| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (c) 2014 Red Hat, Inc. |
| * All Rights Reserved. |
| */ |
| #include "xfs.h" |
| #include "xfs_fs.h" |
| #include "xfs_shared.h" |
| #include "xfs_format.h" |
| #include "xfs_log_format.h" |
| #include "xfs_trans_resv.h" |
| #include "xfs_sb.h" |
| #include "xfs_mount.h" |
| #include "xfs_trans.h" |
| #include "xfs_alloc.h" |
| #include "xfs_btree.h" |
| #include "xfs_btree_staging.h" |
| #include "xfs_rmap.h" |
| #include "xfs_rmap_btree.h" |
| #include "xfs_trace.h" |
| #include "xfs_error.h" |
| #include "xfs_extent_busy.h" |
| #include "xfs_ag_resv.h" |
| |
| /* |
| * Reverse map btree. |
| * |
| * This is a per-ag tree used to track the owner(s) of a given extent. With |
| * reflink it is possible for there to be multiple owners, which is a departure |
| * from classic XFS. Owner records for data extents are inserted when the |
| * extent is mapped and removed when an extent is unmapped. Owner records for |
| * all other block types (i.e. metadata) are inserted when an extent is |
| * allocated and removed when an extent is freed. There can only be one owner |
| * of a metadata extent, usually an inode or some other metadata structure like |
| * an AG btree. |
| * |
| * The rmap btree is part of the free space management, so blocks for the tree |
| * are sourced from the agfl. Hence we need transaction reservation support for |
| * this tree so that the freelist is always large enough. This also impacts on |
| * the minimum space we need to leave free in the AG. |
| * |
| * The tree is ordered by [ag block, owner, offset]. This is a large key size, |
| * but it is the only way to enforce unique keys when a block can be owned by |
| * multiple files at any offset. There's no need to order/search by extent |
| * size for online updating/management of the tree. It is intended that most |
| * reverse lookups will be to find the owner(s) of a particular block, or to |
| * try to recover tree and file data from corrupt primary metadata. |
| */ |
| |
| static struct xfs_btree_cur * |
| xfs_rmapbt_dup_cursor( |
| struct xfs_btree_cur *cur) |
| { |
| return xfs_rmapbt_init_cursor(cur->bc_mp, cur->bc_tp, |
| cur->bc_ag.agbp, cur->bc_ag.agno); |
| } |
| |
| STATIC void |
| xfs_rmapbt_set_root( |
| struct xfs_btree_cur *cur, |
| union xfs_btree_ptr *ptr, |
| int inc) |
| { |
| struct xfs_buf *agbp = cur->bc_ag.agbp; |
| struct xfs_agf *agf = agbp->b_addr; |
| int btnum = cur->bc_btnum; |
| struct xfs_perag *pag = agbp->b_pag; |
| |
| ASSERT(ptr->s != 0); |
| |
| agf->agf_roots[btnum] = ptr->s; |
| be32_add_cpu(&agf->agf_levels[btnum], inc); |
| pag->pagf_levels[btnum] += inc; |
| |
| xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS); |
| } |
| |
| STATIC int |
| xfs_rmapbt_alloc_block( |
| struct xfs_btree_cur *cur, |
| union xfs_btree_ptr *start, |
| union xfs_btree_ptr *new, |
| int *stat) |
| { |
| struct xfs_buf *agbp = cur->bc_ag.agbp; |
| struct xfs_agf *agf = agbp->b_addr; |
| int error; |
| xfs_agblock_t bno; |
| |
