blob: bf75927bac4e7049fd2226e642587233d37983e0 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Coda multi-standard codec IP - BIT processor functions
*
* Copyright (C) 2012 Vista Silicon S.L.
* Javier Martin, <javier.martin@vista-silicon.com>
* Xavier Duret
* Copyright (C) 2012-2014 Philipp Zabel, Pengutronix
*/
#include <linux/clk.h>
#include <linux/irqreturn.h>
#include <linux/kernel.h>
#include <linux/log2.h>
#include <linux/platform_device.h>
#include <linux/reset.h>
#include <linux/slab.h>
#include <linux/videodev2.h>
#include <media/v4l2-common.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-fh.h>
#include <media/v4l2-mem2mem.h>
#include <media/videobuf2-v4l2.h>
#include <media/videobuf2-dma-contig.h>
#include <media/videobuf2-vmalloc.h>
#include "coda.h"
#include "imx-vdoa.h"
#define CREATE_TRACE_POINTS
#include "trace.h"
#define CODA_PARA_BUF_SIZE (10 * 1024)
#define CODA7_PS_BUF_SIZE 0x28000
#define CODA9_PS_SAVE_SIZE (512 * 1024)
#define CODA_DEFAULT_GAMMA 4096
#define CODA9_DEFAULT_GAMMA 24576 /* 0.75 * 32768 */
static void coda_free_bitstream_buffer(struct coda_ctx *ctx);
static inline int coda_is_initialized(struct coda_dev *dev)
{
return coda_read(dev, CODA_REG_BIT_CUR_PC) != 0;
}
static inline unsigned long coda_isbusy(struct coda_dev *dev)
{
return coda_read(dev, CODA_REG_BIT_BUSY);
}
static int coda_wait_timeout(struct coda_dev *dev)
{
unsigned long timeout = jiffies + msecs_to_jiffies(1000);
while (coda_isbusy(dev)) {
if (time_after(jiffies, timeout))
return -ETIMEDOUT;
}
return 0;
}
static void coda_command_async(struct coda_ctx *ctx, int cmd)
{
struct coda_dev *dev = ctx->dev;
if (dev->devtype->product == CODA_HX4 ||
dev->devtype->product == CODA_7541 ||
dev->devtype->product == CODA_960) {
/* Restore context related registers to CODA */
coda_write(dev, ctx->bit_stream_param,
CODA_REG_BIT_BIT_STREAM_PARAM);
coda_write(dev, ctx->frm_dis_flg,
CODA_REG_BIT_FRM_DIS_FLG(ctx->reg_idx));
coda_write(dev, ctx->frame_mem_ctrl,
CODA_REG_BIT_FRAME_MEM_CTRL);
coda_write(dev, ctx->workbuf.paddr, CODA_REG_BIT_WORK_BUF_ADDR);
}
if (dev->devtype->product == CODA_960) {
coda_write(dev, 1, CODA9_GDI_WPROT_ERR_CLR);
coda_write(dev, 0, CODA9_GDI_WPROT_RGN_EN);
}
coda_write(dev, CODA_REG_BIT_BUSY_FLAG, CODA_REG_BIT_BUSY);
coda_write(dev, ctx->idx, CODA_REG_BIT_RUN_INDEX);
coda_write(dev, ctx->params.codec_mode, CODA_REG_BIT_RUN_COD_STD);
coda_write(dev, ctx->params.codec_mode_aux, CODA7_REG_BIT_RUN_AUX_STD);
trace_coda_bit_run(ctx, cmd);
coda_write(dev, cmd, CODA_REG_BIT_RUN_COMMAND);
}
static int coda_command_sync(struct coda_ctx *ctx, int cmd)
{
struct coda_dev *dev = ctx->dev;
int ret;
lockdep_assert_held(&dev->coda_mutex);
coda_command_async(ctx, cmd);
ret = coda_wait_timeout(dev);
trace_coda_bit_done(ctx);
return ret;
}
int coda_hw_reset(struct coda_ctx *ctx)
{
struct coda_dev *dev = ctx->dev;
unsigned long timeout;
unsigned int idx;
int ret;
lockdep_assert_held(&dev->coda_mutex);
if (!dev->rstc)
return -ENOENT;
idx = coda_read(dev, CODA_REG_BIT_RUN_INDEX);
if (dev->devtype->product == CODA_960) {
timeout = jiffies + msecs_to_jiffies(100);
coda_write(dev, 0x11, CODA9_GDI_BUS_CTRL);
while (coda_read(dev, CODA9_GDI_BUS_STATUS) != 0x77) {
if (time_after(jiffies, timeout))
return -ETIME;
cpu_relax();
}
}
ret = reset_control_reset(dev->rstc);
if (ret < 0)
return ret;
if (dev->devtype->product == CODA_960)
coda_write(dev, 0x00, CODA9_GDI_BUS_CTRL);
coda_write(dev, CODA_REG_BIT_BUSY_FLAG, CODA_REG_BIT_BUSY);
coda_write(dev, CODA_REG_RUN_ENABLE, CODA_REG_BIT_CODE_RUN);
ret = coda_wait_timeout(dev);
coda_write(dev, idx, CODA_REG_BIT_RUN_INDEX);
return ret;
}
static void coda_kfifo_sync_from_device(struct coda_ctx *ctx)
{
struct __kfifo *kfifo = &ctx->bitstream_fifo.kfifo;
struct coda_dev *dev = ctx->dev;
u32 rd_ptr;
rd_ptr = coda_read(dev, CODA_REG_BIT_RD_PTR(ctx->reg_idx));
kfifo->out = (kfifo->in & ~kfifo->mask) |
(rd_ptr - ctx->bitstream.paddr);
if (kfifo->out > kfifo->in)
kfifo->out -= kfifo->mask + 1;
}
static void coda_kfifo_sync_to_device_full(struct coda_ctx *ctx)
{
struct __kfifo *kfifo = &ctx->bitstream_fifo.kfifo;
struct coda_dev *dev = ctx->dev;
u32 rd_ptr, wr_ptr;
rd_ptr = ctx->bitstream.paddr + (kfifo->out & kfifo->mask);
coda_write(dev, rd_ptr, CODA_REG_BIT_RD_PTR(ctx->reg_idx));
wr_ptr = ctx->bitstream.paddr + (kfifo->in & kfifo->mask);
coda_write(dev, wr_ptr, CODA_REG_BIT_WR_PTR(ctx->reg_idx));
}
static void coda_kfifo_sync_to_device_write(struct coda_ctx *ctx)
{
struct __kfifo *kfifo = &ctx->bitstream_fifo.kfifo;
struct coda_dev *dev = ctx->dev;
u32 wr_ptr;
wr_ptr = ctx->bitstream.paddr + (kfifo->in & kfifo->mask);
coda_write(dev, wr_ptr, CODA_REG_BIT_WR_PTR(ctx->reg_idx));
}
static int coda_h264_bitstream_pad(struct coda_ctx *ctx, u32 size)
{
unsigned char *buf;
u32 n;
if (size < 6)
size = 6;
buf = kmalloc(size, GFP_KERNEL);
if (!buf)
return -ENOMEM;
coda_h264_filler_nal(size, buf);
n = kfifo_in(&ctx->bitstream_fifo, buf, size);
kfree(buf);
return (n < size) ? -ENOSPC : 0;
}
int coda_bitstream_flush(struct coda_ctx *ctx)
{
int ret;
if (ctx->inst_type != CODA_INST_DECODER || !ctx->use_bit)
return 0;
ret = coda_command_sync(ctx, CODA_COMMAND_DEC_BUF_FLUSH);
if (ret < 0) {
v4l2_err(&ctx->dev->v4l2_dev, "failed to flush bitstream\n");
return ret;
}
kfifo_init(&ctx->bitstream_fifo, ctx->bitstream.vaddr,
ctx->bitstream.size);
coda_kfifo_sync_to_device_full(ctx);
return 0;
}
static int coda_bitstream_queue(struct coda_ctx *ctx, const u8 *buf, u32 size)
{
u32 n = kfifo_in(&ctx->bitstream_fifo, buf, size);
return (n < size) ? -ENOSPC : 0;
}
static u32 coda_buffer_parse_headers(struct coda_ctx *ctx,
struct vb2_v4l2_buffer *src_buf,
u32 payload)
{
u8 *vaddr = vb2_plane_vaddr(&src_buf->vb2_buf, 0);
u32 size = 0;
switch (ctx->codec->src_fourcc) {
case V4L2_PIX_FMT_MPEG2:
size = coda_mpeg2_parse_headers(ctx, vaddr, payload);
break;
case V4L2_PIX_FMT_MPEG4:
size = coda_mpeg4_parse_headers(ctx, vaddr, payload);
break;
default:
break;
}
return size;
}
static bool coda_bitstream_try_queue(struct coda_ctx *ctx,
struct vb2_v4l2_buffer *src_buf)
{
unsigned long payload = vb2_get_plane_payload(&src_buf->vb2_buf, 0);
u8 *vaddr = vb2_plane_vaddr(&src_buf->vb2_buf, 0);
int ret;
int i;
if (coda_get_bitstream_payload(ctx) + payload + 512 >=
ctx->bitstream.size)
return false;
if (!vaddr) {
v4l2_err(&ctx->dev->v4l2_dev, "trying to queue empty buffer\n");
return true;
}
if (ctx->qsequence == 0 && payload < 512) {
/*
* Add padding after the first buffer, if it is too small to be
* fetched by the CODA, by repeating the headers. Without
* repeated headers, or the first frame already queued, decoder
* sequence initialization fails with error code 0x2000 on i.MX6
* or error code 0x1 on i.MX51.
*/
u32 header_size = coda_buffer_parse_headers(ctx, src_buf,
payload);
if (header_size) {
coda_dbg(1, ctx, "pad with %u-byte header\n",
header_size);
for (i = payload; i < 512; i += header_size) {
ret = coda_bitstream_queue(ctx, vaddr,
header_size);
if (ret < 0) {
v4l2_err(&ctx->dev->v4l2_dev,
"bitstream buffer overflow\n");
return false;
}
if (ctx->dev->devtype->product == CODA_960)
break;
}
} else {
coda_dbg(1, ctx,
"could not parse header, sequence initialization might fail\n");
}
}
/* Add padding before the first buffer, if it is too small */
if (ctx->qsequence == 0 && payload < 512 &&
ctx->codec->src_fourcc == V4L2_PIX_FMT_H264)
coda_h264_bitstream_pad(ctx, 512 - payload);
ret = coda_bitstream_queue(ctx, vaddr, payload);
if (ret < 0) {
v4l2_err(&ctx->dev->v4l2_dev, "bitstream buffer overflow\n");
return false;
}
src_buf->sequence = ctx->qsequence++;
/* Sync read pointer to device */
if (ctx == v4l2_m2m_get_curr_priv(ctx->dev->m2m_dev))
coda_kfifo_sync_to_device_write(ctx);
/* Set the stream-end flag after the last buffer is queued */
if (src_buf->flags & V4L2_BUF_FLAG_LAST)
coda_bit_stream_end_flag(ctx);
ctx->hold = false;
return true;
}
void coda_fill_bitstream(struct coda_ctx *ctx, struct list_head *buffer_list)
{
struct vb2_v4l2_buffer *src_buf;
struct coda_buffer_meta *meta;
u32 start;
if (ctx->bit_stream_param & CODA_BIT_STREAM_END_FLAG)
return;
while (v4l2_m2m_num_src_bufs_ready(ctx->fh.m2m_ctx) > 0) {
/*
* Only queue two JPEGs into the bitstream buffer to keep
* latency low. We need at least one complete buffer and the
* header of another buffer (for prescan) in the bitstream.
*/
if (ctx->codec->src_fourcc == V4L2_PIX_FMT_JPEG &&
ctx->num_metas > 1)
break;
if (ctx->num_internal_frames &&
ctx->num_metas >= ctx->num_internal_frames) {
meta = list_first_entry(&ctx->buffer_meta_list,
struct coda_buffer_meta, list);
/*
* If we managed to fill in at least a full reorder
* window of buffers (num_internal_frames is a
* conservative estimate for this) and the bitstream
* prefetcher has at least 2 256 bytes periods beyond
* the first buffer to fetch, we can safely stop queuing
* in order to limit the decoder drain latency.
