blob: 7ddbc849b58001fe8ed40ff0cd23d2a20c8664fe [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2012-2015 - ARM Ltd
* Author: Marc Zyngier <marc.zyngier@arm.com>
*/
#include <linux/compiler.h>
#include <linux/kvm_host.h>
#include <asm/kprobes.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_hyp.h>
/*
* Non-VHE: Both host and guest must save everything.
*
* VHE: Host and guest must save mdscr_el1 and sp_el0 (and the PC and pstate,
* which are handled as part of the el2 return state) on every switch.
* tpidr_el0 and tpidrro_el0 only need to be switched when going
* to host userspace or a different VCPU. EL1 registers only need to be
* switched when potentially going to run a different VCPU. The latter two
* classes are handled as part of kvm_arch_vcpu_load and kvm_arch_vcpu_put.
*/
static void __hyp_text __sysreg_save_common_state(struct kvm_cpu_context *ctxt)
{
ctxt->sys_regs[MDSCR_EL1] = read_sysreg(mdscr_el1);
/*
* The host arm64 Linux uses sp_el0 to point to 'current' and it must
* therefore be saved/restored on every entry/exit to/from the guest.
*/
ctxt->gp_regs.regs.sp = read_sysreg(sp_el0);
}
static void __hyp_text __sysreg_save_user_state(struct kvm_cpu_context *ctxt)
{
ctxt->sys_regs[TPIDR_EL0] = read_sysreg(tpidr_el0);
ctxt->sys_regs[TPIDRRO_EL0] = read_sysreg(tpidrro_el0);
}
static void __hyp_text __sysreg_save_el1_state(struct kvm_cpu_context *ctxt)
{
ctxt->sys_regs[CSSELR_EL1] = read_sysreg(csselr_el1);
ctxt->sys_regs[SCTLR_EL1] = read_sysreg_el1(SYS_SCTLR);
ctxt->sys_regs[ACTLR_EL1] = read_sysreg(actlr_el1);
ctxt->sys_regs[CPACR_EL1] = read_sysreg_el1(SYS_CPACR);
ctxt->sys_regs[TTBR0_EL1] = read_sysreg_el1(SYS_TTBR0);
ctxt->sys_regs[TTBR1_EL1] = read_sysreg_el1(SYS_TTBR1);
ctxt->sys_regs[TCR_EL1] = read_sysreg_el1(SYS_TCR);
ctxt->sys_regs[ESR_EL1] = read_sysreg_el1(SYS_ESR);
ctxt->sys_regs[AFSR0_EL1] = read_sysreg_el1(SYS_AFSR0);
ctxt->sys_regs[AFSR1_EL1] = read_sysreg_el1(SYS_AFSR1);
ctxt->sys_regs[FAR_EL1] = read_sysreg_el1(SYS_FAR);
ctxt->sys_regs[MAIR_EL1] = read_sysreg_el1(SYS_MAIR);
ctxt->sys_regs[VBAR_EL1] = read_sysreg_el1(SYS_VBAR);
ctxt->sys_regs[CONTEXTIDR_EL1] = read_sysreg_el1(SYS_CONTEXTIDR);
ctxt->sys_regs[AMAIR_EL1] = read_sysreg_el1(SYS_AMAIR);
ctxt->sys_regs[CNTKCTL_EL1] = read_sysreg_el1(SYS_CNTKCTL);
ctxt->sys_regs[PAR_EL1] = read_sysreg(par_el1);
ctxt->sys_regs[TPIDR_EL1] = read_sysreg(tpidr_el1);
ctxt->gp_regs.sp_el1 = read_sysreg(sp_el1);
ctxt->gp_regs.elr_el1 = read_sysreg_el1(SYS_ELR);
ctxt->gp_regs.spsr[KVM_SPSR_EL1]= read_sysreg_el1(SYS_SPSR);
}
static void __hyp_text __sysreg_save_el2_return_state(struct kvm_cpu_context *ctxt)
{
ctxt->gp_regs.regs.pc = read_sysreg_el2(SYS_ELR);
ctxt->gp_regs.regs.pstate = read_sysreg_el2(SYS_SPSR);
if (cpus_have_const_cap(ARM64_HAS_RAS_EXTN))
ctxt->sys_regs[DISR_EL1] = read_sysreg_s(SYS_VDISR_EL2);
}
void __hyp_text __sysreg_save_state_nvhe(struct kvm_cpu_context *ctxt)
{
__sysreg_save_el1_state(ctxt);
__sysreg_save_common_state(ctxt);
__sysreg_save_user_state(ctxt);
__sysreg_save_el2_return_state(ctxt);
}
void sysreg_save_host_state_vhe(struct kvm_cpu_context *ctxt)
{
__sysreg_save_common_state(ctxt);
}
NOKPROBE_SYMBOL(sysreg_save_host_state_vhe);
void sysreg_save_guest_state_vhe(struct kvm_cpu_context *ctxt)
{
__sysreg_save_common_state(ctxt);
__sysreg_save_el2_return_state(ctxt);
}
NOKPROBE_SYMBOL(sysreg_save_guest_state_vhe);
static void __hyp_text __sysreg_restore_common_state(struct kvm_cpu_context *ctxt)
{
write_sysreg(ctxt->sys_regs[MDSCR_EL1], mdscr_el1);
/*
* The host arm64 Linux uses sp_el0 to point to 'current' and it must
* therefore be saved/restored on every entry/exit to/from the guest.