| /* Allocate the new block from the freelist. If we can't, give up. */ |
| error = xfs_alloc_get_freelist(cur->bc_tp, cur->bc_ag.agbp, |
| &bno, 1); |
| if (error) |
| return error; |
| |
| trace_xfs_rmapbt_alloc_block(cur->bc_mp, cur->bc_ag.agno, |
| bno, 1); |
| if (bno == NULLAGBLOCK) { |
| *stat = 0; |
| return 0; |
| } |
| |
| xfs_extent_busy_reuse(cur->bc_mp, cur->bc_ag.agno, bno, 1, |
| false); |
| |
| xfs_trans_agbtree_delta(cur->bc_tp, 1); |
| new->s = cpu_to_be32(bno); |
| be32_add_cpu(&agf->agf_rmap_blocks, 1); |
| xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_RMAP_BLOCKS); |
| |
| xfs_ag_resv_rmapbt_alloc(cur->bc_mp, cur->bc_ag.agno); |
| |
| *stat = 1; |
| return 0; |
| } |
| |
| STATIC int |
| xfs_rmapbt_free_block( |
| struct xfs_btree_cur *cur, |
| struct xfs_buf *bp) |
| { |
| struct xfs_buf *agbp = cur->bc_ag.agbp; |
| struct xfs_agf *agf = agbp->b_addr; |
| struct xfs_perag *pag; |
| xfs_agblock_t bno; |
| int error; |
| |
| bno = xfs_daddr_to_agbno(cur->bc_mp, XFS_BUF_ADDR(bp)); |
| trace_xfs_rmapbt_free_block(cur->bc_mp, cur->bc_ag.agno, |
| bno, 1); |
| be32_add_cpu(&agf->agf_rmap_blocks, -1); |
| xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_RMAP_BLOCKS); |
| error = xfs_alloc_put_freelist(cur->bc_tp, agbp, NULL, bno, 1); |
| if (error) |
| return error; |
| |
| xfs_extent_busy_insert(cur->bc_tp, be32_to_cpu(agf->agf_seqno), bno, 1, |
| XFS_EXTENT_BUSY_SKIP_DISCARD); |
| xfs_trans_agbtree_delta(cur->bc_tp, -1); |
| |
| pag = cur->bc_ag.agbp->b_pag; |
| xfs_ag_resv_free_extent(pag, XFS_AG_RESV_RMAPBT, NULL, 1); |
| return 0; |
| } |
| |
| STATIC int |
| xfs_rmapbt_get_minrecs( |
| struct xfs_btree_cur *cur, |
| int level) |
| { |
| return cur->bc_mp->m_rmap_mnr[level != 0]; |
| } |
| |
| STATIC int |
| xfs_rmapbt_get_maxrecs( |
| struct xfs_btree_cur *cur, |
| int level) |
| { |
| return cur->bc_mp->m_rmap_mxr[level != 0]; |
| } |
| |
| STATIC void |
| xfs_rmapbt_init_key_from_rec( |
| union xfs_btree_key *key, |
| union xfs_btree_rec *rec) |
| { |
| key->rmap.rm_startblock = rec->rmap.rm_startblock; |
| key->rmap.rm_owner = rec->rmap.rm_owner; |
| key->rmap.rm_offset = rec->rmap.rm_offset; |
| } |
| |
| /* |
| * The high key for a reverse mapping record can be computed by shifting |
| * the startblock and offset to the highest value that would still map |
| * to that record. In practice this means that we add blockcount-1 to |
| * the startblock for all records, and if the record is for a data/attr |
| * fork mapping, we add blockcount-1 to the offset too. |
| */ |
| STATIC void |
| xfs_rmapbt_init_high_key_from_rec( |
| union xfs_btree_key *key, |
| union xfs_btree_rec *rec) |
| { |
| uint64_t off; |
| int adj; |
| |
| adj = be32_to_cpu(rec->rmap.rm_blockcount) - 1; |
| |
| key->rmap.rm_startblock = rec->rmap.rm_startblock; |
| be32_add_cpu(&key->rmap.rm_startblock, adj); |
| key->rmap.rm_owner = rec->rmap.rm_owner; |
| key->rmap.rm_offset = rec->rmap.rm_offset; |
| if (XFS_RMAP_NON_INODE_OWNER(be64_to_cpu(rec->rmap.rm_owner)) || |
| XFS_RMAP_IS_BMBT_BLOCK(be64_to_cpu(rec->rmap.rm_offset))) |
