFBCD_OUTPUT_CTRL, 4, 4),
[VOP2_WIN_AFBC_HALF_BLOCK_EN] = REG_FIELD(RK3568_CLUSTER_WIN_AFBCD_CTRL, 7, 7),
[VOP2_WIN_AFBC_BLOCK_SPLIT_EN] = REG_FIELD(RK3568_CLUSTER_WIN_AFBCD_CTRL, 8, 8),
[VOP2_WIN_AFBC_HDR_PTR] = REG_FIELD(RK3568_CLUSTER_WIN_AFBCD_HDR_PTR, 0, 31),
[VOP2_WIN_AFBC_PIC_SIZE] = REG_FIELD(RK3568_CLUSTER_WIN_AFBCD_PIC_SIZE, 0, 31),
[VOP2_WIN_AFBC_PIC_VIR_WIDTH] = REG_FIELD(RK3568_CLUSTER_WIN_AFBCD_VIR_WIDTH, 0, 15),
[VOP2_WIN_AFBC_TILE_NUM] = REG_FIELD(RK3568_CLUSTER_WIN_AFBCD_VIR_WIDTH, 16, 31),
[VOP2_WIN_AFBC_PIC_OFFSET] = REG_FIELD(RK3568_CLUSTER_WIN_AFBCD_PIC_OFFSET, 0, 31),
[VOP2_WIN_AFBC_DSP_OFFSET] = REG_FIELD(RK3568_CLUSTER_WIN_AFBCD_DSP_OFFSET, 0, 31),
[VOP2_WIN_AFBC_TRANSFORM_OFFSET] = REG_FIELD(RK3568_CLUSTER_WIN_AFBCD_TRANSFORM_OFFSET, 0, 31),
[VOP2_WIN_AFBC_ROTATE_90] = REG_FIELD(RK3568_CLUSTER_WIN_AFBCD_ROTATE_MODE, 0, 0),
[VOP2_WIN_AFBC_ROTATE_270] = REG_FIELD(RK3568_CLUSTER_WIN_AFBCD_ROTATE_MODE, 1, 1),
[VOP2_WIN_XMIRROR] = REG_FIELD(RK3568_CLUSTER_WIN_AFBCD_ROTATE_MODE, 2, 2),
[VOP2_WIN_YMIRROR] = REG_FIELD(RK3568_CLUSTER_WIN_AFBCD_ROTATE_MODE, 3, 3),
[VOP2_WIN_UV_SWAP] = { .reg = 0xffffffff },
[VOP2_WIN_COLOR_KEY] = { .reg = 0xffffffff },
[VOP2_WIN_COLOR_KEY_EN] = { .reg = 0xffffffff },
[VOP2_WIN_SCALE_CBCR_X] = { .reg = 0xffffffff },
[VOP2_WIN_SCALE_CBCR_Y] = { .reg = 0xffffffff },
[VOP2_WIN_YRGB_HSCL_FILTER_MODE] = { .reg = 0xffffffff },
[VOP2_WIN_YRGB_VSCL_FILTER_MODE] = { .reg = 0xffffffff },
[VOP2_WIN_CBCR_VER_SCL_MODE] = { .reg = 0xffffffff },
[VOP2_WIN_CBCR_HSCL_FILTER_MODE] = { .reg = 0xffffffff },
[VOP2_WIN_CBCR_HOR_SCL_MODE] = { .reg = 0xffffffff },
[VOP2_WIN_CBCR_VSCL_FILTER_MODE] = { .reg = 0xffffffff },
[VOP2_WIN_VSD_CBCR_GT2] = { .reg = 0xffffffff },
[VOP2_WIN_VSD_CBCR_GT4] = { .reg = 0xffffffff },
};
static int vop2_cluster_init(struct vop2_win *win)
{
struct vop2 *vop2 = win->vop2;
struct reg_field *cluster_regs;
int ret, i;
cluster_regs = kmemdup(vop2_cluster_regs, sizeof(vop2_cluster_regs),
GFP_KERNEL);
if (!cluster_regs)
return -ENOMEM;
for (i = 0; i < ARRAY_SIZE(vop2_cluster_regs); i++)
if (cluster_regs[i].reg != 0xffffffff)
cluster_regs[i].reg += win->offset;
ret = devm_regmap_field_bulk_alloc(vop2->dev, vop2->map, win->reg,
cluster_regs,
ARRAY_SIZE(vop2_cluster_regs));
kfree(cluster_regs);
return ret;
};
static struct reg_field vop2_esmart_regs[VOP2_WIN_MAX_REG] = {
