| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Cadence CDNSP DRD Driver. |
| * |
| * Copyright (C) 2020 Cadence. |
| * |
| * Author: Pawel Laszczak <pawell@cadence.com> |
| * |
| * Code based on Linux XHCI driver. |
| * Origin: Copyright (C) 2008 Intel Corp. |
| */ |
| |
| #include <linux/dma-mapping.h> |
| #include <linux/dmapool.h> |
| #include <linux/slab.h> |
| #include <linux/usb.h> |
| |
| #include "cdnsp-gadget.h" |
| #include "cdnsp-trace.h" |
| |
| static void cdnsp_free_stream_info(struct cdnsp_device *pdev, |
| struct cdnsp_ep *pep); |
| /* |
| * Allocates a generic ring segment from the ring pool, sets the dma address, |
| * initializes the segment to zero, and sets the private next pointer to NULL. |
| * |
| * "All components of all Command and Transfer TRBs shall be initialized to '0'" |
| */ |
| static struct cdnsp_segment *cdnsp_segment_alloc(struct cdnsp_device *pdev, |
| unsigned int cycle_state, |
| unsigned int max_packet, |
| gfp_t flags) |
| { |
| struct cdnsp_segment *seg; |
| dma_addr_t dma; |
| int i; |
| |
| seg = kzalloc(sizeof(*seg), flags); |
| if (!seg) |
| return NULL; |
| |
| seg->trbs = dma_pool_zalloc(pdev->segment_pool, flags, &dma); |
| if (!seg->trbs) { |
| kfree(seg); |
| return NULL; |
| } |
| |
| if (max_packet) { |
| seg->bounce_buf = kzalloc(max_packet, flags | GFP_DMA); |
| if (!seg->bounce_buf) |
| goto free_dma; |
| } |
| |
| /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs. */ |
| if (cycle_state == 0) { |
| for (i = 0; i < TRBS_PER_SEGMENT; i++) |
| seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE); |
| } |
| seg->dma = dma; |
| seg->next = NULL; |
| |
| return seg; |
| |
| free_dma: |
| dma_pool_free(pdev->segment_pool, seg->trbs, dma); |
| kfree(seg); |
| |
| return NULL; |
| } |
| |
| static void cdnsp_segment_free(struct cdnsp_device *pdev, |
| struct cdnsp_segment *seg) |
| { |
| if (seg->trbs) |
| dma_pool_free(pdev->segment_pool, seg->trbs, seg->dma); |
| |
| kfree(seg->bounce_buf); |
| kfree(seg); |
| } |
| |
| static void cdnsp_free_segments_for_ring(struct cdnsp_device *pdev, |
| struct cdnsp_segment *first) |
| { |
| struct cdnsp_segment *seg; |
| |
| seg = first->next; |
| |
| while (seg != first) { |
| struct cdnsp_segment *next = seg->next; |
| |
| cdnsp_segment_free(pdev, seg); |
| seg = next; |
| } |
| |
| cdnsp_segment_free(pdev, first); |
| } |
| |
| /* |
| * Make the prev segment point to the next segment. |
| * |
| * Change the last TRB in the prev segment to be a Link TRB which points to the |
| * DMA address of the next segment. The caller needs to set any Link TRB |
| * related flags, such as End TRB, Toggle Cycle, and no snoop. |
| */ |
| static void cdnsp_link_segments(struct cdnsp_device *pdev, |
| struct cdnsp_segment *prev, |
| struct cdnsp_segment *next, |
| enum cdnsp_ring_type type) |
| { |
| struct cdnsp_link_trb *link; |
| u32 val; |
| |
| if (!prev || !next) |
| return; |
| |
| prev->next = next; |
| if (type != TYPE_EVENT) { |
| link = &prev->trbs[TRBS_PER_SEGMENT - 1].link; |
| link->segment_ptr = cpu_to_le64(next->dma); |
| |
| /* |
| * Set the last TRB in the segment to have a TRB type ID |
| * of Link TRB |
| */ |
| val = le32_to_cpu(link->control); |
| val &= ~TRB_TYPE_BITMASK; |
| val |= TRB_TYPE(TRB_LINK); |
| link->control = cpu_to_le32(val); |
| } |
| } |
| |
| /* |
| * Link the ring to the new segments. |
| * Set Toggle Cycle for the new ring if needed. |
| */ |
| static void cdnsp_link_rings(struct cdnsp_device *pdev, |
| struct cdnsp_ring *ring, |
| struct cdnsp_segment *first, |
| struct cdnsp_segment *last, |
| unsigned int num_segs) |
| { |
| struct cdnsp_segment *next; |
| |
| if (!ring || !first || !last) |
| return; |
| |
| next = ring->enq_seg->next; |
| cdnsp_link_segments(pdev, ring->enq_seg, first, ring->type); |
| cdnsp_link_segments(pdev, last, next, ring->type); |
| ring->num_segs += num_segs; |
| ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs; |
| |
| if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) { |
| ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= |
| ~cpu_to_le32(LINK_TOGGLE); |
| last->trbs[TRBS_PER_SEGMENT - 1].link.control |= |
| cpu_to_le32(LINK_TOGGLE); |
| ring->last_seg = last; |
| } |
| } |
| |
| /* |
| * We need a radix tree for mapping physical addresses of TRBs to which stream |
| * ID they belong to. We need to do this because the device controller won't |
| * tell us which stream ring the TRB came from. We could store the stream ID |
| * in an event data TRB, but that doesn't help us for the cancellation case, |
| * since the endpoint may stop before it reaches that event data TRB. |
| * |
| * The radix tree maps the upper portion of the TRB DMA address to a ring |
| * segment that has the same upper portion of DMA addresses. For example, |
| * say I have segments of size 1KB, that are always 1KB aligned. A segment may |
| * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the |