| return; |
| off = be64_to_cpu(key->rmap.rm_offset); |
| off = (XFS_RMAP_OFF(off) + adj) | (off & ~XFS_RMAP_OFF_MASK); |
| key->rmap.rm_offset = cpu_to_be64(off); |
| } |
| |
| STATIC void |
| xfs_rmapbt_init_rec_from_cur( |
| struct xfs_btree_cur *cur, |
| union xfs_btree_rec *rec) |
| { |
| rec->rmap.rm_startblock = cpu_to_be32(cur->bc_rec.r.rm_startblock); |
| rec->rmap.rm_blockcount = cpu_to_be32(cur->bc_rec.r.rm_blockcount); |
| rec->rmap.rm_owner = cpu_to_be64(cur->bc_rec.r.rm_owner); |
| rec->rmap.rm_offset = cpu_to_be64( |
| xfs_rmap_irec_offset_pack(&cur->bc_rec.r)); |
| } |
| |
| STATIC void |
| xfs_rmapbt_init_ptr_from_cur( |
| struct xfs_btree_cur *cur, |
| union xfs_btree_ptr *ptr) |
| { |
| struct xfs_agf *agf = cur->bc_ag.agbp->b_addr; |
| |
| ASSERT(cur->bc_ag.agno == be32_to_cpu(agf->agf_seqno)); |
| |
| ptr->s = agf->agf_roots[cur->bc_btnum]; |
| } |
| |
| STATIC int64_t |
| xfs_rmapbt_key_diff( |
| struct xfs_btree_cur *cur, |
| union xfs_btree_key *key) |
| { |
| struct xfs_rmap_irec *rec = &cur->bc_rec.r; |
| struct xfs_rmap_key *kp = &key->rmap; |
| __u64 x, y; |
| int64_t d; |
| |
| d = (int64_t)be32_to_cpu(kp->rm_startblock) - rec->rm_startblock; |
| if (d) |
| return d; |
| |
| x = be64_to_cpu(kp->rm_owner); |
| y = rec->rm_owner; |
| if (x > y) |
| return 1; |
| else if (y > x) |
| return -1; |
| |
| x = be64_to_cpu(kp->rm_offset); |
| y = xfs_rmap_irec_offset_pack(rec); |
| if (x > y) |
| return 1; |
| else if (y > x) |
| return -1; |
| return 0; |
| } |
| |
| STATIC int64_t |
| xfs_rmapbt_diff_two_keys( |
| struct xfs_btree_cur *cur, |
| union xfs_btree_key *k1, |
| union xfs_btree_key *k2) |
| { |
| struct xfs_rmap_key *kp1 = &k1->rmap; |
| struct xfs_rmap_key *kp2 = &k2->rmap; |
| int64_t d; |
| __u64 x, y; |
| |
| d = (int64_t)be32_to_cpu(kp1->rm_startblock) - |
| be32_to_cpu(kp2->rm_startblock); |
| if (d) |
| return d; |
| |
| x = be64_to_cpu(kp1->rm_owner); |
| y = be64_to_cpu(kp2->rm_owner); |
| if (x > y) |
| return 1; |
| else if (y > x) |
| return -1; |
| |
| x = be64_to_cpu(kp1->rm_offset); |
| y = be64_to_cpu(kp2->rm_offset); |
| if (x > y) |
| return 1; |
| else if (y > x) |
| return -1; |
| return 0; |
| } |
| |
| static xfs_failaddr_t |
| xfs_rmapbt_verify( |
| struct xfs_buf *bp) |
| { |
| struct xfs_mount *mp = bp->b_mount; |
| struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); |
| struct xfs_perag *pag = bp->b_pag; |
| xfs_failaddr_t fa; |
| unsigned int level; |
| |
| /* |
| * magic number and level verification |
| * |
| * During growfs operations, we can't verify the exact level or owner as |
| * the perag is not fully initialised and hence not attached to the |
| * buffer. In this case, check against the maximum tree depth. |
| * |
| * Similarly, during log recovery we will have a perag structure |
| * attached, but the agf information will not yet have been initialised |
| * from the on disk AGF. Again, we can only check against maximum limits |
| * in this case. |
| */ |
| if (!xfs_verify_magic(bp, block->bb_magic)) |