*/
if (coda_bitstream_can_fetch_past(ctx, meta->end))
break;
}
src_buf = v4l2_m2m_next_src_buf(ctx->fh.m2m_ctx);
/* Drop frames that do not start/end with a SOI/EOI markers */
if (ctx->codec->src_fourcc == V4L2_PIX_FMT_JPEG &&
!coda_jpeg_check_buffer(ctx, &src_buf->vb2_buf)) {
v4l2_err(&ctx->dev->v4l2_dev,
"dropping invalid JPEG frame %d\n",
ctx->qsequence);
src_buf = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx);
if (buffer_list) {
struct v4l2_m2m_buffer *m2m_buf;
m2m_buf = container_of(src_buf,
struct v4l2_m2m_buffer,
vb);
list_add_tail(&m2m_buf->list, buffer_list);
} else {
v4l2_m2m_buf_done(src_buf, VB2_BUF_STATE_ERROR);
}
continue;
}
/* Dump empty buffers */
if (!vb2_get_plane_payload(&src_buf->vb2_buf, 0)) {
src_buf = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx);
v4l2_m2m_buf_done(src_buf, VB2_BUF_STATE_DONE);
continue;
}
/* Buffer start position */
start = ctx->bitstream_fifo.kfifo.in;
if (coda_bitstream_try_queue(ctx, src_buf)) {
/*
* Source buffer is queued in the bitstream ringbuffer;
* queue the timestamp and mark source buffer as done
*/
src_buf = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx);
meta = kmalloc(sizeof(*meta), GFP_KERNEL);
if (meta) {
meta->sequence = src_buf->sequence;
meta->timecode = src_buf->timecode;
meta->timestamp = src_buf->vb2_buf.timestamp;
meta->start = start;
meta->end = ctx->bitstream_fifo.kfifo.in;
meta->last = src_buf->flags & V4L2_BUF_FLAG_LAST;
if (meta->last)
coda_dbg(1, ctx, "marking last meta");
spin_lock(&ctx->buffer_meta_lock);
list_add_tail(&meta->list,
&ctx->buffer_meta_list);
ctx->num_metas++;
spin_unlock(&ctx->buffer_meta_lock);
trace_coda_bit_queue(ctx, src_buf, meta);
}
if (buffer_list) {
struct v4l2_m2m_buffer *m2m_buf;
m2m_buf = container_of(src_buf,
struct v4l2_m2m_buffer,
vb);
list_add_tail(&m2m_buf->list, buffer_list);
} else {
v4l2_m2m_buf_done(src_buf, VB2_BUF_STATE_DONE);
}
} else {
break;
}
}
}
void coda_bit_stream_end_flag(struct coda_ctx *ctx)
{
struct coda_dev *dev = ctx->dev;
ctx->bit_stream_param |= CODA_BIT_STREAM_END_FLAG;
/* If this context is currently running, update the hardware flag */
if ((dev->devtype->product == CODA_960) &&
coda_isbusy(dev) &&
(ctx->idx == coda_read(dev, CODA_REG_BIT_RUN_INDEX))) {
coda_write(dev, ctx->bit_stream_param,
CODA_REG_BIT_BIT_STREAM_PARAM);
}
}
static void coda_parabuf_write(struct coda_ctx *ctx, int index, u32 value)
{
struct coda_dev *dev = ctx->dev;
u32 *p = ctx->parabuf.vaddr;
if (dev->devtype->product == CODA_DX6)
p[index] = value;
else
p[index ^ 1] = value;
}
static inline int coda_alloc_context_buf(struct coda_ctx *ctx,
struct coda_aux_buf *buf, size_t size,
const char *name)
{
return coda_alloc_aux_buf(ctx->dev, buf, size, name, ctx->debugfs_entry);
}
static void coda_free_framebuffers(struct coda_ctx *ctx)
{
int i;
for (i = 0; i < CODA_MAX_FRAMEBUFFERS; i++)
coda_free_aux_buf(ctx->dev, &ctx->internal_frames[i].buf);
}
static int coda_alloc_framebuffers(struct coda_ctx *ctx,
struct coda_q_data *q_data, u32 fourcc)
{
struct coda_dev *dev = ctx->dev;
unsigned int ysize, ycbcr_size;
int ret;
int i;
if (ctx->codec->src_fourcc == V4L2_PIX_FMT_H264 ||
ctx->codec->dst_fourcc == V4L2_PIX_FMT_H264 ||
ctx->codec->src_fourcc == V4L2_PIX_FMT_MPEG4 ||
ctx->codec->dst_fourcc == V4L2_PIX_FMT_MPEG4)
ysize = round_up(q_data->rect.width, 16) *
round_up(q_data->rect.height, 16);
else
ysize = round_up(q_data->rect.width, 8) * q_data->rect.height;
if (ctx->tiled_map_type == GDI_TILED_FRAME_MB_RASTER_MAP)
ycbcr_size = round_up(ysize, 4096) + ysize / 2;
else
ycbcr_size = ysize + ysize / 2;
/* Allocate frame buffers */
for (i = 0; i < ctx->num_internal_frames; i++) {
size_t size = ycbcr_size;
char *name;
/* Add space for mvcol buffers */
if (dev->devtype->product != CODA_DX6 &&
(ctx->codec->src_fourcc == V4L2_PIX_FMT_H264 ||
(ctx->codec->src_fourcc == V4L2_PIX_FMT_MPEG4 && i == 0)))
size += ysize / 4;
name = kasprintf(GFP_KERNEL, "fb%d", i);
if (!name) {
coda_free_framebuffers(ctx);
return -ENOMEM;
}
ret = coda_alloc_context_buf(ctx, &ctx->internal_frames[i].buf,
size, name);
kfree(name);
if (ret < 0) {
coda_free_framebuffers(ctx);
return ret;
}
}
/* Register frame buffers in the parameter buffer */
for (i = 0; i < ctx->num_internal_frames; i++) {
u32 y, cb, cr, mvcol;
/* Start addresses of Y, Cb, Cr planes */
y = ctx->internal_frames[i].buf.paddr;
cb = y + ysize;
cr = y + ysize + ysize/4;
mvcol = y + ysize + ysize/4 + ysize/4;
if (ctx->tiled_map_type == GDI_TILED_FRAME_MB_RASTER_MAP) {
cb = round_up(cb, 4096);
mvcol = cb + ysize/2;
cr = 0;
/* Packed 20-bit MSB of base addresses */
/* YYYYYCCC, CCyyyyyc, cccc.... */
y = (y & 0xfffff000) | cb >> 20;
cb = (cb & 0x000ff000) << 12;
}
coda_parabuf_write(ctx, i * 3 + 0, y);
coda_parabuf_write(ctx, i * 3 + 1, cb);
coda_parabuf_write(ctx, i * 3 + 2, cr);
if (dev->devtype->product == CODA_DX6)
continue;
/* mvcol buffer for h.264 and mpeg4 */
if (ctx->codec->src_fourcc == V4L2_PIX_FMT_H264)
coda_parabuf_write(ctx, 96 + i, mvcol);
if (ctx->codec->src_fourcc == V4L2_PIX_FMT_MPEG4 && i == 0)
coda_parabuf_write(ctx, 97, mvcol);
}
return 0;
}
static void coda_free_context_buffers(struct coda_ctx *ctx)
{
struct coda_dev *dev = ctx->dev;
coda_free_aux_buf(dev, &ctx->slicebuf);
coda_free_aux_buf(dev, &ctx->psbuf);
if (dev->devtype->product != CODA_DX6)
coda_free_aux_buf(dev, &ctx->workbuf);
coda_free_aux_buf(dev, &ctx->parabuf);
}
static int coda_alloc_context_buffers(struct coda_ctx *ctx,
struct coda_q_data *q_data)
{
struct coda_dev *dev = ctx->dev;
size_t size;
int ret;
if (!ctx->parabuf.vaddr) {
ret = coda_alloc_context_buf(ctx, &ctx->parabuf,
CODA_PARA_BUF_SIZE, "parabuf");
if (ret < 0)
return ret;
}
if (dev->devtype->product == CODA_DX6)
return 0;
if (!ctx->slicebuf.vaddr && q_data->fourcc == V4L2_PIX_FMT_H264) {
/* worst case slice size */
size = (DIV_ROUND_UP(q_data->rect.width, 16) *
DIV_ROUND_UP(q_data->rect.height, 16)) * 3200 / 8 + 512;
ret = coda_alloc_context_buf(ctx, &ctx->slicebuf, size,
"slicebuf");
if (ret < 0)
goto err;
}
if (!ctx->psbuf.vaddr && (dev->devtype->product == CODA_HX4 ||
dev->devtype->product == CODA_7541)) {
ret = coda_alloc_context_buf(ctx, &ctx->psbuf,
CODA7_PS_BUF_SIZE, "psbuf");
if (ret < 0)
goto err;
}
if (!ctx->workbuf.vaddr) {
size = dev->devtype->workbuf_size;
if (dev->devtype->product == CODA_960 &&
q_data->fourcc == V4L2_PIX_FMT_H264)
size += CODA9_PS_SAVE_SIZE;
ret = coda_alloc_context_buf(ctx, &ctx->workbuf, size,
"workbuf");
if (ret < 0)
goto err;
}
return 0;
err:
coda_free_context_buffers(ctx);
return ret;
}
static int coda_encode_header(struct coda_ctx *ctx, struct vb2_v4l2_buffer *buf,
int header_code, u8 *header, int *size)
{
struct vb2_buffer *vb = &buf->vb2_buf;
struct coda_dev *dev = ctx->dev;
struct coda_q_data *q_data_src;
struct v4l2_rect *r;
size_t bufsize;
int ret;
int i;
if (dev->devtype->product == CODA_960)
memset(vb2_plane_vaddr(vb, 0), 0, 64);
coda_write(dev, vb2_dma_contig_plane_dma_addr(vb, 0),
CODA_CMD_ENC_HEADER_BB_START);
bufsize = vb2_plane_size(vb, 0);
if (dev->devtype->product == CODA_960)
bufsize /= 1024;
coda_write(dev, bufsize, CODA_CMD_ENC_HEADER_BB_SIZE);
if (dev->devtype->product == CODA_960 &&
ctx->codec->dst_fourcc == V4L2_PIX_FMT_H264 &&
header_code == CODA_HEADER_H264_SPS) {
q_data_src = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT);
r = &q_data_src->rect;
if (r->width % 16 || r->height % 16) {
u32 crop_right = round_up(r->width, 16) - r->width;
u32 crop_bottom = round_up(r->height, 16) - r->height;
coda_write(dev, crop_right,
CODA9_CMD_ENC_HEADER_FRAME_CROP_H);
coda_write(dev, crop_bottom,
CODA9_CMD_ENC_HEADER_FRAME_CROP_V);
header_code |= CODA9_HEADER_FRAME_CROP;
}
}
coda_write(dev, header_code, CODA_CMD_ENC_HEADER_CODE);
ret = coda_command_sync(ctx, CODA_COMMAND_ENCODE_HEADER);
if (ret < 0) {
v4l2_err(&dev->v4l2_dev, "CODA_COMMAND_ENCODE_HEADER timeout\n");
return ret;
}
if (dev->devtype->product == CODA_960) {
for (i = 63; i > 0; i--)
if (((char *)vb2_plane_vaddr(vb, 0))[i] != 0)
break;
*size = i + 1;
} else {
*size = coda_read(dev, CODA_REG_BIT_WR_PTR(ctx->reg_idx)) -
coda_read(dev, CODA_CMD_ENC_HEADER_BB_START);
}
memcpy(header, vb2_plane_vaddr(vb, 0), *size);
return 0;
}
static u32 coda_slice_mode(struct coda_ctx *ctx)
{
int size, unit;
switch (ctx->params.slice_mode) {
case V4L2_MPEG_VIDEO_MULTI_SLICE_MODE_SINGLE:
default:
return 0;
case V4L2_MPEG_VIDEO_MULTI_SLICE_MODE_MAX_MB:
size = ctx->params.slice_max_mb;
unit = 1;
break;
case V4L2_MPEG_VIDEO_MULTI_SLICE_MODE_MAX_BYTES:
size = ctx->params.slice_max_bits;
unit = 0;
break;
}
return ((size & CODA_SLICING_SIZE_MASK) << CODA_SLICING_SIZE_OFFSET) |
((unit & CODA_SLICING_UNIT_MASK) << CODA_SLICING_UNIT_OFFSET) |
((1 & CODA_SLICING_MODE_MASK) << CODA_SLICING_MODE_OFFSET);
}
static int coda_enc_param_change(struct coda_ctx *ctx)
{
struct coda_dev *dev = ctx->dev;
u32 change_enable = 0;
u32 success;
int ret;
if (ctx->params.gop_size_changed) {
change_enable |= CODA_PARAM_CHANGE_RC_GOP;
coda_write(dev, ctx->params.gop_size,
CODA_CMD_ENC_PARAM_RC_GOP);
ctx->gopcounter = ctx->params.gop_size - 1;
ctx->params.gop_size_changed = false;
}
if (ctx->params.h264_intra_qp_changed) {
coda_dbg(1, ctx, "parameter change: intra Qp %u\n",
ctx->params.h264_intra_qp);
if (ctx->params.bitrate) {
change_enable |= CODA_PARAM_CHANGE_RC_INTRA_QP;
coda_write(dev, ctx->params.h264_intra_qp,
CODA_CMD_ENC_PARAM_RC_INTRA_QP);
}
ctx->params.h264_intra_qp_changed = false;