| * key to the stream ID is 0x43244. I can use the DMA address of the TRB to |
| * pass the radix tree a key to get the right stream ID: |
| * |
| * 0x10c90fff >> 10 = 0x43243 |
| * 0x10c912c0 >> 10 = 0x43244 |
| * 0x10c91400 >> 10 = 0x43245 |
| * |
| * Obviously, only those TRBs with DMA addresses that are within the segment |
| * will make the radix tree return the stream ID for that ring. |
| * |
| * Caveats for the radix tree: |
| * |
| * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an |
| * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be |
| * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the |
| * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit |
| * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit |
| * extended systems (where the DMA address can be bigger than 32-bits), |
| * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that. |
| */ |
| static int cdnsp_insert_segment_mapping(struct radix_tree_root *trb_address_map, |
| struct cdnsp_ring *ring, |
| struct cdnsp_segment *seg, |
| gfp_t mem_flags) |
| { |
| unsigned long key; |
| int ret; |
| |
| key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT); |
| |
| /* Skip any segments that were already added. */ |
| if (radix_tree_lookup(trb_address_map, key)) |
| return 0; |
| |
| ret = radix_tree_maybe_preload(mem_flags); |
| if (ret) |
| return ret; |
| |
| ret = radix_tree_insert(trb_address_map, key, ring); |
| radix_tree_preload_end(); |
| |
| return ret; |
| } |
| |
| static void cdnsp_remove_segment_mapping(struct radix_tree_root *trb_address_map, |
| struct cdnsp_segment *seg) |
| { |
| unsigned long key; |
| |
| key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT); |
| if (radix_tree_lookup(trb_address_map, key)) |
| radix_tree_delete(trb_address_map, key); |
| } |
| |
| static int cdnsp_update_stream_segment_mapping(struct radix_tree_root *trb_address_map, |
| struct cdnsp_ring *ring, |
| struct cdnsp_segment *first_seg, |
| struct cdnsp_segment *last_seg, |
| gfp_t mem_flags) |
| { |
| struct cdnsp_segment *failed_seg; |
| struct cdnsp_segment *seg; |
| int ret; |
| |
| seg = first_seg; |
| do { |
| ret = cdnsp_insert_segment_mapping(trb_address_map, ring, seg, |
| mem_flags); |
| if (ret) |
| goto remove_streams; |
| if (seg == last_seg) |
| return 0; |
| seg = seg->next; |
| } while (seg != first_seg); |
| |
| return 0; |
| |
| remove_streams: |
| failed_seg = seg; |
| seg = first_seg; |
| do { |
| cdnsp_remove_segment_mapping(trb_address_map, seg); |
| if (seg == failed_seg) |
| return ret; |
| seg = seg->next; |
| } while (seg != first_seg); |
| |
| return ret; |
| } |
| |
| static void cdnsp_remove_stream_mapping(struct cdnsp_ring *ring) |
| { |
| struct cdnsp_segment *seg; |
| |
| seg = ring->first_seg; |
| do { |
| cdnsp_remove_segment_mapping(ring->trb_address_map, seg); |
| seg = seg->next; |
| } while (seg != ring->first_seg); |
| } |
| |
| static int cdnsp_update_stream_mapping(struct cdnsp_ring *ring) |
| { |
| return cdnsp_update_stream_segment_mapping(ring->trb_address_map, ring, |
| ring->first_seg, ring->last_seg, GFP_ATOMIC); |
| } |
| |
| static void cdnsp_ring_free(struct cdnsp_device *pdev, struct cdnsp_ring *ring) |
| { |
| if (!ring) |
| return; |
| |
| trace_cdnsp_ring_free(ring); |
| |
| if (ring->first_seg) { |
| if (ring->type == TYPE_STREAM) |
| cdnsp_remove_stream_mapping(ring); |
| |
| cdnsp_free_segments_for_ring(pdev, ring->first_seg); |
| } |
| |
| kfree(ring); |
| } |
| |
| void cdnsp_initialize_ring_info(struct cdnsp_ring *ring) |
| { |
| ring->enqueue = ring->first_seg->trbs; |
| ring->enq_seg = ring->first_seg; |
| ring->dequeue = ring->enqueue; |
| ring->deq_seg = ring->first_seg; |
| |
| /* |
| * The ring is initialized to 0. The producer must write 1 to the cycle |
| * bit to handover ownership of the TRB, so PCS = 1. The consumer must |
| * compare CCS to the cycle bit to check ownership, so CCS = 1. |
| * |
| * New rings are initialized with cycle state equal to 1; if we are |
| * handling ring expansion, set the cycle state equal to the old ring. |
| */ |
| ring->cycle_state = 1; |
| |
| /* |
| * Each segment has a link TRB, and leave an extra TRB for SW |
| * accounting purpose |
| */ |
| ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; |
| } |
| |
| /* Allocate segments and link them for a ring. */ |
| static int cdnsp_alloc_segments_for_ring(struct cdnsp_device *pdev, |
| struct cdnsp_segment **first, |
| struct cdnsp_segment **last, |
| unsigned int num_segs, |
| unsigned int cycle_state, |
| enum cdnsp_ring_type type, |
| unsigned int max_packet, |
| gfp_t flags) |
| { |
| struct cdnsp_segment *prev; |
| |
| /* Allocate first segment. */ |
| prev = cdnsp_segment_alloc(pdev, cycle_state, max_packet, flags); |
| if (!prev) |
| return -ENOMEM; |
| |
| num_segs--; |
| *first = prev; |
| |
| /* Allocate all other segments. */ |
