| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Linux performance counter support for MIPS. |
| * |
| * Copyright (C) 2010 MIPS Technologies, Inc. |
| * Copyright (C) 2011 Cavium Networks, Inc. |
| * Author: Deng-Cheng Zhu |
| * |
| * This code is based on the implementation for ARM, which is in turn |
| * based on the sparc64 perf event code and the x86 code. Performance |
| * counter access is based on the MIPS Oprofile code. And the callchain |
| * support references the code of MIPS stacktrace.c. |
| */ |
| |
| #include <linux/cpumask.h> |
| #include <linux/interrupt.h> |
| #include <linux/smp.h> |
| #include <linux/kernel.h> |
| #include <linux/perf_event.h> |
| #include <linux/uaccess.h> |
| |
| #include <asm/irq.h> |
| #include <asm/irq_regs.h> |
| #include <asm/stacktrace.h> |
| #include <asm/time.h> /* For perf_irq */ |
| |
| #define MIPS_MAX_HWEVENTS 4 |
| #define MIPS_TCS_PER_COUNTER 2 |
| #define MIPS_CPUID_TO_COUNTER_MASK (MIPS_TCS_PER_COUNTER - 1) |
| |
| struct cpu_hw_events { |
| /* Array of events on this cpu. */ |
| struct perf_event *events[MIPS_MAX_HWEVENTS]; |
| |
| /* |
| * Set the bit (indexed by the counter number) when the counter |
| * is used for an event. |
| */ |
| unsigned long used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)]; |
| |
| /* |
| * Software copy of the control register for each performance counter. |
| * MIPS CPUs vary in performance counters. They use this differently, |
| * and even may not use it. |
| */ |
| unsigned int saved_ctrl[MIPS_MAX_HWEVENTS]; |
| }; |
| DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { |
| .saved_ctrl = {0}, |
| }; |
| |
| /* The description of MIPS performance events. */ |
| struct mips_perf_event { |
| unsigned int event_id; |
| /* |
| * MIPS performance counters are indexed starting from 0. |
| * CNTR_EVEN indicates the indexes of the counters to be used are |
| * even numbers. |
| */ |
| unsigned int cntr_mask; |
| #define CNTR_EVEN 0x55555555 |
| #define CNTR_ODD 0xaaaaaaaa |
| #define CNTR_ALL 0xffffffff |
| enum { |
| T = 0, |
| V = 1, |
| P = 2, |
| } range; |
| }; |
| |
| static struct mips_perf_event raw_event; |
| static DEFINE_MUTEX(raw_event_mutex); |
| |
| #define C(x) PERF_COUNT_HW_CACHE_##x |
| |
| struct mips_pmu { |
| u64 max_period; |
| u64 valid_count; |
| u64 overflow; |
| const char *name; |
| int irq; |
| u64 (*read_counter)(unsigned int idx); |
| void (*write_counter)(unsigned int idx, u64 val); |
| const struct mips_perf_event *(*map_raw_event)(u64 config); |
| const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX]; |
| const struct mips_perf_event (*cache_event_map) |
| [PERF_COUNT_HW_CACHE_MAX] |
| [PERF_COUNT_HW_CACHE_OP_MAX] |
| [PERF_COUNT_HW_CACHE_RESULT_MAX]; |
| unsigned int num_counters; |
| }; |
| |
| static struct mips_pmu mipspmu; |
| |
| #define M_PERFCTL_EVENT(event) (((event) << MIPS_PERFCTRL_EVENT_S) & \ |
| MIPS_PERFCTRL_EVENT) |
| #define M_PERFCTL_VPEID(vpe) ((vpe) << MIPS_PERFCTRL_VPEID_S) |
| |
| #ifdef CONFIG_CPU_BMIPS5000 |
| #define M_PERFCTL_MT_EN(filter) 0 |
| #else /* !CONFIG_CPU_BMIPS5000 */ |
| #define M_PERFCTL_MT_EN(filter) (filter) |
| #endif /* CONFIG_CPU_BMIPS5000 */ |
| |
| #define M_TC_EN_ALL M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_ALL) |
| #define M_TC_EN_VPE M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_VPE) |
| #define M_TC_EN_TC M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_TC) |
| |
| #define M_PERFCTL_COUNT_EVENT_WHENEVER (MIPS_PERFCTRL_EXL | \ |
| MIPS_PERFCTRL_K | \ |
| MIPS_PERFCTRL_U | \ |
| MIPS_PERFCTRL_S | \ |
| MIPS_PERFCTRL_IE) |
| |
| #ifdef CONFIG_MIPS_MT_SMP |
| #define M_PERFCTL_CONFIG_MASK 0x3fff801f |
| #else |
| #define M_PERFCTL_CONFIG_MASK 0x1f |
| #endif |
| |
| |
| #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS |
| static DEFINE_RWLOCK(pmuint_rwlock); |
| |
| #if defined(CONFIG_CPU_BMIPS5000) |
| #define vpe_id() (cpu_has_mipsmt_pertccounters ? \ |
| 0 : (smp_processor_id() & MIPS_CPUID_TO_COUNTER_MASK)) |
| #else |
| #define vpe_id() (cpu_has_mipsmt_pertccounters ? \ |
| 0 : cpu_vpe_id(¤t_cpu_data)) |
| #endif |
| |
| /* Copied from op_model_mipsxx.c */ |
| static unsigned int vpe_shift(void) |
| { |
| if (num_possible_cpus() > 1) |
| return 1; |
| |
| return 0; |
| } |
| |
| static unsigned int counters_total_to_per_cpu(unsigned int counters) |
| { |
| return counters >> vpe_shift(); |
| } |
| |
| #else /* !CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */ |
| #define vpe_id() 0 |
| |
| #endif /* CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */ |
| |
| static void resume_local_counters(void); |
| static void pause_local_counters(void); |
| static irqreturn_t mipsxx_pmu_handle_irq(int, void *); |
| static int mipsxx_pmu_handle_shared_irq(void); |
| |
| static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx) |
| { |
| if (vpe_id() == 1) |
| idx = (idx + 2) & 3; |
| return idx; |
| } |
| |
| static u64 mipsxx_pmu_read_counter(unsigned int idx) |
| { |
| idx = mipsxx_pmu_swizzle_perf_idx(idx); |
| |
| switch (idx) { |
| case 0: |
| /* |
| * The counters are unsigned, we must cast to truncate |
| * off the high bits. |
| */ |
| return (u32)read_c0_perfcntr0(); |
| case 1: |
| return (u32)read_c0_perfcntr1(); |
| case 2: |
| return (u32)read_c0_perfcntr2(); |
| case 3: |
| return (u32)read_c0_perfcntr3(); |
| default: |
| WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx); |
| return 0; |
| } |
| } |
| |
| static u64 mipsxx_pmu_read_counter_64(unsigned int idx) |
| { |
| idx = mipsxx_pmu_swizzle_perf_idx(idx); |
| |
| switch (idx) { |
| case 0: |
| return read_c0_perfcntr0_64(); |
| case 1: |
| return read_c0_perfcntr1_64(); |
| case 2: |
| return read_c0_perfcntr2_64(); |
| case 3: |
| return read_c0_perfcntr3_64(); |
| default: |
| WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx); |
| return 0; |
| } |
| } |
| |
| static void mipsxx_pmu_write_counter(unsigned int idx, u64 val) |
| { |
| idx = mipsxx_pmu_swizzle_perf_idx(idx); |
| |
| switch (idx) { |
| case 0: |
| write_c0_perfcntr0(val); |
| return; |
| case 1: |
| write_c0_perfcntr1(val); |
| return; |
| case 2: |
| write_c0_perfcntr2(val); |
| return; |
| case 3: |
| write_c0_perfcntr3(val); |
| return; |
| } |
| } |
| |
| static void mipsxx_pmu_write_counter_64(unsigned int idx, u64 val) |
| { |
| idx = mipsxx_pmu_swizzle_perf_idx(idx); |
| |
| switch (idx) { |
| case 0: |
| write_c0_perfcntr0_64(val); |
| return; |
| case 1: |
| write_c0_perfcntr1_64(val); |
| return; |
| case 2: |
| write_c0_perfcntr2_64(val); |
| return; |
| case 3: |
| write_c0_perfcntr3_64(val); |
| return; |
| } |
| } |
| |
| static unsigned int mipsxx_pmu_read_control(unsigned int idx) |