*/
write_sysreg(ctxt->gp_regs.regs.sp, sp_el0);
}
static void __hyp_text __sysreg_restore_user_state(struct kvm_cpu_context *ctxt)
{
write_sysreg(ctxt->sys_regs[TPIDR_EL0], tpidr_el0);
write_sysreg(ctxt->sys_regs[TPIDRRO_EL0], tpidrro_el0);
}
static void __hyp_text __sysreg_restore_el1_state(struct kvm_cpu_context *ctxt)
{
write_sysreg(ctxt->sys_regs[MPIDR_EL1], vmpidr_el2);
write_sysreg(ctxt->sys_regs[CSSELR_EL1], csselr_el1);
write_sysreg_el1(ctxt->sys_regs[SCTLR_EL1], SYS_SCTLR);
write_sysreg(ctxt->sys_regs[ACTLR_EL1], actlr_el1);
write_sysreg_el1(ctxt->sys_regs[CPACR_EL1], SYS_CPACR);
write_sysreg_el1(ctxt->sys_regs[TTBR0_EL1], SYS_TTBR0);
write_sysreg_el1(ctxt->sys_regs[TTBR1_EL1], SYS_TTBR1);
write_sysreg_el1(ctxt->sys_regs[TCR_EL1], SYS_TCR);
write_sysreg_el1(ctxt->sys_regs[ESR_EL1], SYS_ESR);
write_sysreg_el1(ctxt->sys_regs[AFSR0_EL1], SYS_AFSR0);
write_sysreg_el1(ctxt->sys_regs[AFSR1_EL1], SYS_AFSR1);
write_sysreg_el1(ctxt->sys_regs[FAR_EL1], SYS_FAR);
write_sysreg_el1(ctxt->sys_regs[MAIR_EL1], SYS_MAIR);
write_sysreg_el1(ctxt->sys_regs[VBAR_EL1], SYS_VBAR);
write_sysreg_el1(ctxt->sys_regs[CONTEXTIDR_EL1],SYS_CONTEXTIDR);
write_sysreg_el1(ctxt->sys_regs[AMAIR_EL1], SYS_AMAIR);
write_sysreg_el1(ctxt->sys_regs[CNTKCTL_EL1], SYS_CNTKCTL);
write_sysreg(ctxt->sys_regs[PAR_EL1], par_el1);
write_sysreg(ctxt->sys_regs[TPIDR_EL1], tpidr_el1);
write_sysreg(ctxt->gp_regs.sp_el1, sp_el1);
write_sysreg_el1(ctxt->gp_regs.elr_el1, SYS_ELR);
write_sysreg_el1(ctxt->gp_regs.spsr[KVM_SPSR_EL1],SYS_SPSR);
}
static void __hyp_text
__sysreg_restore_el2_return_state(struct kvm_cpu_context *ctxt)
{
u64 pstate = ctxt->gp_regs.regs.pstate;
u64 mode = pstate & PSR_AA32_MODE_MASK;
/*
* Safety check to ensure we're setting the CPU up to enter the guest
* in a less privileged mode.
*
* If we are attempting a return to EL2 or higher in AArch64 state,
* program SPSR_EL2 with M=EL2h and the IL bit set which ensures that
* we'll take an illegal exception state exception immediately after
* the ERET to the guest. Attempts to return to AArch32 Hyp will
* result in an illegal exception return because EL2's execution state
* is determined by SCR_EL3.RW.