| while (num_segs > 0) { |
| struct cdnsp_segment *next; |
| |
| next = cdnsp_segment_alloc(pdev, cycle_state, |
| max_packet, flags); |
| if (!next) { |
| cdnsp_free_segments_for_ring(pdev, *first); |
| return -ENOMEM; |
| } |
| |
| cdnsp_link_segments(pdev, prev, next, type); |
| |
| prev = next; |
| num_segs--; |
| } |
| |
| cdnsp_link_segments(pdev, prev, *first, type); |
| *last = prev; |
| |
| return 0; |
| } |
| |
| /* |
| * Create a new ring with zero or more segments. |
| * |
| * Link each segment together into a ring. |
| * Set the end flag and the cycle toggle bit on the last segment. |
| */ |
| static struct cdnsp_ring *cdnsp_ring_alloc(struct cdnsp_device *pdev, |
| unsigned int num_segs, |
| enum cdnsp_ring_type type, |
| unsigned int max_packet, |
| gfp_t flags) |
| { |
| struct cdnsp_ring *ring; |
| int ret; |
| |
| ring = kzalloc(sizeof *(ring), flags); |
| if (!ring) |
| return NULL; |
| |
| ring->num_segs = num_segs; |
| ring->bounce_buf_len = max_packet; |
| INIT_LIST_HEAD(&ring->td_list); |
| ring->type = type; |
| |
| if (num_segs == 0) |
| return ring; |
| |
| ret = cdnsp_alloc_segments_for_ring(pdev, &ring->first_seg, |
| &ring->last_seg, num_segs, |
| 1, type, max_packet, flags); |
| if (ret) |
| goto fail; |
| |
| /* Only event ring does not use link TRB. */ |
| if (type != TYPE_EVENT) |
| ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |= |
| cpu_to_le32(LINK_TOGGLE); |
| |
| cdnsp_initialize_ring_info(ring); |
| trace_cdnsp_ring_alloc(ring); |
| return ring; |
| fail: |
| kfree(ring); |
| return NULL; |
| } |
| |
| void cdnsp_free_endpoint_rings(struct cdnsp_device *pdev, struct cdnsp_ep *pep) |
| { |
| cdnsp_ring_free(pdev, pep->ring); |
| pep->ring = NULL; |
| cdnsp_free_stream_info(pdev, pep); |
| } |
| |
| /* |
| * Expand an existing ring. |
| * Allocate a new ring which has same segment numbers and link the two rings. |
| */ |
| int cdnsp_ring_expansion(struct cdnsp_device *pdev, |
| struct cdnsp_ring *ring, |
| unsigned int num_trbs, |
| gfp_t flags) |
| { |
| unsigned int num_segs_needed; |
| struct cdnsp_segment *first; |
| struct cdnsp_segment *last; |
| unsigned int num_segs; |
| int ret; |
| |
| num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) / |
| (TRBS_PER_SEGMENT - 1); |
| |
| /* Allocate number of segments we needed, or double the ring size. */ |
| num_segs = max(ring->num_segs, num_segs_needed); |
| |
| ret = cdnsp_alloc_segments_for_ring(pdev, &first, &last, num_segs, |
| ring->cycle_state, ring->type, |
| ring->bounce_buf_len, flags); |
| if (ret) |
| return -ENOMEM; |
| |
| if (ring->type == TYPE_STREAM) |
| ret = cdnsp_update_stream_segment_mapping(ring->trb_address_map, |
| ring, first, |
| last, flags); |
| |
| if (ret) { |
| cdnsp_free_segments_for_ring(pdev, first); |
| |
| return ret; |
| } |
| |
| cdnsp_link_rings(pdev, ring, first, last, num_segs); |
| trace_cdnsp_ring_expansion(ring); |
| |
| return 0; |
| } |
| |
| static int cdnsp_init_device_ctx(struct cdnsp_device *pdev) |
| { |
| int size = HCC_64BYTE_CONTEXT(pdev->hcc_params) ? 2048 : 1024; |
| |
| pdev->out_ctx.type = CDNSP_CTX_TYPE_DEVICE; |
| pdev->out_ctx.size = size; |
| pdev->out_ctx.ctx_size = CTX_SIZE(pdev->hcc_params); |
| pdev->out_ctx.bytes = dma_pool_zalloc(pdev->device_pool, GFP_ATOMIC, |
| &pdev->out_ctx.dma); |
| |
| if (!pdev->out_ctx.bytes) |
| return -ENOMEM; |
| |
| pdev->in_ctx.type = CDNSP_CTX_TYPE_INPUT; |
| pdev->in_ctx.ctx_size = pdev->out_ctx.ctx_size; |
| pdev->in_ctx.size = size + pdev->out_ctx.ctx_size; |
| pdev->in_ctx.bytes = dma_pool_zalloc(pdev->device_pool, GFP_ATOMIC, |
| &pdev->in_ctx.dma); |
| |
| if (!pdev->in_ctx.bytes) { |
| dma_pool_free(pdev->device_pool, pdev->out_ctx.bytes, |
| pdev->out_ctx.dma); |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| struct cdnsp_input_control_ctx |
| *cdnsp_get_input_control_ctx(struct cdnsp_container_ctx *ctx) |
| { |
| if (ctx->type != CDNSP_CTX_TYPE_INPUT) |
| return NULL; |
| |
| return (struct cdnsp_input_control_ctx *)ctx->bytes; |
| } |
| |
| struct cdnsp_slot_ctx *cdnsp_get_slot_ctx(struct cdnsp_container_ctx *ctx) |
| { |
| if (ctx->type == CDNSP_CTX_TYPE_DEVICE) |
| return (struct cdnsp_slot_ctx *)ctx->bytes; |
| |
| return (struct cdnsp_slot_ctx *)(ctx->bytes + ctx->ctx_size); |
| } |
| |
| struct cdnsp_ep_ctx *cdnsp_get_ep_ctx(struct cdnsp_container_ctx *ctx, |
| unsigned int ep_index) |
| { |
| /* Increment ep index by offset of start of ep ctx array. */ |
| ep_index++; |
| if (ctx->type == CDNSP_CTX_TYPE_INPUT) |
| ep_index++; |
| |
| return (struct cdnsp_ep_ctx *)(ctx->bytes + (ep_index * ctx->ctx_size)); |
| } |
| |
| static void cdnsp_free_stream_ctx(struct cdnsp_device *pdev, |
| struct cdnsp_ep *pep) |
| { |
| dma_pool_free(pdev->device_pool, pep->stream_info.stream_ctx_array, |
| pep->stream_info.ctx_array_dma); |
| } |
| |
| /* The stream context array must be a power of 2. */ |
| static struct cdnsp_stream_ctx |
