blob: 72971a8d3c37978ef1c42b6a2523bb4cb8e92f4a [file] [log] [blame]
/*
* Elonics E4000 silicon tuner driver
*
* Copyright (C) 2012 Antti Palosaari <crope@iki.fi>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "e4000_priv.h"
#include <linux/math64.h>
/* Max transfer size done by I2C transfer functions */
#define MAX_XFER_SIZE 64
/* write multiple registers */
static int e4000_wr_regs(struct e4000_priv *priv, u8 reg, u8 *val, int len)
{
int ret;
u8 buf[MAX_XFER_SIZE];
struct i2c_msg msg[1] = {
{
.addr = priv->cfg->i2c_addr,
.flags = 0,
.len = 1 + len,
.buf = buf,
}
};
if (1 + len > sizeof(buf)) {
dev_warn(&priv->i2c->dev,
"%s: i2c wr reg=%04x: len=%d is too big!\n",
KBUILD_MODNAME, reg, len);
return -EINVAL;
}
buf[0] = reg;
memcpy(&buf[1], val, len);
ret = i2c_transfer(priv->i2c, msg, 1);
if (ret == 1) {
ret = 0;
} else {
dev_warn(&priv->i2c->dev,
"%s: i2c wr failed=%d reg=%02x len=%d\n",
KBUILD_MODNAME, ret, reg, len);
ret = -EREMOTEIO;
}
return ret;
}
/* read multiple registers */
static int e4000_rd_regs(struct e4000_priv *priv, u8 reg, u8 *val, int len)
{
int ret;
u8 buf[MAX_XFER_SIZE];
struct i2c_msg msg[2] = {
{
.addr = priv->cfg->i2c_addr,
.flags = 0,
.len = 1,
.buf = &reg,
}, {
.addr = priv->cfg->i2c_addr,
.flags = I2C_M_RD,
.len = len,
.buf = buf,
}
};
if (len > sizeof(buf)) {
dev_warn(&priv->i2c->dev,
"%s: i2c rd reg=%04x: len=%d is too big!\n",
KBUILD_MODNAME, reg, len);
return -EINVAL;
}
ret = i2c_transfer(priv->i2c, msg, 2);
if (ret == 2) {
memcpy(val, buf, len);
ret = 0;
} else {
dev_warn(&priv->i2c->dev,
"%s: i2c rd failed=%d reg=%02x len=%d\n",
KBUILD_MODNAME, ret, reg, len);
ret = -EREMOTEIO;
}
return ret;
}
/* write single register */
static int e4000_wr_reg(struct e4000_priv *priv, u8 reg, u8 val)
{
return e4000_wr_regs(priv, reg, &val, 1);
}
/* read single register */
static int e4000_rd_reg(struct e4000_priv *priv, u8 reg, u8 *val)
{
return e4000_rd_regs(priv, reg, val, 1);
}
static int e4000_init(struct dvb_frontend *fe)
{
struct e4000_priv *priv = fe->tuner_priv;
int ret;
dev_dbg(&priv->i2c->dev, "%s:\n", __func__);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 1);
/* dummy I2C to ensure I2C wakes up */
ret = e4000_wr_reg(priv, 0x02, 0x40);
/* reset */
ret = e4000_wr_reg(priv, 0x00, 0x01);
if (ret < 0)
goto err;
/* disable output clock */
ret = e4000_wr_reg(priv, 0x06, 0x00);
if (ret < 0)
goto err;
ret = e4000_wr_reg(priv, 0x7a, 0x96);
if (ret < 0)
goto err;
/* configure gains */
ret = e4000_wr_regs(priv, 0x7e, "\x01\xfe", 2);
if (ret < 0)
goto err;
ret = e4000_wr_reg(priv, 0x82, 0x00);
if (ret < 0)
goto err;
ret = e4000_wr_reg(priv, 0x24, 0x05);
if (ret < 0)
goto err;
ret = e4000_wr_regs(priv, 0x87, "\x20\x01", 2);
if (ret < 0)
goto err;
ret = e4000_wr_regs(priv, 0x9f, "\x7f\x07", 2);
if (ret < 0)
goto err;
/* DC offset control */
ret = e4000_wr_reg(priv, 0x2d, 0x1f);
if (ret < 0)
goto err;
ret = e4000_wr_regs(priv, 0x70, "\x01\x01", 2);
if (ret < 0)
goto err;
/* gain control */