| { |
| idx = mipsxx_pmu_swizzle_perf_idx(idx); |
| |
| switch (idx) { |
| case 0: |
| return read_c0_perfctrl0(); |
| case 1: |
| return read_c0_perfctrl1(); |
| case 2: |
| return read_c0_perfctrl2(); |
| case 3: |
| return read_c0_perfctrl3(); |
| default: |
| WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx); |
| return 0; |
| } |
| } |
| |
| static void mipsxx_pmu_write_control(unsigned int idx, unsigned int val) |
| { |
| idx = mipsxx_pmu_swizzle_perf_idx(idx); |
| |
| switch (idx) { |
| case 0: |
| write_c0_perfctrl0(val); |
| return; |
| case 1: |
| write_c0_perfctrl1(val); |
| return; |
| case 2: |
| write_c0_perfctrl2(val); |
| return; |
| case 3: |
| write_c0_perfctrl3(val); |
| return; |
| } |
| } |
| |
| static int mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc, |
| struct hw_perf_event *hwc) |
| { |
| int i; |
| |
| /* |
| * We only need to care the counter mask. The range has been |
| * checked definitely. |
| */ |
| unsigned long cntr_mask = (hwc->event_base >> 8) & 0xffff; |
| |
| for (i = mipspmu.num_counters - 1; i >= 0; i--) { |
| /* |
| * Note that some MIPS perf events can be counted by both |
| * even and odd counters, wheresas many other are only by |
| * even _or_ odd counters. This introduces an issue that |
| * when the former kind of event takes the counter the |
| * latter kind of event wants to use, then the "counter |
| * allocation" for the latter event will fail. In fact if |
| * they can be dynamically swapped, they both feel happy. |
| * But here we leave this issue alone for now. |
| */ |
| if (test_bit(i, &cntr_mask) && |
| !test_and_set_bit(i, cpuc->used_mask)) |
| return i; |
| } |
| |
| return -EAGAIN; |
| } |
| |
| static void mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx) |
| { |
| struct perf_event *event = container_of(evt, struct perf_event, hw); |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| unsigned int range = evt->event_base >> 24; |
| |
| WARN_ON(idx < 0 || idx >= mipspmu.num_counters); |
| |
| cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) | |
| (evt->config_base & M_PERFCTL_CONFIG_MASK) | |
| /* Make sure interrupt enabled. */ |
| MIPS_PERFCTRL_IE; |
| |
| if (IS_ENABLED(CONFIG_CPU_BMIPS5000)) { |
| /* enable the counter for the calling thread */ |
| cpuc->saved_ctrl[idx] |= |
| (1 << (12 + vpe_id())) | BRCM_PERFCTRL_TC; |
| } else if (IS_ENABLED(CONFIG_MIPS_MT_SMP) && range > V) { |
| /* The counter is processor wide. Set it up to count all TCs. */ |
| pr_debug("Enabling perf counter for all TCs\n"); |
| cpuc->saved_ctrl[idx] |= M_TC_EN_ALL; |
| } else { |
| unsigned int cpu, ctrl; |
| |
| /* |
| * Set up the counter for a particular CPU when event->cpu is |
| * a valid CPU number. Otherwise set up the counter for the CPU |
| * scheduling this thread. |
| */ |
| cpu = (event->cpu >= 0) ? event->cpu : smp_processor_id(); |
| |
| ctrl = M_PERFCTL_VPEID(cpu_vpe_id(&cpu_data[cpu])); |
| ctrl |= M_TC_EN_VPE; |
| cpuc->saved_ctrl[idx] |= ctrl; |
| pr_debug("Enabling perf counter for CPU%d\n", cpu); |
| } |
| /* |
| * We do not actually let the counter run. Leave it until start(). |
| */ |
| } |
| |
| static void mipsxx_pmu_disable_event(int idx) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| unsigned long flags; |
| |
| WARN_ON(idx < 0 || idx >= mipspmu.num_counters); |
| |
| local_irq_save(flags); |
| cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) & |
| ~M_PERFCTL_COUNT_EVENT_WHENEVER; |
| mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]); |
| local_irq_restore(flags); |
| } |
| |
| static int mipspmu_event_set_period(struct perf_event *event, |
| struct hw_perf_event *hwc, |
| int idx) |
| { |
| u64 left = local64_read(&hwc->period_left); |
| u64 period = hwc->sample_period; |
| int ret = 0; |
| |
| if (unlikely((left + period) & (1ULL << 63))) { |
| /* left underflowed by more than period. */ |
| left = period; |
| local64_set(&hwc->period_left, left); |
| hwc->last_period = period; |
| ret = 1; |
| } else if (unlikely((left + period) <= period)) { |
| /* left underflowed by less than period. */ |
| left += period; |
| local64_set(&hwc->period_left, left); |
| hwc->last_period = period; |
| ret = 1; |
| } |
| |
| if (left > mipspmu.max_period) { |
| left = mipspmu.max_period; |
| local64_set(&hwc->period_left, left); |
| } |
| |
| local64_set(&hwc->prev_count, mipspmu.overflow - left); |
| |
| mipspmu.write_counter(idx, mipspmu.overflow - left); |
| |
| perf_event_update_userpage(event); |
| |
| return ret; |
| } |
| |
| static void mipspmu_event_update(struct perf_event *event, |
| struct hw_perf_event *hwc, |
| int idx) |
| { |
| u64 prev_raw_count, new_raw_count; |
| u64 delta; |
| |
| again: |
| prev_raw_count = local64_read(&hwc->prev_count); |
| new_raw_count = mipspmu.read_counter(idx); |
| |
| if (local64_cmpxchg(&hwc->prev_count, prev_raw_count, |
| new_raw_count) != prev_raw_count) |
| goto again; |
| |
| delta = new_raw_count - prev_raw_count; |
| |
| local64_add(delta, &event->count); |
| local64_sub(delta, &hwc->period_left); |
| } |
| |
| static void mipspmu_start(struct perf_event *event, int flags) |
| { |
| struct hw_perf_event *hwc = &event->hw; |
| |
| if (flags & PERF_EF_RELOAD) |
| WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE)); |
| |
| hwc->state = 0; |
| |
| /* Set the period for the event. */ |
| mipspmu_event_set_period(event, hwc, hwc->idx); |
| |
| /* Enable the event. */ |
| mipsxx_pmu_enable_event(hwc, hwc->idx); |
| } |
| |
| static void mipspmu_stop(struct perf_event *event, int flags) |
| { |
| struct hw_perf_event *hwc = &event->hw; |
| |
| if (!(hwc->state & PERF_HES_STOPPED)) { |
| /* We are working on a local event. */ |
| mipsxx_pmu_disable_event(hwc->idx); |
| barrier(); |
| mipspmu_event_update(event, hwc, hwc->idx); |
| hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; |
| } |
| } |
| |
| static int mipspmu_add(struct perf_event *event, int flags) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| struct hw_perf_event *hwc = &event->hw; |
| int idx; |
| int err = 0; |
| |
| perf_pmu_disable(event->pmu); |
| |
| /* To look for a free counter for this event. */ |
| idx = mipsxx_pmu_alloc_counter(cpuc, hwc); |
| if (idx < 0) { |
| err = idx; |
| goto out; |
| } |
| |
| /* |
| * If there is an event in the counter we are going to use then |
| * make sure it is disabled. |
| */ |
| event->hw.idx = idx; |
| mipsxx_pmu_disable_event(idx); |
| cpuc->events[idx] = event; |
| |
| hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE; |
| if (flags & PERF_EF_START) |
| mipspmu_start(event, PERF_EF_RELOAD); |
| |
| /* Propagate our changes to the userspace mapping. */ |
