| /* |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| * |
| * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle |
| * Copyright (C) 1995, 1996 Paul M. Antoine |
| * Copyright (C) 1998 Ulf Carlsson |
| * Copyright (C) 1999 Silicon Graphics, Inc. |
| * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com |
| * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki |
| * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved. |
| * Copyright (C) 2014, Imagination Technologies Ltd. |
| */ |
| #include <linux/bitops.h> |
| #include <linux/bug.h> |
| #include <linux/compiler.h> |
| #include <linux/context_tracking.h> |
| #include <linux/cpu_pm.h> |
| #include <linux/kexec.h> |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/extable.h> |
| #include <linux/mm.h> |
| #include <linux/sched/mm.h> |
| #include <linux/sched/debug.h> |
| #include <linux/smp.h> |
| #include <linux/spinlock.h> |
| #include <linux/kallsyms.h> |
| #include <linux/memblock.h> |
| #include <linux/interrupt.h> |
| #include <linux/ptrace.h> |
| #include <linux/kgdb.h> |
| #include <linux/kdebug.h> |
| #include <linux/kprobes.h> |
| #include <linux/notifier.h> |
| #include <linux/kdb.h> |
| #include <linux/irq.h> |
| #include <linux/perf_event.h> |
| |
| #include <asm/addrspace.h> |
| #include <asm/bootinfo.h> |
| #include <asm/branch.h> |
| #include <asm/break.h> |
| #include <asm/cop2.h> |
| #include <asm/cpu.h> |
| #include <asm/cpu-type.h> |
| #include <asm/dsp.h> |
| #include <asm/fpu.h> |
| #include <asm/fpu_emulator.h> |
| #include <asm/idle.h> |
| #include <asm/isa-rev.h> |
| #include <asm/mips-cps.h> |
| #include <asm/mips-r2-to-r6-emul.h> |
| #include <asm/mipsregs.h> |
| #include <asm/mipsmtregs.h> |
| #include <asm/module.h> |
| #include <asm/msa.h> |
| #include <asm/pgtable.h> |
| #include <asm/ptrace.h> |
| #include <asm/sections.h> |
| #include <asm/siginfo.h> |
| #include <asm/tlbdebug.h> |
| #include <asm/traps.h> |
| #include <linux/uaccess.h> |
| #include <asm/watch.h> |
| #include <asm/mmu_context.h> |
| #include <asm/types.h> |
| #include <asm/stacktrace.h> |
| #include <asm/tlbex.h> |
| #include <asm/uasm.h> |
| |
| extern void check_wait(void); |
| extern asmlinkage void rollback_handle_int(void); |
| extern asmlinkage void handle_int(void); |
| extern asmlinkage void handle_adel(void); |
| extern asmlinkage void handle_ades(void); |
| extern asmlinkage void handle_ibe(void); |
| extern asmlinkage void handle_dbe(void); |
| extern asmlinkage void handle_sys(void); |
| extern asmlinkage void handle_bp(void); |
| extern asmlinkage void handle_ri(void); |
| extern asmlinkage void handle_ri_rdhwr_tlbp(void); |
| extern asmlinkage void handle_ri_rdhwr(void); |
| extern asmlinkage void handle_cpu(void); |
| extern asmlinkage void handle_ov(void); |
| extern asmlinkage void handle_tr(void); |
| extern asmlinkage void handle_msa_fpe(void); |
| extern asmlinkage void handle_fpe(void); |
| extern asmlinkage void handle_ftlb(void); |
| extern asmlinkage void handle_msa(void); |
| extern asmlinkage void handle_mdmx(void); |
| extern asmlinkage void handle_watch(void); |
| extern asmlinkage void handle_mt(void); |
| extern asmlinkage void handle_dsp(void); |
| extern asmlinkage void handle_mcheck(void); |
| extern asmlinkage void handle_reserved(void); |
| extern void tlb_do_page_fault_0(void); |
| |
| void (*board_be_init)(void); |
| int (*board_be_handler)(struct pt_regs *regs, int is_fixup); |
| void (*board_nmi_handler_setup)(void); |
| void (*board_ejtag_handler_setup)(void); |
| void (*board_bind_eic_interrupt)(int irq, int regset); |
| void (*board_ebase_setup)(void); |
| void(*board_cache_error_setup)(void); |
| |
| static void show_raw_backtrace(unsigned long reg29) |
| { |
| unsigned long *sp = (unsigned long *)(reg29 & ~3); |
| unsigned long addr; |
| |
| printk("Call Trace:"); |
| #ifdef CONFIG_KALLSYMS |
| printk("\n"); |
| #endif |
| while (!kstack_end(sp)) { |
| unsigned long __user *p = |
| (unsigned long __user *)(unsigned long)sp++; |
| if (__get_user(addr, p)) { |
| printk(" (Bad stack address)"); |
| break; |
| } |
| if (__kernel_text_address(addr)) |
| print_ip_sym(addr); |
| } |
| printk("\n"); |
| } |
| |
| #ifdef CONFIG_KALLSYMS |
| int raw_show_trace; |
| static int __init set_raw_show_trace(char *str) |
| { |
| raw_show_trace = 1; |
| return 1; |
| } |
| __setup("raw_show_trace", set_raw_show_trace); |
| #endif |
| |
| static void show_backtrace(struct task_struct *task, const struct pt_regs *regs) |
| { |
| unsigned long sp = regs->regs[29]; |
| unsigned long ra = regs->regs[31]; |
| unsigned long pc = regs->cp0_epc; |
| |
| if (!task) |
| task = current; |
| |
| if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) { |
| show_raw_backtrace(sp); |
| return; |
| } |
| printk("Call Trace:\n"); |
| do { |
| print_ip_sym(pc); |
| pc = unwind_stack(task, &sp, pc, &ra); |
| } while (pc); |
| pr_cont("\n"); |
| } |
| |
| /* |
| * This routine abuses get_user()/put_user() to reference pointers |
| * with at least a bit of error checking ... |
| */ |
| static void show_stacktrace(struct task_struct *task, |
| const struct pt_regs *regs) |
| { |
| const int field = 2 * sizeof(unsigned long); |
| long stackdata; |
| int i; |
| unsigned long __user *sp = (unsigned long __user *)regs->regs[29]; |
| |
| printk("Stack :"); |
| i = 0; |
| while ((unsigned long) sp & (PAGE_SIZE - 1)) { |
| if (i && ((i % (64 / field)) == 0)) { |
| pr_cont("\n"); |
| printk(" "); |
| } |
| if (i > 39) { |
| pr_cont(" ..."); |
| break; |
| } |
| |
| if (__get_user(stackdata, sp++)) { |
| pr_cont(" (Bad stack address)"); |
| break; |
| } |
| |
| pr_cont(" %0*lx", field, stackdata); |
| i++; |
| } |
| pr_cont("\n"); |
| show_backtrace(task, regs); |
| } |
| |
| void show_stack(struct task_struct *task, unsigned long *sp) |
| { |
| struct pt_regs regs; |
| mm_segment_t old_fs = get_fs(); |
| |
| regs.cp0_status = KSU_KERNEL; |
| if (sp) { |
| regs.regs[29] = (unsigned long)sp; |
| regs.regs[31] = 0; |
| regs.cp0_epc = 0; |
| } else { |
| if (task && task != current) { |
| regs.regs[29] = task->thread.reg29; |
| regs.regs[31] = 0; |
| regs.cp0_epc = task->thread.reg31; |
| #ifdef CONFIG_KGDB_KDB |
| } else if (atomic_read(&kgdb_active) != -1 && |
| kdb_current_regs) { |
| memcpy(®s, kdb_current_regs, sizeof(regs)); |
| #endif /* CONFIG_KGDB_KDB */ |
| } else { |
| prepare_frametrace(®s); |
| } |
| } |
| /* |
| * show_stack() deals exclusively with kernel mode, so be sure to access |
| * the stack in the kernel (not user) address space. |
| */ |
| set_fs(KERNEL_DS); |
| show_stacktrace(task, ®s); |
| set_fs(old_fs); |
| } |
| |
| static void show_code(unsigned int __user *pc) |
| { |
| long i; |
| unsigned short __user *pc16 = NULL; |
| |
| printk("Code:"); |
| |
| if ((unsigned long)pc & 1) |
| pc16 = (unsigned short __user *)((unsigned long)pc & ~1); |
| for(i = -3 ; i < 6 ; i++) { |
| unsigned int insn; |
| if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) { |
| pr_cont(" (Bad address in epc)\n"); |
| break; |
| } |
| pr_cont("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>')); |
| } |
| pr_cont("\n"); |
| } |
| |
| static void __show_regs(const struct pt_regs *regs) |
| { |
| const int field = 2 * sizeof(unsigned long); |
| unsigned int cause = regs->cp0_cause; |
| unsigned int exccode; |
| int i; |
| |
| show_regs_print_info(KERN_DEFAULT); |
| |
| /* |
| * Saved main processor registers |
| */ |
| for (i = 0; i < 32; ) { |
| if ((i % 4) == 0) |
| printk("$%2d :", i); |