ret = e4000_wr_reg(priv, 0x1a, 0x17);
if (ret < 0)
goto err;
ret = e4000_wr_reg(priv, 0x1f, 0x1a);
if (ret < 0)
goto err;
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
return 0;
err:
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
dev_dbg(&priv->i2c->dev, "%s: failed=%d\n", __func__, ret);
return ret;
}
static int e4000_sleep(struct dvb_frontend *fe)
{
struct e4000_priv *priv = fe->tuner_priv;
int ret;
dev_dbg(&priv->i2c->dev, "%s:\n", __func__);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 1);
ret = e4000_wr_reg(priv, 0x00, 0x00);
if (ret < 0)
goto err;
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
return 0;
err:
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
dev_dbg(&priv->i2c->dev, "%s: failed=%d\n", __func__, ret);
return ret;
}
static int e4000_set_params(struct dvb_frontend *fe)
{
struct e4000_priv *priv = fe->tuner_priv;
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
int ret, i, sigma_delta;
unsigned int f_vco;
u8 buf[5], i_data[4], q_data[4];
dev_dbg(&priv->i2c->dev,
"%s: delivery_system=%d frequency=%d bandwidth_hz=%d\n",
__func__, c->delivery_system, c->frequency,
c->bandwidth_hz);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 1);
/* gain control manual */
ret = e4000_wr_reg(priv, 0x1a, 0x00);
if (ret < 0)
goto err;
/* PLL */
for (i = 0; i < ARRAY_SIZE(e4000_pll_lut); i++) {
if (c->frequency <= e4000_pll_lut[i].freq)
break;
}
if (i == ARRAY_SIZE(e4000_pll_lut))
goto err;
/*
* Note: Currently f_vco overflows when c->frequency is 1 073 741 824 Hz
* or more.
*/
f_vco = c->frequency * e4000_pll_lut[i].mul;
sigma_delta = div_u64(0x10000ULL * (f_vco % priv->cfg->clock), priv->cfg->clock);
buf[0] = f_vco / priv->cfg->clock;
buf[1] = (sigma_delta >> 0) & 0xff;
buf[2] = (sigma_delta >> 8) & 0xff;
buf[3] = 0x00;
buf[4] = e4000_pll_lut[i].div;
dev_dbg(&priv->i2c->dev, "%s: f_vco=%u pll div=%d sigma_delta=%04x\n",
__func__, f_vco, buf[0], sigma_delta);
ret = e4000_wr_regs(priv, 0x09, buf, 5);
if (ret < 0)
goto err;
/* LNA filter (RF filter) */
for (i = 0; i < ARRAY_SIZE(e400_lna_filter_lut); i++) {
if (c->frequency <= e400_lna_filter_lut[i].freq)
break;
}
if (i == ARRAY_SIZE(e400_lna_filter_lut))
goto err;
ret = e4000_wr_reg(priv, 0x10, e400_lna_filter_lut[i].val);
if (ret < 0)
goto err;
/* IF filters */
for (i = 0; i < ARRAY_SIZE(e4000_if_filter_lut); i++) {
if (c->bandwidth_hz <= e4000_if_filter_lut[i].freq)
break;
}
if (i == ARRAY_SIZE(e4000_if_filter_lut))
goto err;
buf[0] = e4000_if_filter_lut[i].reg11_val;
buf[1] = e4000_if_filter_lut[i].reg12_val;
ret = e4000_wr_regs(priv, 0x11, buf, 2);
if (ret < 0)
goto err;
/* frequency band */
for (i = 0; i < ARRAY_SIZE(e4000_band_lut); i++) {
if (c->frequency <= e4000_band_lut[i].freq)
break;
}
if (i == ARRAY_SIZE(e4000_band_lut))
goto err;
ret = e4000_wr_reg(priv, 0x07, e4000_band_lut[i].reg07_val);
if (ret < 0)
goto err;
ret = e4000_wr_reg(priv, 0x78, e4000_band_lut[i].reg78_val);
if (ret < 0)
goto err;
/* DC offset */