| return __this_address; |
| |
| if (!xfs_sb_version_hasrmapbt(&mp->m_sb)) |
| return __this_address; |
| fa = xfs_btree_sblock_v5hdr_verify(bp); |
| if (fa) |
| return fa; |
| |
| level = be16_to_cpu(block->bb_level); |
| if (pag && pag->pagf_init) { |
| if (level >= pag->pagf_levels[XFS_BTNUM_RMAPi]) |
| return __this_address; |
| } else if (level >= mp->m_rmap_maxlevels) |
| return __this_address; |
| |
| return xfs_btree_sblock_verify(bp, mp->m_rmap_mxr[level != 0]); |
| } |
| |
| static void |
| xfs_rmapbt_read_verify( |
| struct xfs_buf *bp) |
| { |
| xfs_failaddr_t fa; |
| |
| if (!xfs_btree_sblock_verify_crc(bp)) |
| xfs_verifier_error(bp, -EFSBADCRC, __this_address); |
| else { |
| fa = xfs_rmapbt_verify(bp); |
| if (fa) |
| xfs_verifier_error(bp, -EFSCORRUPTED, fa); |
| } |
| |
| if (bp->b_error) |
| trace_xfs_btree_corrupt(bp, _RET_IP_); |
| } |
| |
| static void |
| xfs_rmapbt_write_verify( |
| struct xfs_buf *bp) |
| { |
| xfs_failaddr_t fa; |
| |
| fa = xfs_rmapbt_verify(bp); |
| if (fa) { |
| trace_xfs_btree_corrupt(bp, _RET_IP_); |
| xfs_verifier_error(bp, -EFSCORRUPTED, fa); |
| return; |
| } |
| xfs_btree_sblock_calc_crc(bp); |
| |
| } |
| |
| const struct xfs_buf_ops xfs_rmapbt_buf_ops = { |
| .name = "xfs_rmapbt", |
| .magic = { 0, cpu_to_be32(XFS_RMAP_CRC_MAGIC) }, |
| .verify_read = xfs_rmapbt_read_verify, |
| .verify_write = xfs_rmapbt_write_verify, |
| .verify_struct = xfs_rmapbt_verify, |
| }; |
| |
| STATIC int |
| xfs_rmapbt_keys_inorder( |
| struct xfs_btree_cur *cur, |
| union xfs_btree_key *k1, |
| union xfs_btree_key *k2) |
| { |
| uint32_t x; |
| uint32_t y; |
| uint64_t a; |
| uint64_t b; |
| |
| x = be32_to_cpu(k1->rmap.rm_startblock); |
| y = be32_to_cpu(k2->rmap.rm_startblock); |
| if (x < y) |
| return 1; |
| else if (x > y) |
| return 0; |
| a = be64_to_cpu(k1->rmap.rm_owner); |
| b = be64_to_cpu(k2->rmap.rm_owner); |
| if (a < b) |
| return 1; |
| else if (a > b) |
| return 0; |
| a = be64_to_cpu(k1->rmap.rm_offset); |
| b = be64_to_cpu(k2->rmap.rm_offset); |
| if (a <= b) |
| return 1; |
| return 0; |
| } |
| |
| STATIC int |
| xfs_rmapbt_recs_inorder( |
| struct xfs_btree_cur *cur, |
| union xfs_btree_rec *r1, |
| union xfs_btree_rec *r2) |
| { |
| uint32_t x; |
| uint32_t y; |
| uint64_t a; |
| uint64_t b; |
| |
| x = be32_to_cpu(r1->rmap.rm_startblock); |
| y = be32_to_cpu(r2->rmap.rm_startblock); |
| if (x < y) |
| return 1; |
| else if (x > y) |
| return 0; |
| a = be64_to_cpu(r1->rmap.rm_owner); |
| b = be64_to_cpu(r2->rmap.rm_owner); |
| if (a < b) |
| return 1; |
| else if (a > b) |
| return 0; |
| a = be64_to_cpu(r1->rmap.rm_offset); |
| b = be64_to_cpu(r2->rmap.rm_offset); |
| if (a <= b) |
| return 1; |
| return 0; |
| } |
| |
| static const struct xfs_btree_ops xfs_rmapbt_ops = { |
| .rec_len = sizeof(struct xfs_rmap_rec), |
| .key_len = 2 * sizeof(struct xfs_rmap_key), |
| |
| .dup_cursor = xfs_rmapbt_dup_cursor, |
| .set_root = xfs_rmapbt_set_root, |
| .alloc_block = xfs_rmapbt_alloc_block, |
| .free_block = xfs_rmapbt_free_block, |