| if (i == 0) |
| pr_cont(" %0*lx", field, 0UL); |
| else if (i == 26 || i == 27) |
| pr_cont(" %*s", field, ""); |
| else |
| pr_cont(" %0*lx", field, regs->regs[i]); |
| |
| i++; |
| if ((i % 4) == 0) |
| pr_cont("\n"); |
| } |
| |
| #ifdef CONFIG_CPU_HAS_SMARTMIPS |
| printk("Acx : %0*lx\n", field, regs->acx); |
| #endif |
| if (MIPS_ISA_REV < 6) { |
| printk("Hi : %0*lx\n", field, regs->hi); |
| printk("Lo : %0*lx\n", field, regs->lo); |
| } |
| |
| /* |
| * Saved cp0 registers |
| */ |
| printk("epc : %0*lx %pS\n", field, regs->cp0_epc, |
| (void *) regs->cp0_epc); |
| printk("ra : %0*lx %pS\n", field, regs->regs[31], |
| (void *) regs->regs[31]); |
| |
| printk("Status: %08x ", (uint32_t) regs->cp0_status); |
| |
| if (cpu_has_3kex) { |
| if (regs->cp0_status & ST0_KUO) |
| pr_cont("KUo "); |
| if (regs->cp0_status & ST0_IEO) |
| pr_cont("IEo "); |
| if (regs->cp0_status & ST0_KUP) |
| pr_cont("KUp "); |
| if (regs->cp0_status & ST0_IEP) |
| pr_cont("IEp "); |
| if (regs->cp0_status & ST0_KUC) |
| pr_cont("KUc "); |
| if (regs->cp0_status & ST0_IEC) |
| pr_cont("IEc "); |
| } else if (cpu_has_4kex) { |
| if (regs->cp0_status & ST0_KX) |
| pr_cont("KX "); |
| if (regs->cp0_status & ST0_SX) |
| pr_cont("SX "); |
| if (regs->cp0_status & ST0_UX) |
| pr_cont("UX "); |
| switch (regs->cp0_status & ST0_KSU) { |
| case KSU_USER: |
| pr_cont("USER "); |
| break; |
| case KSU_SUPERVISOR: |
| pr_cont("SUPERVISOR "); |
| break; |
| case KSU_KERNEL: |
| pr_cont("KERNEL "); |
| break; |
| default: |
| pr_cont("BAD_MODE "); |
| break; |
| } |
| if (regs->cp0_status & ST0_ERL) |
| pr_cont("ERL "); |
| if (regs->cp0_status & ST0_EXL) |
| pr_cont("EXL "); |
| if (regs->cp0_status & ST0_IE) |
| pr_cont("IE "); |
| } |
| pr_cont("\n"); |
| |
| exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE; |
| printk("Cause : %08x (ExcCode %02x)\n", cause, exccode); |
| |
| if (1 <= exccode && exccode <= 5) |
| printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr); |
| |
| printk("PrId : %08x (%s)\n", read_c0_prid(), |
| cpu_name_string()); |
| } |
| |
| /* |
| * FIXME: really the generic show_regs should take a const pointer argument. |
| */ |
| void show_regs(struct pt_regs *regs) |
| { |
| __show_regs(regs); |
| dump_stack(); |
| } |
| |
| void show_registers(struct pt_regs *regs) |
| { |
| const int field = 2 * sizeof(unsigned long); |
| mm_segment_t old_fs = get_fs(); |
| |
| __show_regs(regs); |
| print_modules(); |
| printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n", |
| current->comm, current->pid, current_thread_info(), current, |
| field, current_thread_info()->tp_value); |
| if (cpu_has_userlocal) { |
| unsigned long tls; |
| |
| tls = read_c0_userlocal(); |
| if (tls != current_thread_info()->tp_value) |
| printk("*HwTLS: %0*lx\n", field, tls); |
| } |
| |
| if (!user_mode(regs)) |
| /* Necessary for getting the correct stack content */ |
| set_fs(KERNEL_DS); |
| show_stacktrace(current, regs); |
| show_code((unsigned int __user *) regs->cp0_epc); |
| printk("\n"); |
| set_fs(old_fs); |
| } |
| |
| static DEFINE_RAW_SPINLOCK(die_lock); |
| |
| void __noreturn die(const char *str, struct pt_regs *regs) |
| { |
| static int die_counter; |
| int sig = SIGSEGV; |
| |
| oops_enter(); |
| |
| if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr, |
| SIGSEGV) == NOTIFY_STOP) |
| sig = 0; |
| |
| console_verbose(); |
| raw_spin_lock_irq(&die_lock); |
| bust_spinlocks(1); |
| |
| printk("%s[#%d]:\n", str, ++die_counter); |
| show_registers(regs); |
| add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); |
| raw_spin_unlock_irq(&die_lock); |
| |
| oops_exit(); |
| |
| if (in_interrupt()) |
| panic("Fatal exception in interrupt"); |
| |
| if (panic_on_oops) |
| panic("Fatal exception"); |
| |
| if (regs && kexec_should_crash(current)) |
| crash_kexec(regs); |
| |
| do_exit(sig); |
| } |
| |
| extern struct exception_table_entry __start___dbe_table[]; |
| extern struct exception_table_entry __stop___dbe_table[]; |
| |
| __asm__( |
| " .section __dbe_table, \"a\"\n" |
| " .previous \n"); |
| |
| /* Given an address, look for it in the exception tables. */ |
| static const struct exception_table_entry *search_dbe_tables(unsigned long addr) |
| { |
| const struct exception_table_entry *e; |
| |
| e = search_extable(__start___dbe_table, |
| __stop___dbe_table - __start___dbe_table, addr); |
| if (!e) |
| e = search_module_dbetables(addr); |
| return e; |
| } |
| |
| asmlinkage void do_be(struct pt_regs *regs) |
| { |
| const int field = 2 * sizeof(unsigned long); |
| const struct exception_table_entry *fixup = NULL; |
| int data = regs->cp0_cause & 4; |
| int action = MIPS_BE_FATAL; |
| enum ctx_state prev_state; |
| |
| prev_state = exception_enter(); |
| /* XXX For now. Fixme, this searches the wrong table ... */ |
| if (data && !user_mode(regs)) |
| fixup = search_dbe_tables(exception_epc(regs)); |
| |
| if (fixup) |
| action = MIPS_BE_FIXUP; |
| |
| if (board_be_handler) |
| action = board_be_handler(regs, fixup != NULL); |
| else |
| mips_cm_error_report(); |
| |
| switch (action) { |
| case MIPS_BE_DISCARD: |
| goto out; |
| case MIPS_BE_FIXUP: |
| if (fixup) { |
| regs->cp0_epc = fixup->nextinsn; |
| goto out; |
| } |
| break; |
| default: |
| break; |
| } |
| |
| /* |
| * Assume it would be too dangerous to continue ... |
| */ |
| printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n", |
| data ? "Data" : "Instruction", |
| field, regs->cp0_epc, field, regs->regs[31]); |
| if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr, |
| SIGBUS) == NOTIFY_STOP) |
| goto out; |
| |
| die_if_kernel("Oops", regs); |
| force_sig(SIGBUS); |
| |
| out: |
| exception_exit(prev_state); |
| } |
| |
| /* |
| * ll/sc, rdhwr, sync emulation |
| */ |
| |
| #define OPCODE 0xfc000000 |
| #define BASE 0x03e00000 |
| #define RT 0x001f0000 |
| #define OFFSET 0x0000ffff |
| #define LL 0xc0000000 |
| #define SC 0xe0000000 |
| #define SPEC0 0x00000000 |
| #define SPEC3 0x7c000000 |
| #define RD 0x0000f800 |
| #define FUNC 0x0000003f |
| #define SYNC 0x0000000f |
| #define RDHWR 0x0000003b |
| |
| /* microMIPS definitions */ |
| #define MM_POOL32A_FUNC 0xfc00ffff |
| #define MM_RDHWR 0x00006b3c |
| #define MM_RS 0x001f0000 |
| #define MM_RT 0x03e00000 |
| |
| /* |
| * The ll_bit is cleared by r*_switch.S |
| */ |
| |
| unsigned int ll_bit; |
| struct task_struct *ll_task; |
| |
| static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode) |
| { |
| unsigned long value, __user *vaddr; |
| long offset; |
| |
| /* |
| * analyse the ll instruction that just caused a ri exception |
| * and put the referenced address to addr. |
| */ |
| |
| /* sign extend offset */ |
| offset = opcode & OFFSET; |
| offset <<= 16; |
| offset >>= 16; |
| |
| vaddr = (unsigned long __user *) |
| ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); |
| |
| if ((unsigned long)vaddr & 3) |
| return SIGBUS; |
| if (get_user(value, vaddr)) |
| return SIGSEGV; |
| |
| preempt_disable(); |
| |
| if (ll_task == NULL || ll_task == current) { |
| ll_bit = 1; |
| } else { |
| ll_bit = 0; |
| } |
| ll_task = current; |
| |
| preempt_enable(); |
| |
| regs->regs[(opcode & RT) >> 16] = value; |
| |
| return 0; |
| } |
| |
| static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode) |
| { |
| unsigned long __user *vaddr; |
| unsigned long reg; |
| long offset; |
| |
| /* |
| * analyse the sc instruction that just caused a ri exception |
| * and put the referenced address to addr. |
| */ |
| |