| perf_event_update_userpage(event); |
| |
| out: |
| perf_pmu_enable(event->pmu); |
| return err; |
| } |
| |
| static void mipspmu_del(struct perf_event *event, int flags) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| struct hw_perf_event *hwc = &event->hw; |
| int idx = hwc->idx; |
| |
| WARN_ON(idx < 0 || idx >= mipspmu.num_counters); |
| |
| mipspmu_stop(event, PERF_EF_UPDATE); |
| cpuc->events[idx] = NULL; |
| clear_bit(idx, cpuc->used_mask); |
| |
| perf_event_update_userpage(event); |
| } |
| |
| static void mipspmu_read(struct perf_event *event) |
| { |
| struct hw_perf_event *hwc = &event->hw; |
| |
| /* Don't read disabled counters! */ |
| if (hwc->idx < 0) |
| return; |
| |
| mipspmu_event_update(event, hwc, hwc->idx); |
| } |
| |
| static void mipspmu_enable(struct pmu *pmu) |
| { |
| #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS |
| write_unlock(&pmuint_rwlock); |
| #endif |
| resume_local_counters(); |
| } |
| |
| /* |
| * MIPS performance counters can be per-TC. The control registers can |
| * not be directly accessed across CPUs. Hence if we want to do global |
| * control, we need cross CPU calls. on_each_cpu() can help us, but we |
| * can not make sure this function is called with interrupts enabled. So |
| * here we pause local counters and then grab a rwlock and leave the |
| * counters on other CPUs alone. If any counter interrupt raises while |
| * we own the write lock, simply pause local counters on that CPU and |
| * spin in the handler. Also we know we won't be switched to another |
| * CPU after pausing local counters and before grabbing the lock. |
| */ |
| static void mipspmu_disable(struct pmu *pmu) |
| { |
| pause_local_counters(); |
| #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS |
| write_lock(&pmuint_rwlock); |
| #endif |
| } |
| |
| static atomic_t active_events = ATOMIC_INIT(0); |
| static DEFINE_MUTEX(pmu_reserve_mutex); |
| static int (*save_perf_irq)(void); |
| |
| static int mipspmu_get_irq(void) |
| { |
| int err; |
| |
| if (mipspmu.irq >= 0) { |
| /* Request my own irq handler. */ |
| err = request_irq(mipspmu.irq, mipsxx_pmu_handle_irq, |
| IRQF_PERCPU | IRQF_NOBALANCING | |
| IRQF_NO_THREAD | IRQF_NO_SUSPEND | |
| IRQF_SHARED, |
| "mips_perf_pmu", &mipspmu); |
| if (err) { |
| pr_warn("Unable to request IRQ%d for MIPS performance counters!\n", |
| mipspmu.irq); |
| } |
| } else if (cp0_perfcount_irq < 0) { |
| /* |
| * We are sharing the irq number with the timer interrupt. |
| */ |
| save_perf_irq = perf_irq; |
| perf_irq = mipsxx_pmu_handle_shared_irq; |
| err = 0; |
| } else { |
| pr_warn("The platform hasn't properly defined its interrupt controller\n"); |
| err = -ENOENT; |
| } |
| |
| return err; |
| } |
| |
| static void mipspmu_free_irq(void) |
| { |
| if (mipspmu.irq >= 0) |
| free_irq(mipspmu.irq, &mipspmu); |
| else if (cp0_perfcount_irq < 0) |
| perf_irq = save_perf_irq; |
| } |
| |
| /* |
| * mipsxx/rm9000/loongson2 have different performance counters, they have |
| * specific low-level init routines. |
| */ |
| static void reset_counters(void *arg); |
| static int __hw_perf_event_init(struct perf_event *event); |
| |
| static void hw_perf_event_destroy(struct perf_event *event) |
| { |
| if (atomic_dec_and_mutex_lock(&active_events, |
| &pmu_reserve_mutex)) { |
| /* |
| * We must not call the destroy function with interrupts |
| * disabled. |
| */ |
| on_each_cpu(reset_counters, |
| (void *)(long)mipspmu.num_counters, 1); |
| mipspmu_free_irq(); |
| mutex_unlock(&pmu_reserve_mutex); |
| } |
| } |
| |
| static int mipspmu_event_init(struct perf_event *event) |
| { |
| int err = 0; |
| |
| /* does not support taken branch sampling */ |
| if (has_branch_stack(event)) |
| return -EOPNOTSUPP; |
| |
| switch (event->attr.type) { |
| case PERF_TYPE_RAW: |
| case PERF_TYPE_HARDWARE: |
| case PERF_TYPE_HW_CACHE: |
| break; |
| |
| default: |
| return -ENOENT; |
| } |
| |
| if (event->cpu >= 0 && !cpu_online(event->cpu)) |
| return -ENODEV; |
| |
| if (!atomic_inc_not_zero(&active_events)) { |
| mutex_lock(&pmu_reserve_mutex); |
| if (atomic_read(&active_events) == 0) |
| err = mipspmu_get_irq(); |
| |
| if (!err) |
| atomic_inc(&active_events); |
| mutex_unlock(&pmu_reserve_mutex); |
| } |
| |
| if (err) |
| return err; |
| |
| return __hw_perf_event_init(event); |
| } |
| |
| static struct pmu pmu = { |
| .pmu_enable = mipspmu_enable, |
| .pmu_disable = mipspmu_disable, |
| .event_init = mipspmu_event_init, |
| .add = mipspmu_add, |
| .del = mipspmu_del, |
| .start = mipspmu_start, |
| .stop = mipspmu_stop, |
| .read = mipspmu_read, |
| }; |
| |
| static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event *pev) |
| { |
| /* |
| * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for |
| * event_id. |
| */ |
| #ifdef CONFIG_MIPS_MT_SMP |
| if (num_possible_cpus() > 1) |
| return ((unsigned int)pev->range << 24) | |
| (pev->cntr_mask & 0xffff00) | |
| (pev->event_id & 0xff); |
| else |
| #endif /* CONFIG_MIPS_MT_SMP */ |
| return ((pev->cntr_mask & 0xffff00) | |
| (pev->event_id & 0xff)); |
| } |
| |
| static const struct mips_perf_event *mipspmu_map_general_event(int idx) |
| { |
| |
| if ((*mipspmu.general_event_map)[idx].cntr_mask == 0) |
| return ERR_PTR(-EOPNOTSUPP); |
| return &(*mipspmu.general_event_map)[idx]; |
| } |
| |
| static const struct mips_perf_event *mipspmu_map_cache_event(u64 config) |
| { |
| unsigned int cache_type, cache_op, cache_result; |
| const struct mips_perf_event *pev; |
| |
| cache_type = (config >> 0) & 0xff; |
| if (cache_type >= PERF_COUNT_HW_CACHE_MAX) |
| return ERR_PTR(-EINVAL); |
| |
| cache_op = (config >> 8) & 0xff; |
| if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) |
| return ERR_PTR(-EINVAL); |
| |
| cache_result = (config >> 16) & 0xff; |
| if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) |
| return ERR_PTR(-EINVAL); |
| |
| pev = &((*mipspmu.cache_event_map) |
| [cache_type] |
| [cache_op] |
| [cache_result]); |
| |
| if (pev->cntr_mask == 0) |
| return ERR_PTR(-EOPNOTSUPP); |
| |
| return pev; |
| |
| } |
| |
| static int validate_group(struct perf_event *event) |
| { |
| struct perf_event *sibling, *leader = event->group_leader; |
| struct cpu_hw_events fake_cpuc; |
| |
| memset(&fake_cpuc, 0, sizeof(fake_cpuc)); |
| |
| if (mipsxx_pmu_alloc_counter(&fake_cpuc, &leader->hw) < 0) |
| return -EINVAL; |
| |
| for_each_sibling_event(sibling, leader) { |
| if (mipsxx_pmu_alloc_counter(&fake_cpuc, &sibling->hw) < 0) |
| return -EINVAL; |
| } |
| |
| if (mipsxx_pmu_alloc_counter(&fake_cpuc, &event->hw) < 0) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| /* This is needed by specific irq handlers in perf_event_*.c */ |