| .get_minrecs = xfs_rmapbt_get_minrecs, |
| .get_maxrecs = xfs_rmapbt_get_maxrecs, |
| .init_key_from_rec = xfs_rmapbt_init_key_from_rec, |
| .init_high_key_from_rec = xfs_rmapbt_init_high_key_from_rec, |
| .init_rec_from_cur = xfs_rmapbt_init_rec_from_cur, |
| .init_ptr_from_cur = xfs_rmapbt_init_ptr_from_cur, |
| .key_diff = xfs_rmapbt_key_diff, |
| .buf_ops = &xfs_rmapbt_buf_ops, |
| .diff_two_keys = xfs_rmapbt_diff_two_keys, |
| .keys_inorder = xfs_rmapbt_keys_inorder, |
| .recs_inorder = xfs_rmapbt_recs_inorder, |
| }; |
| |
| static struct xfs_btree_cur * |
| xfs_rmapbt_init_common( |
| struct xfs_mount *mp, |
| struct xfs_trans *tp, |
| xfs_agnumber_t agno) |
| { |
| struct xfs_btree_cur *cur; |
| |
| cur = kmem_cache_zalloc(xfs_btree_cur_zone, GFP_NOFS | __GFP_NOFAIL); |
| cur->bc_tp = tp; |
| cur->bc_mp = mp; |
| /* Overlapping btree; 2 keys per pointer. */ |
| cur->bc_btnum = XFS_BTNUM_RMAP; |
| cur->bc_flags = XFS_BTREE_CRC_BLOCKS | XFS_BTREE_OVERLAPPING; |
| cur->bc_blocklog = mp->m_sb.sb_blocklog; |
| cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_rmap_2); |
| cur->bc_ag.agno = agno; |
| cur->bc_ops = &xfs_rmapbt_ops; |
| |
| return cur; |
| } |
| |
| /* Create a new reverse mapping btree cursor. */ |
| struct xfs_btree_cur * |
| xfs_rmapbt_init_cursor( |
| struct xfs_mount *mp, |
| struct xfs_trans *tp, |
| struct xfs_buf *agbp, |
| xfs_agnumber_t agno) |
| { |
| struct xfs_agf *agf = agbp->b_addr; |
| struct xfs_btree_cur *cur; |
| |
| cur = xfs_rmapbt_init_common(mp, tp, agno); |
| cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]); |
| cur->bc_ag.agbp = agbp; |
| return cur; |
| } |
| |
| /* Create a new reverse mapping btree cursor with a fake root for staging. */ |
| struct xfs_btree_cur * |
| xfs_rmapbt_stage_cursor( |
| struct xfs_mount *mp, |
| struct xbtree_afakeroot *afake, |
| xfs_agnumber_t agno) |
| { |
| struct xfs_btree_cur *cur; |
| |
| cur = xfs_rmapbt_init_common(mp, NULL, agno); |
| xfs_btree_stage_afakeroot(cur, afake); |
| return cur; |
| } |
| |
| /* |
| * Install a new reverse mapping btree root. Caller is responsible for |
| * invalidating and freeing the old btree blocks. |
| */ |
| void |
| xfs_rmapbt_commit_staged_btree( |
| struct xfs_btree_cur *cur, |
| struct xfs_trans *tp, |
| struct xfs_buf *agbp) |
| { |
| struct xfs_agf *agf = agbp->b_addr; |
| struct xbtree_afakeroot *afake = cur->bc_ag.afake; |
| |
| ASSERT(cur->bc_flags & XFS_BTREE_STAGING); |
| |
| agf->agf_roots[cur->bc_btnum] = cpu_to_be32(afake->af_root); |
| agf->agf_levels[cur->bc_btnum] = cpu_to_be32(afake->af_levels); |
| agf->agf_rmap_blocks = cpu_to_be32(afake->af_blocks); |
| xfs_alloc_log_agf(tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS | |
| XFS_AGF_RMAP_BLOCKS); |
| xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_rmapbt_ops); |
| } |
| |
| /* |
| * Calculate number of records in an rmap btree block. |
| */ |
| int |
| xfs_rmapbt_maxrecs( |
| int blocklen, |
| int leaf) |
| { |
| blocklen -= XFS_RMAP_BLOCK_LEN; |
| |
| if (leaf) |