| *cdnsp_alloc_stream_ctx(struct cdnsp_device *pdev, struct cdnsp_ep *pep) |
| { |
| size_t size = sizeof(struct cdnsp_stream_ctx) * |
| pep->stream_info.num_stream_ctxs; |
| |
| if (size > CDNSP_CTX_SIZE) |
| return NULL; |
| |
| /** |
| * Driver uses intentionally the device_pool to allocated stream |
| * context array. Device Pool has 2048 bytes of size what gives us |
| * 128 entries. |
| */ |
| return dma_pool_zalloc(pdev->device_pool, GFP_DMA32 | GFP_ATOMIC, |
| &pep->stream_info.ctx_array_dma); |
| } |
| |
| struct cdnsp_ring *cdnsp_dma_to_transfer_ring(struct cdnsp_ep *pep, u64 address) |
| { |
| if (pep->ep_state & EP_HAS_STREAMS) |
| return radix_tree_lookup(&pep->stream_info.trb_address_map, |
| address >> TRB_SEGMENT_SHIFT); |
| |
| return pep->ring; |
| } |
| |
| /* |
| * Change an endpoint's internal structure so it supports stream IDs. |
| * The number of requested streams includes stream 0, which cannot be used by |
| * driver. |
| * |
| * The number of stream contexts in the stream context array may be bigger than |
| * the number of streams the driver wants to use. This is because the number of |
| * stream context array entries must be a power of two. |
| */ |
| int cdnsp_alloc_stream_info(struct cdnsp_device *pdev, |
| struct cdnsp_ep *pep, |
| unsigned int num_stream_ctxs, |
| unsigned int num_streams) |
| { |
| struct cdnsp_stream_info *stream_info; |
| struct cdnsp_ring *cur_ring; |
| u32 cur_stream; |
| u64 addr; |
| int ret; |
| int mps; |
| |
| stream_info = &pep->stream_info; |
| stream_info->num_streams = num_streams; |
| stream_info->num_stream_ctxs = num_stream_ctxs; |
| |
| /* Initialize the array of virtual pointers to stream rings. */ |
| stream_info->stream_rings = kcalloc(num_streams, |
| sizeof(struct cdnsp_ring *), |
| GFP_ATOMIC); |
| if (!stream_info->stream_rings) |
| return -ENOMEM; |
| |
| /* Initialize the array of DMA addresses for stream rings for the HW. */ |
| stream_info->stream_ctx_array = cdnsp_alloc_stream_ctx(pdev, pep); |
| if (!stream_info->stream_ctx_array) |
| goto cleanup_stream_rings; |
| |
| memset(stream_info->stream_ctx_array, 0, |
| sizeof(struct cdnsp_stream_ctx) * num_stream_ctxs); |
| INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC); |
| mps = usb_endpoint_maxp(pep->endpoint.desc); |
| |
| /* |
| * Allocate rings for all the streams that the driver will use, |
| * and add their segment DMA addresses to the radix tree. |
| * Stream 0 is reserved. |
| */ |
| for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { |
| cur_ring = cdnsp_ring_alloc(pdev, 2, TYPE_STREAM, mps, |
| GFP_ATOMIC); |
| stream_info->stream_rings[cur_stream] = cur_ring; |
| |
| if (!cur_ring) |
| goto cleanup_rings; |
| |
| cur_ring->stream_id = cur_stream; |
| cur_ring->trb_address_map = &stream_info->trb_address_map; |
| |
| /* Set deq ptr, cycle bit, and stream context type. */ |
| addr = cur_ring->first_seg->dma | SCT_FOR_CTX(SCT_PRI_TR) | |
| cur_ring->cycle_state; |
| |
| stream_info->stream_ctx_array[cur_stream].stream_ring = |
| cpu_to_le64(addr); |
| |
| trace_cdnsp_set_stream_ring(cur_ring); |
| |
| ret = cdnsp_update_stream_mapping(cur_ring); |
| if (ret) |
| goto cleanup_rings; |
| } |
| |
| return 0; |
| |
| cleanup_rings: |
| for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { |
| cur_ring = stream_info->stream_rings[cur_stream]; |
| if (cur_ring) { |
| cdnsp_ring_free(pdev, cur_ring); |
| stream_info->stream_rings[cur_stream] = NULL; |
| } |
| } |
| |
| cleanup_stream_rings: |
| kfree(pep->stream_info.stream_rings); |
| |
| return -ENOMEM; |
| } |
| |
| /* Frees all stream contexts associated with the endpoint. */ |
| static void cdnsp_free_stream_info(struct cdnsp_device *pdev, |
| struct cdnsp_ep *pep) |
| { |
| struct cdnsp_stream_info *stream_info = &pep->stream_info; |
| struct cdnsp_ring *cur_ring; |
| int cur_stream; |
| |
| if (!(pep->ep_state & EP_HAS_STREAMS)) |
| return; |
| |
| for (cur_stream = 1; cur_stream < stream_info->num_streams; |
| cur_stream++) { |
| cur_ring = stream_info->stream_rings[cur_stream]; |
| if (cur_ring) { |
| cdnsp_ring_free(pdev, cur_ring); |
| stream_info->stream_rings[cur_stream] = NULL; |
| } |
| } |
| |
| if (stream_info->stream_ctx_array) |
| cdnsp_free_stream_ctx(pdev, pep); |
| |
| kfree(stream_info->stream_rings); |
| pep->ep_state &= ~EP_HAS_STREAMS; |
| } |
| |
| /* All the cdnsp_tds in the ring's TD list should be freed at this point.*/ |
| static void cdnsp_free_priv_device(struct cdnsp_device *pdev) |
| { |
| pdev->dcbaa->dev_context_ptrs[1] = 0; |
| |
| cdnsp_free_endpoint_rings(pdev, &pdev->eps[0]); |
| |
| if (pdev->in_ctx.bytes) |
| dma_pool_free(pdev->device_pool, pdev->in_ctx.bytes, |
| pdev->in_ctx.dma); |
| |
| if (pdev->out_ctx.bytes) |
| dma_pool_free(pdev->device_pool, pdev->out_ctx.bytes, |
| pdev->out_ctx.dma); |
| |
| pdev->in_ctx.bytes = NULL; |
| pdev->out_ctx.bytes = NULL; |
| } |
| |