[VOP2_WIN_ENABLE] = REG_FIELD(RK3568_SMART_REGION0_CTRL, 0, 0),
[VOP2_WIN_FORMAT] = REG_FIELD(RK3568_SMART_REGION0_CTRL, 1, 5),
[VOP2_WIN_DITHER_UP] = REG_FIELD(RK3568_SMART_REGION0_CTRL, 12, 12),
[VOP2_WIN_RB_SWAP] = REG_FIELD(RK3568_SMART_REGION0_CTRL, 14, 14),
[VOP2_WIN_UV_SWAP] = REG_FIELD(RK3568_SMART_REGION0_CTRL, 16, 16),
[VOP2_WIN_ACT_INFO] = REG_FIELD(RK3568_SMART_REGION0_ACT_INFO, 0, 31),
[VOP2_WIN_DSP_INFO] = REG_FIELD(RK3568_SMART_REGION0_DSP_INFO, 0, 31),
[VOP2_WIN_DSP_ST] = REG_FIELD(RK3568_SMART_REGION0_DSP_ST, 0, 28),
[VOP2_WIN_YRGB_MST] = REG_FIELD(RK3568_SMART_REGION0_YRGB_MST, 0, 31),
[VOP2_WIN_UV_MST] = REG_FIELD(RK3568_SMART_REGION0_CBR_MST, 0, 31),
[VOP2_WIN_YUV_CLIP] = REG_FIELD(RK3568_SMART_REGION0_CTRL, 17, 17),
[VOP2_WIN_YRGB_VIR] = REG_FIELD(RK3568_SMART_REGION0_VIR, 0, 15),
[VOP2_WIN_UV_VIR] = REG_FIELD(RK3568_SMART_REGION0_VIR, 16, 31),
[VOP2_WIN_Y2R_EN] = REG_FIELD(RK3568_SMART_CTRL0, 0, 0),
[VOP2_WIN_R2Y_EN] = REG_FIELD(RK3568_SMART_CTRL0, 1, 1),
[VOP2_WIN_CSC_MODE] = REG_FIELD(RK3568_SMART_CTRL0, 2, 3),
[VOP2_WIN_YMIRROR] = REG_FIELD(RK3568_SMART_CTRL1, 31, 31),
[VOP2_WIN_COLOR_KEY] = REG_FIELD(RK3568_SMART_COLOR_KEY_CTRL, 0, 29),
[VOP2_WIN_COLOR_KEY_EN] = REG_FIELD(RK3568_SMART_COLOR_KEY_CTRL, 31, 31),
/* Scale */
[VOP2_WIN_SCALE_YRGB_X] = REG_FIELD(RK3568_SMART_REGION0_SCL_FACTOR_YRGB, 0, 15),
[VOP2_WIN_SCALE_YRGB_Y] = REG_FIELD(RK3568_SMART_REGION0_SCL_FACTOR_YRGB, 16, 31),
[VOP2_WIN_SCALE_CBCR_X] = REG_FIELD(RK3568_SMART_REGION0_SCL_FACTOR_CBR, 0, 15),
[VOP2_WIN_SCALE_CBCR_Y] = REG_FIELD(RK3568_SMART_REGION0_SCL_FACTOR_CBR, 16, 31),
[VOP2_WIN_YRGB_HOR_SCL_MODE] = REG_FIELD(RK3568_SMART_REGION0_SCL_CTRL, 0, 1),
[VOP2_WIN_YRGB_HSCL_FILTER_MODE] = REG_FIELD(RK3568_SMART_REGION0_SCL_CTRL, 2, 3),
[VOP2_WIN_YRGB_VER_SCL_MODE] = REG_FIELD(RK3568_SMART_REGION0_SCL_CTRL, 4, 5),
[VOP2_WIN_YRGB_VSCL_FILTER_MODE] = REG_FIELD(RK3568_SMART_REGION0_SCL_CTRL, 6, 7),
[VOP2_WIN_CBCR_HOR_SCL_MODE] = REG_FIELD(RK3568_SMART_REGION0_SCL_CTRL, 8, 9),
[VOP2_WIN_CBCR_HSCL_FILTER_MODE] = REG_FIELD(RK3568_SMART_REGION0_SCL_CTRL, 10, 11),
[VOP2_WIN_CBCR_VER_SCL_MODE] = REG_FIELD(RK3568_SMART_REGION0_SCL_CTRL, 12, 13),
[VOP2_WIN_CBCR_VSCL_FILTER_MODE] = REG_FIELD(RK3568_SMART_REGION0_SCL_CTRL, 14, 15),
[VOP2_WIN_BIC_COE_SEL] = REG_FIELD(RK3568_SMART_REGION0_SCL_CTRL, 16, 17),