| static void handle_associated_event(struct cpu_hw_events *cpuc, |
| int idx, struct perf_sample_data *data, |
| struct pt_regs *regs) |
| { |
| struct perf_event *event = cpuc->events[idx]; |
| struct hw_perf_event *hwc = &event->hw; |
| |
| mipspmu_event_update(event, hwc, idx); |
| data->period = event->hw.last_period; |
| if (!mipspmu_event_set_period(event, hwc, idx)) |
| return; |
| |
| if (perf_event_overflow(event, data, regs)) |
| mipsxx_pmu_disable_event(idx); |
| } |
| |
| |
| static int __n_counters(void) |
| { |
| if (!cpu_has_perf) |
| return 0; |
| if (!(read_c0_perfctrl0() & MIPS_PERFCTRL_M)) |
| return 1; |
| if (!(read_c0_perfctrl1() & MIPS_PERFCTRL_M)) |
| return 2; |
| if (!(read_c0_perfctrl2() & MIPS_PERFCTRL_M)) |
| return 3; |
| |
| return 4; |
| } |
| |
| static int n_counters(void) |
| { |
| int counters; |
| |
| switch (current_cpu_type()) { |
| case CPU_R10000: |
| counters = 2; |
| break; |
| |
| case CPU_R12000: |
| case CPU_R14000: |
| case CPU_R16000: |
| counters = 4; |
| break; |
| |
| default: |
| counters = __n_counters(); |
| } |
| |
| return counters; |
| } |
| |
| static void reset_counters(void *arg) |
| { |
| int counters = (int)(long)arg; |
| switch (counters) { |
| case 4: |
| mipsxx_pmu_write_control(3, 0); |
| mipspmu.write_counter(3, 0); |
| /* fall through */ |
| case 3: |
| mipsxx_pmu_write_control(2, 0); |
| mipspmu.write_counter(2, 0); |
| /* fall through */ |
| case 2: |
| mipsxx_pmu_write_control(1, 0); |
| mipspmu.write_counter(1, 0); |
| /* fall through */ |
| case 1: |
| mipsxx_pmu_write_control(0, 0); |
| mipspmu.write_counter(0, 0); |
| /* fall through */ |
| } |
| } |
| |
| /* 24K/34K/1004K/interAptiv/loongson1 cores share the same event map. */ |
| static const struct mips_perf_event mipsxxcore_event_map |
| [PERF_COUNT_HW_MAX] = { |
| [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P }, |
| [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T }, |
| [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T }, |
| [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T }, |
| }; |
| |
| /* 74K/proAptiv core has different branch event code. */ |
| static const struct mips_perf_event mipsxxcore_event_map2 |
| [PERF_COUNT_HW_MAX] = { |
| [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P }, |
| [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T }, |
| [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T }, |
| [PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T }, |
| }; |
| |
| static const struct mips_perf_event i6x00_event_map[PERF_COUNT_HW_MAX] = { |
| [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD }, |
| [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD }, |
| /* These only count dcache, not icache */ |
| [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x45, CNTR_EVEN | CNTR_ODD }, |
| [PERF_COUNT_HW_CACHE_MISSES] = { 0x48, CNTR_EVEN | CNTR_ODD }, |
| [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x15, CNTR_EVEN | CNTR_ODD }, |
| [PERF_COUNT_HW_BRANCH_MISSES] = { 0x16, CNTR_EVEN | CNTR_ODD }, |
| }; |
| |
| static const struct mips_perf_event loongson3_event_map[PERF_COUNT_HW_MAX] = { |
| [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN }, |
| [PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, CNTR_ODD }, |
| [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x01, CNTR_EVEN }, |
| [PERF_COUNT_HW_BRANCH_MISSES] = { 0x01, CNTR_ODD }, |
| }; |
| |
| static const struct mips_perf_event octeon_event_map[PERF_COUNT_HW_MAX] = { |
| [PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL }, |
| [PERF_COUNT_HW_INSTRUCTIONS] = { 0x03, CNTR_ALL }, |
| [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x2b, CNTR_ALL }, |
| [PERF_COUNT_HW_CACHE_MISSES] = { 0x2e, CNTR_ALL }, |
| [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x08, CNTR_ALL }, |
| [PERF_COUNT_HW_BRANCH_MISSES] = { 0x09, CNTR_ALL }, |
| [PERF_COUNT_HW_BUS_CYCLES] = { 0x25, CNTR_ALL }, |
| }; |
| |
| static const struct mips_perf_event bmips5000_event_map |
| [PERF_COUNT_HW_MAX] = { |
| [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, T }, |
| [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T }, |
| [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T }, |
| }; |
| |
| static const struct mips_perf_event xlp_event_map[PERF_COUNT_HW_MAX] = { |
| [PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL }, |
| [PERF_COUNT_HW_INSTRUCTIONS] = { 0x18, CNTR_ALL }, /* PAPI_TOT_INS */ |
| [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */ |
| [PERF_COUNT_HW_CACHE_MISSES] = { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */ |
| [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x1b, CNTR_ALL }, /* PAPI_BR_CN */ |
| [PERF_COUNT_HW_BRANCH_MISSES] = { 0x1c, CNTR_ALL }, /* PAPI_BR_MSP */ |
| }; |
| |
| /* 24K/34K/1004K/interAptiv/loongson1 cores share the same cache event map. */ |
| static const struct mips_perf_event mipsxxcore_cache_map |
| [PERF_COUNT_HW_CACHE_MAX] |
| [PERF_COUNT_HW_CACHE_OP_MAX] |
| [PERF_COUNT_HW_CACHE_RESULT_MAX] = { |
| [C(L1D)] = { |
| /* |
| * Like some other architectures (e.g. ARM), the performance |
| * counters don't differentiate between read and write |
| * accesses/misses, so this isn't strictly correct, but it's the |
| * best we can do. Writes and reads get combined. |
| */ |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = { 0x0a, CNTR_EVEN, T }, |
| [C(RESULT_MISS)] = { 0x0b, CNTR_EVEN | CNTR_ODD, T }, |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_ACCESS)] = { 0x0a, CNTR_EVEN, T }, |
| [C(RESULT_MISS)] = { 0x0b, CNTR_EVEN | CNTR_ODD, T }, |
| }, |
| }, |
| [C(L1I)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = { 0x09, CNTR_EVEN, T }, |
| [C(RESULT_MISS)] = { 0x09, CNTR_ODD, T }, |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_ACCESS)] = { 0x09, CNTR_EVEN, T }, |
| [C(RESULT_MISS)] = { 0x09, CNTR_ODD, T }, |
| }, |
| [C(OP_PREFETCH)] = { |
| [C(RESULT_ACCESS)] = { 0x14, CNTR_EVEN, T }, |
| /* |
| * Note that MIPS has only "hit" events countable for |
| * the prefetch operation. |
| */ |
| }, |
| }, |
| [C(LL)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = { 0x15, CNTR_ODD, P }, |
| [C(RESULT_MISS)] = { 0x16, CNTR_EVEN, P }, |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_ACCESS)] = { 0x15, CNTR_ODD, P }, |
| [C(RESULT_MISS)] = { 0x16, CNTR_EVEN, P }, |
| }, |
| }, |
| [C(DTLB)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T }, |
| [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T }, |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T }, |
| [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T }, |
| }, |
| }, |
| [C(ITLB)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = { 0x05, CNTR_EVEN, T }, |