}
if (ctx->params.bitrate_changed) {
coda_dbg(1, ctx, "parameter change: bitrate %u kbit/s\n",
ctx->params.bitrate);
change_enable |= CODA_PARAM_CHANGE_RC_BITRATE;
coda_write(dev, ctx->params.bitrate,
CODA_CMD_ENC_PARAM_RC_BITRATE);
ctx->params.bitrate_changed = false;
}
if (ctx->params.framerate_changed) {
coda_dbg(1, ctx, "parameter change: frame rate %u/%u Hz\n",
ctx->params.framerate & 0xffff,
(ctx->params.framerate >> 16) + 1);
change_enable |= CODA_PARAM_CHANGE_RC_FRAME_RATE;
coda_write(dev, ctx->params.framerate,
CODA_CMD_ENC_PARAM_RC_FRAME_RATE);
ctx->params.framerate_changed = false;
}
if (ctx->params.intra_refresh_changed) {
coda_dbg(1, ctx, "parameter change: intra refresh MBs %u\n",
ctx->params.intra_refresh);
change_enable |= CODA_PARAM_CHANGE_INTRA_MB_NUM;
coda_write(dev, ctx->params.intra_refresh,
CODA_CMD_ENC_PARAM_INTRA_MB_NUM);
ctx->params.intra_refresh_changed = false;
}
if (ctx->params.slice_mode_changed) {
change_enable |= CODA_PARAM_CHANGE_SLICE_MODE;
coda_write(dev, coda_slice_mode(ctx),
CODA_CMD_ENC_PARAM_SLICE_MODE);
ctx->params.slice_mode_changed = false;
}
if (!change_enable)
return 0;
coda_write(dev, change_enable, CODA_CMD_ENC_PARAM_CHANGE_ENABLE);
ret = coda_command_sync(ctx, CODA_COMMAND_RC_CHANGE_PARAMETER);
if (ret < 0)
return ret;
success = coda_read(dev, CODA_RET_ENC_PARAM_CHANGE_SUCCESS);
if (success != 1)
coda_dbg(1, ctx, "parameter change failed: %u\n", success);
return 0;
}
static phys_addr_t coda_iram_alloc(struct coda_iram_info *iram, size_t size)
{
phys_addr_t ret;
size = round_up(size, 1024);
if (size > iram->remaining)
return 0;
iram->remaining -= size;
ret = iram->next_paddr;
iram->next_paddr += size;
return ret;
}
static void coda_setup_iram(struct coda_ctx *ctx)
{
struct coda_iram_info *iram_info = &ctx->iram_info;
struct coda_dev *dev = ctx->dev;
int w64, w128;
int mb_width;
int dbk_bits;
int bit_bits;
int ip_bits;
int me_bits;
memset(iram_info, 0, sizeof(*iram_info));
iram_info->next_paddr = dev->iram.paddr;
iram_info->remaining = dev->iram.size;
if (!dev->iram.vaddr)
return;
switch (dev->devtype->product) {
case CODA_HX4:
dbk_bits = CODA7_USE_HOST_DBK_ENABLE;
bit_bits = CODA7_USE_HOST_BIT_ENABLE;
ip_bits = CODA7_USE_HOST_IP_ENABLE;
me_bits = CODA7_USE_HOST_ME_ENABLE;
break;
case CODA_7541:
dbk_bits = CODA7_USE_HOST_DBK_ENABLE | CODA7_USE_DBK_ENABLE;
bit_bits = CODA7_USE_HOST_BIT_ENABLE | CODA7_USE_BIT_ENABLE;
ip_bits = CODA7_USE_HOST_IP_ENABLE | CODA7_USE_IP_ENABLE;
me_bits = CODA7_USE_HOST_ME_ENABLE | CODA7_USE_ME_ENABLE;
break;
case CODA_960:
dbk_bits = CODA9_USE_HOST_DBK_ENABLE | CODA9_USE_DBK_ENABLE;
bit_bits = CODA9_USE_HOST_BIT_ENABLE | CODA7_USE_BIT_ENABLE;
ip_bits = CODA9_USE_HOST_IP_ENABLE | CODA7_USE_IP_ENABLE;
me_bits = 0;
break;
default: /* CODA_DX6 */
return;
}
if (ctx->inst_type == CODA_INST_ENCODER) {
struct coda_q_data *q_data_src;
q_data_src = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT);
mb_width = DIV_ROUND_UP(q_data_src->rect.width, 16);
w128 = mb_width * 128;
w64 = mb_width * 64;
/* Prioritize in case IRAM is too small for everything */
if (dev->devtype->product == CODA_HX4 ||
dev->devtype->product == CODA_7541) {
iram_info->search_ram_size = round_up(mb_width * 16 *
36 + 2048, 1024);
iram_info->search_ram_paddr = coda_iram_alloc(iram_info,
iram_info->search_ram_size);
if (!iram_info->search_ram_paddr) {
pr_err("IRAM is smaller than the search ram size\n");
goto out;
}
iram_info->axi_sram_use |= me_bits;
}
/* Only H.264BP and H.263P3 are considered */
iram_info->buf_dbk_y_use = coda_iram_alloc(iram_info, w64);
iram_info->buf_dbk_c_use = coda_iram_alloc(iram_info, w64);
if (!iram_info->buf_dbk_c_use)
goto out;
iram_info->axi_sram_use |= dbk_bits;
iram_info->buf_bit_use = coda_iram_alloc(iram_info, w128);
if (!iram_info->buf_bit_use)
goto out;
iram_info->axi_sram_use |= bit_bits;
iram_info->buf_ip_ac_dc_use = coda_iram_alloc(iram_info, w128);
if (!iram_info->buf_ip_ac_dc_use)
goto out;
iram_info->axi_sram_use |= ip_bits;
/* OVL and BTP disabled for encoder */
} else if (ctx->inst_type == CODA_INST_DECODER) {
struct coda_q_data *q_data_dst;
q_data_dst = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_CAPTURE);
mb_width = DIV_ROUND_UP(q_data_dst->width, 16);
w128 = mb_width * 128;
iram_info->buf_dbk_y_use = coda_iram_alloc(iram_info, w128);
iram_info->buf_dbk_c_use = coda_iram_alloc(iram_info, w128);
if (!iram_info->buf_dbk_c_use)
goto out;
iram_info->axi_sram_use |= dbk_bits;
iram_info->buf_bit_use = coda_iram_alloc(iram_info, w128);
if (!iram_info->buf_bit_use)
goto out;
iram_info->axi_sram_use |= bit_bits;
iram_info->buf_ip_ac_dc_use = coda_iram_alloc(iram_info, w128);
if (!iram_info->buf_ip_ac_dc_use)
goto out;
iram_info->axi_sram_use |= ip_bits;
/* OVL and BTP unused as there is no VC1 support yet */
}
out:
if (!(iram_info->axi_sram_use & CODA7_USE_HOST_IP_ENABLE))
coda_dbg(1, ctx, "IRAM smaller than needed\n");
if (dev->devtype->product == CODA_HX4 ||
dev->devtype->product == CODA_7541) {
/* TODO - Enabling these causes picture errors on CODA7541 */
if (ctx->inst_type == CODA_INST_DECODER) {
/* fw 1.4.50 */
iram_info->axi_sram_use &= ~(CODA7_USE_HOST_IP_ENABLE |
CODA7_USE_IP_ENABLE);
} else {
/* fw 13.4.29 */
iram_info->axi_sram_use &= ~(CODA7_USE_HOST_IP_ENABLE |
CODA7_USE_HOST_DBK_ENABLE |
CODA7_USE_IP_ENABLE |
CODA7_USE_DBK_ENABLE);
}
}
}
static u32 coda_supported_firmwares[] = {
CODA_FIRMWARE_VERNUM(CODA_DX6, 2, 2, 5),
CODA_FIRMWARE_VERNUM(CODA_HX4, 1, 4, 50),
CODA_FIRMWARE_VERNUM(CODA_7541, 1, 4, 50),
CODA_FIRMWARE_VERNUM(CODA_960, 2, 1, 5),
CODA_FIRMWARE_VERNUM(CODA_960, 2, 1, 9),
CODA_FIRMWARE_VERNUM(CODA_960, 2, 3, 10),
CODA_FIRMWARE_VERNUM(CODA_960, 3, 1, 1),
};
static bool coda_firmware_supported(u32 vernum)
{
int i;
for (i = 0; i < ARRAY_SIZE(coda_supported_firmwares); i++)
if (vernum == coda_supported_firmwares[i])
return true;
return false;
}
int coda_check_firmware(struct coda_dev *dev)
{
u16 product, major, minor, release;
u32 data;
int ret;
ret = clk_prepare_enable(dev->clk_per);
if (ret)
goto err_clk_per;
ret = clk_prepare_enable(dev->clk_ahb);
if (ret)
goto err_clk_ahb;
coda_write(dev, 0, CODA_CMD_FIRMWARE_VERNUM);
coda_write(dev, CODA_REG_BIT_BUSY_FLAG, CODA_REG_BIT_BUSY);
coda_write(dev, 0, CODA_REG_BIT_RUN_INDEX);
coda_write(dev, 0, CODA_REG_BIT_RUN_COD_STD);
coda_write(dev, CODA_COMMAND_FIRMWARE_GET, CODA_REG_BIT_RUN_COMMAND);
if (coda_wait_timeout(dev)) {
v4l2_err(&dev->v4l2_dev, "firmware get command error\n");
ret = -EIO;
goto err_run_cmd;
}
if (dev->devtype->product == CODA_960) {
data = coda_read(dev, CODA9_CMD_FIRMWARE_CODE_REV);
v4l2_info(&dev->v4l2_dev, "Firmware code revision: %d\n",
data);
}
/* Check we are compatible with the loaded firmware */
data = coda_read(dev, CODA_CMD_FIRMWARE_VERNUM);
product = CODA_FIRMWARE_PRODUCT(data);
major = CODA_FIRMWARE_MAJOR(data);
minor = CODA_FIRMWARE_MINOR(data);
release = CODA_FIRMWARE_RELEASE(data);
clk_disable_unprepare(dev->clk_per);
clk_disable_unprepare(dev->clk_ahb);
if (product != dev->devtype->product) {
v4l2_err(&dev->v4l2_dev,
"Wrong firmware. Hw: %s, Fw: %s, Version: %u.%u.%u\n",
coda_product_name(dev->devtype->product),
coda_product_name(product), major, minor, release);
return -EINVAL;
}
v4l2_info(&dev->v4l2_dev, "Initialized %s.\n",
coda_product_name(product));
if (coda_firmware_supported(data)) {
v4l2_info(&dev->v4l2_dev, "Firmware version: %u.%u.%u\n",
major, minor, release);
} else {
v4l2_warn(&dev->v4l2_dev,
"Unsupported firmware version: %u.%u.%u\n",
major, minor, release);
}
return 0;
err_run_cmd:
clk_disable_unprepare(dev->clk_ahb);
err_clk_ahb:
clk_disable_unprepare(dev->clk_per);
err_clk_per:
return ret;
}
static void coda9_set_frame_cache(struct coda_ctx *ctx, u32 fourcc)
{
u32 cache_size, cache_config;
if (ctx->tiled_map_type == GDI_LINEAR_FRAME_MAP) {
/* Luma 2x0 page, 2x6 cache, chroma 2x0 page, 2x4 cache size */
cache_size = 0x20262024;
cache_config = 2 << CODA9_CACHE_PAGEMERGE_OFFSET;
} else {
/* Luma 0x2 page, 4x4 cache, chroma 0x2 page, 4x3 cache size */
cache_size = 0x02440243;
cache_config = 1 << CODA9_CACHE_PAGEMERGE_OFFSET;
}
coda_write(ctx->dev, cache_size, CODA9_CMD_SET_FRAME_CACHE_SIZE);
if (fourcc == V4L2_PIX_FMT_NV12 || fourcc == V4L2_PIX_FMT_YUYV) {
cache_config |= 32 << CODA9_CACHE_LUMA_BUFFER_SIZE_OFFSET |
16 << CODA9_CACHE_CR_BUFFER_SIZE_OFFSET |
0 << CODA9_CACHE_CB_BUFFER_SIZE_OFFSET;
} else {
cache_config |= 32 << CODA9_CACHE_LUMA_BUFFER_SIZE_OFFSET |
8 << CODA9_CACHE_CR_BUFFER_SIZE_OFFSET |
8 << CODA9_CACHE_CB_BUFFER_SIZE_OFFSET;
}
coda_write(ctx->dev, cache_config, CODA9_CMD_SET_FRAME_CACHE_CONFIG);
}
/*
* Encoder context operations
*/
static int coda_encoder_reqbufs(struct coda_ctx *ctx,
struct v4l2_requestbuffers *rb)
{
struct coda_q_data *q_data_src;
int ret;
if (rb->type != V4L2_BUF_TYPE_VIDEO_OUTPUT)
return 0;
if (rb->count) {
q_data_src = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT);
ret = coda_alloc_context_buffers(ctx, q_data_src);
if (ret < 0)
return ret;
} else {
coda_free_context_buffers(ctx);
}
return 0;
}
static int coda_start_encoding(struct coda_ctx *ctx)
{
struct coda_dev *dev = ctx->dev;
struct v4l2_device *v4l2_dev = &dev->v4l2_dev;
struct coda_q_data *q_data_src, *q_data_dst;
u32 bitstream_buf, bitstream_size;
struct vb2_v4l2_buffer *buf;
int gamma, ret, value;
u32 dst_fourcc;
int num_fb;
u32 stride;
q_data_src = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT);