[VOP2_WIN_VSD_YRGB_GT2] = REG_FIELD(RK3568_SMART_REGION0_CTRL, 8, 8),
[VOP2_WIN_VSD_YRGB_GT4] = REG_FIELD(RK3568_SMART_REGION0_CTRL, 9, 9),
[VOP2_WIN_VSD_CBCR_GT2] = REG_FIELD(RK3568_SMART_REGION0_CTRL, 10, 10),
[VOP2_WIN_VSD_CBCR_GT4] = REG_FIELD(RK3568_SMART_REGION0_CTRL, 11, 11),
[VOP2_WIN_XMIRROR] = { .reg = 0xffffffff },
[VOP2_WIN_CLUSTER_ENABLE] = { .reg = 0xffffffff },
[VOP2_WIN_AFBC_ENABLE] = { .reg = 0xffffffff },
[VOP2_WIN_CLUSTER_LB_MODE] = { .reg = 0xffffffff },
[VOP2_WIN_AFBC_FORMAT] = { .reg = 0xffffffff },
[VOP2_WIN_AFBC_RB_SWAP] = { .reg = 0xffffffff },
[VOP2_WIN_AFBC_UV_SWAP] = { .reg = 0xffffffff },
[VOP2_WIN_AFBC_AUTO_GATING_EN] = { .reg = 0xffffffff },
[VOP2_WIN_AFBC_BLOCK_SPLIT_EN] = { .reg = 0xffffffff },
[VOP2_WIN_AFBC_PIC_VIR_WIDTH] = { .reg = 0xffffffff },
[VOP2_WIN_AFBC_TILE_NUM] = { .reg = 0xffffffff },
[VOP2_WIN_AFBC_PIC_OFFSET] = { .reg = 0xffffffff },
[VOP2_WIN_AFBC_PIC_SIZE] = { .reg = 0xffffffff },
[VOP2_WIN_AFBC_DSP_OFFSET] = { .reg = 0xffffffff },
[VOP2_WIN_AFBC_TRANSFORM_OFFSET] = { .reg = 0xffffffff },
[VOP2_WIN_AFBC_HDR_PTR] = { .reg = 0xffffffff },
[VOP2_WIN_AFBC_HALF_BLOCK_EN] = { .reg = 0xffffffff },
[VOP2_WIN_AFBC_ROTATE_270] = { .reg = 0xffffffff },
[VOP2_WIN_AFBC_ROTATE_90] = { .reg = 0xffffffff },
};
static int vop2_esmart_init(struct vop2_win *win)
{
struct vop2 *vop2 = win->vop2;
struct reg_field *esmart_regs;
int ret, i;
esmart_regs = kmemdup(vop2_esmart_regs, sizeof(vop2_esmart_regs),
GFP_KERNEL);
if (!esmart_regs)
return -ENOMEM;
for (i = 0; i < ARRAY_SIZE(vop2_esmart_regs); i++)
if (esmart_regs[i].reg != 0xffffffff)
esmart_regs[i].reg += win->offset;
ret = devm_regmap_field_bulk_alloc(vop2->dev, vop2->map, win->reg,
esmart_regs,
ARRAY_SIZE(vop2_esmart_regs));
kfree(esmart_regs);
return ret;
};
static int vop2_win_init(struct vop2 *vop2)
{
const struct vop2_data *vop2_data = vop2->data;
struct vop2_win *win;
int i, ret;
for (i = 0; i < vop2_data->win_size; i++) {
const struct vop2_win_data *win_data = &vop2_data->win[i];
win = &vop2->win[i];
win->data = win_data;
win->type = win_data->type;
win->offset = win_data->base;
win->win_id = i;
win->vop2 = vop2;
if (vop2_cluster_window(win))
ret = vop2_cluster_init(win);
else
ret = vop2_esmart_init(win);
if (ret)
return ret;
}
vop2->registered_num_wins = vop2_data->win_size;
return 0;
}
/*
* The window registers are only updated when config done is written.
