| /* |
| * arch/arm/mach-vexpress/dcscb.c - Dual Cluster System Configuration Block |
| * |
| * Created by: Nicolas Pitre, May 2012 |
| * Copyright: (C) 2012-2013 Linaro Limited |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/io.h> |
| #include <linux/spinlock.h> |
| #include <linux/errno.h> |
| #include <linux/of_address.h> |
| #include <linux/vexpress.h> |
| #include <linux/arm-cci.h> |
| |
| #include <asm/mcpm.h> |
| #include <asm/proc-fns.h> |
| #include <asm/cacheflush.h> |
| #include <asm/cputype.h> |
| #include <asm/cp15.h> |
| |
| |
| #define RST_HOLD0 0x0 |
| #define RST_HOLD1 0x4 |
| #define SYS_SWRESET 0x8 |
| #define RST_STAT0 0xc |
| #define RST_STAT1 0x10 |
| #define EAG_CFG_R 0x20 |
| #define EAG_CFG_W 0x24 |
| #define KFC_CFG_R 0x28 |
| #define KFC_CFG_W 0x2c |
| #define DCS_CFG_R 0x30 |
| |
| /* |
| * We can't use regular spinlocks. In the switcher case, it is possible |
| * for an outbound CPU to call power_down() while its inbound counterpart |
| * is already live using the same logical CPU number which trips lockdep |
| * debugging. |
| */ |
| static arch_spinlock_t dcscb_lock = __ARCH_SPIN_LOCK_UNLOCKED; |
| |
| static void __iomem *dcscb_base; |
| static int dcscb_use_count[4][2]; |
| static int dcscb_allcpus_mask[2]; |
| |
| static int dcscb_power_up(unsigned int cpu, unsigned int cluster) |
| { |
| unsigned int rst_hold, cpumask = (1 << cpu); |
| unsigned int all_mask; |
| |
| pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster); |
| if (cpu >= 4 || cluster >= 2) |
| return -EINVAL; |
| |
| all_mask = dcscb_allcpus_mask[cluster]; |
| |
| /* |
| * Since this is called with IRQs enabled, and no arch_spin_lock_irq |
| * variant exists, we need to disable IRQs manually here. |
| */ |
| local_irq_disable(); |
| arch_spin_lock(&dcscb_lock); |
| |
| dcscb_use_count[cpu][cluster]++; |
| if (dcscb_use_count[cpu][cluster] == 1) { |
| rst_hold = readl_relaxed(dcscb_base + RST_HOLD0 + cluster * 4); |
| if (rst_hold & (1 << 8)) { |
| /* remove cluster reset and add individual CPU's reset */ |
| rst_hold &= ~(1 << 8); |
| rst_hold |= all_mask; |
| } |
| rst_hold &= ~(cpumask | (cpumask << 4)); |
| writel_relaxed(rst_hold, dcscb_base + RST_HOLD0 + cluster * 4); |
| } else if (dcscb_use_count[cpu][cluster] != 2) { |
| /* |
| * The only possible values are: |
| * 0 = CPU down |
| * 1 = CPU (still) up |
| * 2 = CPU requested to be up before it had a chance |
| * to actually make itself down. |
| * Any other value is a bug. |
| */ |
| BUG(); |
| } |
| |
| arch_spin_unlock(&dcscb_lock); |
| local_irq_enable(); |
| |
| return 0; |
| } |
| |
| static void dcscb_power_down(void) |
| { |
| unsigned int mpidr, cpu, cluster, rst_hold, cpumask, all_mask; |
| bool last_man = false, skip_wfi = false; |
| |
| mpidr = read_cpuid_mpidr(); |
| cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0); |
| cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1); |
| cpumask = (1 << cpu); |
| |
| pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster); |
| BUG_ON(cpu >= 4 || cluster >= 2); |
| |
| all_mask = dcscb_allcpus_mask[cluster]; |
| |
| __mcpm_cpu_going_down(cpu, cluster); |
| |
| arch_spin_lock(&dcscb_lock); |
| BUG_ON(__mcpm_cluster_state(cluster) != CLUSTER_UP); |
| dcscb_use_count[cpu][cluster]--; |
| if (dcscb_use_count[cpu][cluster] == 0) { |
| rst_hold = readl_relaxed(dcscb_base + RST_HOLD0 + cluster * 4); |
| rst_hold |= cpumask; |