| [C(RESULT_MISS)] = { 0x05, CNTR_ODD, T }, |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_ACCESS)] = { 0x05, CNTR_EVEN, T }, |
| [C(RESULT_MISS)] = { 0x05, CNTR_ODD, T }, |
| }, |
| }, |
| [C(BPU)] = { |
| /* Using the same code for *HW_BRANCH* */ |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN, T }, |
| [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T }, |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN, T }, |
| [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T }, |
| }, |
| }, |
| }; |
| |
| /* 74K/proAptiv core has completely different cache event map. */ |
| static const struct mips_perf_event mipsxxcore_cache_map2 |
| [PERF_COUNT_HW_CACHE_MAX] |
| [PERF_COUNT_HW_CACHE_OP_MAX] |
| [PERF_COUNT_HW_CACHE_RESULT_MAX] = { |
| [C(L1D)] = { |
| /* |
| * Like some other architectures (e.g. ARM), the performance |
| * counters don't differentiate between read and write |
| * accesses/misses, so this isn't strictly correct, but it's the |
| * best we can do. Writes and reads get combined. |
| */ |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = { 0x17, CNTR_ODD, T }, |
| [C(RESULT_MISS)] = { 0x18, CNTR_ODD, T }, |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_ACCESS)] = { 0x17, CNTR_ODD, T }, |
| [C(RESULT_MISS)] = { 0x18, CNTR_ODD, T }, |
| }, |
| }, |
| [C(L1I)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T }, |
| [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T }, |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T }, |
| [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T }, |
| }, |
| [C(OP_PREFETCH)] = { |
| [C(RESULT_ACCESS)] = { 0x34, CNTR_EVEN, T }, |
| /* |
| * Note that MIPS has only "hit" events countable for |
| * the prefetch operation. |
| */ |
| }, |
| }, |
| [C(LL)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = { 0x1c, CNTR_ODD, P }, |
| [C(RESULT_MISS)] = { 0x1d, CNTR_EVEN, P }, |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_ACCESS)] = { 0x1c, CNTR_ODD, P }, |
| [C(RESULT_MISS)] = { 0x1d, CNTR_EVEN, P }, |
| }, |
| }, |
| /* |
| * 74K core does not have specific DTLB events. proAptiv core has |
| * "speculative" DTLB events which are numbered 0x63 (even/odd) and |
| * not included here. One can use raw events if really needed. |
| */ |
| [C(ITLB)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = { 0x04, CNTR_EVEN, T }, |
| [C(RESULT_MISS)] = { 0x04, CNTR_ODD, T }, |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_ACCESS)] = { 0x04, CNTR_EVEN, T }, |
| [C(RESULT_MISS)] = { 0x04, CNTR_ODD, T }, |
| }, |
| }, |
| [C(BPU)] = { |
| /* Using the same code for *HW_BRANCH* */ |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = { 0x27, CNTR_EVEN, T }, |
| [C(RESULT_MISS)] = { 0x27, CNTR_ODD, T }, |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_ACCESS)] = { 0x27, CNTR_EVEN, T }, |
| [C(RESULT_MISS)] = { 0x27, CNTR_ODD, T }, |
| }, |
| }, |
| }; |
| |
| static const struct mips_perf_event i6x00_cache_map |
| [PERF_COUNT_HW_CACHE_MAX] |
| [PERF_COUNT_HW_CACHE_OP_MAX] |
| [PERF_COUNT_HW_CACHE_RESULT_MAX] = { |
| [C(L1D)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = { 0x46, CNTR_EVEN | CNTR_ODD }, |
| [C(RESULT_MISS)] = { 0x49, CNTR_EVEN | CNTR_ODD }, |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_ACCESS)] = { 0x47, CNTR_EVEN | CNTR_ODD }, |
| [C(RESULT_MISS)] = { 0x4a, CNTR_EVEN | CNTR_ODD }, |
| }, |
| }, |
| [C(L1I)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = { 0x84, CNTR_EVEN | CNTR_ODD }, |
| [C(RESULT_MISS)] = { 0x85, CNTR_EVEN | CNTR_ODD }, |
| }, |
| }, |
| [C(DTLB)] = { |
| /* Can't distinguish read & write */ |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = { 0x40, CNTR_EVEN | CNTR_ODD }, |
| [C(RESULT_MISS)] = { 0x41, CNTR_EVEN | CNTR_ODD }, |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_ACCESS)] = { 0x40, CNTR_EVEN | CNTR_ODD }, |
| [C(RESULT_MISS)] = { 0x41, CNTR_EVEN | CNTR_ODD }, |
| }, |
| }, |
| [C(BPU)] = { |
| /* Conditional branches / mispredicted */ |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = { 0x15, CNTR_EVEN | CNTR_ODD }, |
| [C(RESULT_MISS)] = { 0x16, CNTR_EVEN | CNTR_ODD }, |
| }, |
| }, |
| }; |
| |
| static const struct mips_perf_event loongson3_cache_map |
| [PERF_COUNT_HW_CACHE_MAX] |
| [PERF_COUNT_HW_CACHE_OP_MAX] |
| [PERF_COUNT_HW_CACHE_RESULT_MAX] = { |
| [C(L1D)] = { |
| /* |
| * Like some other architectures (e.g. ARM), the performance |
| * counters don't differentiate between read and write |
| * accesses/misses, so this isn't strictly correct, but it's the |
| * best we can do. Writes and reads get combined. |
| */ |
| [C(OP_READ)] = { |
| [C(RESULT_MISS)] = { 0x04, CNTR_ODD }, |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_MISS)] = { 0x04, CNTR_ODD }, |
| }, |
| }, |
| [C(L1I)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_MISS)] = { 0x04, CNTR_EVEN }, |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_MISS)] = { 0x04, CNTR_EVEN }, |
| }, |
| }, |
| [C(DTLB)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_MISS)] = { 0x09, CNTR_ODD }, |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_MISS)] = { 0x09, CNTR_ODD }, |
| }, |
| }, |
| [C(ITLB)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_MISS)] = { 0x0c, CNTR_ODD }, |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_MISS)] = { 0x0c, CNTR_ODD }, |
| }, |
| }, |
| [C(BPU)] = { |
| /* Using the same code for *HW_BRANCH* */ |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN }, |
| [C(RESULT_MISS)] = { 0x02, CNTR_ODD }, |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN }, |
| [C(RESULT_MISS)] = { 0x02, CNTR_ODD }, |
| }, |
| }, |
| }; |
| |
| /* BMIPS5000 */ |
| static const struct mips_perf_event bmips5000_cache_map |
| [PERF_COUNT_HW_CACHE_MAX] |
| [PERF_COUNT_HW_CACHE_OP_MAX] |
| [PERF_COUNT_HW_CACHE_RESULT_MAX] = { |
| [C(L1D)] = { |
| /* |
| * Like some other architectures (e.g. ARM), the performance |
| * counters don't differentiate between read and write |
| * accesses/misses, so this isn't strictly correct, but it's the |
| * best we can do. Writes and reads get combined. |
| */ |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = { 12, CNTR_EVEN, T }, |
| [C(RESULT_MISS)] = { 12, CNTR_ODD, T }, |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_ACCESS)] = { 12, CNTR_EVEN, T }, |
| [C(RESULT_MISS)] = { 12, CNTR_ODD, T }, |
| }, |
| }, |
| [C(L1I)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = { 10, CNTR_EVEN, T }, |
| [C(RESULT_MISS)] = { 10, CNTR_ODD, T }, |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_ACCESS)] = { 10, CNTR_EVEN, T }, |
| [C(RESULT_MISS)] = { 10, CNTR_ODD, T }, |
| }, |
| [C(OP_PREFETCH)] = { |