* Until that they read back the old value. As we read-modify-write
* these registers mark them as non-volatile. This makes sure we read
* the new values from the regmap register cache.
*/
static const struct regmap_range vop2_nonvolatile_range[] = {
regmap_reg_range(0x1000, 0x23ff),
};
static const struct regmap_access_table vop2_volatile_table = {
.no_ranges = vop2_nonvolatile_range,
.n_no_ranges = ARRAY_SIZE(vop2_nonvolatile_range),
};
static const struct regmap_config vop2_regmap_config = {
.reg_bits = 32,
.val_bits = 32,
.reg_stride = 4,
.max_register = 0x3000,
.name = "vop2",
.volatile_table = &vop2_volatile_table,
.cache_type = REGCACHE_RBTREE,
};
static int vop2_bind(struct device *dev, struct device *master, void *data)
{
struct platform_device *pdev = to_platform_device(dev);
const struct vop2_data *vop2_data;
struct drm_device *drm = data;
struct vop2 *vop2;
struct resource *res;
size_t alloc_size;
int ret;
vop2_data = of_device_get_match_data(dev);
if (!vop2_data)
return -ENODEV;
/* Allocate vop2 struct and its vop2_win array */
alloc_size = sizeof(*vop2) + sizeof(*vop2->win) * vop2_data->win_size;
vop2 = devm_kzalloc(dev, alloc_size, GFP_KERNEL);
if (!vop2)
return -ENOMEM;
vop2->dev = dev;
vop2->data = vop2_data;
vop2->drm = drm;
dev_set_drvdata(dev, vop2);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "vop");
if (!res) {
drm_err(vop2->drm, "failed to get vop2 register byname\n");
return -EINVAL;
}
vop2->regs = devm_ioremap_resource(dev, res);
if (IS_ERR(vop2->regs))
return PTR_ERR(vop2->regs);
vop2->len = resource_size(res);
vop2->map = devm_regmap_init_mmio(dev, vop2->regs, &vop2_regmap_config);
ret = vop2_win_init(vop2);
if (ret)
return ret;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "gamma-lut");
if (res) {
vop2->lut_regs = devm_ioremap_resource(dev, res);
if (IS_ERR(vop2->lut_regs))
return PTR_ERR(vop2->lut_regs);
}
vop2->grf = syscon_regmap_lookup_by_phandle(dev->of_node, "rockchip,grf");
vop2->hclk = devm_clk_get(vop2->dev, "hclk");
if (IS_ERR(vop2->hclk)) {
drm_err(vop2->drm, "failed to get hclk source\n");
return PTR_ERR(vop2->hclk);
}
vop2->aclk = devm_clk_get(vop2->dev, "aclk");
if (IS_ERR(vop2->aclk)) {
drm_err(vop2->drm, "failed to get aclk source\n");
return PTR_ERR(vop2->aclk);
}
vop2->irq = platform_get_irq(pdev, 0);
if (vop2->irq < 0) {
drm_err(vop2->drm, "cannot find irq for vop2\n");
return vop2->irq;
}
mutex_init(&vop2->vop2_lock);
ret = devm_request_irq(dev, vop2->irq, vop2_isr, IRQF_SHARED, dev_name(dev), vop2);
if (ret)
return ret;
ret = vop2_create_crtc(vop2);
if (ret)
return ret;
rockchip_drm_dma_init_device(vop2->drm, vop2->dev);
pm_runtime_enable(&pdev->dev);
return 0;
}
static void vop2_unbind(struct device *dev, struct device *master, void *data)
{
struct vop2 *vop2 = dev_get_drvdata(dev);
struct drm_device *drm = vop2->drm;
struct list_head *plane_list = &drm->mode_config.plane_list;
struct list_head *crtc_list = &drm->mode_config.crtc_list;
struct drm_crtc *crtc, *tmpc;
struct drm_plane *plane, *tmpp;
pm_runtime_disable(dev);
list_for_each_entry_safe(plane, tmpp, plane_list, head)
drm_plane_cleanup(plane);
list_for_each_entry_safe(crtc, tmpc, crtc_list, head)
vop2_destroy_crtc(crtc);
}
const struct component_ops vop2_component_ops = {
.bind = vop2_bind,
.unbind = vop2_unbind,
};
EXPORT_SYMBOL_GPL(vop2_component_ops);