| static int cdnsp_alloc_priv_device(struct cdnsp_device *pdev) |
| { |
| int ret; |
| |
| ret = cdnsp_init_device_ctx(pdev); |
| if (ret) |
| return ret; |
| |
| /* Allocate endpoint 0 ring. */ |
| pdev->eps[0].ring = cdnsp_ring_alloc(pdev, 2, TYPE_CTRL, 0, GFP_ATOMIC); |
| if (!pdev->eps[0].ring) |
| goto fail; |
| |
| /* Point to output device context in dcbaa. */ |
| pdev->dcbaa->dev_context_ptrs[1] = cpu_to_le64(pdev->out_ctx.dma); |
| pdev->cmd.in_ctx = &pdev->in_ctx; |
| |
| trace_cdnsp_alloc_priv_device(pdev); |
| return 0; |
| fail: |
| dma_pool_free(pdev->device_pool, pdev->out_ctx.bytes, |
| pdev->out_ctx.dma); |
| dma_pool_free(pdev->device_pool, pdev->in_ctx.bytes, |
| pdev->in_ctx.dma); |
| |
| return ret; |
| } |
| |
| void cdnsp_copy_ep0_dequeue_into_input_ctx(struct cdnsp_device *pdev) |
| { |
| struct cdnsp_ep_ctx *ep0_ctx = pdev->eps[0].in_ctx; |
| struct cdnsp_ring *ep_ring = pdev->eps[0].ring; |
| dma_addr_t dma; |
| |
| dma = cdnsp_trb_virt_to_dma(ep_ring->enq_seg, ep_ring->enqueue); |
| ep0_ctx->deq = cpu_to_le64(dma | ep_ring->cycle_state); |
| } |
| |
| /* Setup an controller private device for a Set Address command. */ |
| int cdnsp_setup_addressable_priv_dev(struct cdnsp_device *pdev) |
| { |
| struct cdnsp_slot_ctx *slot_ctx; |
| struct cdnsp_ep_ctx *ep0_ctx; |
| u32 max_packets, port; |
| |
| ep0_ctx = cdnsp_get_ep_ctx(&pdev->in_ctx, 0); |
| slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx); |
| |
| /* Only the control endpoint is valid - one endpoint context. */ |
| slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); |
| |
| switch (pdev->gadget.speed) { |
| case USB_SPEED_SUPER_PLUS: |
| slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP); |
| max_packets = MAX_PACKET(512); |
| break; |
| case USB_SPEED_SUPER: |
| slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS); |
| max_packets = MAX_PACKET(512); |
| break; |
| case USB_SPEED_HIGH: |
| slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS); |
| max_packets = MAX_PACKET(64); |
| break; |
| case USB_SPEED_FULL: |
| slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS); |
| max_packets = MAX_PACKET(64); |
| break; |
| default: |
| /* Speed was not set , this shouldn't happen. */ |
| return -EINVAL; |
| } |
| |
| port = DEV_PORT(pdev->active_port->port_num); |
| slot_ctx->dev_port |= cpu_to_le32(port); |
| slot_ctx->dev_state = cpu_to_le32((pdev->device_address & |
| DEV_ADDR_MASK)); |
| ep0_ctx->tx_info = cpu_to_le32(EP_AVG_TRB_LENGTH(0x8)); |
| ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP)); |
| ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) | |
| max_packets); |
| |
| ep0_ctx->deq = cpu_to_le64(pdev->eps[0].ring->first_seg->dma | |
| pdev->eps[0].ring->cycle_state); |
| |
| trace_cdnsp_setup_addressable_priv_device(pdev); |
| |
| return 0; |
| } |
| |
| /* |
| * Convert interval expressed as 2^(bInterval - 1) == interval into |
| * straight exponent value 2^n == interval. |
| */ |
| static unsigned int cdnsp_parse_exponent_interval(struct usb_gadget *g, |
| struct cdnsp_ep *pep) |
| { |
| unsigned int interval; |
| |
| interval = clamp_val(pep->endpoint.desc->bInterval, 1, 16) - 1; |
| if (interval != pep->endpoint.desc->bInterval - 1) |
| dev_warn(&g->dev, "ep %s - rounding interval to %d %sframes\n", |
| pep->name, 1 << interval, |
| g->speed == USB_SPEED_FULL ? "" : "micro"); |
| |
| /* |
| * Full speed isoc endpoints specify interval in frames, |
| * not microframes. We are using microframes everywhere, |
| * so adjust accordingly. |
| */ |
| if (g->speed == USB_SPEED_FULL) |
| interval += 3; /* 1 frame = 2^3 uframes */ |
| |
| /* Controller handles only up to 512ms (2^12). */ |
| if (interval > 12) |
| interval = 12; |
| |
| return interval; |
| } |
| |
| /* |
| * Convert bInterval expressed in microframes (in 1-255 range) to exponent of |
| * microframes, rounded down to nearest power of 2. |
| */ |
| static unsigned int cdnsp_microframes_to_exponent(struct usb_gadget *g, |
| struct cdnsp_ep *pep, |
| unsigned int desc_interval, |
| unsigned int min_exponent, |
| unsigned int max_exponent) |
| { |
| unsigned int interval; |
| |
| interval = fls(desc_interval) - 1; |
| return clamp_val(interval, min_exponent, max_exponent); |
| } |
| |
| /* |
| * Return the polling interval. |
| * |
| * The polling interval is expressed in "microframes". If controllers's Interval |
| * field is set to N, it will service the endpoint every 2^(Interval)*125us. |
| */ |
| static unsigned int cdnsp_get_endpoint_interval(struct usb_gadget *g, |
| struct cdnsp_ep *pep) |
| { |
| unsigned int interval = 0; |
| |
| switch (g->speed) { |
| case USB_SPEED_HIGH: |
| case USB_SPEED_SUPER_PLUS: |
| case USB_SPEED_SUPER: |
| if (usb_endpoint_xfer_int(pep->endpoint.desc) || |
| usb_endpoint_xfer_isoc(pep->endpoint.desc)) |
| interval = cdnsp_parse_exponent_interval(g, pep); |
| break; |
| case USB_SPEED_FULL: |