| /* sign extend offset */ |
| offset = opcode & OFFSET; |
| offset <<= 16; |
| offset >>= 16; |
| |
| vaddr = (unsigned long __user *) |
| ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); |
| reg = (opcode & RT) >> 16; |
| |
| if ((unsigned long)vaddr & 3) |
| return SIGBUS; |
| |
| preempt_disable(); |
| |
| if (ll_bit == 0 || ll_task != current) { |
| regs->regs[reg] = 0; |
| preempt_enable(); |
| return 0; |
| } |
| |
| preempt_enable(); |
| |
| if (put_user(regs->regs[reg], vaddr)) |
| return SIGSEGV; |
| |
| regs->regs[reg] = 1; |
| |
| return 0; |
| } |
| |
| /* |
| * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both |
| * opcodes are supposed to result in coprocessor unusable exceptions if |
| * executed on ll/sc-less processors. That's the theory. In practice a |
| * few processors such as NEC's VR4100 throw reserved instruction exceptions |
| * instead, so we're doing the emulation thing in both exception handlers. |
| */ |
| static int simulate_llsc(struct pt_regs *regs, unsigned int opcode) |
| { |
| if ((opcode & OPCODE) == LL) { |
| perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, |
| 1, regs, 0); |
| return simulate_ll(regs, opcode); |
| } |
| if ((opcode & OPCODE) == SC) { |
| perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, |
| 1, regs, 0); |
| return simulate_sc(regs, opcode); |
| } |
| |
| return -1; /* Must be something else ... */ |
| } |
| |
| /* |
| * Simulate trapping 'rdhwr' instructions to provide user accessible |
| * registers not implemented in hardware. |
| */ |
| static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt) |
| { |
| struct thread_info *ti = task_thread_info(current); |
| |
| perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, |
| 1, regs, 0); |
| switch (rd) { |
| case MIPS_HWR_CPUNUM: /* CPU number */ |
| regs->regs[rt] = smp_processor_id(); |
| return 0; |
| case MIPS_HWR_SYNCISTEP: /* SYNCI length */ |
| regs->regs[rt] = min(current_cpu_data.dcache.linesz, |
| current_cpu_data.icache.linesz); |
| return 0; |
| case MIPS_HWR_CC: /* Read count register */ |
| regs->regs[rt] = read_c0_count(); |
| return 0; |
| case MIPS_HWR_CCRES: /* Count register resolution */ |
| switch (current_cpu_type()) { |
| case CPU_20KC: |
| case CPU_25KF: |
| regs->regs[rt] = 1; |
| break; |
| default: |
| regs->regs[rt] = 2; |
| } |
| return 0; |
| case MIPS_HWR_ULR: /* Read UserLocal register */ |
| regs->regs[rt] = ti->tp_value; |
| return 0; |
| default: |
| return -1; |
| } |
| } |
| |
| static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode) |
| { |
| if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) { |
| int rd = (opcode & RD) >> 11; |
| int rt = (opcode & RT) >> 16; |
| |
| simulate_rdhwr(regs, rd, rt); |
| return 0; |
| } |
| |
| /* Not ours. */ |
| return -1; |
| } |
| |
| static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode) |
| { |
| if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) { |
| int rd = (opcode & MM_RS) >> 16; |
| int rt = (opcode & MM_RT) >> 21; |
| simulate_rdhwr(regs, rd, rt); |
| return 0; |
| } |
| |
| /* Not ours. */ |
| return -1; |
| } |
| |
| static int simulate_sync(struct pt_regs *regs, unsigned int opcode) |
| { |
| if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) { |
| perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, |
| 1, regs, 0); |
| return 0; |
| } |
| |
| return -1; /* Must be something else ... */ |
| } |
| |
| asmlinkage void do_ov(struct pt_regs *regs) |
| { |
| enum ctx_state prev_state; |
| |
| prev_state = exception_enter(); |
| die_if_kernel("Integer overflow", regs); |
| |
| force_sig_fault(SIGFPE, FPE_INTOVF, (void __user *)regs->cp0_epc); |
| exception_exit(prev_state); |
| } |
| |
| #ifdef CONFIG_MIPS_FP_SUPPORT |
| |
| /* |
| * Send SIGFPE according to FCSR Cause bits, which must have already |
| * been masked against Enable bits. This is impotant as Inexact can |
| * happen together with Overflow or Underflow, and `ptrace' can set |
| * any bits. |
| */ |
| void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr, |
| struct task_struct *tsk) |
| { |
| int si_code = FPE_FLTUNK; |
| |
| if (fcr31 & FPU_CSR_INV_X) |
| si_code = FPE_FLTINV; |
| else if (fcr31 & FPU_CSR_DIV_X) |
| si_code = FPE_FLTDIV; |
| else if (fcr31 & FPU_CSR_OVF_X) |
| si_code = FPE_FLTOVF; |
| else if (fcr31 & FPU_CSR_UDF_X) |
| si_code = FPE_FLTUND; |
| else if (fcr31 & FPU_CSR_INE_X) |
| si_code = FPE_FLTRES; |
| |
| force_sig_fault_to_task(SIGFPE, si_code, fault_addr, tsk); |
| } |
| |
| int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31) |
| { |
| int si_code; |
| struct vm_area_struct *vma; |
| |
| switch (sig) { |
| case 0: |
| return 0; |
| |
| case SIGFPE: |
| force_fcr31_sig(fcr31, fault_addr, current); |
| return 1; |
| |
| case SIGBUS: |
| force_sig_fault(SIGBUS, BUS_ADRERR, fault_addr); |
| return 1; |
| |
| case SIGSEGV: |
| down_read(¤t->mm->mmap_sem); |
| vma = find_vma(current->mm, (unsigned long)fault_addr); |
| if (vma && (vma->vm_start <= (unsigned long)fault_addr)) |
| si_code = SEGV_ACCERR; |
| else |
| si_code = SEGV_MAPERR; |
| up_read(¤t->mm->mmap_sem); |
| force_sig_fault(SIGSEGV, si_code, fault_addr); |
| return 1; |
| |
| default: |
| force_sig(sig); |
| return 1; |
| } |
| } |
| |
| static int simulate_fp(struct pt_regs *regs, unsigned int opcode, |
| unsigned long old_epc, unsigned long old_ra) |
| { |
| union mips_instruction inst = { .word = opcode }; |
| void __user *fault_addr; |
| unsigned long fcr31; |
| int sig; |
| |
| /* If it's obviously not an FP instruction, skip it */ |
| switch (inst.i_format.opcode) { |
| case cop1_op: |
| case cop1x_op: |
| case lwc1_op: |
| case ldc1_op: |
| case swc1_op: |
| case sdc1_op: |
| break; |
| |
| default: |
| return -1; |
| } |
| |
| /* |
| * do_ri skipped over the instruction via compute_return_epc, undo |
| * that for the FPU emulator. |
| */ |
| regs->cp0_epc = old_epc; |
| regs->regs[31] = old_ra; |
| |
| /* Run the emulator */ |
| sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1, |
| &fault_addr); |
| |
| /* |
| * We can't allow the emulated instruction to leave any |
| * enabled Cause bits set in $fcr31. |
| */ |
| fcr31 = mask_fcr31_x(current->thread.fpu.fcr31); |
| current->thread.fpu.fcr31 &= ~fcr31; |
| |
| /* Restore the hardware register state */ |
| own_fpu(1); |
| |
| /* Send a signal if required. */ |
| process_fpemu_return(sig, fault_addr, fcr31); |
| |
| return 0; |
| } |
| |
| /* |
| * XXX Delayed fp exceptions when doing a lazy ctx switch XXX |
| */ |
| asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31) |
| { |
| enum ctx_state prev_state; |
| void __user *fault_addr; |
| int sig; |
| |
| prev_state = exception_enter(); |
| if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr, |
| SIGFPE) == NOTIFY_STOP) |
| goto out; |
| |
| /* Clear FCSR.Cause before enabling interrupts */ |
| write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31)); |
| local_irq_enable(); |
| |
| die_if_kernel("FP exception in kernel code", regs); |
| |
| if (fcr31 & FPU_CSR_UNI_X) { |
| /* |
| * Unimplemented operation exception. If we've got the full |
| * software emulator on-board, let's use it... |
| * |
| * Force FPU to dump state into task/thread context. We're |
| * moving a lot of data here for what is probably a single |
| * instruction, but the alternative is to pre-decode the FP |
| * register operands before invoking the emulator, which seems |
| * a bit extreme for what should be an infrequent event. |
| */ |
| |
| /* Run the emulator */ |
| sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1, |
| &fault_addr); |
| |
| /* |
| * We can't allow the emulated instruction to leave any |
| * enabled Cause bits set in $fcr31. |
| */ |
| fcr31 = mask_fcr31_x(current->thread.fpu.fcr31); |
| current->thread.fpu.fcr31 &= ~fcr31; |
| |
| /* Restore the hardware register state */ |
| own_fpu(1); /* Using the FPU again. */ |
| } else { |
| sig = SIGFPE; |
| fault_addr = (void __user *) regs->cp0_epc; |
| } |
| |
| /* Send a signal if required. */ |
| process_fpemu_return(sig, fault_addr, fcr31); |
| |
| out: |
| exception_exit(prev_state); |
| } |
| |
| /* |
| * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've |
| * emulated more than some threshold number of instructions, force migration to |
| * a "CPU" that has FP support. |
| */ |
| static void mt_ase_fp_affinity(void) |
| { |
| #ifdef CONFIG_MIPS_MT_FPAFF |
| if (mt_fpemul_threshold > 0 && |
| ((current->thread.emulated_fp++ > mt_fpemul_threshold))) { |
| /* |
| * If there's no FPU present, or if the application has already |
| * restricted the allowed set to exclude any CPUs with FPUs, |
| * we'll skip the procedure. |
| */ |
| if (cpumask_intersects(¤t->cpus_mask, &mt_fpu_cpumask)) { |
| cpumask_t tmask; |
| |
| current->thread.user_cpus_allowed |
| = current->cpus_mask; |
| cpumask_and(&tmask, ¤t->cpus_mask, |
| &mt_fpu_cpumask); |
| set_cpus_allowed_ptr(current, &tmask); |
| set_thread_flag(TIF_FPUBOUND); |
| } |
| } |
| #endif /* CONFIG_MIPS_MT_FPAFF */ |
| } |
| |
| #else /* !CONFIG_MIPS_FP_SUPPORT */ |
| |
| static int simulate_fp(struct pt_regs *regs, unsigned int opcode, |
| unsigned long old_epc, unsigned long old_ra) |
| { |
| return -1; |
| } |
| |
| #endif /* !CONFIG_MIPS_FP_SUPPORT */ |
| |
| void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code, |
| const char *str) |
| { |
| char b[40]; |
| |
| #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP |
| if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr, |
| SIGTRAP) == NOTIFY_STOP) |
| return; |
| #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ |
| |
| if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr, |
| SIGTRAP) == NOTIFY_STOP) |
| return; |
| |
| /* |
| * A short test says that IRIX 5.3 sends SIGTRAP for all trap |
| * insns, even for trap and break codes that indicate arithmetic |
| * failures. Weird ... |
| * But should we continue the brokenness??? --macro |
| */ |
| switch (code) { |
| case BRK_OVERFLOW: |
| case BRK_DIVZERO: |
| scnprintf(b, sizeof(b), "%s instruction in kernel code", str); |
| die_if_kernel(b, regs); |
| force_sig_fault(SIGFPE, |
| code == BRK_DIVZERO ? FPE_INTDIV : FPE_INTOVF, |
| (void __user *) regs->cp0_epc); |
| break; |
| case BRK_BUG: |
| die_if_kernel("Kernel bug detected", regs); |
| force_sig(SIGTRAP); |
| break; |
| case BRK_MEMU: |
| /* |
| * This breakpoint code is used by the FPU emulator to retake |
| * control of the CPU after executing the instruction from the |
| * delay slot of an emulated branch. |
| * |
| * Terminate if exception was recognized as a delay slot return |
| * otherwise handle as normal. |
| */ |
| if (do_dsemulret(regs)) |
| return; |
| |
| die_if_kernel("Math emu break/trap", regs); |
| force_sig(SIGTRAP); |
| break; |
| default: |
| scnprintf(b, sizeof(b), "%s instruction in kernel code", str); |
| die_if_kernel(b, regs); |
| if (si_code) { |
| force_sig_fault(SIGTRAP, si_code, NULL); |
| } else { |
| force_sig(SIGTRAP); |
| } |
| } |
| } |
| |
| asmlinkage void do_bp(struct pt_regs *regs) |
| { |
| unsigned long epc = msk_isa16_mode(exception_epc(regs)); |
| unsigned int opcode, bcode; |
| enum ctx_state prev_state; |
| mm_segment_t seg; |
| |
| seg = get_fs(); |
| if (!user_mode(regs)) |
| set_fs(KERNEL_DS); |
| |
| prev_state = exception_enter(); |
| current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; |
| if (get_isa16_mode(regs->cp0_epc)) { |
| u16 instr[2]; |
| |
| if (__get_user(instr[0], (u16 __user *)epc)) |
| goto out_sigsegv; |
| |
| if (!cpu_has_mmips) { |
| /* MIPS16e mode */ |
| bcode = (instr[0] >> 5) & 0x3f; |
| } else if (mm_insn_16bit(instr[0])) { |
| /* 16-bit microMIPS BREAK */ |
| bcode = instr[0] & 0xf; |
| } else { |
| /* 32-bit microMIPS BREAK */ |
| if (__get_user(instr[1], (u16 __user *)(epc + 2))) |
| goto out_sigsegv; |
| opcode = (instr[0] << 16) | instr[1]; |
| bcode = (opcode >> 6) & ((1 << 20) - 1); |
| } |
| } else { |
| if (__get_user(opcode, (unsigned int __user *)epc)) |
| goto out_sigsegv; |
| bcode = (opcode >> 6) & ((1 << 20) - 1); |
| } |
| |
| /* |
| * There is the ancient bug in the MIPS assemblers that the break |
| * code starts left to bit 16 instead to bit 6 in the opcode. |
| * Gas is bug-compatible, but not always, grrr... |
| * We handle both cases with a simple heuristics. --macro |
| */ |
| if (bcode >= (1 << 10)) |
| bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10); |
| |
| /* |
| * notify the kprobe handlers, if instruction is likely to |
| * pertain to them. |
| */ |
| switch (bcode) { |
| case BRK_UPROBE: |
| if (notify_die(DIE_UPROBE, "uprobe", regs, bcode, |
| current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) |
| goto out; |
| else |
| break; |
| case BRK_UPROBE_XOL: |
| if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode, |
| current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) |
| goto out; |
| else |
| break; |
| case BRK_KPROBE_BP: |
| if (notify_die(DIE_BREAK, "debug", regs, bcode, |
| current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) |
| goto out; |
| else |
| break; |
| case BRK_KPROBE_SSTEPBP: |
| if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode, |
| current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) |
| goto out; |
| else |
| break; |
| default: |
| break; |
| } |
| |
| do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break"); |
| |
| out: |
| set_fs(seg); |
| exception_exit(prev_state); |
| return; |
| |
| out_sigsegv: |
| force_sig(SIGSEGV); |
| goto out; |
| } |
| |
| asmlinkage void do_tr(struct pt_regs *regs) |
| { |
| u32 opcode, tcode = 0; |
| enum ctx_state prev_state; |
| u16 instr[2]; |
| mm_segment_t seg; |
| unsigned long epc = msk_isa16_mode(exception_epc(regs)); |
| |
| seg = get_fs(); |
| if (!user_mode(regs)) |
| set_fs(KERNEL_DS); |
| |
| prev_state = exception_enter(); |
| current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; |
| if (get_isa16_mode(regs->cp0_epc)) { |
| if (__get_user(instr[0], (u16 __user *)(epc + 0)) || |
| __get_user(instr[1], (u16 __user *)(epc + 2))) |
| goto out_sigsegv; |
| opcode = (instr[0] << 16) | instr[1]; |
| /* Immediate versions don't provide a code. */ |
| if (!(opcode & OPCODE)) |
| tcode = (opcode >> 12) & ((1 << 4) - 1); |
| } else { |
| if (__get_user(opcode, (u32 __user *)epc)) |
| goto out_sigsegv; |
| /* Immediate versions don't provide a code. */ |
| if (!(opcode & OPCODE)) |
| tcode = (opcode >> 6) & ((1 << 10) - 1); |
| } |
| |
| do_trap_or_bp(regs, tcode, 0, "Trap"); |
| |
| out: |
| set_fs(seg); |
| exception_exit(prev_state); |
| return; |
| |
| out_sigsegv: |
| force_sig(SIGSEGV); |
| goto out; |
| } |
| |
| asmlinkage void do_ri(struct pt_regs *regs) |
| { |
| unsigned int __user *epc = (unsigned int __user *)exception_epc(regs); |
| unsigned long old_epc = regs->cp0_epc; |
| unsigned long old31 = regs->regs[31]; |
| enum ctx_state prev_state; |
| unsigned int opcode = 0; |
| int status = -1; |
| |
| /* |
| * Avoid any kernel code. Just emulate the R2 instruction |
