| /* mpi-inv.c - MPI functions |
| * Copyright (C) 1998, 2001, 2002, 2003 Free Software Foundation, Inc. |
| * |
| * This file is part of Libgcrypt. |
| * |
| * Libgcrypt is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU Lesser General Public License as |
| * published by the Free Software Foundation; either version 2.1 of |
| * the License, or (at your option) any later version. |
| * |
| * Libgcrypt is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this program; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "mpi-internal.h" |
| |
| /**************** |
| * Calculate the multiplicative inverse X of A mod N |
| * That is: Find the solution x for |
| * 1 = (a*x) mod n |
| */ |
| int mpi_invm(MPI x, MPI a, MPI n) |
| { |
| /* Extended Euclid's algorithm (See TAOCP Vol II, 4.5.2, Alg X) |
| * modified according to Michael Penk's solution for Exercise 35 |
| * with further enhancement |
| */ |
| MPI u, v, u1, u2 = NULL, u3, v1, v2 = NULL, v3, t1, t2 = NULL, t3; |
| unsigned int k; |
| int sign; |
| int odd; |
| |
| if (!mpi_cmp_ui(a, 0)) |
| return 0; /* Inverse does not exists. */ |
| if (!mpi_cmp_ui(n, 1)) |
| return 0; /* Inverse does not exists. */ |
| |
| u = mpi_copy(a); |
| v = mpi_copy(n); |
| |
| for (k = 0; !mpi_test_bit(u, 0) && !mpi_test_bit(v, 0); k++) { |
| mpi_rshift(u, u, 1); |
| mpi_rshift(v, v, 1); |
| } |
| odd = mpi_test_bit(v, 0); |
| |
| u1 = mpi_alloc_set_ui(1); |
| if (!odd) |
| u2 = mpi_alloc_set_ui(0); |
| u3 = mpi_copy(u); |
| v1 = mpi_copy(v); |
| if (!odd) { |
| v2 = mpi_alloc(mpi_get_nlimbs(u)); |
| mpi_sub(v2, u1, u); /* U is used as const 1 */ |
| } |
| v3 = mpi_copy(v); |
| if (mpi_test_bit(u, 0)) { /* u is odd */ |
| t1 = mpi_alloc_set_ui(0); |
| if (!odd) { |
| t2 = mpi_alloc_set_ui(1); |
| t2->sign = 1; |
| } |
| t3 = mpi_copy(v); |
| t3->sign = !t3->sign; |
| goto Y4; |
| } else { |
| t1 = mpi_alloc_set_ui(1); |
| if (!odd) |
| t2 = mpi_alloc_set_ui(0); |
| t3 = mpi_copy(u); |
| } |
| |
| do { |
| do { |
| if (!odd) { |
| if (mpi_test_bit(t1, 0) || mpi_test_bit(t2, 0)) { |
| /* one is odd */ |
| mpi_add(t1, t1, v); |
| mpi_sub(t2, t2, u); |
| } |
| mpi_rshift(t1, t1, 1); |
| mpi_rshift(t2, t2, 1); |
| mpi_rshift(t3, t3, 1); |
| } else { |
| if (mpi_test_bit(t1, 0)) |
| mpi_add(t1, t1, v); |
| mpi_rshift(t1, t1, 1); |
| mpi_rshift(t3, t3, 1); |
| } |
| Y4: |
| ; |
| } while (!mpi_test_bit(t3, 0)); /* while t3 is even */ |
| |
| if (!t3->sign) { |
| mpi_set(u1, t1); |
| if (!odd) |
| mpi_set(u2, t2); |
| mpi_set(u3, t3); |
| } else { |
| mpi_sub(v1, v, t1); |
| sign = u->sign; u->sign = !u->sign; |
| if (!odd) |
| mpi_sub(v2, u, t2); |
| u->sign = sign; |
| sign = t3->sign; t3->sign = !t3->sign; |
| mpi_set(v3, t3); |
| t3->sign = sign; |
| } |
| mpi_sub(t1, u1, v1); |
| if (!odd) |
| mpi_sub(t2, u2, v2); |
| mpi_sub(t3, u3, v3); |
| if (t1->sign) { |
| mpi_add(t1, t1, v); |
| if (!odd) |
| mpi_sub(t2, t2, u); |
| } |
| } while (mpi_cmp_ui(t3, 0)); /* while t3 != 0 */ |
| /* mpi_lshift( u3, k ); */ |
| mpi_set(x, u1); |
| |
| mpi_free(u1); |
| mpi_free(v1); |
| mpi_free(t1); |
| if (!odd) { |
| mpi_free(u2); |
| mpi_free(v2); |
| mpi_free(t2); |
| } |
| mpi_free(u3); |
| mpi_free(v3); |
| mpi_free(t3); |
| |
| mpi_free(u); |
| mpi_free(v); |
| return 1; |
| } |
| EXPORT_SYMBOL_GPL(mpi_invm); |