| return blocklen / sizeof(struct xfs_rmap_rec); |
| return blocklen / |
| (2 * sizeof(struct xfs_rmap_key) + sizeof(xfs_rmap_ptr_t)); |
| } |
| |
| /* Compute the maximum height of an rmap btree. */ |
| void |
| xfs_rmapbt_compute_maxlevels( |
| struct xfs_mount *mp) |
| { |
| /* |
| * On a non-reflink filesystem, the maximum number of rmap |
| * records is the number of blocks in the AG, hence the max |
| * rmapbt height is log_$maxrecs($agblocks). However, with |
| * reflink each AG block can have up to 2^32 (per the refcount |
| * record format) owners, which means that theoretically we |
| * could face up to 2^64 rmap records. |
| * |
| * That effectively means that the max rmapbt height must be |
| * XFS_BTREE_MAXLEVELS. "Fortunately" we'll run out of AG |
| * blocks to feed the rmapbt long before the rmapbt reaches |
| * maximum height. The reflink code uses ag_resv_critical to |
| * disallow reflinking when less than 10% of the per-AG metadata |
| * block reservation since the fallback is a regular file copy. |
| */ |
| if (xfs_sb_version_hasreflink(&mp->m_sb)) |
| mp->m_rmap_maxlevels = XFS_BTREE_MAXLEVELS; |
| else |
| mp->m_rmap_maxlevels = xfs_btree_compute_maxlevels( |
| mp->m_rmap_mnr, mp->m_sb.sb_agblocks); |
| } |
| |
| /* Calculate the refcount btree size for some records. */ |
| xfs_extlen_t |
| xfs_rmapbt_calc_size( |
| struct xfs_mount *mp, |
| unsigned long long len) |
| { |
| return xfs_btree_calc_size(mp->m_rmap_mnr, len); |
| } |
| |
| /* |
| * Calculate the maximum refcount btree size. |
| */ |
| xfs_extlen_t |
| xfs_rmapbt_max_size( |
| struct xfs_mount *mp, |
| xfs_agblock_t agblocks) |
| { |
| /* Bail out if we're uninitialized, which can happen in mkfs. */ |
| if (mp->m_rmap_mxr[0] == 0) |
| return 0; |
| |
| return xfs_rmapbt_calc_size(mp, agblocks); |
| } |
| |
| /* |
| * Figure out how many blocks to reserve and how many are used by this btree. |
| */ |
| int |
| xfs_rmapbt_calc_reserves( |
| struct xfs_mount *mp, |
| struct xfs_trans *tp, |
| xfs_agnumber_t agno, |
| xfs_extlen_t *ask, |
| xfs_extlen_t *used) |
| { |
| struct xfs_buf *agbp; |
| struct xfs_agf *agf; |
| xfs_agblock_t agblocks; |
| xfs_extlen_t tree_len; |
| int error; |
| |
| if (!xfs_sb_version_hasrmapbt(&mp->m_sb)) |
| return 0; |
| |
| error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp); |
| if (error) |
| return error; |
| |
| agf = agbp->b_addr; |
| agblocks = be32_to_cpu(agf->agf_length); |
| tree_len = be32_to_cpu(agf->agf_rmap_blocks); |
| xfs_trans_brelse(tp, agbp); |
| |
| /* |
| * The log is permanently allocated, so the space it occupies will |
| * never be available for the kinds of things that would require btree |
| * expansion. We therefore can pretend the space isn't there. |
| */ |
| if (mp->m_sb.sb_logstart && |
| XFS_FSB_TO_AGNO(mp, mp->m_sb.sb_logstart) == agno) |
| agblocks -= mp->m_sb.sb_logblocks; |
| |
| /* Reserve 1% of the AG or enough for 1 block per record. */ |
| *ask += max(agblocks / 100, xfs_rmapbt_max_size(mp, agblocks)); |
| *used += tree_len; |
| |
| return error; |
| } |