q_data_dst = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_CAPTURE);
dst_fourcc = q_data_dst->fourcc;
buf = v4l2_m2m_next_dst_buf(ctx->fh.m2m_ctx);
bitstream_buf = vb2_dma_contig_plane_dma_addr(&buf->vb2_buf, 0);
bitstream_size = q_data_dst->sizeimage;
if (!coda_is_initialized(dev)) {
v4l2_err(v4l2_dev, "coda is not initialized.\n");
return -EFAULT;
}
if (dst_fourcc == V4L2_PIX_FMT_JPEG) {
if (!ctx->params.jpeg_qmat_tab[0])
ctx->params.jpeg_qmat_tab[0] = kmalloc(64, GFP_KERNEL);
if (!ctx->params.jpeg_qmat_tab[1])
ctx->params.jpeg_qmat_tab[1] = kmalloc(64, GFP_KERNEL);
coda_set_jpeg_compression_quality(ctx, ctx->params.jpeg_quality);
}
mutex_lock(&dev->coda_mutex);
coda_write(dev, ctx->parabuf.paddr, CODA_REG_BIT_PARA_BUF_ADDR);
coda_write(dev, bitstream_buf, CODA_REG_BIT_RD_PTR(ctx->reg_idx));
coda_write(dev, bitstream_buf, CODA_REG_BIT_WR_PTR(ctx->reg_idx));
switch (dev->devtype->product) {
case CODA_DX6:
coda_write(dev, CODADX6_STREAM_BUF_DYNALLOC_EN |
CODADX6_STREAM_BUF_PIC_RESET, CODA_REG_BIT_STREAM_CTRL);
break;
case CODA_960:
coda_write(dev, 0, CODA9_GDI_WPROT_RGN_EN);
fallthrough;
case CODA_HX4:
case CODA_7541:
coda_write(dev, CODA7_STREAM_BUF_DYNALLOC_EN |
CODA7_STREAM_BUF_PIC_RESET, CODA_REG_BIT_STREAM_CTRL);
break;
}
ctx->frame_mem_ctrl &= ~(CODA_FRAME_CHROMA_INTERLEAVE | (0x3 << 9) |
CODA9_FRAME_TILED2LINEAR);
if (q_data_src->fourcc == V4L2_PIX_FMT_NV12)
ctx->frame_mem_ctrl |= CODA_FRAME_CHROMA_INTERLEAVE;
if (ctx->tiled_map_type == GDI_TILED_FRAME_MB_RASTER_MAP)
ctx->frame_mem_ctrl |= (0x3 << 9) | CODA9_FRAME_TILED2LINEAR;
coda_write(dev, ctx->frame_mem_ctrl, CODA_REG_BIT_FRAME_MEM_CTRL);
if (dev->devtype->product == CODA_DX6) {
/* Configure the coda */
coda_write(dev, dev->iram.paddr,
CODADX6_REG_BIT_SEARCH_RAM_BASE_ADDR);
}
/* Could set rotation here if needed */
value = 0;
switch (dev->devtype->product) {
case CODA_DX6:
value = (q_data_src->rect.width & CODADX6_PICWIDTH_MASK)
<< CODADX6_PICWIDTH_OFFSET;
value |= (q_data_src->rect.height & CODADX6_PICHEIGHT_MASK)
<< CODA_PICHEIGHT_OFFSET;
break;
case CODA_HX4:
case CODA_7541:
if (dst_fourcc == V4L2_PIX_FMT_H264) {
value = (round_up(q_data_src->rect.width, 16) &
CODA7_PICWIDTH_MASK) << CODA7_PICWIDTH_OFFSET;
value |= (round_up(q_data_src->rect.height, 16) &
CODA7_PICHEIGHT_MASK) << CODA_PICHEIGHT_OFFSET;
break;
}
fallthrough;
case CODA_960:
value = (q_data_src->rect.width & CODA7_PICWIDTH_MASK)
<< CODA7_PICWIDTH_OFFSET;
value |= (q_data_src->rect.height & CODA7_PICHEIGHT_MASK)
<< CODA_PICHEIGHT_OFFSET;
}
coda_write(dev, value, CODA_CMD_ENC_SEQ_SRC_SIZE);
if (dst_fourcc == V4L2_PIX_FMT_JPEG)
ctx->params.framerate = 0;
coda_write(dev, ctx->params.framerate,
CODA_CMD_ENC_SEQ_SRC_F_RATE);
ctx->params.codec_mode = ctx->codec->mode;
switch (dst_fourcc) {
case V4L2_PIX_FMT_MPEG4:
if (dev->devtype->product == CODA_960)
coda_write(dev, CODA9_STD_MPEG4,
CODA_CMD_ENC_SEQ_COD_STD);
else
coda_write(dev, CODA_STD_MPEG4,
CODA_CMD_ENC_SEQ_COD_STD);
coda_write(dev, 0, CODA_CMD_ENC_SEQ_MP4_PARA);
break;
case V4L2_PIX_FMT_H264:
if (dev->devtype->product == CODA_960)
coda_write(dev, CODA9_STD_H264,
CODA_CMD_ENC_SEQ_COD_STD);
else
coda_write(dev, CODA_STD_H264,
CODA_CMD_ENC_SEQ_COD_STD);
value = ((ctx->params.h264_disable_deblocking_filter_idc &
CODA_264PARAM_DISABLEDEBLK_MASK) <<
CODA_264PARAM_DISABLEDEBLK_OFFSET) |
((ctx->params.h264_slice_alpha_c0_offset_div2 &
CODA_264PARAM_DEBLKFILTEROFFSETALPHA_MASK) <<
CODA_264PARAM_DEBLKFILTEROFFSETALPHA_OFFSET) |
((ctx->params.h264_slice_beta_offset_div2 &
CODA_264PARAM_DEBLKFILTEROFFSETBETA_MASK) <<
CODA_264PARAM_DEBLKFILTEROFFSETBETA_OFFSET) |
(ctx->params.h264_constrained_intra_pred_flag <<
CODA_264PARAM_CONSTRAINEDINTRAPREDFLAG_OFFSET) |
(ctx->params.h264_chroma_qp_index_offset &
CODA_264PARAM_CHROMAQPOFFSET_MASK);
coda_write(dev, value, CODA_CMD_ENC_SEQ_264_PARA);
break;
case V4L2_PIX_FMT_JPEG:
coda_write(dev, 0, CODA_CMD_ENC_SEQ_JPG_PARA);
coda_write(dev, ctx->params.jpeg_restart_interval,
CODA_CMD_ENC_SEQ_JPG_RST_INTERVAL);
coda_write(dev, 0, CODA_CMD_ENC_SEQ_JPG_THUMB_EN);
coda_write(dev, 0, CODA_CMD_ENC_SEQ_JPG_THUMB_SIZE);
coda_write(dev, 0, CODA_CMD_ENC_SEQ_JPG_THUMB_OFFSET);
coda_jpeg_write_tables(ctx);
break;
default:
v4l2_err(v4l2_dev,
"dst format (0x%08x) invalid.\n", dst_fourcc);
ret = -EINVAL;
goto out;
}
/*
* slice mode and GOP size registers are used for thumb size/offset
* in JPEG mode
*/
if (dst_fourcc != V4L2_PIX_FMT_JPEG) {
value = coda_slice_mode(ctx);
coda_write(dev, value, CODA_CMD_ENC_SEQ_SLICE_MODE);
value = ctx->params.gop_size;
coda_write(dev, value, CODA_CMD_ENC_SEQ_GOP_SIZE);
}
if (ctx->params.bitrate && (ctx->params.frame_rc_enable ||
ctx->params.mb_rc_enable)) {
ctx->params.bitrate_changed = false;
ctx->params.h264_intra_qp_changed = false;
/* Rate control enabled */
value = (ctx->params.bitrate & CODA_RATECONTROL_BITRATE_MASK)
<< CODA_RATECONTROL_BITRATE_OFFSET;
value |= 1 & CODA_RATECONTROL_ENABLE_MASK;
value |= (ctx->params.vbv_delay &
CODA_RATECONTROL_INITIALDELAY_MASK)
<< CODA_RATECONTROL_INITIALDELAY_OFFSET;
if (dev->devtype->product == CODA_960)
value |= BIT(31); /* disable autoskip */
} else {
value = 0;
}
coda_write(dev, value, CODA_CMD_ENC_SEQ_RC_PARA);
coda_write(dev, ctx->params.vbv_size, CODA_CMD_ENC_SEQ_RC_BUF_SIZE);
coda_write(dev, ctx->params.intra_refresh,
CODA_CMD_ENC_SEQ_INTRA_REFRESH);
coda_write(dev, bitstream_buf, CODA_CMD_ENC_SEQ_BB_START);
coda_write(dev, bitstream_size / 1024, CODA_CMD_ENC_SEQ_BB_SIZE);
value = 0;
if (dev->devtype->product == CODA_960)
gamma = CODA9_DEFAULT_GAMMA;
else
gamma = CODA_DEFAULT_GAMMA;
if (gamma > 0) {
coda_write(dev, (gamma & CODA_GAMMA_MASK) << CODA_GAMMA_OFFSET,
CODA_CMD_ENC_SEQ_RC_GAMMA);
}
if (ctx->params.h264_min_qp || ctx->params.h264_max_qp) {
coda_write(dev,
ctx->params.h264_min_qp << CODA_QPMIN_OFFSET |
ctx->params.h264_max_qp << CODA_QPMAX_OFFSET,
CODA_CMD_ENC_SEQ_RC_QP_MIN_MAX);
}
if (dev->devtype->product == CODA_960) {
if (ctx->params.h264_max_qp)
value |= 1 << CODA9_OPTION_RCQPMAX_OFFSET;
if (CODA_DEFAULT_GAMMA > 0)
value |= 1 << CODA9_OPTION_GAMMA_OFFSET;
} else {
if (CODA_DEFAULT_GAMMA > 0) {
if (dev->devtype->product == CODA_DX6)
value |= 1 << CODADX6_OPTION_GAMMA_OFFSET;
else
value |= 1 << CODA7_OPTION_GAMMA_OFFSET;
}
if (ctx->params.h264_min_qp)
value |= 1 << CODA7_OPTION_RCQPMIN_OFFSET;
if (ctx->params.h264_max_qp)
value |= 1 << CODA7_OPTION_RCQPMAX_OFFSET;
}
coda_write(dev, value, CODA_CMD_ENC_SEQ_OPTION);
if (ctx->params.frame_rc_enable && !ctx->params.mb_rc_enable)
value = 1;
else
value = 0;
coda_write(dev, value, CODA_CMD_ENC_SEQ_RC_INTERVAL_MODE);
coda_setup_iram(ctx);
if (dst_fourcc == V4L2_PIX_FMT_H264) {
switch (dev->devtype->product) {
case CODA_DX6:
value = FMO_SLICE_SAVE_BUF_SIZE << 7;
coda_write(dev, value, CODADX6_CMD_ENC_SEQ_FMO);
break;
case CODA_HX4:
case CODA_7541:
coda_write(dev, ctx->iram_info.search_ram_paddr,
CODA7_CMD_ENC_SEQ_SEARCH_BASE);
coda_write(dev, ctx->iram_info.search_ram_size,
CODA7_CMD_ENC_SEQ_SEARCH_SIZE);
break;
case CODA_960:
coda_write(dev, 0, CODA9_CMD_ENC_SEQ_ME_OPTION);
coda_write(dev, 0, CODA9_CMD_ENC_SEQ_INTRA_WEIGHT);
}
}
ret = coda_command_sync(ctx, CODA_COMMAND_SEQ_INIT);
if (ret < 0) {
v4l2_err(v4l2_dev, "CODA_COMMAND_SEQ_INIT timeout\n");
goto out;
}
if (coda_read(dev, CODA_RET_ENC_SEQ_SUCCESS) == 0) {
v4l2_err(v4l2_dev, "CODA_COMMAND_SEQ_INIT failed\n");
ret = -EFAULT;
goto out;
}
ctx->initialized = 1;
if (dst_fourcc != V4L2_PIX_FMT_JPEG) {
if (dev->devtype->product == CODA_960)
ctx->num_internal_frames = 4;
else
ctx->num_internal_frames = 2;
ret = coda_alloc_framebuffers(ctx, q_data_src, dst_fourcc);
if (ret < 0) {
v4l2_err(v4l2_dev, "failed to allocate framebuffers\n");
goto out;
}
num_fb = 2;
stride = q_data_src->bytesperline;
} else {
ctx->num_internal_frames = 0;
num_fb = 0;
stride = 0;
}
coda_write(dev, num_fb, CODA_CMD_SET_FRAME_BUF_NUM);
coda_write(dev, stride, CODA_CMD_SET_FRAME_BUF_STRIDE);
if (dev->devtype->product == CODA_HX4 ||
dev->devtype->product == CODA_7541) {
coda_write(dev, q_data_src->bytesperline,
CODA7_CMD_SET_FRAME_SOURCE_BUF_STRIDE);
}
if (dev->devtype->product != CODA_DX6) {
coda_write(dev, ctx->iram_info.buf_bit_use,
CODA7_CMD_SET_FRAME_AXI_BIT_ADDR);
coda_write(dev, ctx->iram_info.buf_ip_ac_dc_use,
CODA7_CMD_SET_FRAME_AXI_IPACDC_ADDR);
coda_write(dev, ctx->iram_info.buf_dbk_y_use,
CODA7_CMD_SET_FRAME_AXI_DBKY_ADDR);
coda_write(dev, ctx->iram_info.buf_dbk_c_use,
CODA7_CMD_SET_FRAME_AXI_DBKC_ADDR);
coda_write(dev, ctx->iram_info.buf_ovl_use,
CODA7_CMD_SET_FRAME_AXI_OVL_ADDR);
if (dev->devtype->product == CODA_960) {
coda_write(dev, ctx->iram_info.buf_btp_use,
CODA9_CMD_SET_FRAME_AXI_BTP_ADDR);
coda9_set_frame_cache(ctx, q_data_src->fourcc);
/* FIXME */
coda_write(dev, ctx->internal_frames[2].buf.paddr,
CODA9_CMD_SET_FRAME_SUBSAMP_A);
coda_write(dev, ctx->internal_frames[3].buf.paddr,
CODA9_CMD_SET_FRAME_SUBSAMP_B);
}
}
ret = coda_command_sync(ctx, CODA_COMMAND_SET_FRAME_BUF);
if (ret < 0) {
v4l2_err(v4l2_dev, "CODA_COMMAND_SET_FRAME_BUF timeout\n");
goto out;
}
coda_dbg(1, ctx, "start encoding %dx%d %4.4s->%4.4s @ %d/%d Hz\n",
q_data_src->rect.width, q_data_src->rect.height,
(char *)&ctx->codec->src_fourcc, (char *)&dst_fourcc,
ctx->params.framerate & 0xffff,
(ctx->params.framerate >> 16) + 1);
/* Save stream headers */
buf = v4l2_m2m_next_dst_buf(ctx->fh.m2m_ctx);
switch (dst_fourcc) {
case V4L2_PIX_FMT_H264:
/*
* Get SPS in the first frame and copy it to an
* intermediate buffer.