| [C(RESULT_ACCESS)] = { 23, CNTR_EVEN, T }, |
| /* |
| * Note that MIPS has only "hit" events countable for |
| * the prefetch operation. |
| */ |
| }, |
| }, |
| [C(LL)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = { 28, CNTR_EVEN, P }, |
| [C(RESULT_MISS)] = { 28, CNTR_ODD, P }, |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_ACCESS)] = { 28, CNTR_EVEN, P }, |
| [C(RESULT_MISS)] = { 28, CNTR_ODD, P }, |
| }, |
| }, |
| [C(BPU)] = { |
| /* Using the same code for *HW_BRANCH* */ |
| [C(OP_READ)] = { |
| [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T }, |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T }, |
| }, |
| }, |
| }; |
| |
| |
| static const struct mips_perf_event octeon_cache_map |
| [PERF_COUNT_HW_CACHE_MAX] |
| [PERF_COUNT_HW_CACHE_OP_MAX] |
| [PERF_COUNT_HW_CACHE_RESULT_MAX] = { |
| [C(L1D)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = { 0x2b, CNTR_ALL }, |
| [C(RESULT_MISS)] = { 0x2e, CNTR_ALL }, |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_ACCESS)] = { 0x30, CNTR_ALL }, |
| }, |
| }, |
| [C(L1I)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = { 0x18, CNTR_ALL }, |
| }, |
| [C(OP_PREFETCH)] = { |
| [C(RESULT_ACCESS)] = { 0x19, CNTR_ALL }, |
| }, |
| }, |
| [C(DTLB)] = { |
| /* |
| * Only general DTLB misses are counted use the same event for |
| * read and write. |
| */ |
| [C(OP_READ)] = { |
| [C(RESULT_MISS)] = { 0x35, CNTR_ALL }, |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_MISS)] = { 0x35, CNTR_ALL }, |
| }, |
| }, |
| [C(ITLB)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_MISS)] = { 0x37, CNTR_ALL }, |
| }, |
| }, |
| }; |
| |
| static const struct mips_perf_event xlp_cache_map |
| [PERF_COUNT_HW_CACHE_MAX] |
| [PERF_COUNT_HW_CACHE_OP_MAX] |
| [PERF_COUNT_HW_CACHE_RESULT_MAX] = { |
| [C(L1D)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = { 0x31, CNTR_ALL }, /* PAPI_L1_DCR */ |
| [C(RESULT_MISS)] = { 0x30, CNTR_ALL }, /* PAPI_L1_LDM */ |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_ACCESS)] = { 0x2f, CNTR_ALL }, /* PAPI_L1_DCW */ |
| [C(RESULT_MISS)] = { 0x2e, CNTR_ALL }, /* PAPI_L1_STM */ |
| }, |
| }, |
| [C(L1I)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */ |
| [C(RESULT_MISS)] = { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */ |
| }, |
| }, |
| [C(LL)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = { 0x35, CNTR_ALL }, /* PAPI_L2_DCR */ |
| [C(RESULT_MISS)] = { 0x37, CNTR_ALL }, /* PAPI_L2_LDM */ |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_ACCESS)] = { 0x34, CNTR_ALL }, /* PAPI_L2_DCA */ |
| [C(RESULT_MISS)] = { 0x36, CNTR_ALL }, /* PAPI_L2_DCM */ |
| }, |
| }, |
| [C(DTLB)] = { |
| /* |
| * Only general DTLB misses are counted use the same event for |
| * read and write. |
| */ |
| [C(OP_READ)] = { |
| [C(RESULT_MISS)] = { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */ |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_MISS)] = { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */ |
| }, |
| }, |
| [C(ITLB)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_MISS)] = { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */ |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_MISS)] = { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */ |
| }, |
| }, |
| [C(BPU)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_MISS)] = { 0x25, CNTR_ALL }, |
| }, |
| }, |
| }; |
| |
| static int __hw_perf_event_init(struct perf_event *event) |
| { |
| struct perf_event_attr *attr = &event->attr; |
| struct hw_perf_event *hwc = &event->hw; |
| const struct mips_perf_event *pev; |
| int err; |
| |
| /* Returning MIPS event descriptor for generic perf event. */ |
| if (PERF_TYPE_HARDWARE == event->attr.type) { |
| if (event->attr.config >= PERF_COUNT_HW_MAX) |
| return -EINVAL; |
| pev = mipspmu_map_general_event(event->attr.config); |
| } else if (PERF_TYPE_HW_CACHE == event->attr.type) { |
| pev = mipspmu_map_cache_event(event->attr.config); |
| } else if (PERF_TYPE_RAW == event->attr.type) { |
| /* We are working on the global raw event. */ |
| mutex_lock(&raw_event_mutex); |
| pev = mipspmu.map_raw_event(event->attr.config); |
| } else { |
| /* The event type is not (yet) supported. */ |
| return -EOPNOTSUPP; |
| } |
| |
| if (IS_ERR(pev)) { |
| if (PERF_TYPE_RAW == event->attr.type) |
| mutex_unlock(&raw_event_mutex); |
| return PTR_ERR(pev); |
| } |
| |
| /* |
| * We allow max flexibility on how each individual counter shared |
| * by the single CPU operates (the mode exclusion and the range). |
| */ |
| hwc->config_base = MIPS_PERFCTRL_IE; |
| |
| hwc->event_base = mipspmu_perf_event_encode(pev); |
| if (PERF_TYPE_RAW == event->attr.type) |
| mutex_unlock(&raw_event_mutex); |
| |
| if (!attr->exclude_user) |
| hwc->config_base |= MIPS_PERFCTRL_U; |
| if (!attr->exclude_kernel) { |
| hwc->config_base |= MIPS_PERFCTRL_K; |
| /* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */ |
| hwc->config_base |= MIPS_PERFCTRL_EXL; |
| } |
| if (!attr->exclude_hv) |
| hwc->config_base |= MIPS_PERFCTRL_S; |
| |
| hwc->config_base &= M_PERFCTL_CONFIG_MASK; |
| /* |
| * The event can belong to another cpu. We do not assign a local |
| * counter for it for now. |
| */ |
| hwc->idx = -1; |
| hwc->config = 0; |
| |
| if (!hwc->sample_period) { |
| hwc->sample_period = mipspmu.max_period; |
| hwc->last_period = hwc->sample_period; |
| local64_set(&hwc->period_left, hwc->sample_period); |
| } |
| |
| err = 0; |
| if (event->group_leader != event) |
| err = validate_group(event); |
| |
| event->destroy = hw_perf_event_destroy; |
| |
| if (err) |
| event->destroy(event); |
| |
| return err; |
| } |
| |
| static void pause_local_counters(void) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| int ctr = mipspmu.num_counters; |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| do { |
| ctr--; |
| cpuc->saved_ctrl[ctr] = mipsxx_pmu_read_control(ctr); |
| mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr] & |
| ~M_PERFCTL_COUNT_EVENT_WHENEVER); |
| } while (ctr > 0); |
| local_irq_restore(flags); |
| } |
| |
| static void resume_local_counters(void) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| int ctr = mipspmu.num_counters; |
| |
| do { |
| ctr--; |
| mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr]); |
| } while (ctr > 0); |
| } |
| |
| static int mipsxx_pmu_handle_shared_irq(void) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| struct perf_sample_data data; |
| unsigned int counters = mipspmu.num_counters; |
| u64 counter; |
| int n, handled = IRQ_NONE; |
| struct pt_regs *regs; |
| |
| if (cpu_has_perf_cntr_intr_bit && !(read_c0_cause() & CAUSEF_PCI)) |
| return handled; |
| /* |