| * as quickly as possible. |
| */ |
| if (mipsr2_emulation && cpu_has_mips_r6 && |
| likely(user_mode(regs)) && |
| likely(get_user(opcode, epc) >= 0)) { |
| unsigned long fcr31 = 0; |
| |
| status = mipsr2_decoder(regs, opcode, &fcr31); |
| switch (status) { |
| case 0: |
| case SIGEMT: |
| return; |
| case SIGILL: |
| goto no_r2_instr; |
| default: |
| process_fpemu_return(status, |
| ¤t->thread.cp0_baduaddr, |
| fcr31); |
| return; |
| } |
| } |
| |
| no_r2_instr: |
| |
| prev_state = exception_enter(); |
| current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; |
| |
| if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr, |
| SIGILL) == NOTIFY_STOP) |
| goto out; |
| |
| die_if_kernel("Reserved instruction in kernel code", regs); |
| |
| if (unlikely(compute_return_epc(regs) < 0)) |
| goto out; |
| |
| if (!get_isa16_mode(regs->cp0_epc)) { |
| if (unlikely(get_user(opcode, epc) < 0)) |
| status = SIGSEGV; |
| |
| if (!cpu_has_llsc && status < 0) |
| status = simulate_llsc(regs, opcode); |
| |
| if (status < 0) |
| status = simulate_rdhwr_normal(regs, opcode); |
| |
| if (status < 0) |
| status = simulate_sync(regs, opcode); |
| |
| if (status < 0) |
| status = simulate_fp(regs, opcode, old_epc, old31); |
| } else if (cpu_has_mmips) { |
| unsigned short mmop[2] = { 0 }; |
| |
| if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0)) |
| status = SIGSEGV; |
| if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0)) |
| status = SIGSEGV; |
| opcode = mmop[0]; |
| opcode = (opcode << 16) | mmop[1]; |
| |
| if (status < 0) |
| status = simulate_rdhwr_mm(regs, opcode); |
| } |
| |
| if (status < 0) |
| status = SIGILL; |
| |
| if (unlikely(status > 0)) { |
| regs->cp0_epc = old_epc; /* Undo skip-over. */ |
| regs->regs[31] = old31; |
| force_sig(status); |
| } |
| |
| out: |
| exception_exit(prev_state); |
| } |
| |
| /* |
| * No lock; only written during early bootup by CPU 0. |
| */ |
| static RAW_NOTIFIER_HEAD(cu2_chain); |
| |
| int __ref register_cu2_notifier(struct notifier_block *nb) |
| { |
| return raw_notifier_chain_register(&cu2_chain, nb); |
| } |
| |
| int cu2_notifier_call_chain(unsigned long val, void *v) |
| { |
| return raw_notifier_call_chain(&cu2_chain, val, v); |
| } |
| |
| static int default_cu2_call(struct notifier_block *nfb, unsigned long action, |
| void *data) |
| { |
| struct pt_regs *regs = data; |
| |
| die_if_kernel("COP2: Unhandled kernel unaligned access or invalid " |
| "instruction", regs); |
| force_sig(SIGILL); |
| |
| return NOTIFY_OK; |
| } |
| |
| #ifdef CONFIG_MIPS_FP_SUPPORT |
| |
| static int enable_restore_fp_context(int msa) |
| { |
| int err, was_fpu_owner, prior_msa; |
| bool first_fp; |
| |
| /* Initialize context if it hasn't been used already */ |
| first_fp = init_fp_ctx(current); |
| |
| if (first_fp) { |
| preempt_disable(); |
| err = own_fpu_inatomic(1); |
| if (msa && !err) { |
| enable_msa(); |
| set_thread_flag(TIF_USEDMSA); |
| set_thread_flag(TIF_MSA_CTX_LIVE); |
| } |
| preempt_enable(); |
| return err; |
| } |
| |
| /* |
| * This task has formerly used the FP context. |
| * |
| * If this thread has no live MSA vector context then we can simply |
| * restore the scalar FP context. If it has live MSA vector context |
| * (that is, it has or may have used MSA since last performing a |
| * function call) then we'll need to restore the vector context. This |
| * applies even if we're currently only executing a scalar FP |
| * instruction. This is because if we were to later execute an MSA |
| * instruction then we'd either have to: |
| * |
| * - Restore the vector context & clobber any registers modified by |
| * scalar FP instructions between now & then. |
| * |
| * or |
| * |
| * - Not restore the vector context & lose the most significant bits |
| * of all vector registers. |
| * |
| * Neither of those options is acceptable. We cannot restore the least |
| * significant bits of the registers now & only restore the most |
| * significant bits later because the most significant bits of any |
| * vector registers whose aliased FP register is modified now will have |
| * been zeroed. We'd have no way to know that when restoring the vector |
| * context & thus may load an outdated value for the most significant |
| * bits of a vector register. |
| */ |
| if (!msa && !thread_msa_context_live()) |
| return own_fpu(1); |
| |
| /* |
| * This task is using or has previously used MSA. Thus we require |
| * that Status.FR == 1. |
| */ |
| preempt_disable(); |
| was_fpu_owner = is_fpu_owner(); |
| err = own_fpu_inatomic(0); |
| if (err) |
| goto out; |
| |
| enable_msa(); |
| write_msa_csr(current->thread.fpu.msacsr); |
| set_thread_flag(TIF_USEDMSA); |
| |
| /* |
| * If this is the first time that the task is using MSA and it has |
| * previously used scalar FP in this time slice then we already nave |
| * FP context which we shouldn't clobber. We do however need to clear |
| * the upper 64b of each vector register so that this task has no |
| * opportunity to see data left behind by another. |
| */ |
| prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE); |
| if (!prior_msa && was_fpu_owner) { |
| init_msa_upper(); |
| |
| goto out; |
| } |
| |
| if (!prior_msa) { |
| /* |
| * Restore the least significant 64b of each vector register |
| * from the existing scalar FP context. |
| */ |
| _restore_fp(current); |
| |
| /* |
| * The task has not formerly used MSA, so clear the upper 64b |
| * of each vector register such that it cannot see data left |
| * behind by another task. |
| */ |
| init_msa_upper(); |
| } else { |
| /* We need to restore the vector context. */ |
| restore_msa(current); |
| |
| /* Restore the scalar FP control & status register */ |
| if (!was_fpu_owner) |
| write_32bit_cp1_register(CP1_STATUS, |
| current->thread.fpu.fcr31); |
| } |
| |
| out: |
| preempt_enable(); |
| |
| return 0; |
| } |
| |
| #else /* !CONFIG_MIPS_FP_SUPPORT */ |
| |
| static int enable_restore_fp_context(int msa) |
| { |
| return SIGILL; |
| } |
| |
| #endif /* CONFIG_MIPS_FP_SUPPORT */ |
| |
| asmlinkage void do_cpu(struct pt_regs *regs) |
| { |
| enum ctx_state prev_state; |
| unsigned int __user *epc; |
| unsigned long old_epc, old31; |
| unsigned int opcode; |
| unsigned int cpid; |
| int status; |
| |
| prev_state = exception_enter(); |
| cpid = (regs->cp0_cause >> CAUSEB_CE) & 3; |
| |
| if (cpid != 2) |
| die_if_kernel("do_cpu invoked from kernel context!", regs); |
| |
| switch (cpid) { |
| case 0: |
| epc = (unsigned int __user *)exception_epc(regs); |
| old_epc = regs->cp0_epc; |
| old31 = regs->regs[31]; |
| opcode = 0; |
| status = -1; |
| |
| if (unlikely(compute_return_epc(regs) < 0)) |
| break; |
| |
| if (!get_isa16_mode(regs->cp0_epc)) { |
| if (unlikely(get_user(opcode, epc) < 0)) |
| status = SIGSEGV; |
| |
| if (!cpu_has_llsc && status < 0) |
| status = simulate_llsc(regs, opcode); |
| } |
| |
| if (status < 0) |
| status = SIGILL; |
| |
| if (unlikely(status > 0)) { |
| regs->cp0_epc = old_epc; /* Undo skip-over. */ |
| regs->regs[31] = old31; |
| force_sig(status); |
| } |
| |
| break; |
| |
| #ifdef CONFIG_MIPS_FP_SUPPORT |
| case 3: |
| /* |
| * The COP3 opcode space and consequently the CP0.Status.CU3 |
| * bit and the CP0.Cause.CE=3 encoding have been removed as |
| * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs |
| * up the space has been reused for COP1X instructions, that |
| * are enabled by the CP0.Status.CU1 bit and consequently |
| * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable |
| * exceptions. Some FPU-less processors that implement one |
| * of these ISAs however use this code erroneously for COP1X |
| * instructions. Therefore we redirect this trap to the FP |
| * emulator too. |
| */ |
| if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) { |
| force_sig(SIGILL); |
| break; |
| } |
| /* Fall through. */ |
| |
| case 1: { |
| void __user *fault_addr; |
| unsigned long fcr31; |
| int err, sig; |
| |
| err = enable_restore_fp_context(0); |
| |
| if (raw_cpu_has_fpu && !err) |
| break; |
| |
| sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 0, |
| &fault_addr); |
| |
| /* |
| * We can't allow the emulated instruction to leave |
| * any enabled Cause bits set in $fcr31. |
| */ |
| fcr31 = mask_fcr31_x(current->thread.fpu.fcr31); |
| current->thread.fpu.fcr31 &= ~fcr31; |
| |
| /* Send a signal if required. */ |
| if (!process_fpemu_return(sig, fault_addr, fcr31) && !err) |
| mt_ase_fp_affinity(); |
| |
| break; |
| } |
| #else /* CONFIG_MIPS_FP_SUPPORT */ |
| case 1: |
| case 3: |
| force_sig(SIGILL); |
| break; |
| #endif /* CONFIG_MIPS_FP_SUPPORT */ |
| |
| case 2: |
| raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs); |
| break; |
| } |
| |
| exception_exit(prev_state); |
| } |
| |
| asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr) |
| { |
| enum ctx_state prev_state; |
| |
| prev_state = exception_enter(); |
| current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; |
| if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0, |
| current->thread.trap_nr, SIGFPE) == NOTIFY_STOP) |
| goto out; |
| |
| /* Clear MSACSR.Cause before enabling interrupts */ |
| write_msa_csr(msacsr & ~MSA_CSR_CAUSEF); |
| local_irq_enable(); |
| |
| die_if_kernel("do_msa_fpe invoked from kernel context!", regs); |
| force_sig(SIGFPE); |
| out: |
| exception_exit(prev_state); |
| } |
| |
| asmlinkage void do_msa(struct pt_regs *regs) |
| { |
| enum ctx_state prev_state; |
| int err; |
| |
| prev_state = exception_enter(); |
| |
| if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) { |
| force_sig(SIGILL); |
| goto out; |
| } |
| |
| die_if_kernel("do_msa invoked from kernel context!", regs); |
| |
| err = enable_restore_fp_context(1); |
| if (err) |
| force_sig(SIGILL); |
| out: |
| exception_exit(prev_state); |
| } |
| |
| asmlinkage void do_mdmx(struct pt_regs *regs) |
| { |
| enum ctx_state prev_state; |
| |
| prev_state = exception_enter(); |
| force_sig(SIGILL); |
| exception_exit(prev_state); |
| } |
| |
| /* |
| * Called with interrupts disabled. |
| */ |
| asmlinkage void do_watch(struct pt_regs *regs) |
| { |
| enum ctx_state prev_state; |
| |
| prev_state = exception_enter(); |
| /* |
| * Clear WP (bit 22) bit of cause register so we don't loop |
| * forever. |
| */ |
| clear_c0_cause(CAUSEF_WP); |
| |
| /* |
| * If the current thread has the watch registers loaded, save |
| * their values and send SIGTRAP. Otherwise another thread |
| * left the registers set, clear them and continue. |
| */ |
| if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) { |
| mips_read_watch_registers(); |
| local_irq_enable(); |
| force_sig_fault(SIGTRAP, TRAP_HWBKPT, NULL); |
| } else { |
| mips_clear_watch_registers(); |
| local_irq_enable(); |
| } |
| exception_exit(prev_state); |
| } |
| |
| asmlinkage void do_mcheck(struct pt_regs *regs) |
| { |
| int multi_match = regs->cp0_status & ST0_TS; |
| enum ctx_state prev_state; |
| mm_segment_t old_fs = get_fs(); |
| |
| prev_state = exception_enter(); |
| show_regs(regs); |
| |
| if (multi_match) { |
| dump_tlb_regs(); |
| pr_info("\n"); |
| dump_tlb_all(); |
| } |
| |
| if (!user_mode(regs)) |
| set_fs(KERNEL_DS); |
| |
| show_code((unsigned int __user *) regs->cp0_epc); |
| |
| set_fs(old_fs); |
| |
| /* |
| * Some chips may have other causes of machine check (e.g. SB1 |
| * graduation timer) |
| */ |
| panic("Caught Machine Check exception - %scaused by multiple " |
| "matching entries in the TLB.", |
| (multi_match) ? "" : "not "); |
| } |
| |
| asmlinkage void do_mt(struct pt_regs *regs) |
| { |
| int subcode; |
| |
| subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT) |
| >> VPECONTROL_EXCPT_SHIFT; |
| switch (subcode) { |
| case 0: |
| printk(KERN_DEBUG "Thread Underflow\n"); |
| break; |
| case 1: |
| printk(KERN_DEBUG "Thread Overflow\n"); |
| break; |
| case 2: |
| printk(KERN_DEBUG "Invalid YIELD Qualifier\n"); |
| break; |
| case 3: |
| printk(KERN_DEBUG "Gating Storage Exception\n"); |
| break; |
| case 4: |
| printk(KERN_DEBUG "YIELD Scheduler Exception\n"); |
| break; |
| case 5: |
| printk(KERN_DEBUG "Gating Storage Scheduler Exception\n"); |
| break; |
| default: |
| printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n", |
| subcode); |
| break; |
| } |
| die_if_kernel("MIPS MT Thread exception in kernel", regs); |
| |
| force_sig(SIGILL); |
| } |
| |
| |
| asmlinkage void do_dsp(struct pt_regs *regs) |
| { |
| if (cpu_has_dsp) |
| panic("Unexpected DSP exception"); |
| |
| force_sig(SIGILL); |
| } |
| |
| asmlinkage void do_reserved(struct pt_regs *regs) |
| { |
| /* |
| * Game over - no way to handle this if it ever occurs. Most probably |
| * caused by a new unknown cpu type or after another deadly |
| * hard/software error. |
| */ |
| show_regs(regs); |
| panic("Caught reserved exception %ld - should not happen.", |
| (regs->cp0_cause & 0x7f) >> 2); |
| } |
| |
| static int __initdata l1parity = 1; |
| static int __init nol1parity(char *s) |
| { |
| l1parity = 0; |
| return 1; |
| } |
| __setup("nol1par", nol1parity); |
| static int __initdata l2parity = 1; |
| static int __init nol2parity(char *s) |
| { |
| l2parity = 0; |
| return 1; |
| } |
| __setup("nol2par", nol2parity); |
| |
| /* |
| * Some MIPS CPUs can enable/disable for cache parity detection, but do |
| * it different ways. |
| */ |
| static inline void parity_protection_init(void) |
| { |
| #define ERRCTL_PE 0x80000000 |
| #define ERRCTL_L2P 0x00800000 |
| |
| if (mips_cm_revision() >= CM_REV_CM3) { |
| ulong gcr_ectl, cp0_ectl; |
| |
| /* |
| * With CM3 systems we need to ensure that the L1 & L2 |
| * parity enables are set to the same value, since this |
| * is presumed by the hardware engineers. |
| * |
| * If the user disabled either of L1 or L2 ECC checking, |
| * disable both. |
| */ |
| l1parity &= l2parity; |
| l2parity &= l1parity; |
| |
| /* Probe L1 ECC support */ |
| cp0_ectl = read_c0_ecc(); |
| write_c0_ecc(cp0_ectl | ERRCTL_PE); |
| back_to_back_c0_hazard(); |
| cp0_ectl = read_c0_ecc(); |
| |
| /* Probe L2 ECC support */ |
| gcr_ectl = read_gcr_err_control(); |
| |
| if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT) || |
| !(cp0_ectl & ERRCTL_PE)) { |
| /* |
| * One of L1 or L2 ECC checking isn't supported, |
| * so we cannot enable either. |
| */ |
| l1parity = l2parity = 0; |
| } |
| |
| /* Configure L1 ECC checking */ |
| if (l1parity) |
| cp0_ectl |= ERRCTL_PE; |
| else |
| cp0_ectl &= ~ERRCTL_PE; |
| write_c0_ecc(cp0_ectl); |
| back_to_back_c0_hazard(); |
| WARN_ON(!!(read_c0_ecc() & ERRCTL_PE) != l1parity); |
| |
| /* Configure L2 ECC checking */ |
| if (l2parity) |
| gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN; |
| else |
| gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN; |
| write_gcr_err_control(gcr_ectl); |
| gcr_ectl = read_gcr_err_control(); |
| gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN; |
| WARN_ON(!!gcr_ectl != l2parity); |
| |
| pr_info("Cache parity protection %sabled\n", |
| l1parity ? "en" : "dis"); |