*/
ret = coda_encode_header(ctx, buf, CODA_HEADER_H264_SPS,
&ctx->vpu_header[0][0],
&ctx->vpu_header_size[0]);
if (ret < 0)
goto out;
/*
* If visible width or height are not aligned to macroblock
* size, the crop_right and crop_bottom SPS fields must be set
* to the difference between visible and coded size. This is
* only supported by CODA960 firmware. All others do not allow
* writing frame cropping parameters, so we have to manually
* fix up the SPS RBSP (Sequence Parameter Set Raw Byte
* Sequence Payload) ourselves.
*/
if (ctx->dev->devtype->product != CODA_960 &&
((q_data_src->rect.width % 16) ||
(q_data_src->rect.height % 16))) {
ret = coda_h264_sps_fixup(ctx, q_data_src->rect.width,
q_data_src->rect.height,
&ctx->vpu_header[0][0],
&ctx->vpu_header_size[0],
sizeof(ctx->vpu_header[0]));
if (ret < 0)
goto out;
}
/*
* Get PPS in the first frame and copy it to an
* intermediate buffer.
*/
ret = coda_encode_header(ctx, buf, CODA_HEADER_H264_PPS,
&ctx->vpu_header[1][0],
&ctx->vpu_header_size[1]);
if (ret < 0)
goto out;
/*
* Length of H.264 headers is variable and thus it might not be
* aligned for the coda to append the encoded frame. In that is
* the case a filler NAL must be added to header 2.
*/
ctx->vpu_header_size[2] = coda_h264_padding(
(ctx->vpu_header_size[0] +
ctx->vpu_header_size[1]),
ctx->vpu_header[2]);
break;
case V4L2_PIX_FMT_MPEG4:
/*
* Get VOS in the first frame and copy it to an
* intermediate buffer
*/
ret = coda_encode_header(ctx, buf, CODA_HEADER_MP4V_VOS,
&ctx->vpu_header[0][0],
&ctx->vpu_header_size[0]);
if (ret < 0)
goto out;
ret = coda_encode_header(ctx, buf, CODA_HEADER_MP4V_VIS,
&ctx->vpu_header[1][0],
&ctx->vpu_header_size[1]);
if (ret < 0)
goto out;
ret = coda_encode_header(ctx, buf, CODA_HEADER_MP4V_VOL,
&ctx->vpu_header[2][0],
&ctx->vpu_header_size[2]);
if (ret < 0)
goto out;
break;
default:
/* No more formats need to save headers at the moment */
break;
}
out:
mutex_unlock(&dev->coda_mutex);
return ret;
}
static int coda_prepare_encode(struct coda_ctx *ctx)
{
struct coda_q_data *q_data_src, *q_data_dst;
struct vb2_v4l2_buffer *src_buf, *dst_buf;
struct coda_dev *dev = ctx->dev;
int force_ipicture;
int quant_param = 0;
u32 pic_stream_buffer_addr, pic_stream_buffer_size;
u32 rot_mode = 0;
u32 dst_fourcc;
u32 reg;
int ret;
ret = coda_enc_param_change(ctx);
if (ret < 0) {
v4l2_warn(&ctx->dev->v4l2_dev, "parameter change failed: %d\n",
ret);
}
src_buf = v4l2_m2m_next_src_buf(ctx->fh.m2m_ctx);
dst_buf = v4l2_m2m_next_dst_buf(ctx->fh.m2m_ctx);
q_data_src = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT);
q_data_dst = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_CAPTURE);
dst_fourcc = q_data_dst->fourcc;
src_buf->sequence = ctx->osequence;
dst_buf->sequence = ctx->osequence;
ctx->osequence++;
force_ipicture = ctx->params.force_ipicture;
if (force_ipicture)
ctx->params.force_ipicture = false;
else if (ctx->params.gop_size != 0 &&
(src_buf->sequence % ctx->params.gop_size) == 0)
force_ipicture = 1;
/*
* Workaround coda firmware BUG that only marks the first
* frame as IDR. This is a problem for some decoders that can't
* recover when a frame is lost.
*/
if (!force_ipicture) {
src_buf->flags |= V4L2_BUF_FLAG_PFRAME;
src_buf->flags &= ~V4L2_BUF_FLAG_KEYFRAME;
} else {
src_buf->flags |= V4L2_BUF_FLAG_KEYFRAME;
src_buf->flags &= ~V4L2_BUF_FLAG_PFRAME;
}
if (dev->devtype->product == CODA_960)
coda_set_gdi_regs(ctx);
/*
* Copy headers in front of the first frame and forced I frames for
* H.264 only. In MPEG4 they are already copied by the CODA.
*/
if (src_buf->sequence == 0 || force_ipicture) {
pic_stream_buffer_addr =
vb2_dma_contig_plane_dma_addr(&dst_buf->vb2_buf, 0) +
ctx->vpu_header_size[0] +
ctx->vpu_header_size[1] +
ctx->vpu_header_size[2];
pic_stream_buffer_size = q_data_dst->sizeimage -
ctx->vpu_header_size[0] -
ctx->vpu_header_size[1] -
ctx->vpu_header_size[2];
memcpy(vb2_plane_vaddr(&dst_buf->vb2_buf, 0),
&ctx->vpu_header[0][0], ctx->vpu_header_size[0]);
memcpy(vb2_plane_vaddr(&dst_buf->vb2_buf, 0)
+ ctx->vpu_header_size[0], &ctx->vpu_header[1][0],
ctx->vpu_header_size[1]);
memcpy(vb2_plane_vaddr(&dst_buf->vb2_buf, 0)
+ ctx->vpu_header_size[0] + ctx->vpu_header_size[1],
&ctx->vpu_header[2][0], ctx->vpu_header_size[2]);
} else {
pic_stream_buffer_addr =
vb2_dma_contig_plane_dma_addr(&dst_buf->vb2_buf, 0);
pic_stream_buffer_size = q_data_dst->sizeimage;
}
if (force_ipicture) {
switch (dst_fourcc) {
case V4L2_PIX_FMT_H264:
quant_param = ctx->params.h264_intra_qp;
break;
case V4L2_PIX_FMT_MPEG4:
quant_param = ctx->params.mpeg4_intra_qp;
break;
case V4L2_PIX_FMT_JPEG:
quant_param = 30;
break;
default:
v4l2_warn(&ctx->dev->v4l2_dev,
"cannot set intra qp, fmt not supported\n");
break;
}
} else {
switch (dst_fourcc) {
case V4L2_PIX_FMT_H264:
quant_param = ctx->params.h264_inter_qp;
break;
case V4L2_PIX_FMT_MPEG4:
quant_param = ctx->params.mpeg4_inter_qp;
break;
default:
v4l2_warn(&ctx->dev->v4l2_dev,
"cannot set inter qp, fmt not supported\n");
break;
}
}
/* submit */
if (ctx->params.rot_mode)
rot_mode = CODA_ROT_MIR_ENABLE | ctx->params.rot_mode;
coda_write(dev, rot_mode, CODA_CMD_ENC_PIC_ROT_MODE);
coda_write(dev, quant_param, CODA_CMD_ENC_PIC_QS);
if (dev->devtype->product == CODA_960) {
coda_write(dev, 4/*FIXME: 0*/, CODA9_CMD_ENC_PIC_SRC_INDEX);
coda_write(dev, q_data_src->bytesperline,
CODA9_CMD_ENC_PIC_SRC_STRIDE);
coda_write(dev, 0, CODA9_CMD_ENC_PIC_SUB_FRAME_SYNC);
reg = CODA9_CMD_ENC_PIC_SRC_ADDR_Y;
} else {
reg = CODA_CMD_ENC_PIC_SRC_ADDR_Y;
}
coda_write_base(ctx, q_data_src, src_buf, reg);
coda_write(dev, force_ipicture << 1 & 0x2,
CODA_CMD_ENC_PIC_OPTION);
coda_write(dev, pic_stream_buffer_addr, CODA_CMD_ENC_PIC_BB_START);
coda_write(dev, pic_stream_buffer_size / 1024,
CODA_CMD_ENC_PIC_BB_SIZE);
if (!ctx->streamon_out) {
/* After streamoff on the output side, set stream end flag */
ctx->bit_stream_param |= CODA_BIT_STREAM_END_FLAG;
coda_write(dev, ctx->bit_stream_param,
CODA_REG_BIT_BIT_STREAM_PARAM);
}
if (dev->devtype->product != CODA_DX6)
coda_write(dev, ctx->iram_info.axi_sram_use,
CODA7_REG_BIT_AXI_SRAM_USE);
trace_coda_enc_pic_run(ctx, src_buf);
coda_command_async(ctx, CODA_COMMAND_PIC_RUN);
return 0;
}
static char coda_frame_type_char(u32 flags)
{
return (flags & V4L2_BUF_FLAG_KEYFRAME) ? 'I' :
(flags & V4L2_BUF_FLAG_PFRAME) ? 'P' :
(flags & V4L2_BUF_FLAG_BFRAME) ? 'B' : '?';
}
static void coda_finish_encode(struct coda_ctx *ctx)
{
struct vb2_v4l2_buffer *src_buf, *dst_buf;
struct coda_dev *dev = ctx->dev;
u32 wr_ptr, start_ptr;
if (ctx->aborting)
return;
/*
* Lock to make sure that an encoder stop command running in parallel
* will either already have marked src_buf as last, or it will wake up
* the capture queue after the buffers are returned.