for (i = 0; i < 4; i++) {
if (i == 0)
ret = e4000_wr_regs(priv, 0x15, "\x00\x7e\x24", 3);
else if (i == 1)
ret = e4000_wr_regs(priv, 0x15, "\x00\x7f", 2);
else if (i == 2)
ret = e4000_wr_regs(priv, 0x15, "\x01", 1);
else
ret = e4000_wr_regs(priv, 0x16, "\x7e", 1);
if (ret < 0)
goto err;
ret = e4000_wr_reg(priv, 0x29, 0x01);
if (ret < 0)
goto err;
ret = e4000_rd_regs(priv, 0x2a, buf, 3);
if (ret < 0)
goto err;
i_data[i] = (((buf[2] >> 0) & 0x3) << 6) | (buf[0] & 0x3f);
q_data[i] = (((buf[2] >> 4) & 0x3) << 6) | (buf[1] & 0x3f);
}
swap(q_data[2], q_data[3]);
swap(i_data[2], i_data[3]);
ret = e4000_wr_regs(priv, 0x50, q_data, 4);
if (ret < 0)
goto err;
ret = e4000_wr_regs(priv, 0x60, i_data, 4);
if (ret < 0)
goto err;
/* gain control auto */
ret = e4000_wr_reg(priv, 0x1a, 0x17);
if (ret < 0)
goto err;
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
return 0;
err:
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
dev_dbg(&priv->i2c->dev, "%s: failed=%d\n", __func__, ret);
return ret;
}
static int e4000_get_if_frequency(struct dvb_frontend *fe, u32 *frequency)
{
struct e4000_priv *priv = fe->tuner_priv;
dev_dbg(&priv->i2c->dev, "%s:\n", __func__);
*frequency = 0; /* Zero-IF */
return 0;
}
static int e4000_release(struct dvb_frontend *fe)
{
struct e4000_priv *priv = fe->tuner_priv;
dev_dbg(&priv->i2c->dev, "%s:\n", __func__);
kfree(fe->tuner_priv);
return 0;
}
static const struct dvb_tuner_ops e4000_tuner_ops = {
.info = {
.name = "Elonics E4000",
.frequency_min = 174000000,
.frequency_max = 862000000,
},
.release = e4000_release,
.init = e4000_init,
.sleep = e4000_sleep,
.set_params = e4000_set_params,
.get_if_frequency = e4000_get_if_frequency,
};
struct dvb_frontend *e4000_attach(struct dvb_frontend *fe,
struct i2c_adapter *i2c, const struct e4000_config *cfg)
{
struct e4000_priv *priv;
int ret;
u8 chip_id;
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 1);
priv = kzalloc(sizeof(struct e4000_priv), GFP_KERNEL);
if (!priv) {
ret = -ENOMEM;
dev_err(&i2c->dev, "%s: kzalloc() failed\n", KBUILD_MODNAME);
goto err;
}
priv->cfg = cfg;
priv->i2c = i2c;
/* check if the tuner is there */
ret = e4000_rd_reg(priv, 0x02, &chip_id);
if (ret < 0)
goto err;
dev_dbg(&priv->i2c->dev, "%s: chip_id=%02x\n", __func__, chip_id);
if (chip_id != 0x40)
goto err;
/* put sleep as chip seems to be in normal mode by default */
ret = e4000_wr_reg(priv, 0x00, 0x00);
if (ret < 0)
goto err;
dev_info(&priv->i2c->dev,
"%s: Elonics E4000 successfully identified\n",
KBUILD_MODNAME);
fe->tuner_priv = priv;
memcpy(&fe->ops.tuner_ops, &e4000_tuner_ops,
sizeof(struct dvb_tuner_ops));
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
return fe;
err:
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
dev_dbg(&i2c->dev, "%s: failed=%d\n", __func__, ret);
kfree(priv);
return NULL;
}
EXPORT_SYMBOL(e4000_attach);
MODULE_DESCRIPTION("Elonics E4000 silicon tuner driver");
MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
MODULE_LICENSE("GPL");