| if (usb_endpoint_xfer_isoc(pep->endpoint.desc)) { |
| interval = cdnsp_parse_exponent_interval(g, pep); |
| } else if (usb_endpoint_xfer_int(pep->endpoint.desc)) { |
| interval = pep->endpoint.desc->bInterval << 3; |
| interval = cdnsp_microframes_to_exponent(g, pep, |
| interval, |
| 3, 10); |
| } |
| |
| break; |
| default: |
| WARN_ON(1); |
| } |
| |
| return interval; |
| } |
| |
| /* |
| * The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps. |
| * High speed endpoint descriptors can define "the number of additional |
| * transaction opportunities per microframe", but that goes in the Max Burst |
| * endpoint context field. |
| */ |
| static u32 cdnsp_get_endpoint_mult(struct usb_gadget *g, struct cdnsp_ep *pep) |
| { |
| if (g->speed < USB_SPEED_SUPER || |
| !usb_endpoint_xfer_isoc(pep->endpoint.desc)) |
| return 0; |
| |
| return pep->endpoint.comp_desc->bmAttributes; |
| } |
| |
| static u32 cdnsp_get_endpoint_max_burst(struct usb_gadget *g, |
| struct cdnsp_ep *pep) |
| { |
| /* Super speed and Plus have max burst in ep companion desc */ |
| if (g->speed >= USB_SPEED_SUPER) |
| return pep->endpoint.comp_desc->bMaxBurst; |
| |
| if (g->speed == USB_SPEED_HIGH && |
| (usb_endpoint_xfer_isoc(pep->endpoint.desc) || |
| usb_endpoint_xfer_int(pep->endpoint.desc))) |
| return (usb_endpoint_maxp(pep->endpoint.desc) & 0x1800) >> 11; |
| |
| return 0; |
| } |
| |
| static u32 cdnsp_get_endpoint_type(const struct usb_endpoint_descriptor *desc) |
| { |
| int in; |
| |
| in = usb_endpoint_dir_in(desc); |
| |
| switch (usb_endpoint_type(desc)) { |
| case USB_ENDPOINT_XFER_CONTROL: |
| return CTRL_EP; |
| case USB_ENDPOINT_XFER_BULK: |
| return in ? BULK_IN_EP : BULK_OUT_EP; |
| case USB_ENDPOINT_XFER_ISOC: |
| return in ? ISOC_IN_EP : ISOC_OUT_EP; |
| case USB_ENDPOINT_XFER_INT: |
| return in ? INT_IN_EP : INT_OUT_EP; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Return the maximum endpoint service interval time (ESIT) payload. |
| * Basically, this is the maxpacket size, multiplied by the burst size |
| * and mult size. |
| */ |
| static u32 cdnsp_get_max_esit_payload(struct usb_gadget *g, |
| struct cdnsp_ep *pep) |
| { |
| int max_packet; |
| int max_burst; |
| |
| /* Only applies for interrupt or isochronous endpoints*/ |
| if (usb_endpoint_xfer_control(pep->endpoint.desc) || |
| usb_endpoint_xfer_bulk(pep->endpoint.desc)) |
| return 0; |
| |
| /* SuperSpeedPlus Isoc ep sending over 48k per EIST. */ |
| if (g->speed >= USB_SPEED_SUPER_PLUS && |
| USB_SS_SSP_ISOC_COMP(pep->endpoint.desc->bmAttributes)) |
| return le16_to_cpu(pep->endpoint.comp_desc->wBytesPerInterval); |
| /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */ |
| else if (g->speed >= USB_SPEED_SUPER) |
| return le16_to_cpu(pep->endpoint.comp_desc->wBytesPerInterval); |
| |
| max_packet = usb_endpoint_maxp(pep->endpoint.desc); |
| max_burst = usb_endpoint_maxp_mult(pep->endpoint.desc); |
| |
| /* A 0 in max burst means 1 transfer per ESIT */ |
| return max_packet * max_burst; |
| } |
| |
| int cdnsp_endpoint_init(struct cdnsp_device *pdev, |
| struct cdnsp_ep *pep, |
| gfp_t mem_flags) |
| { |
| enum cdnsp_ring_type ring_type; |
| struct cdnsp_ep_ctx *ep_ctx; |
| unsigned int err_count = 0; |
| unsigned int avg_trb_len; |
| unsigned int max_packet; |
| unsigned int max_burst; |
| unsigned int interval; |
| u32 max_esit_payload; |
| unsigned int mult; |
| u32 endpoint_type; |
| int ret; |
| |
| ep_ctx = pep->in_ctx; |
| |
| endpoint_type = cdnsp_get_endpoint_type(pep->endpoint.desc); |
| if (!endpoint_type) |
| return -EINVAL; |
| |
| ring_type = usb_endpoint_type(pep->endpoint.desc); |
| |
| /* |
| * Get values to fill the endpoint context, mostly from ep descriptor. |
| * The average TRB buffer length for bulk endpoints is unclear as we |
| * have no clue on scatter gather list entry size. For Isoc and Int, |
| * set it to max available. |
| */ |
| max_esit_payload = cdnsp_get_max_esit_payload(&pdev->gadget, pep); |
| interval = cdnsp_get_endpoint_interval(&pdev->gadget, pep); |
| mult = cdnsp_get_endpoint_mult(&pdev->gadget, pep); |
| max_packet = usb_endpoint_maxp(pep->endpoint.desc); |
| max_burst = cdnsp_get_endpoint_max_burst(&pdev->gadget, pep); |
| avg_trb_len = max_esit_payload; |
| |
| /* Allow 3 retries for everything but isoc, set CErr = 3. */ |
| if (!usb_endpoint_xfer_isoc(pep->endpoint.desc)) |
| err_count = 3; |
| if (usb_endpoint_xfer_bulk(pep->endpoint.desc) && |
| pdev->gadget.speed == USB_SPEED_HIGH) |
| max_packet = 512; |
| /* Controller spec indicates that ctrl ep avg TRB Length should be 8. */ |
| if (usb_endpoint_xfer_control(pep->endpoint.desc)) |
| avg_trb_len = 8; |
| |
| /* Set up the endpoint ring. */ |
| pep->ring = cdnsp_ring_alloc(pdev, 2, ring_type, max_packet, mem_flags); |
| pep->skip = false; |
| |
| /* Fill the endpoint context */ |
| ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) | |
| EP_INTERVAL(interval) | EP_MULT(mult)); |
| ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) | |
| MAX_PACKET(max_packet) | MAX_BURST(max_burst) | |
| ERROR_COUNT(err_count)); |
| ep_ctx->deq = cpu_to_le64(pep->ring->first_seg->dma | |
| pep->ring->cycle_state); |
| |
| ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) | |
| EP_AVG_TRB_LENGTH(avg_trb_len)); |
| |
| if (usb_endpoint_xfer_bulk(pep->endpoint.desc) && |
| pdev->gadget.speed > USB_SPEED_HIGH) { |
| ret = cdnsp_alloc_streams(pdev, pep); |
| if (ret < 0) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| void cdnsp_endpoint_zero(struct cdnsp_device *pdev, struct cdnsp_ep *pep) |
| { |
| pep->in_ctx->ep_info = 0; |
| pep->in_ctx->ep_info2 = 0; |
| pep->in_ctx->deq = 0; |
| pep->in_ctx->tx_info = 0; |
| } |
| |
| static int cdnsp_alloc_erst(struct cdnsp_device *pdev, |
| struct cdnsp_ring *evt_ring, |
| struct cdnsp_erst *erst) |
| { |
| struct cdnsp_erst_entry *entry; |
| struct cdnsp_segment *seg; |
| unsigned int val; |
| size_t size; |
| |
| size = sizeof(struct cdnsp_erst_entry) * evt_ring->num_segs; |
| erst->entries = dma_alloc_coherent(pdev->dev, size, |
| &erst->erst_dma_addr, GFP_KERNEL); |
| if (!erst->entries) |
| return -ENOMEM; |
| |
| erst->num_entries = evt_ring->num_segs; |
| |
| seg = evt_ring->first_seg; |
| for (val = 0; val < evt_ring->num_segs; val++) { |
| entry = &erst->entries[val]; |
| entry->seg_addr = cpu_to_le64(seg->dma); |
| entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT); |
| entry->rsvd = 0; |
| seg = seg->next; |
| } |
| |
| return 0; |
| } |
| |
| static void cdnsp_free_erst(struct cdnsp_device *pdev, struct cdnsp_erst *erst) |
| { |
| size_t size = sizeof(struct cdnsp_erst_entry) * (erst->num_entries); |
| struct device *dev = pdev->dev; |
| |
| if (erst->entries) |
| dma_free_coherent(dev, size, erst->entries, |
| erst->erst_dma_addr); |
| |
| erst->entries = NULL; |
| } |
| |
| void cdnsp_mem_cleanup(struct cdnsp_device *pdev) |
| { |
| struct device *dev = pdev->dev; |
| |
| cdnsp_free_priv_device(pdev); |
| cdnsp_free_erst(pdev, &pdev->erst); |
| |
| if (pdev->event_ring) |
| cdnsp_ring_free(pdev, pdev->event_ring); |
| |
| pdev->event_ring = NULL; |
| |
| if (pdev->cmd_ring) |
| cdnsp_ring_free(pdev, pdev->cmd_ring); |
| |
| pdev->cmd_ring = NULL; |
| |
| dma_pool_destroy(pdev->segment_pool); |
| pdev->segment_pool = NULL; |
| dma_pool_destroy(pdev->device_pool); |
| pdev->device_pool = NULL; |
| |
| if (pdev->dcbaa) |
| dma_free_coherent(dev, sizeof(*pdev->dcbaa), |
| pdev->dcbaa, pdev->dcbaa->dma); |
| |
| pdev->dcbaa = NULL; |
| |
| pdev->usb2_port.exist = 0; |
| pdev->usb3_port.exist = 0; |
| pdev->usb2_port.port_num = 0; |
| pdev->usb3_port.port_num = 0; |
| pdev->active_port = NULL; |
| } |
| |
| static void cdnsp_set_event_deq(struct cdnsp_device *pdev) |
| { |
| dma_addr_t deq; |
| u64 temp; |
| |
| deq = cdnsp_trb_virt_to_dma(pdev->event_ring->deq_seg, |
| pdev->event_ring->dequeue); |
| |
| /* Update controller event ring dequeue pointer */ |
| temp = cdnsp_read_64(&pdev->ir_set->erst_dequeue); |
| temp &= ERST_PTR_MASK; |
| |
| /* |
| * Don't clear the EHB bit (which is RW1C) because |
| * there might be more events to service. |
| */ |
| temp &= ~ERST_EHB; |
| |
| cdnsp_write_64(((u64)deq & (u64)~ERST_PTR_MASK) | temp, |
| &pdev->ir_set->erst_dequeue); |
| } |
| |
| static void cdnsp_add_in_port(struct cdnsp_device *pdev, |
| struct cdnsp_port *port, |
| __le32 __iomem *addr) |
| { |
| u32 temp, port_offset, port_count; |
| |
| temp = readl(addr); |
| port->maj_rev = CDNSP_EXT_PORT_MAJOR(temp); |
| port->min_rev = CDNSP_EXT_PORT_MINOR(temp); |
| |
| /* Port offset and count in the third dword.*/ |
| temp = readl(addr + 2); |
| port_offset = CDNSP_EXT_PORT_OFF(temp); |
| port_count = CDNSP_EXT_PORT_COUNT(temp); |
| |
| trace_cdnsp_port_info(addr, port_offset, port_count, port->maj_rev); |
| |
| port->port_num = port_offset; |
| port->exist = 1; |
| } |
| |
| /* |
| * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that |
| * specify what speeds each port is supposed to be. |
| */ |
| static int cdnsp_setup_port_arrays(struct cdnsp_device *pdev) |
| { |
| void __iomem *base; |
| u32 offset; |
| int i; |
| |
| base = &pdev->cap_regs->hc_capbase; |
| offset = cdnsp_find_next_ext_cap(base, 0, |
| EXT_CAP_CFG_DEV_20PORT_CAP_ID); |
| pdev->port20_regs = base + offset; |
| |
| offset = cdnsp_find_next_ext_cap(base, 0, D_XEC_CFG_3XPORT_CAP); |
| pdev->port3x_regs = base + offset; |
| |
| offset = 0; |
| base = &pdev->cap_regs->hc_capbase; |
| |
| /* Driver expects max 2 extended protocol capability. */ |
| for (i = 0; i < 2; i++) { |
| u32 temp; |
| |
| offset = cdnsp_find_next_ext_cap(base, offset, |
| EXT_CAPS_PROTOCOL); |
| temp = readl(base + offset); |
| |
| if (CDNSP_EXT_PORT_MAJOR(temp) == 0x03 && |
| !pdev->usb3_port.port_num) |
| cdnsp_add_in_port(pdev, &pdev->usb3_port, |
| base + offset); |
| |