*/
mutex_lock(&ctx->wakeup_mutex);
src_buf = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx);
dst_buf = v4l2_m2m_next_dst_buf(ctx->fh.m2m_ctx);
trace_coda_enc_pic_done(ctx, dst_buf);
/* Get results from the coda */
start_ptr = coda_read(dev, CODA_CMD_ENC_PIC_BB_START);
wr_ptr = coda_read(dev, CODA_REG_BIT_WR_PTR(ctx->reg_idx));
/* Calculate bytesused field */
if (dst_buf->sequence == 0 ||
src_buf->flags & V4L2_BUF_FLAG_KEYFRAME) {
vb2_set_plane_payload(&dst_buf->vb2_buf, 0, wr_ptr - start_ptr +
ctx->vpu_header_size[0] +
ctx->vpu_header_size[1] +
ctx->vpu_header_size[2]);
} else {
vb2_set_plane_payload(&dst_buf->vb2_buf, 0, wr_ptr - start_ptr);
}
coda_dbg(1, ctx, "frame size = %u\n", wr_ptr - start_ptr);
coda_read(dev, CODA_RET_ENC_PIC_SLICE_NUM);
coda_read(dev, CODA_RET_ENC_PIC_FLAG);
dst_buf->flags &= ~(V4L2_BUF_FLAG_KEYFRAME |
V4L2_BUF_FLAG_PFRAME |
V4L2_BUF_FLAG_LAST);
if (coda_read(dev, CODA_RET_ENC_PIC_TYPE) == 0)
dst_buf->flags |= V4L2_BUF_FLAG_KEYFRAME;
else
dst_buf->flags |= V4L2_BUF_FLAG_PFRAME;
dst_buf->flags |= src_buf->flags & V4L2_BUF_FLAG_LAST;
v4l2_m2m_buf_copy_metadata(src_buf, dst_buf, false);
v4l2_m2m_buf_done(src_buf, VB2_BUF_STATE_DONE);
dst_buf = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx);
coda_m2m_buf_done(ctx, dst_buf, VB2_BUF_STATE_DONE);
mutex_unlock(&ctx->wakeup_mutex);
ctx->gopcounter--;
if (ctx->gopcounter < 0)
ctx->gopcounter = ctx->params.gop_size - 1;
coda_dbg(1, ctx, "job finished: encoded %c frame (%d)%s\n",
coda_frame_type_char(dst_buf->flags), dst_buf->sequence,
(dst_buf->flags & V4L2_BUF_FLAG_LAST) ? " (last)" : "");
}
static void coda_seq_end_work(struct work_struct *work)
{
struct coda_ctx *ctx = container_of(work, struct coda_ctx, seq_end_work);
struct coda_dev *dev = ctx->dev;
mutex_lock(&ctx->buffer_mutex);
mutex_lock(&dev->coda_mutex);
if (ctx->initialized == 0)
goto out;
coda_dbg(1, ctx, "%s: sent command 'SEQ_END' to coda\n", __func__);
if (coda_command_sync(ctx, CODA_COMMAND_SEQ_END)) {
v4l2_err(&dev->v4l2_dev,
"CODA_COMMAND_SEQ_END failed\n");
}
/*
* FIXME: Sometimes h.264 encoding fails with 8-byte sequences missing
* from the output stream after the h.264 decoder has run. Resetting the
* hardware after the decoder has finished seems to help.
*/
if (dev->devtype->product == CODA_960)
coda_hw_reset(ctx);
kfifo_init(&ctx->bitstream_fifo,
ctx->bitstream.vaddr, ctx->bitstream.size);
coda_free_framebuffers(ctx);
ctx->initialized = 0;
out:
mutex_unlock(&dev->coda_mutex);
mutex_unlock(&ctx->buffer_mutex);
}
static void coda_bit_release(struct coda_ctx *ctx)
{
mutex_lock(&ctx->buffer_mutex);
coda_free_framebuffers(ctx);
coda_free_context_buffers(ctx);
coda_free_bitstream_buffer(ctx);
mutex_unlock(&ctx->buffer_mutex);
}
const struct coda_context_ops coda_bit_encode_ops = {
.queue_init = coda_encoder_queue_init,
.reqbufs = coda_encoder_reqbufs,
.start_streaming = coda_start_encoding,
.prepare_run = coda_prepare_encode,
.finish_run = coda_finish_encode,
.seq_end_work = coda_seq_end_work,
.release = coda_bit_release,
};
/*
* Decoder context operations
*/
static int coda_alloc_bitstream_buffer(struct coda_ctx *ctx,
struct coda_q_data *q_data)
{
if (ctx->bitstream.vaddr)
return 0;
ctx->bitstream.size = roundup_pow_of_two(q_data->sizeimage * 2);
ctx->bitstream.vaddr = dma_alloc_wc(ctx->dev->dev, ctx->bitstream.size,
&ctx->bitstream.paddr, GFP_KERNEL);
if (!ctx->bitstream.vaddr) {
v4l2_err(&ctx->dev->v4l2_dev,
"failed to allocate bitstream ringbuffer");
return -ENOMEM;
}
kfifo_init(&ctx->bitstream_fifo,
ctx->bitstream.vaddr, ctx->bitstream.size);
return 0;
}
static void coda_free_bitstream_buffer(struct coda_ctx *ctx)
{
if (ctx->bitstream.vaddr == NULL)
return;
dma_free_wc(ctx->dev->dev, ctx->bitstream.size, ctx->bitstream.vaddr,
ctx->bitstream.paddr);
ctx->bitstream.vaddr = NULL;
kfifo_init(&ctx->bitstream_fifo, NULL, 0);
}
static int coda_decoder_reqbufs(struct coda_ctx *ctx,
struct v4l2_requestbuffers *rb)
{
struct coda_q_data *q_data_src;
int ret;
if (rb->type != V4L2_BUF_TYPE_VIDEO_OUTPUT)
return 0;
if (rb->count) {
q_data_src = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT);
ret = coda_alloc_context_buffers(ctx, q_data_src);
if (ret < 0)
return ret;
ret = coda_alloc_bitstream_buffer(ctx, q_data_src);
if (ret < 0) {
coda_free_context_buffers(ctx);
return ret;
}
} else {
coda_free_bitstream_buffer(ctx);
coda_free_context_buffers(ctx);
}
return 0;
}
static bool coda_reorder_enable(struct coda_ctx *ctx)
{
struct coda_dev *dev = ctx->dev;
int profile;
if (dev->devtype->product != CODA_HX4 &&
dev->devtype->product != CODA_7541 &&
dev->devtype->product != CODA_960)
return false;
if (ctx->codec->src_fourcc == V4L2_PIX_FMT_JPEG)
return false;
if (ctx->codec->src_fourcc != V4L2_PIX_FMT_H264)
return true;
profile = coda_h264_profile(ctx->params.h264_profile_idc);
if (profile < 0)
v4l2_warn(&dev->v4l2_dev, "Unknown H264 Profile: %u\n",
ctx->params.h264_profile_idc);
/* Baseline profile does not support reordering */
return profile > V4L2_MPEG_VIDEO_H264_PROFILE_BASELINE;
}
static int __coda_decoder_seq_init(struct coda_ctx *ctx)
{
struct coda_q_data *q_data_src, *q_data_dst;
u32 bitstream_buf, bitstream_size;
struct coda_dev *dev = ctx->dev;
int width, height;
u32 src_fourcc, dst_fourcc;
u32 val;
int ret;
lockdep_assert_held(&dev->coda_mutex);
coda_dbg(1, ctx, "Video Data Order Adapter: %s\n",
ctx->use_vdoa ? "Enabled" : "Disabled");
/* Start decoding */
q_data_src = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT);
q_data_dst = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_CAPTURE);
bitstream_buf = ctx->bitstream.paddr;
bitstream_size = ctx->bitstream.size;
src_fourcc = q_data_src->fourcc;
dst_fourcc = q_data_dst->fourcc;
/* Update coda bitstream read and write pointers from kfifo */
coda_kfifo_sync_to_device_full(ctx);
ctx->frame_mem_ctrl &= ~(CODA_FRAME_CHROMA_INTERLEAVE | (0x3 << 9) |
CODA9_FRAME_TILED2LINEAR);
if (dst_fourcc == V4L2_PIX_FMT_NV12 || dst_fourcc == V4L2_PIX_FMT_YUYV)
ctx->frame_mem_ctrl |= CODA_FRAME_CHROMA_INTERLEAVE;
if (ctx->tiled_map_type == GDI_TILED_FRAME_MB_RASTER_MAP)
ctx->frame_mem_ctrl |= (0x3 << 9) |
((ctx->use_vdoa) ? 0 : CODA9_FRAME_TILED2LINEAR);
coda_write(dev, ctx->frame_mem_ctrl, CODA_REG_BIT_FRAME_MEM_CTRL);
ctx->display_idx = -1;
ctx->frm_dis_flg = 0;
coda_write(dev, 0, CODA_REG_BIT_FRM_DIS_FLG(ctx->reg_idx));
coda_write(dev, bitstream_buf, CODA_CMD_DEC_SEQ_BB_START);
coda_write(dev, bitstream_size / 1024, CODA_CMD_DEC_SEQ_BB_SIZE);
val = 0;
if (coda_reorder_enable(ctx))
val |= CODA_REORDER_ENABLE;
if (ctx->codec->src_fourcc == V4L2_PIX_FMT_JPEG)
val |= CODA_NO_INT_ENABLE;
coda_write(dev, val, CODA_CMD_DEC_SEQ_OPTION);
ctx->params.codec_mode = ctx->codec->mode;
if (dev->devtype->product == CODA_960 &&
src_fourcc == V4L2_PIX_FMT_MPEG4)
ctx->params.codec_mode_aux = CODA_MP4_AUX_MPEG4;
else
ctx->params.codec_mode_aux = 0;
if (src_fourcc == V4L2_PIX_FMT_MPEG4) {
coda_write(dev, CODA_MP4_CLASS_MPEG4,
CODA_CMD_DEC_SEQ_MP4_ASP_CLASS);
}
if (src_fourcc == V4L2_PIX_FMT_H264) {
if (dev->devtype->product == CODA_HX4 ||
dev->devtype->product == CODA_7541) {
coda_write(dev, ctx->psbuf.paddr,
CODA_CMD_DEC_SEQ_PS_BB_START);
coda_write(dev, (CODA7_PS_BUF_SIZE / 1024),
CODA_CMD_DEC_SEQ_PS_BB_SIZE);
}
if (dev->devtype->product == CODA_960) {
coda_write(dev, 0, CODA_CMD_DEC_SEQ_X264_MV_EN);
coda_write(dev, 512, CODA_CMD_DEC_SEQ_SPP_CHUNK_SIZE);
}
}
if (src_fourcc == V4L2_PIX_FMT_JPEG)
coda_write(dev, 0, CODA_CMD_DEC_SEQ_JPG_THUMB_EN);
if (dev->devtype->product != CODA_960)
coda_write(dev, 0, CODA_CMD_DEC_SEQ_SRC_SIZE);
ctx->bit_stream_param = CODA_BIT_DEC_SEQ_INIT_ESCAPE;
ret = coda_command_sync(ctx, CODA_COMMAND_SEQ_INIT);
ctx->bit_stream_param = 0;
if (ret) {
v4l2_err(&dev->v4l2_dev, "CODA_COMMAND_SEQ_INIT timeout\n");
return ret;
}
ctx->sequence_offset = ~0U;
ctx->initialized = 1;
/* Update kfifo out pointer from coda bitstream read pointer */
coda_kfifo_sync_from_device(ctx);
if (coda_read(dev, CODA_RET_DEC_SEQ_SUCCESS) == 0) {
v4l2_err(&dev->v4l2_dev,
"CODA_COMMAND_SEQ_INIT failed, error code = 0x%x\n",
coda_read(dev, CODA_RET_DEC_SEQ_ERR_REASON));
return -EAGAIN;
}
val = coda_read(dev, CODA_RET_DEC_SEQ_SRC_SIZE);
if (dev->devtype->product == CODA_DX6) {
width = (val >> CODADX6_PICWIDTH_OFFSET) & CODADX6_PICWIDTH_MASK;
height = val & CODADX6_PICHEIGHT_MASK;
} else {
width = (val >> CODA7_PICWIDTH_OFFSET) & CODA7_PICWIDTH_MASK;
height = val & CODA7_PICHEIGHT_MASK;
}
if (width > q_data_dst->bytesperline || height > q_data_dst->height) {
v4l2_err(&dev->v4l2_dev, "stream is %dx%d, not %dx%d\n",
width, height, q_data_dst->bytesperline,
q_data_dst->height);
return -EINVAL;
}
width = round_up(width, 16);
height = round_up(height, 16);
coda_dbg(1, ctx, "start decoding: %dx%d\n", width, height);
ctx->num_internal_frames = coda_read(dev, CODA_RET_DEC_SEQ_FRAME_NEED);
/*
* If the VDOA is used, the decoder needs one additional frame,
* because the frames are freed when the next frame is decoded.