*/
if (!(mode & PSR_MODE32_BIT) && mode >= PSR_MODE_EL2t)
pstate = PSR_MODE_EL2h | PSR_IL_BIT;
write_sysreg_el2(ctxt->gp_regs.regs.pc, SYS_ELR);
write_sysreg_el2(pstate, SYS_SPSR);
if (cpus_have_const_cap(ARM64_HAS_RAS_EXTN))
write_sysreg_s(ctxt->sys_regs[DISR_EL1], SYS_VDISR_EL2);
}
void __hyp_text __sysreg_restore_state_nvhe(struct kvm_cpu_context *ctxt)
{
__sysreg_restore_el1_state(ctxt);
__sysreg_restore_common_state(ctxt);
__sysreg_restore_user_state(ctxt);
__sysreg_restore_el2_return_state(ctxt);
}
void sysreg_restore_host_state_vhe(struct kvm_cpu_context *ctxt)
{
__sysreg_restore_common_state(ctxt);
}
NOKPROBE_SYMBOL(sysreg_restore_host_state_vhe);
void sysreg_restore_guest_state_vhe(struct kvm_cpu_context *ctxt)
{
__sysreg_restore_common_state(ctxt);
__sysreg_restore_el2_return_state(ctxt);
}
NOKPROBE_SYMBOL(sysreg_restore_guest_state_vhe);
void __hyp_text __sysreg32_save_state(struct kvm_vcpu *vcpu)
{
u64 *spsr, *sysreg;
if (!vcpu_el1_is_32bit(vcpu))
return;
spsr = vcpu->arch.ctxt.gp_regs.spsr;
sysreg = vcpu->arch.ctxt.sys_regs;
spsr[KVM_SPSR_ABT] = read_sysreg(spsr_abt);
spsr[KVM_SPSR_UND] = read_sysreg(spsr_und);
spsr[KVM_SPSR_IRQ] = read_sysreg(spsr_irq);
spsr[KVM_SPSR_FIQ] = read_sysreg(spsr_fiq);
sysreg[DACR32_EL2] = read_sysreg(dacr32_el2);
sysreg[IFSR32_EL2] = read_sysreg(ifsr32_el2);
if (has_vhe() || vcpu->arch.flags & KVM_ARM64_DEBUG_DIRTY)
sysreg[DBGVCR32_EL2] = read_sysreg(dbgvcr32_el2);
}
void __hyp_text __sysreg32_restore_state(struct kvm_vcpu *vcpu)
{
u64 *spsr, *sysreg;
if (!vcpu_el1_is_32bit(vcpu))
return;
spsr = vcpu->arch.ctxt.gp_regs.spsr;
sysreg = vcpu->arch.ctxt.sys_regs;
write_sysreg(spsr[KVM_SPSR_ABT], spsr_abt);
write_sysreg(spsr[KVM_SPSR_UND], spsr_und);
write_sysreg(spsr[KVM_SPSR_IRQ], spsr_irq);
write_sysreg(spsr[KVM_SPSR_FIQ], spsr_fiq);
write_sysreg(sysreg[DACR32_EL2], dacr32_el2);
write_sysreg(sysreg[IFSR32_EL2], ifsr32_el2);
if (has_vhe() || vcpu->arch.flags & KVM_ARM64_DEBUG_DIRTY)
write_sysreg(sysreg[DBGVCR32_EL2], dbgvcr32_el2);
}
/**
* kvm_vcpu_load_sysregs - Load guest system registers to the physical CPU
*
* @vcpu: The VCPU pointer
*
* Load system registers that do not affect the host's execution, for
* example EL1 system registers on a VHE system where the host kernel
* runs at EL2. This function is called from KVM's vcpu_load() function
* and loading system register state early avoids having to load them on
* every entry to the VM.
*/
void kvm_vcpu_load_sysregs(struct kvm_vcpu *vcpu)
{
struct kvm_cpu_context *host_ctxt = vcpu->arch.host_cpu_context;
struct kvm_cpu_context *guest_ctxt = &vcpu->arch.ctxt;
if (!has_vhe())
return;
__sysreg_save_user_state(host_ctxt);
/*
* Load guest EL1 and user state
*
* We must restore the 32-bit state before the sysregs, thanks
* to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
*/
__sysreg32_restore_state(vcpu);
__sysreg_restore_user_state(guest_ctxt);
__sysreg_restore_el1_state(guest_ctxt);
vcpu->arch.sysregs_loaded_on_cpu = true;
activate_traps_vhe_load(vcpu);
}
/**
* kvm_vcpu_put_sysregs - Restore host system registers to the physical CPU
*
* @vcpu: The VCPU pointer
*
* Save guest system registers that do not affect the host's execution, for
* example EL1 system registers on a VHE system where the host kernel
* runs at EL2. This function is called from KVM's vcpu_put() function
* and deferring saving system register state until we're no longer running the
* VCPU avoids having to save them on every exit from the VM.
*/
void kvm_vcpu_put_sysregs(struct kvm_vcpu *vcpu)
{
struct kvm_cpu_context *host_ctxt = vcpu->arch.host_cpu_context;
struct kvm_cpu_context *guest_ctxt = &vcpu->arch.ctxt;
if (!has_vhe())
return;
deactivate_traps_vhe_put();
__sysreg_save_el1_state(guest_ctxt);
__sysreg_save_user_state(guest_ctxt);
__sysreg32_save_state(vcpu);
/* Restore host user state */
__sysreg_restore_user_state(host_ctxt);
vcpu->arch.sysregs_loaded_on_cpu = false;
}
void __hyp_text __kvm_enable_ssbs(void)
{
u64 tmp;
asm volatile(
"mrs %0, sctlr_el2\n"
"orr %0, %0, %1\n"
"msr sctlr_el2, %0"
: "=&r" (tmp) : "L" (SCTLR_ELx_DSSBS));
}