| * First we pause the local counters, so that when we are locked |
| * here, the counters are all paused. When it gets locked due to |
| * perf_disable(), the timer interrupt handler will be delayed. |
| * |
| * See also mipsxx_pmu_start(). |
| */ |
| pause_local_counters(); |
| #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS |
| read_lock(&pmuint_rwlock); |
| #endif |
| |
| regs = get_irq_regs(); |
| |
| perf_sample_data_init(&data, 0, 0); |
| |
| for (n = counters - 1; n >= 0; n--) { |
| if (!test_bit(n, cpuc->used_mask)) |
| continue; |
| |
| counter = mipspmu.read_counter(n); |
| if (!(counter & mipspmu.overflow)) |
| continue; |
| |
| handle_associated_event(cpuc, n, &data, regs); |
| handled = IRQ_HANDLED; |
| } |
| |
| #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS |
| read_unlock(&pmuint_rwlock); |
| #endif |
| resume_local_counters(); |
| |
| /* |
| * Do all the work for the pending perf events. We can do this |
| * in here because the performance counter interrupt is a regular |
| * interrupt, not NMI. |
| */ |
| if (handled == IRQ_HANDLED) |
| irq_work_run(); |
| |
| return handled; |
| } |
| |
| static irqreturn_t mipsxx_pmu_handle_irq(int irq, void *dev) |
| { |
| return mipsxx_pmu_handle_shared_irq(); |
| } |
| |
| /* 24K */ |
| #define IS_BOTH_COUNTERS_24K_EVENT(b) \ |
| ((b) == 0 || (b) == 1 || (b) == 11) |
| |
| /* 34K */ |
| #define IS_BOTH_COUNTERS_34K_EVENT(b) \ |
| ((b) == 0 || (b) == 1 || (b) == 11) |
| #ifdef CONFIG_MIPS_MT_SMP |
| #define IS_RANGE_P_34K_EVENT(r, b) \ |
| ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \ |
| (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 || \ |
| (r) == 176 || ((b) >= 50 && (b) <= 55) || \ |
| ((b) >= 64 && (b) <= 67)) |
| #define IS_RANGE_V_34K_EVENT(r) ((r) == 47) |
| #endif |
| |
| /* 74K */ |
| #define IS_BOTH_COUNTERS_74K_EVENT(b) \ |
| ((b) == 0 || (b) == 1) |
| |
| /* proAptiv */ |
| #define IS_BOTH_COUNTERS_PROAPTIV_EVENT(b) \ |
| ((b) == 0 || (b) == 1) |
| /* P5600 */ |
| #define IS_BOTH_COUNTERS_P5600_EVENT(b) \ |
| ((b) == 0 || (b) == 1) |
| |
| /* 1004K */ |
| #define IS_BOTH_COUNTERS_1004K_EVENT(b) \ |
| ((b) == 0 || (b) == 1 || (b) == 11) |
| #ifdef CONFIG_MIPS_MT_SMP |
| #define IS_RANGE_P_1004K_EVENT(r, b) \ |
| ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \ |
| (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 || \ |
| (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) || \ |
| (r) == 188 || (b) == 61 || (b) == 62 || \ |
| ((b) >= 64 && (b) <= 67)) |
| #define IS_RANGE_V_1004K_EVENT(r) ((r) == 47) |
| #endif |
| |
| /* interAptiv */ |
| #define IS_BOTH_COUNTERS_INTERAPTIV_EVENT(b) \ |
| ((b) == 0 || (b) == 1 || (b) == 11) |
| #ifdef CONFIG_MIPS_MT_SMP |
| /* The P/V/T info is not provided for "(b) == 38" in SUM, assume P. */ |
| #define IS_RANGE_P_INTERAPTIV_EVENT(r, b) \ |
| ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \ |
| (b) == 25 || (b) == 36 || (b) == 38 || (b) == 39 || \ |
| (r) == 44 || (r) == 174 || (r) == 176 || ((b) >= 50 && \ |
| (b) <= 59) || (r) == 188 || (b) == 61 || (b) == 62 || \ |
| ((b) >= 64 && (b) <= 67)) |
| #define IS_RANGE_V_INTERAPTIV_EVENT(r) ((r) == 47 || (r) == 175) |
| #endif |
| |
| /* BMIPS5000 */ |
| #define IS_BOTH_COUNTERS_BMIPS5000_EVENT(b) \ |
| ((b) == 0 || (b) == 1) |
| |
| |
| /* |
| * For most cores the user can use 0-255 raw events, where 0-127 for the events |
| * of even counters, and 128-255 for odd counters. Note that bit 7 is used to |
| * indicate the even/odd bank selector. So, for example, when user wants to take |
| * the Event Num of 15 for odd counters (by referring to the user manual), then |
| * 128 needs to be added to 15 as the input for the event config, i.e., 143 (0x8F) |
| * to be used. |
| * |
| * Some newer cores have even more events, in which case the user can use raw |
| * events 0-511, where 0-255 are for the events of even counters, and 256-511 |
| * are for odd counters, so bit 8 is used to indicate the even/odd bank selector. |
| */ |
| static const struct mips_perf_event *mipsxx_pmu_map_raw_event(u64 config) |
| { |
| /* currently most cores have 7-bit event numbers */ |
| unsigned int raw_id = config & 0xff; |
| unsigned int base_id = raw_id & 0x7f; |
| |
| switch (current_cpu_type()) { |
| case CPU_24K: |
| if (IS_BOTH_COUNTERS_24K_EVENT(base_id)) |
| raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD; |
| else |
| raw_event.cntr_mask = |
| raw_id > 127 ? CNTR_ODD : CNTR_EVEN; |
| #ifdef CONFIG_MIPS_MT_SMP |
| /* |
| * This is actually doing nothing. Non-multithreading |
| * CPUs will not check and calculate the range. |
| */ |
| raw_event.range = P; |
| #endif |
| break; |
| case CPU_34K: |
| if (IS_BOTH_COUNTERS_34K_EVENT(base_id)) |
| raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD; |
| else |
| raw_event.cntr_mask = |
| raw_id > 127 ? CNTR_ODD : CNTR_EVEN; |
| #ifdef CONFIG_MIPS_MT_SMP |
| if (IS_RANGE_P_34K_EVENT(raw_id, base_id)) |
| raw_event.range = P; |
| else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id))) |
| raw_event.range = V; |
| else |
| raw_event.range = T; |
| #endif |
| break; |
| case CPU_74K: |
| case CPU_1074K: |
| if (IS_BOTH_COUNTERS_74K_EVENT(base_id)) |
| raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD; |
| else |
| raw_event.cntr_mask = |
| raw_id > 127 ? CNTR_ODD : CNTR_EVEN; |
| #ifdef CONFIG_MIPS_MT_SMP |
| raw_event.range = P; |
| #endif |
| break; |
| case CPU_PROAPTIV: |
| if (IS_BOTH_COUNTERS_PROAPTIV_EVENT(base_id)) |
| raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD; |
| else |
| raw_event.cntr_mask = |
| raw_id > 127 ? CNTR_ODD : CNTR_EVEN; |
| #ifdef CONFIG_MIPS_MT_SMP |
| raw_event.range = P; |
| #endif |
| break; |
| case CPU_P5600: |
| case CPU_P6600: |
| /* 8-bit event numbers */ |
| raw_id = config & 0x1ff; |
| base_id = raw_id & 0xff; |
| if (IS_BOTH_COUNTERS_P5600_EVENT(base_id)) |
| raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD; |
| else |
| raw_event.cntr_mask = |
| raw_id > 255 ? CNTR_ODD : CNTR_EVEN; |
| #ifdef CONFIG_MIPS_MT_SMP |
| raw_event.range = P; |
| #endif |
| break; |
| case CPU_I6400: |
| case CPU_I6500: |
| /* 8-bit event numbers */ |
| base_id = config & 0xff; |
| raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD; |
| break; |
| case CPU_1004K: |
| if (IS_BOTH_COUNTERS_1004K_EVENT(base_id)) |
| raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD; |
| else |
| raw_event.cntr_mask = |
| raw_id > 127 ? CNTR_ODD : CNTR_EVEN; |
| #ifdef CONFIG_MIPS_MT_SMP |
| if (IS_RANGE_P_1004K_EVENT(raw_id, base_id)) |
| raw_event.range = P; |
| else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id))) |
| raw_event.range = V; |
| else |
| raw_event.range = T; |
| #endif |