| if (((rst_hold | (rst_hold >> 4)) & all_mask) == all_mask) { |
| rst_hold |= (1 << 8); |
| last_man = true; |
| } |
| writel_relaxed(rst_hold, dcscb_base + RST_HOLD0 + cluster * 4); |
| } else if (dcscb_use_count[cpu][cluster] == 1) { |
| /* |
| * A power_up request went ahead of us. |
| * Even if we do not want to shut this CPU down, |
| * the caller expects a certain state as if the WFI |
| * was aborted. So let's continue with cache cleaning. |
| */ |
| skip_wfi = true; |
| } else |
| BUG(); |
| |
| if (last_man && __mcpm_outbound_enter_critical(cpu, cluster)) { |
| arch_spin_unlock(&dcscb_lock); |
| |
| /* Flush all cache levels for this cluster. */ |
| v7_exit_coherency_flush(all); |
| |
| /* |
| * A full outer cache flush could be needed at this point |
| * on platforms with such a cache, depending on where the |
| * outer cache sits. In some cases the notion of a "last |
| * cluster standing" would need to be implemented if the |
| * outer cache is shared across clusters. In any case, when |
| * the outer cache needs flushing, there is no concurrent |
| * access to the cache controller to worry about and no |
| * special locking besides what is already provided by the |
| * MCPM state machinery is needed. |
| */ |
| |
| /* |
| * Disable cluster-level coherency by masking |
| * incoming snoops and DVM messages: |
| */ |
| cci_disable_port_by_cpu(mpidr); |
| |
| __mcpm_outbound_leave_critical(cluster, CLUSTER_DOWN); |
| } else { |
| arch_spin_unlock(&dcscb_lock); |
| |
| /* Disable and flush the local CPU cache. */ |
| v7_exit_coherency_flush(louis); |
| } |
| |
| __mcpm_cpu_down(cpu, cluster); |
| |
| /* Now we are prepared for power-down, do it: */ |
| dsb(); |
| if (!skip_wfi) |
| wfi(); |
| |
| /* Not dead at this point? Let our caller cope. */ |
| } |
| |
| static const struct mcpm_platform_ops dcscb_power_ops = { |
| .power_up = dcscb_power_up, |
| .power_down = dcscb_power_down, |
| }; |
| |
| static void __init dcscb_usage_count_init(void) |
| { |
| unsigned int mpidr, cpu, cluster; |
| |
| mpidr = read_cpuid_mpidr(); |
| cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0); |
| cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1); |
| |
| pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster); |
| BUG_ON(cpu >= 4 || cluster >= 2); |
| dcscb_use_count[cpu][cluster] = 1; |
| } |
| |
| extern void dcscb_power_up_setup(unsigned int affinity_level); |
| |
| static int __init dcscb_init(void) |
| { |
| struct device_node *node; |
| unsigned int cfg; |
| int ret; |
| |
| if (!cci_probed()) |
| return -ENODEV; |
| |
| node = of_find_compatible_node(NULL, NULL, "arm,rtsm,dcscb"); |
| if (!node) |
| return -ENODEV; |
| dcscb_base = of_iomap(node, 0); |
| if (!dcscb_base) |
| return -EADDRNOTAVAIL; |
| cfg = readl_relaxed(dcscb_base + DCS_CFG_R); |
| dcscb_allcpus_mask[0] = (1 << (((cfg >> 16) >> (0 << 2)) & 0xf)) - 1; |
| dcscb_allcpus_mask[1] = (1 << (((cfg >> 16) >> (1 << 2)) & 0xf)) - 1; |
| dcscb_usage_count_init(); |
| |
| ret = mcpm_platform_register(&dcscb_power_ops); |
| if (!ret) |
| ret = mcpm_sync_init(dcscb_power_up_setup); |
| if (ret) { |
| iounmap(dcscb_base); |
| return ret; |
| } |
| |
| pr_info("VExpress DCSCB support installed\n"); |
| |
| /* |
| * Future entries into the kernel can now go |
| * through the cluster entry vectors. |
| */ |
| vexpress_flags_set(virt_to_phys(mcpm_entry_point)); |
| |
| return 0; |
| } |
| |
| early_initcall(dcscb_init); |