| if (CDNSP_EXT_PORT_MAJOR(temp) == 0x02 && |
| !pdev->usb2_port.port_num) |
| cdnsp_add_in_port(pdev, &pdev->usb2_port, |
| base + offset); |
| } |
| |
| if (!pdev->usb2_port.exist || !pdev->usb3_port.exist) { |
| dev_err(pdev->dev, "Error: Only one port detected\n"); |
| return -ENODEV; |
| } |
| |
| trace_cdnsp_init("Found USB 2.0 ports and USB 3.0 ports."); |
| |
| pdev->usb2_port.regs = (struct cdnsp_port_regs __iomem *) |
| (&pdev->op_regs->port_reg_base + NUM_PORT_REGS * |
| (pdev->usb2_port.port_num - 1)); |
| |
| pdev->usb3_port.regs = (struct cdnsp_port_regs __iomem *) |
| (&pdev->op_regs->port_reg_base + NUM_PORT_REGS * |
| (pdev->usb3_port.port_num - 1)); |
| |
| return 0; |
| } |
| |
| /* |
| * Initialize memory for CDNSP (one-time init). |
| * |
| * Program the PAGESIZE register, initialize the device context array, create |
| * device contexts, set up a command ring segment, create event |
| * ring (one for now). |
| */ |
| int cdnsp_mem_init(struct cdnsp_device *pdev) |
| { |
| struct device *dev = pdev->dev; |
| int ret = -ENOMEM; |
| unsigned int val; |
| dma_addr_t dma; |
| u32 page_size; |
| u64 val_64; |
| |
| /* |
| * Use 4K pages, since that's common and the minimum the |
| * controller supports |
| */ |
| page_size = 1 << 12; |
| |
| val = readl(&pdev->op_regs->config_reg); |
| val |= ((val & ~MAX_DEVS) | CDNSP_DEV_MAX_SLOTS) | CONFIG_U3E; |
| writel(val, &pdev->op_regs->config_reg); |
| |
| /* |
| * Doorbell array must be physically contiguous |
| * and 64-byte (cache line) aligned. |
| */ |
| pdev->dcbaa = dma_alloc_coherent(dev, sizeof(*pdev->dcbaa), |
| &dma, GFP_KERNEL); |
| if (!pdev->dcbaa) |
| return -ENOMEM; |
| |
| pdev->dcbaa->dma = dma; |
| |
| cdnsp_write_64(dma, &pdev->op_regs->dcbaa_ptr); |
| |
| /* |
| * Initialize the ring segment pool. The ring must be a contiguous |
| * structure comprised of TRBs. The TRBs must be 16 byte aligned, |
| * however, the command ring segment needs 64-byte aligned segments |
| * and our use of dma addresses in the trb_address_map radix tree needs |
| * TRB_SEGMENT_SIZE alignment, so driver pick the greater alignment |
| * need. |
| */ |
| pdev->segment_pool = dma_pool_create("CDNSP ring segments", dev, |
| TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, |
| page_size); |
| if (!pdev->segment_pool) |
| goto release_dcbaa; |
| |
| pdev->device_pool = dma_pool_create("CDNSP input/output contexts", dev, |
| CDNSP_CTX_SIZE, 64, page_size); |
| if (!pdev->device_pool) |
| goto destroy_segment_pool; |
| |
| |
| /* Set up the command ring to have one segments for now. */ |
| pdev->cmd_ring = cdnsp_ring_alloc(pdev, 1, TYPE_COMMAND, 0, GFP_KERNEL); |
| if (!pdev->cmd_ring) |
| goto destroy_device_pool; |
| |
| /* Set the address in the Command Ring Control register */ |
| val_64 = cdnsp_read_64(&pdev->op_regs->cmd_ring); |
| val_64 = (val_64 & (u64)CMD_RING_RSVD_BITS) | |
| (pdev->cmd_ring->first_seg->dma & (u64)~CMD_RING_RSVD_BITS) | |
| pdev->cmd_ring->cycle_state; |
| cdnsp_write_64(val_64, &pdev->op_regs->cmd_ring); |
| |
| val = readl(&pdev->cap_regs->db_off); |
| val &= DBOFF_MASK; |
| pdev->dba = (void __iomem *)pdev->cap_regs + val; |
| |
| /* Set ir_set to interrupt register set 0 */ |
| pdev->ir_set = &pdev->run_regs->ir_set[0]; |
| |
| /* |
| * Event ring setup: Allocate a normal ring, but also setup |
| * the event ring segment table (ERST). |
| */ |
| pdev->event_ring = cdnsp_ring_alloc(pdev, ERST_NUM_SEGS, TYPE_EVENT, |
| 0, GFP_KERNEL); |
| if (!pdev->event_ring) |
| goto free_cmd_ring; |
| |
| ret = cdnsp_alloc_erst(pdev, pdev->event_ring, &pdev->erst); |
| if (ret) |
| goto free_event_ring; |
| |
| /* Set ERST count with the number of entries in the segment table. */ |
| val = readl(&pdev->ir_set->erst_size); |
| val &= ERST_SIZE_MASK; |
| val |= ERST_NUM_SEGS; |
| writel(val, &pdev->ir_set->erst_size); |
| |
| /* Set the segment table base address. */ |
| val_64 = cdnsp_read_64(&pdev->ir_set->erst_base); |
| val_64 &= ERST_PTR_MASK; |
| val_64 |= (pdev->erst.erst_dma_addr & (u64)~ERST_PTR_MASK); |
| cdnsp_write_64(val_64, &pdev->ir_set->erst_base); |
| |
| /* Set the event ring dequeue address. */ |
| cdnsp_set_event_deq(pdev); |
| |
| ret = cdnsp_setup_port_arrays(pdev); |
| if (ret) |
| goto free_erst; |
| |
| ret = cdnsp_alloc_priv_device(pdev); |
| if (ret) { |
| dev_err(pdev->dev, |
| "Could not allocate cdnsp_device data structures\n"); |
| goto free_erst; |
| } |
| |
| return 0; |
| |
| free_erst: |
| cdnsp_free_erst(pdev, &pdev->erst); |
| free_event_ring: |
| cdnsp_ring_free(pdev, pdev->event_ring); |
| free_cmd_ring: |
| cdnsp_ring_free(pdev, pdev->cmd_ring); |
| destroy_device_pool: |
| dma_pool_destroy(pdev->device_pool); |
| destroy_segment_pool: |
| dma_pool_destroy(pdev->segment_pool); |
| release_dcbaa: |
| dma_free_coherent(dev, sizeof(*pdev->dcbaa), pdev->dcbaa, |
| pdev->dcbaa->dma); |
| |
| cdnsp_reset(pdev); |
| |
| return ret; |
| } |