* Otherwise there are visible errors in the decoded frames (green
* regions in displayed frames) and a broken order of frames (earlier
* frames are sporadically displayed after later frames).
*/
if (ctx->use_vdoa)
ctx->num_internal_frames += 1;
if (ctx->num_internal_frames > CODA_MAX_FRAMEBUFFERS) {
v4l2_err(&dev->v4l2_dev,
"not enough framebuffers to decode (%d < %d)\n",
CODA_MAX_FRAMEBUFFERS, ctx->num_internal_frames);
return -EINVAL;
}
if (src_fourcc == V4L2_PIX_FMT_H264) {
u32 left_right;
u32 top_bottom;
left_right = coda_read(dev, CODA_RET_DEC_SEQ_CROP_LEFT_RIGHT);
top_bottom = coda_read(dev, CODA_RET_DEC_SEQ_CROP_TOP_BOTTOM);
q_data_dst->rect.left = (left_right >> 10) & 0x3ff;
q_data_dst->rect.top = (top_bottom >> 10) & 0x3ff;
q_data_dst->rect.width = width - q_data_dst->rect.left -
(left_right & 0x3ff);
q_data_dst->rect.height = height - q_data_dst->rect.top -
(top_bottom & 0x3ff);
}
if (dev->devtype->product != CODA_DX6) {
u8 profile, level;
val = coda_read(dev, CODA7_RET_DEC_SEQ_HEADER_REPORT);
profile = val & 0xff;
level = (val >> 8) & 0x7f;
if (profile || level)
coda_update_profile_level_ctrls(ctx, profile, level);
}
return 0;
}
static void coda_dec_seq_init_work(struct work_struct *work)
{
struct coda_ctx *ctx = container_of(work,
struct coda_ctx, seq_init_work);
struct coda_dev *dev = ctx->dev;
int ret;
mutex_lock(&ctx->buffer_mutex);
mutex_lock(&dev->coda_mutex);
if (ctx->initialized == 1)
goto out;
ret = __coda_decoder_seq_init(ctx);
if (ret < 0)
goto out;
ctx->initialized = 1;
out:
mutex_unlock(&dev->coda_mutex);
mutex_unlock(&ctx->buffer_mutex);
}
static int __coda_start_decoding(struct coda_ctx *ctx)
{
struct coda_q_data *q_data_src, *q_data_dst;
struct coda_dev *dev = ctx->dev;
u32 src_fourcc, dst_fourcc;
int ret;
if (!ctx->initialized) {
ret = __coda_decoder_seq_init(ctx);
if (ret < 0)
return ret;
}
q_data_src = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT);
q_data_dst = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_CAPTURE);
src_fourcc = q_data_src->fourcc;
dst_fourcc = q_data_dst->fourcc;
coda_write(dev, ctx->parabuf.paddr, CODA_REG_BIT_PARA_BUF_ADDR);
ret = coda_alloc_framebuffers(ctx, q_data_dst, src_fourcc);
if (ret < 0) {
v4l2_err(&dev->v4l2_dev, "failed to allocate framebuffers\n");
return ret;
}
/* Tell the decoder how many frame buffers we allocated. */
coda_write(dev, ctx->num_internal_frames, CODA_CMD_SET_FRAME_BUF_NUM);
coda_write(dev, round_up(q_data_dst->rect.width, 16),
CODA_CMD_SET_FRAME_BUF_STRIDE);
if (dev->devtype->product != CODA_DX6) {
/* Set secondary AXI IRAM */
coda_setup_iram(ctx);
coda_write(dev, ctx->iram_info.buf_bit_use,
CODA7_CMD_SET_FRAME_AXI_BIT_ADDR);
coda_write(dev, ctx->iram_info.buf_ip_ac_dc_use,
CODA7_CMD_SET_FRAME_AXI_IPACDC_ADDR);
coda_write(dev, ctx->iram_info.buf_dbk_y_use,
CODA7_CMD_SET_FRAME_AXI_DBKY_ADDR);
coda_write(dev, ctx->iram_info.buf_dbk_c_use,
CODA7_CMD_SET_FRAME_AXI_DBKC_ADDR);
coda_write(dev, ctx->iram_info.buf_ovl_use,
CODA7_CMD_SET_FRAME_AXI_OVL_ADDR);
if (dev->devtype->product == CODA_960) {
coda_write(dev, ctx->iram_info.buf_btp_use,
CODA9_CMD_SET_FRAME_AXI_BTP_ADDR);
coda_write(dev, -1, CODA9_CMD_SET_FRAME_DELAY);
coda9_set_frame_cache(ctx, dst_fourcc);
}
}
if (src_fourcc == V4L2_PIX_FMT_H264) {
coda_write(dev, ctx->slicebuf.paddr,
CODA_CMD_SET_FRAME_SLICE_BB_START);
coda_write(dev, ctx->slicebuf.size / 1024,
CODA_CMD_SET_FRAME_SLICE_BB_SIZE);
}
if (dev->devtype->product == CODA_HX4 ||
dev->devtype->product == CODA_7541) {
int max_mb_x = 1920 / 16;
int max_mb_y = 1088 / 16;
int max_mb_num = max_mb_x * max_mb_y;
coda_write(dev, max_mb_num << 16 | max_mb_x << 8 | max_mb_y,
CODA7_CMD_SET_FRAME_MAX_DEC_SIZE);
} else if (dev->devtype->product == CODA_960) {
int max_mb_x = 1920 / 16;
int max_mb_y = 1088 / 16;
int max_mb_num = max_mb_x * max_mb_y;
coda_write(dev, max_mb_num << 16 | max_mb_x << 8 | max_mb_y,
CODA9_CMD_SET_FRAME_MAX_DEC_SIZE);
}
if (coda_command_sync(ctx, CODA_COMMAND_SET_FRAME_BUF)) {
v4l2_err(&ctx->dev->v4l2_dev,
"CODA_COMMAND_SET_FRAME_BUF timeout\n");
return -ETIMEDOUT;
}
return 0;
}
static int coda_start_decoding(struct coda_ctx *ctx)
{
struct coda_dev *dev = ctx->dev;
int ret;
mutex_lock(&dev->coda_mutex);
ret = __coda_start_decoding(ctx);
mutex_unlock(&dev->coda_mutex);
return ret;
}
static int coda_prepare_decode(struct coda_ctx *ctx)
{
struct vb2_v4l2_buffer *dst_buf;
struct coda_dev *dev = ctx->dev;
struct coda_q_data *q_data_dst;
struct coda_buffer_meta *meta;
u32 rot_mode = 0;
u32 reg_addr, reg_stride;
dst_buf = v4l2_m2m_next_dst_buf(ctx->fh.m2m_ctx);
q_data_dst = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_CAPTURE);
/* Try to copy source buffer contents into the bitstream ringbuffer */
mutex_lock(&ctx->bitstream_mutex);
coda_fill_bitstream(ctx, NULL);
mutex_unlock(&ctx->bitstream_mutex);
if (coda_get_bitstream_payload(ctx) < 512 &&
(!(ctx->bit_stream_param & CODA_BIT_STREAM_END_FLAG))) {
coda_dbg(1, ctx, "bitstream payload: %d, skipping\n",
coda_get_bitstream_payload(ctx));
v4l2_m2m_job_finish(ctx->dev->m2m_dev, ctx->fh.m2m_ctx);
return -EAGAIN;
}
/* Run coda_start_decoding (again) if not yet initialized */
if (!ctx->initialized) {
int ret = __coda_start_decoding(ctx);
if (ret < 0) {
v4l2_err(&dev->v4l2_dev, "failed to start decoding\n");
v4l2_m2m_job_finish(ctx->dev->m2m_dev, ctx->fh.m2m_ctx);
return -EAGAIN;
} else {
ctx->initialized = 1;
}
}
if (dev->devtype->product == CODA_960)
coda_set_gdi_regs(ctx);
if (ctx->use_vdoa &&
ctx->display_idx >= 0 &&
ctx->display_idx < ctx->num_internal_frames) {
vdoa_device_run(ctx->vdoa,
vb2_dma_contig_plane_dma_addr(&dst_buf->vb2_buf, 0),
ctx->internal_frames[ctx->display_idx].buf.paddr);
} else {
if (dev->devtype->product == CODA_960) {
/*
* It was previously assumed that the CODA960 has an
* internal list of 64 buffer entries that contains
* both the registered internal frame buffers as well
* as the rotator buffer output, and that the ROT_INDEX
* register must be set to a value between the last
* internal frame buffers' index and 64.
* At least on firmware version 3.1.1 it turns out that
* setting ROT_INDEX to any value >= 32 causes CODA
* hangups that it can not recover from with the SRC VPU
* reset.
* It does appear to work however, to just set it to a
* fixed value in the [ctx->num_internal_frames, 31]
* range, for example CODA_MAX_FRAMEBUFFERS.