| return; |
| } |
| |
| switch (current_cpu_type()) { |
| case CPU_24K: |
| case CPU_34K: |
| case CPU_74K: |
| case CPU_1004K: |
| case CPU_1074K: |
| case CPU_INTERAPTIV: |
| case CPU_PROAPTIV: |
| case CPU_P5600: |
| case CPU_QEMU_GENERIC: |
| case CPU_P6600: |
| { |
| unsigned long errctl; |
| unsigned int l1parity_present, l2parity_present; |
| |
| errctl = read_c0_ecc(); |
| errctl &= ~(ERRCTL_PE|ERRCTL_L2P); |
| |
| /* probe L1 parity support */ |
| write_c0_ecc(errctl | ERRCTL_PE); |
| back_to_back_c0_hazard(); |
| l1parity_present = (read_c0_ecc() & ERRCTL_PE); |
| |
| /* probe L2 parity support */ |
| write_c0_ecc(errctl|ERRCTL_L2P); |
| back_to_back_c0_hazard(); |
| l2parity_present = (read_c0_ecc() & ERRCTL_L2P); |
| |
| if (l1parity_present && l2parity_present) { |
| if (l1parity) |
| errctl |= ERRCTL_PE; |
| if (l1parity ^ l2parity) |
| errctl |= ERRCTL_L2P; |
| } else if (l1parity_present) { |
| if (l1parity) |
| errctl |= ERRCTL_PE; |
| } else if (l2parity_present) { |
| if (l2parity) |
| errctl |= ERRCTL_L2P; |
| } else { |
| /* No parity available */ |
| } |
| |
| printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl); |
| |
| write_c0_ecc(errctl); |
| back_to_back_c0_hazard(); |
| errctl = read_c0_ecc(); |
| printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl); |
| |
| if (l1parity_present) |
| printk(KERN_INFO "Cache parity protection %sabled\n", |
| (errctl & ERRCTL_PE) ? "en" : "dis"); |
| |
| if (l2parity_present) { |
| if (l1parity_present && l1parity) |
| errctl ^= ERRCTL_L2P; |
| printk(KERN_INFO "L2 cache parity protection %sabled\n", |
| (errctl & ERRCTL_L2P) ? "en" : "dis"); |
| } |
| } |
| break; |
| |
| case CPU_5KC: |
| case CPU_5KE: |
| case CPU_LOONGSON1: |
| write_c0_ecc(0x80000000); |
| back_to_back_c0_hazard(); |
| /* Set the PE bit (bit 31) in the c0_errctl register. */ |
| printk(KERN_INFO "Cache parity protection %sabled\n", |
| (read_c0_ecc() & 0x80000000) ? "en" : "dis"); |
| break; |
| case CPU_20KC: |
| case CPU_25KF: |
| /* Clear the DE bit (bit 16) in the c0_status register. */ |
| printk(KERN_INFO "Enable cache parity protection for " |
| "MIPS 20KC/25KF CPUs.\n"); |
| clear_c0_status(ST0_DE); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| asmlinkage void cache_parity_error(void) |
| { |
| const int field = 2 * sizeof(unsigned long); |
| unsigned int reg_val; |
| |
| /* For the moment, report the problem and hang. */ |
| printk("Cache error exception:\n"); |
| printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc()); |
| reg_val = read_c0_cacheerr(); |
| printk("c0_cacheerr == %08x\n", reg_val); |
| |
| printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n", |
| reg_val & (1<<30) ? "secondary" : "primary", |
| reg_val & (1<<31) ? "data" : "insn"); |
| if ((cpu_has_mips_r2_r6) && |
| ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) { |
| pr_err("Error bits: %s%s%s%s%s%s%s%s\n", |
| reg_val & (1<<29) ? "ED " : "", |
| reg_val & (1<<28) ? "ET " : "", |
| reg_val & (1<<27) ? "ES " : "", |
| reg_val & (1<<26) ? "EE " : "", |
| reg_val & (1<<25) ? "EB " : "", |
| reg_val & (1<<24) ? "EI " : "", |
| reg_val & (1<<23) ? "E1 " : "", |
| reg_val & (1<<22) ? "E0 " : ""); |
| } else { |
| pr_err("Error bits: %s%s%s%s%s%s%s\n", |
| reg_val & (1<<29) ? "ED " : "", |
| reg_val & (1<<28) ? "ET " : "", |
| reg_val & (1<<26) ? "EE " : "", |
| reg_val & (1<<25) ? "EB " : "", |
| reg_val & (1<<24) ? "EI " : "", |
| reg_val & (1<<23) ? "E1 " : "", |
| reg_val & (1<<22) ? "E0 " : ""); |
| } |
| printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1)); |
| |
| #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64) |
| if (reg_val & (1<<22)) |
| printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0()); |
| |
| if (reg_val & (1<<23)) |
| printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1()); |
| #endif |
| |
| panic("Can't handle the cache error!"); |
| } |
| |
| asmlinkage void do_ftlb(void) |
| { |
| const int field = 2 * sizeof(unsigned long); |
| unsigned int reg_val; |
| |
| /* For the moment, report the problem and hang. */ |
| if ((cpu_has_mips_r2_r6) && |
| (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) || |
| ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) { |
| pr_err("FTLB error exception, cp0_ecc=0x%08x:\n", |
| read_c0_ecc()); |
| pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc()); |
| reg_val = read_c0_cacheerr(); |
| pr_err("c0_cacheerr == %08x\n", reg_val); |
| |
| if ((reg_val & 0xc0000000) == 0xc0000000) { |
| pr_err("Decoded c0_cacheerr: FTLB parity error\n"); |
| } else { |
| pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n", |
| reg_val & (1<<30) ? "secondary" : "primary", |
| reg_val & (1<<31) ? "data" : "insn"); |
| } |
| } else { |
| pr_err("FTLB error exception\n"); |
| } |
| /* Just print the cacheerr bits for now */ |
| cache_parity_error(); |
| } |
| |
| /* |
| * SDBBP EJTAG debug exception handler. |
| * We skip the instruction and return to the next instruction. |
| */ |
| void ejtag_exception_handler(struct pt_regs *regs) |
| { |
| const int field = 2 * sizeof(unsigned long); |
| unsigned long depc, old_epc, old_ra; |
| unsigned int debug; |
| |
| printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n"); |
| depc = read_c0_depc(); |
| debug = read_c0_debug(); |
| printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug); |
| if (debug & 0x80000000) { |
| /* |
| * In branch delay slot. |
| * We cheat a little bit here and use EPC to calculate the |
| * debug return address (DEPC). EPC is restored after the |
| * calculation. |
| */ |
| old_epc = regs->cp0_epc; |
| old_ra = regs->regs[31]; |
| regs->cp0_epc = depc; |
| compute_return_epc(regs); |
| depc = regs->cp0_epc; |
| regs->cp0_epc = old_epc; |
| regs->regs[31] = old_ra; |
| } else |
| depc += 4; |
| write_c0_depc(depc); |
| |
| #if 0 |
| printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n"); |
| write_c0_debug(debug | 0x100); |
| #endif |
| } |
| |
| /* |
| * NMI exception handler. |
| * No lock; only written during early bootup by CPU 0. |
| */ |
| static RAW_NOTIFIER_HEAD(nmi_chain); |
| |
| int register_nmi_notifier(struct notifier_block *nb) |
| { |
| return raw_notifier_chain_register(&nmi_chain, nb); |
| } |
| |
| void __noreturn nmi_exception_handler(struct pt_regs *regs) |
| { |
| char str[100]; |
| |
| nmi_enter(); |
| raw_notifier_call_chain(&nmi_chain, 0, regs); |
| bust_spinlocks(1); |
| snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n", |
| smp_processor_id(), regs->cp0_epc); |
| regs->cp0_epc = read_c0_errorepc(); |
| die(str, regs); |
| nmi_exit(); |
| } |
| |
| #define VECTORSPACING 0x100 /* for EI/VI mode */ |
| |
| unsigned long ebase; |
| EXPORT_SYMBOL_GPL(ebase); |
| unsigned long exception_handlers[32]; |
| unsigned long vi_handlers[64]; |
| |
| void __init *set_except_vector(int n, void *addr) |
| { |
| unsigned long handler = (unsigned long) addr; |
| unsigned long old_handler; |
| |
| #ifdef CONFIG_CPU_MICROMIPS |
| /* |
| * Only the TLB handlers are cache aligned with an even |
| * address. All other handlers are on an odd address and |
| * require no modification. Otherwise, MIPS32 mode will |
| * be entered when handling any TLB exceptions. That |
| * would be bad...since we must stay in microMIPS mode. |
| */ |
| if (!(handler & 0x1)) |
| handler |= 1; |
| #endif |
| old_handler = xchg(&exception_handlers[n], handler); |
| |
| if (n == 0 && cpu_has_divec) { |
| #ifdef CONFIG_CPU_MICROMIPS |