| break; |
| case CPU_INTERAPTIV: |
| if (IS_BOTH_COUNTERS_INTERAPTIV_EVENT(base_id)) |
| raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD; |
| else |
| raw_event.cntr_mask = |
| raw_id > 127 ? CNTR_ODD : CNTR_EVEN; |
| #ifdef CONFIG_MIPS_MT_SMP |
| if (IS_RANGE_P_INTERAPTIV_EVENT(raw_id, base_id)) |
| raw_event.range = P; |
| else if (unlikely(IS_RANGE_V_INTERAPTIV_EVENT(raw_id))) |
| raw_event.range = V; |
| else |
| raw_event.range = T; |
| #endif |
| break; |
| case CPU_BMIPS5000: |
| if (IS_BOTH_COUNTERS_BMIPS5000_EVENT(base_id)) |
| raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD; |
| else |
| raw_event.cntr_mask = |
| raw_id > 127 ? CNTR_ODD : CNTR_EVEN; |
| break; |
| case CPU_LOONGSON3: |
| raw_event.cntr_mask = raw_id > 127 ? CNTR_ODD : CNTR_EVEN; |
| break; |
| } |
| |
| raw_event.event_id = base_id; |
| |
| return &raw_event; |
| } |
| |
| static const struct mips_perf_event *octeon_pmu_map_raw_event(u64 config) |
| { |
| unsigned int raw_id = config & 0xff; |
| unsigned int base_id = raw_id & 0x7f; |
| |
| |
| raw_event.cntr_mask = CNTR_ALL; |
| raw_event.event_id = base_id; |
| |
| if (current_cpu_type() == CPU_CAVIUM_OCTEON2) { |
| if (base_id > 0x42) |
| return ERR_PTR(-EOPNOTSUPP); |
| } else { |
| if (base_id > 0x3a) |
| return ERR_PTR(-EOPNOTSUPP); |
| } |
| |
| switch (base_id) { |
| case 0x00: |
| case 0x0f: |
| case 0x1e: |
| case 0x1f: |
| case 0x2f: |
| case 0x34: |
| case 0x3b ... 0x3f: |
| return ERR_PTR(-EOPNOTSUPP); |
| default: |
| break; |
| } |
| |
| return &raw_event; |
| } |
| |
| static const struct mips_perf_event *xlp_pmu_map_raw_event(u64 config) |
| { |
| unsigned int raw_id = config & 0xff; |
| |
| /* Only 1-63 are defined */ |
| if ((raw_id < 0x01) || (raw_id > 0x3f)) |
| return ERR_PTR(-EOPNOTSUPP); |
| |
| raw_event.cntr_mask = CNTR_ALL; |
| raw_event.event_id = raw_id; |
| |
| return &raw_event; |
| } |
| |
| static int __init |
| init_hw_perf_events(void) |
| { |
| int counters, irq; |
| int counter_bits; |
| |
| pr_info("Performance counters: "); |
| |
| counters = n_counters(); |
| if (counters == 0) { |
| pr_cont("No available PMU.\n"); |
| return -ENODEV; |
| } |
| |
| #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS |
| if (!cpu_has_mipsmt_pertccounters) |
| counters = counters_total_to_per_cpu(counters); |
| #endif |
| |
| if (get_c0_perfcount_int) |
| irq = get_c0_perfcount_int(); |
| else if (cp0_perfcount_irq >= 0) |
| irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq; |
| else |
| irq = -1; |
| |
| mipspmu.map_raw_event = mipsxx_pmu_map_raw_event; |
| |
| switch (current_cpu_type()) { |
| case CPU_24K: |
| mipspmu.name = "mips/24K"; |
| mipspmu.general_event_map = &mipsxxcore_event_map; |
| mipspmu.cache_event_map = &mipsxxcore_cache_map; |
| break; |
| case CPU_34K: |
| mipspmu.name = "mips/34K"; |
| mipspmu.general_event_map = &mipsxxcore_event_map; |
| mipspmu.cache_event_map = &mipsxxcore_cache_map; |
| break; |
| case CPU_74K: |
| mipspmu.name = "mips/74K"; |
| mipspmu.general_event_map = &mipsxxcore_event_map2; |
| mipspmu.cache_event_map = &mipsxxcore_cache_map2; |
| break; |
| case CPU_PROAPTIV: |
| mipspmu.name = "mips/proAptiv"; |
| mipspmu.general_event_map = &mipsxxcore_event_map2; |
| mipspmu.cache_event_map = &mipsxxcore_cache_map2; |
| break; |
| case CPU_P5600: |
| mipspmu.name = "mips/P5600"; |
| mipspmu.general_event_map = &mipsxxcore_event_map2; |
| mipspmu.cache_event_map = &mipsxxcore_cache_map2; |
| break; |
| case CPU_P6600: |
| mipspmu.name = "mips/P6600"; |
| mipspmu.general_event_map = &mipsxxcore_event_map2; |
| mipspmu.cache_event_map = &mipsxxcore_cache_map2; |
| break; |
| case CPU_I6400: |
| mipspmu.name = "mips/I6400"; |
| mipspmu.general_event_map = &i6x00_event_map; |
| mipspmu.cache_event_map = &i6x00_cache_map; |
| break; |
| case CPU_I6500: |
| mipspmu.name = "mips/I6500"; |
| mipspmu.general_event_map = &i6x00_event_map; |
| mipspmu.cache_event_map = &i6x00_cache_map; |
| break; |
| case CPU_1004K: |
| mipspmu.name = "mips/1004K"; |
| mipspmu.general_event_map = &mipsxxcore_event_map; |
| mipspmu.cache_event_map = &mipsxxcore_cache_map; |
| break; |
| case CPU_1074K: |
| mipspmu.name = "mips/1074K"; |
| mipspmu.general_event_map = &mipsxxcore_event_map; |
| mipspmu.cache_event_map = &mipsxxcore_cache_map; |
| break; |
| case CPU_INTERAPTIV: |
| mipspmu.name = "mips/interAptiv"; |
| mipspmu.general_event_map = &mipsxxcore_event_map; |
| mipspmu.cache_event_map = &mipsxxcore_cache_map; |
| break; |
| case CPU_LOONGSON1: |
| mipspmu.name = "mips/loongson1"; |
| mipspmu.general_event_map = &mipsxxcore_event_map; |
| mipspmu.cache_event_map = &mipsxxcore_cache_map; |
| break; |
| case CPU_LOONGSON3: |
| mipspmu.name = "mips/loongson3"; |
| mipspmu.general_event_map = &loongson3_event_map; |
| mipspmu.cache_event_map = &loongson3_cache_map; |
| break; |
| case CPU_CAVIUM_OCTEON: |
| case CPU_CAVIUM_OCTEON_PLUS: |
| case CPU_CAVIUM_OCTEON2: |
| mipspmu.name = "octeon"; |
| mipspmu.general_event_map = &octeon_event_map; |
| mipspmu.cache_event_map = &octeon_cache_map; |
| mipspmu.map_raw_event = octeon_pmu_map_raw_event; |
| break; |
| case CPU_BMIPS5000: |
| mipspmu.name = "BMIPS5000"; |
| mipspmu.general_event_map = &bmips5000_event_map; |
| mipspmu.cache_event_map = &bmips5000_cache_map; |
| break; |
| case CPU_XLP: |
| mipspmu.name = "xlp"; |
| mipspmu.general_event_map = &xlp_event_map; |
| mipspmu.cache_event_map = &xlp_cache_map; |
| mipspmu.map_raw_event = xlp_pmu_map_raw_event; |
| break; |
| default: |
| pr_cont("Either hardware does not support performance " |
| "counters, or not yet implemented.\n"); |
| return -ENODEV; |
| } |
| |
| mipspmu.num_counters = counters; |
| mipspmu.irq = irq; |
| |
| if (read_c0_perfctrl0() & MIPS_PERFCTRL_W) { |
| mipspmu.max_period = (1ULL << 63) - 1; |
| mipspmu.valid_count = (1ULL << 63) - 1; |
| mipspmu.overflow = 1ULL << 63; |
| mipspmu.read_counter = mipsxx_pmu_read_counter_64; |
| mipspmu.write_counter = mipsxx_pmu_write_counter_64; |
| counter_bits = 64; |
| } else { |
| mipspmu.max_period = (1ULL << 31) - 1; |
| mipspmu.valid_count = (1ULL << 31) - 1; |
| mipspmu.overflow = 1ULL << 31; |
| mipspmu.read_counter = mipsxx_pmu_read_counter; |
| mipspmu.write_counter = mipsxx_pmu_write_counter; |
| counter_bits = 32; |
| } |
| |
| on_each_cpu(reset_counters, (void *)(long)counters, 1); |
| |
| pr_cont("%s PMU enabled, %d %d-bit counters available to each " |
| "CPU, irq %d%s\n", mipspmu.name, counters, counter_bits, irq, |
| irq < 0 ? " (share with timer interrupt)" : ""); |
| |
| perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW); |
| |
| return 0; |
| } |
| early_initcall(init_hw_perf_events); |