*/
coda_write(dev, CODA_MAX_FRAMEBUFFERS,
CODA9_CMD_DEC_PIC_ROT_INDEX);
reg_addr = CODA9_CMD_DEC_PIC_ROT_ADDR_Y;
reg_stride = CODA9_CMD_DEC_PIC_ROT_STRIDE;
} else {
reg_addr = CODA_CMD_DEC_PIC_ROT_ADDR_Y;
reg_stride = CODA_CMD_DEC_PIC_ROT_STRIDE;
}
coda_write_base(ctx, q_data_dst, dst_buf, reg_addr);
coda_write(dev, q_data_dst->bytesperline, reg_stride);
rot_mode = CODA_ROT_MIR_ENABLE | ctx->params.rot_mode;
}
coda_write(dev, rot_mode, CODA_CMD_DEC_PIC_ROT_MODE);
switch (dev->devtype->product) {
case CODA_DX6:
/* TBD */
case CODA_HX4:
case CODA_7541:
coda_write(dev, CODA_PRE_SCAN_EN, CODA_CMD_DEC_PIC_OPTION);
break;
case CODA_960:
/* 'hardcode to use interrupt disable mode'? */
coda_write(dev, (1 << 10), CODA_CMD_DEC_PIC_OPTION);
break;
}
coda_write(dev, 0, CODA_CMD_DEC_PIC_SKIP_NUM);
coda_write(dev, 0, CODA_CMD_DEC_PIC_BB_START);
coda_write(dev, 0, CODA_CMD_DEC_PIC_START_BYTE);
if (dev->devtype->product != CODA_DX6)
coda_write(dev, ctx->iram_info.axi_sram_use,
CODA7_REG_BIT_AXI_SRAM_USE);
spin_lock(&ctx->buffer_meta_lock);
meta = list_first_entry_or_null(&ctx->buffer_meta_list,
struct coda_buffer_meta, list);
if (meta && ctx->codec->src_fourcc == V4L2_PIX_FMT_JPEG) {
/* If this is the last buffer in the bitstream, add padding */
if (meta->end == ctx->bitstream_fifo.kfifo.in) {
static unsigned char buf[512];
unsigned int pad;
/* Pad to multiple of 256 and then add 256 more */
pad = ((0 - meta->end) & 0xff) + 256;
memset(buf, 0xff, sizeof(buf));
kfifo_in(&ctx->bitstream_fifo, buf, pad);
}
}
spin_unlock(&ctx->buffer_meta_lock);
coda_kfifo_sync_to_device_full(ctx);
/* Clear decode success flag */
coda_write(dev, 0, CODA_RET_DEC_PIC_SUCCESS);
/* Clear error return value */
coda_write(dev, 0, CODA_RET_DEC_PIC_ERR_MB);
trace_coda_dec_pic_run(ctx, meta);
coda_command_async(ctx, CODA_COMMAND_PIC_RUN);
return 0;
}
static void coda_finish_decode(struct coda_ctx *ctx)
{
struct coda_dev *dev = ctx->dev;
struct coda_q_data *q_data_src;
struct coda_q_data *q_data_dst;
struct vb2_v4l2_buffer *dst_buf;
struct coda_buffer_meta *meta;
int width, height;
int decoded_idx;
int display_idx;
struct coda_internal_frame *decoded_frame = NULL;
u32 src_fourcc;
int success;
u32 err_mb;
int err_vdoa = 0;
u32 val;
if (ctx->aborting)
return;
/* Update kfifo out pointer from coda bitstream read pointer */
coda_kfifo_sync_from_device(ctx);
/*
* in stream-end mode, the read pointer can overshoot the write pointer
* by up to 512 bytes
*/
if (ctx->bit_stream_param & CODA_BIT_STREAM_END_FLAG) {
if (coda_get_bitstream_payload(ctx) >= ctx->bitstream.size - 512)
kfifo_init(&ctx->bitstream_fifo,
ctx->bitstream.vaddr, ctx->bitstream.size);
}
q_data_src = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT);
src_fourcc = q_data_src->fourcc;
val = coda_read(dev, CODA_RET_DEC_PIC_SUCCESS);
if (val != 1)
pr_err("DEC_PIC_SUCCESS = %d\n", val);
success = val & 0x1;
if (!success)
v4l2_err(&dev->v4l2_dev, "decode failed\n");
if (src_fourcc == V4L2_PIX_FMT_H264) {
if (val & (1 << 3))
v4l2_err(&dev->v4l2_dev,
"insufficient PS buffer space (%d bytes)\n",
ctx->psbuf.size);
if (val & (1 << 2))
v4l2_err(&dev->v4l2_dev,
"insufficient slice buffer space (%d bytes)\n",
ctx->slicebuf.size);
}
val = coda_read(dev, CODA_RET_DEC_PIC_SIZE);
width = (val >> 16) & 0xffff;
height = val & 0xffff;
q_data_dst = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_CAPTURE);
/* frame crop information */
if (src_fourcc == V4L2_PIX_FMT_H264) {
u32 left_right;
u32 top_bottom;
left_right = coda_read(dev, CODA_RET_DEC_PIC_CROP_LEFT_RIGHT);
top_bottom = coda_read(dev, CODA_RET_DEC_PIC_CROP_TOP_BOTTOM);
if (left_right == 0xffffffff && top_bottom == 0xffffffff) {
/* Keep current crop information */
} else {
struct v4l2_rect *rect = &q_data_dst->rect;
rect->left = left_right >> 16 & 0xffff;
rect->top = top_bottom >> 16 & 0xffff;
rect->width = width - rect->left -
(left_right & 0xffff);
rect->height = height - rect->top -
(top_bottom & 0xffff);
}
} else {
/* no cropping */
}
err_mb = coda_read(dev, CODA_RET_DEC_PIC_ERR_MB);
if (err_mb > 0)
v4l2_err(&dev->v4l2_dev,
"errors in %d macroblocks\n", err_mb);
if (dev->devtype->product == CODA_HX4 ||
dev->devtype->product == CODA_7541) {
val = coda_read(dev, CODA_RET_DEC_PIC_OPTION);
if (val == 0) {
/* not enough bitstream data */
coda_dbg(1, ctx, "prescan failed: %d\n", val);
ctx->hold = true;
return;
}
}
/* Wait until the VDOA finished writing the previous display frame */
if (ctx->use_vdoa &&
ctx->display_idx >= 0 &&
ctx->display_idx < ctx->num_internal_frames) {
err_vdoa = vdoa_wait_for_completion(ctx->vdoa);
}
ctx->frm_dis_flg = coda_read(dev,
CODA_REG_BIT_FRM_DIS_FLG(ctx->reg_idx));
/* The previous display frame was copied out and can be overwritten */
if (ctx->display_idx >= 0 &&
ctx->display_idx < ctx->num_internal_frames) {
ctx->frm_dis_flg &= ~(1 << ctx->display_idx);
coda_write(dev, ctx->frm_dis_flg,
CODA_REG_BIT_FRM_DIS_FLG(ctx->reg_idx));
}
/*
* The index of the last decoded frame, not necessarily in
* display order, and the index of the next display frame.
* The latter could have been decoded in a previous run.
*/
decoded_idx = coda_read(dev, CODA_RET_DEC_PIC_CUR_IDX);
display_idx = coda_read(dev, CODA_RET_DEC_PIC_FRAME_IDX);
if (decoded_idx == -1) {
/* no frame was decoded, but we might have a display frame */
if (display_idx >= 0 && display_idx < ctx->num_internal_frames)
ctx->sequence_offset++;
else if (ctx->display_idx < 0)
ctx->hold = true;
} else if (decoded_idx == -2) {
if (ctx->display_idx >= 0 &&
ctx->display_idx < ctx->num_internal_frames)
ctx->sequence_offset++;
/* no frame was decoded, we still return remaining buffers */
} else if (decoded_idx < 0 || decoded_idx >= ctx->num_internal_frames) {
v4l2_err(&dev->v4l2_dev,
"decoded frame index out of range: %d\n", decoded_idx);
} else {
decoded_frame = &ctx->internal_frames[decoded_idx];
val = coda_read(dev, CODA_RET_DEC_PIC_FRAME_NUM);
if (ctx->sequence_offset == -1)
ctx->sequence_offset = val;
val -= ctx->sequence_offset;
spin_lock(&ctx->buffer_meta_lock);
if (!list_empty(&ctx->buffer_meta_list)) {
meta = list_first_entry(&ctx->buffer_meta_list,
struct coda_buffer_meta, list);
list_del(&meta->list);
ctx->num_metas--;
spin_unlock(&ctx->buffer_meta_lock);
/*
* Clamp counters to 16 bits for comparison, as the HW
* counter rolls over at this point for h.264. This
* may be different for other formats, but using 16 bits
* should be enough to detect most errors and saves us
* from doing different things based on the format.
*/
if ((val & 0xffff) != (meta->sequence & 0xffff)) {
v4l2_err(&dev->v4l2_dev,
"sequence number mismatch (%d(%d) != %d)\n",
val, ctx->sequence_offset,
meta->sequence);
}
decoded_frame->meta = *meta;
kfree(meta);
} else {
spin_unlock(&ctx->buffer_meta_lock);
v4l2_err(&dev->v4l2_dev, "empty timestamp list!\n");
memset(&decoded_frame->meta, 0,
sizeof(struct coda_buffer_meta));
decoded_frame->meta.sequence = val;
decoded_frame->meta.last = false;
ctx->sequence_offset++;
}
trace_coda_dec_pic_done(ctx, &decoded_frame->meta);
val = coda_read(dev, CODA_RET_DEC_PIC_TYPE) & 0x7;
decoded_frame->type = (val == 0) ? V4L2_BUF_FLAG_KEYFRAME :
(val == 1) ? V4L2_BUF_FLAG_PFRAME :
V4L2_BUF_FLAG_BFRAME;
decoded_frame->error = err_mb;
}
if (display_idx == -1) {
/*
* no more frames to be decoded, but there could still
* be rotator output to dequeue
*/
ctx->hold = true;
} else if (display_idx == -3) {
/* possibly prescan failure */
} else if (display_idx < 0 || display_idx >= ctx->num_internal_frames) {
v4l2_err(&dev->v4l2_dev,
"presentation frame index out of range: %d\n",
display_idx);
}
/* If a frame was copied out, return it */
if (ctx->display_idx >= 0 &&
ctx->display_idx < ctx->num_internal_frames) {
struct coda_internal_frame *ready_frame;
ready_frame = &ctx->internal_frames[ctx->display_idx];
dst_buf = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx);
dst_buf->sequence = ctx->osequence++;
dst_buf->field = V4L2_FIELD_NONE;
dst_buf->flags &= ~(V4L2_BUF_FLAG_KEYFRAME |
V4L2_BUF_FLAG_PFRAME |
V4L2_BUF_FLAG_BFRAME);
dst_buf->flags |= ready_frame->type;
meta = &ready_frame->meta;
if (meta->last && !coda_reorder_enable(ctx)) {
/*
* If this was the last decoded frame, and reordering
* is disabled, this will be the last display frame.
*/
coda_dbg(1, ctx, "last meta, marking as last frame\n");
dst_buf->flags |= V4L2_BUF_FLAG_LAST;
} else if (ctx->bit_stream_param & CODA_BIT_STREAM_END_FLAG &&
display_idx == -1) {
/*
* If there is no designated presentation frame anymore,
* this frame has to be the last one.
*/
coda_dbg(1, ctx,
"no more frames to return, marking as last frame\n");
dst_buf->flags |= V4L2_BUF_FLAG_LAST;
}
dst_buf->timecode = meta->timecode;
dst_buf->vb2_buf.timestamp = meta->timestamp;
trace_coda_dec_rot_done(ctx, dst_buf, meta);
vb2_set_plane_payload(&dst_buf->vb2_buf, 0,
q_data_dst->sizeimage);
if (ready_frame->error || err_vdoa)
coda_m2m_buf_done(ctx, dst_buf, VB2_BUF_STATE_ERROR);
else
coda_m2m_buf_done(ctx, dst_buf, VB2_BUF_STATE_DONE);
if (decoded_frame) {
coda_dbg(1, ctx, "job finished: decoded %c frame %u, returned %c frame %u (%u/%u)%s\n",
coda_frame_type_char(decoded_frame->type),
decoded_frame->meta.sequence,
coda_frame_type_char(dst_buf->flags),
ready_frame->meta.sequence,
dst_buf->sequence, ctx->qsequence,
(dst_buf->flags & V4L2_BUF_FLAG_LAST) ?
" (last)" : "");
} else {
coda_dbg(1, ctx, "job finished: no frame decoded (%d), returned %c frame %u (%u/%u)%s\n",
decoded_idx,
coda_frame_type_char(dst_buf->flags),
ready_frame->meta.sequence,
dst_buf->sequence, ctx->qsequence,
(dst_buf->flags & V4L2_BUF_FLAG_LAST) ?
" (last)" : "");
}
} else {
if (decoded_frame) {
coda_dbg(1, ctx, "job finished: decoded %c frame %u, no frame returned (%d)\n",
coda_frame_type_char(decoded_frame->type),
decoded_frame->meta.sequence,
ctx->display_idx);
} else {
coda_dbg(1, ctx, "job finished: no frame decoded (%d) or returned (%d)\n",
decoded_idx, ctx->display_idx);
}
}
/* The rotator will copy the current display frame next time */
ctx->display_idx = display_idx;
/*
* The current decode run might have brought the bitstream fill level
* below the size where we can start the next decode run. As userspace
* might have filled the output queue completely and might thus be
* blocked, we can't rely on the next qbuf to trigger the bitstream
* refill. Check if we have data to refill the bitstream now.
*/
mutex_lock(&ctx->bitstream_mutex);
coda_fill_bitstream(ctx, NULL);
mutex_unlock(&ctx->bitstream_mutex);
}
static void coda_decode_timeout(struct coda_ctx *ctx)
{
struct vb2_v4l2_buffer *dst_buf;
/*
* For now this only handles the case where we would deadlock with
* userspace, i.e. userspace issued DEC_CMD_STOP and waits for EOS,
* but after a failed decode run we would hold the context and wait for
* userspace to queue more buffers.
*/
if (!(ctx->bit_stream_param & CODA_BIT_STREAM_END_FLAG))
return;
dst_buf = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx);
dst_buf->sequence = ctx->qsequence - 1;
coda_m2m_buf_done(ctx, dst_buf, VB2_BUF_STATE_ERROR);
}
const struct coda_context_ops coda_bit_decode_ops = {
.queue_init = coda_decoder_queue_init,
.reqbufs = coda_decoder_reqbufs,
.start_streaming = coda_start_decoding,
.prepare_run = coda_prepare_decode,
.finish_run = coda_finish_decode,
.run_timeout = coda_decode_timeout,
.seq_init_work = coda_dec_seq_init_work,
.seq_end_work = coda_seq_end_work,
.release = coda_bit_release,
};
irqreturn_t coda_irq_handler(int irq, void *data)
{
struct coda_dev *dev = data;
struct coda_ctx *ctx;
/* read status register to attend the IRQ */
coda_read(dev, CODA_REG_BIT_INT_STATUS);
coda_write(dev, 0, CODA_REG_BIT_INT_REASON);
coda_write(dev, CODA_REG_BIT_INT_CLEAR_SET,
CODA_REG_BIT_INT_CLEAR);
ctx = v4l2_m2m_get_curr_priv(dev->m2m_dev);
if (ctx == NULL) {
v4l2_err(&dev->v4l2_dev,
"Instance released before the end of transaction\n");
return IRQ_HANDLED;
}
trace_coda_bit_done(ctx);
if (ctx->aborting) {
coda_dbg(1, ctx, "task has been aborted\n");
}
if (coda_isbusy(ctx->dev)) {
coda_dbg(1, ctx, "coda is still busy!!!!\n");
return IRQ_NONE;
}
complete(&ctx->completion);
return IRQ_HANDLED;
}