| unsigned long jump_mask = ~((1 << 27) - 1); |
| #else |
| unsigned long jump_mask = ~((1 << 28) - 1); |
| #endif |
| u32 *buf = (u32 *)(ebase + 0x200); |
| unsigned int k0 = 26; |
| if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) { |
| uasm_i_j(&buf, handler & ~jump_mask); |
| uasm_i_nop(&buf); |
| } else { |
| UASM_i_LA(&buf, k0, handler); |
| uasm_i_jr(&buf, k0); |
| uasm_i_nop(&buf); |
| } |
| local_flush_icache_range(ebase + 0x200, (unsigned long)buf); |
| } |
| return (void *)old_handler; |
| } |
| |
| static void do_default_vi(void) |
| { |
| show_regs(get_irq_regs()); |
| panic("Caught unexpected vectored interrupt."); |
| } |
| |
| static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs) |
| { |
| unsigned long handler; |
| unsigned long old_handler = vi_handlers[n]; |
| int srssets = current_cpu_data.srsets; |
| u16 *h; |
| unsigned char *b; |
| |
| BUG_ON(!cpu_has_veic && !cpu_has_vint); |
| |
| if (addr == NULL) { |
| handler = (unsigned long) do_default_vi; |
| srs = 0; |
| } else |
| handler = (unsigned long) addr; |
| vi_handlers[n] = handler; |
| |
| b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING); |
| |
| if (srs >= srssets) |
| panic("Shadow register set %d not supported", srs); |
| |
| if (cpu_has_veic) { |
| if (board_bind_eic_interrupt) |
| board_bind_eic_interrupt(n, srs); |
| } else if (cpu_has_vint) { |
| /* SRSMap is only defined if shadow sets are implemented */ |
| if (srssets > 1) |
| change_c0_srsmap(0xf << n*4, srs << n*4); |
| } |
| |
| if (srs == 0) { |
| /* |
| * If no shadow set is selected then use the default handler |
| * that does normal register saving and standard interrupt exit |
| */ |
| extern char except_vec_vi, except_vec_vi_lui; |
| extern char except_vec_vi_ori, except_vec_vi_end; |
| extern char rollback_except_vec_vi; |
| char *vec_start = using_rollback_handler() ? |
| &rollback_except_vec_vi : &except_vec_vi; |
| #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN) |
| const int lui_offset = &except_vec_vi_lui - vec_start + 2; |
| const int ori_offset = &except_vec_vi_ori - vec_start + 2; |
| #else |
| const int lui_offset = &except_vec_vi_lui - vec_start; |
| const int ori_offset = &except_vec_vi_ori - vec_start; |
| #endif |
| const int handler_len = &except_vec_vi_end - vec_start; |
| |
| if (handler_len > VECTORSPACING) { |
| /* |
| * Sigh... panicing won't help as the console |
| * is probably not configured :( |
| */ |
| panic("VECTORSPACING too small"); |
| } |
| |
| set_handler(((unsigned long)b - ebase), vec_start, |
| #ifdef CONFIG_CPU_MICROMIPS |
| (handler_len - 1)); |
| #else |
| handler_len); |
| #endif |
| h = (u16 *)(b + lui_offset); |
| *h = (handler >> 16) & 0xffff; |
| h = (u16 *)(b + ori_offset); |
| *h = (handler & 0xffff); |
| local_flush_icache_range((unsigned long)b, |
| (unsigned long)(b+handler_len)); |
| } |
| else { |
| /* |
| * In other cases jump directly to the interrupt handler. It |
| * is the handler's responsibility to save registers if required |
| * (eg hi/lo) and return from the exception using "eret". |
| */ |
| u32 insn; |
| |
| h = (u16 *)b; |
| /* j handler */ |
| #ifdef CONFIG_CPU_MICROMIPS |
| insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1); |
| #else |
| insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2); |
| #endif |
| h[0] = (insn >> 16) & 0xffff; |
| h[1] = insn & 0xffff; |
| h[2] = 0; |
| h[3] = 0; |
| local_flush_icache_range((unsigned long)b, |
| (unsigned long)(b+8)); |
| } |
| |
| return (void *)old_handler; |
| } |
| |
| void *set_vi_handler(int n, vi_handler_t addr) |
| { |
| return set_vi_srs_handler(n, addr, 0); |
| } |
| |
| extern void tlb_init(void); |
| |
| /* |
| * Timer interrupt |
| */ |
| int cp0_compare_irq; |
| EXPORT_SYMBOL_GPL(cp0_compare_irq); |
| int cp0_compare_irq_shift; |
| |
| /* |
| * Performance counter IRQ or -1 if shared with timer |
| */ |
| int cp0_perfcount_irq; |
| EXPORT_SYMBOL_GPL(cp0_perfcount_irq); |
| |
| /* |
| * Fast debug channel IRQ or -1 if not present |
| */ |
| int cp0_fdc_irq; |
| EXPORT_SYMBOL_GPL(cp0_fdc_irq); |
| |
| static int noulri; |
| |
| static int __init ulri_disable(char *s) |
| { |
| pr_info("Disabling ulri\n"); |
| noulri = 1; |
| |
| return 1; |
| } |
| __setup("noulri", ulri_disable); |
| |
| /* configure STATUS register */ |
| static void configure_status(void) |
| { |
| /* |
| * Disable coprocessors and select 32-bit or 64-bit addressing |
| * and the 16/32 or 32/32 FPR register model. Reset the BEV |
| * flag that some firmware may have left set and the TS bit (for |
| * IP27). Set XX for ISA IV code to work. |
| */ |
| unsigned int status_set = ST0_CU0; |
| #ifdef CONFIG_64BIT |
| status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX; |
| #endif |
| if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV) |
| status_set |= ST0_XX; |
| if (cpu_has_dsp) |
| status_set |= ST0_MX; |
| |
| change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX, |
| status_set); |
| } |
| |
| unsigned int hwrena; |
| EXPORT_SYMBOL_GPL(hwrena); |
| |
| /* configure HWRENA register */ |
| static void configure_hwrena(void) |
| { |
| hwrena = cpu_hwrena_impl_bits; |
| |
| if (cpu_has_mips_r2_r6) |
| hwrena |= MIPS_HWRENA_CPUNUM | |
| MIPS_HWRENA_SYNCISTEP | |
| MIPS_HWRENA_CC | |
| MIPS_HWRENA_CCRES; |
| |
| if (!noulri && cpu_has_userlocal) |
| hwrena |= MIPS_HWRENA_ULR; |
| |
| if (hwrena) |
| write_c0_hwrena(hwrena); |
| } |
| |
| static void configure_exception_vector(void) |
| { |
| if (cpu_has_mips_r2_r6) { |
| unsigned long sr = set_c0_status(ST0_BEV); |
| /* If available, use WG to set top bits of EBASE */ |
| if (cpu_has_ebase_wg) { |
| #ifdef CONFIG_64BIT |
| write_c0_ebase_64(ebase | MIPS_EBASE_WG); |
| #else |
| write_c0_ebase(ebase | MIPS_EBASE_WG); |
| #endif |
| } |
| write_c0_ebase(ebase); |
| write_c0_status(sr); |
| } |
| if (cpu_has_veic || cpu_has_vint) { |
| /* Setting vector spacing enables EI/VI mode */ |
| change_c0_intctl(0x3e0, VECTORSPACING); |
| } |
| if (cpu_has_divec) { |
| if (cpu_has_mipsmt) { |
| unsigned int vpflags = dvpe(); |
| set_c0_cause(CAUSEF_IV); |
| evpe(vpflags); |
| } else |
| set_c0_cause(CAUSEF_IV); |
| } |
| } |
| |
| void per_cpu_trap_init(bool is_boot_cpu) |
| { |
| unsigned int cpu = smp_processor_id(); |
| |
| configure_status(); |
| configure_hwrena(); |
| |
| configure_exception_vector(); |
| |
| /* |
| * Before R2 both interrupt numbers were fixed to 7, so on R2 only: |
| * |
| * o read IntCtl.IPTI to determine the timer interrupt |
| * o read IntCtl.IPPCI to determine the performance counter interrupt |
| * o read IntCtl.IPFDC to determine the fast debug channel interrupt |
| */ |
| if (cpu_has_mips_r2_r6) { |
| cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP; |
| cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7; |
| cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7; |
| cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7; |
| if (!cp0_fdc_irq) |
| cp0_fdc_irq = -1; |
| |
| } else { |
| cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ; |
| cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ; |
| cp0_perfcount_irq = -1; |
| cp0_fdc_irq = -1; |
| } |
| |
| if (cpu_has_mmid) |
| cpu_data[cpu].asid_cache = 0; |
| else if (!cpu_data[cpu].asid_cache) |
| cpu_data[cpu].asid_cache = asid_first_version(cpu); |
| |
| mmgrab(&init_mm); |
| current->active_mm = &init_mm; |
| BUG_ON(current->mm); |
| enter_lazy_tlb(&init_mm, current); |
| |
| /* Boot CPU's cache setup in setup_arch(). */ |
| if (!is_boot_cpu) |
| cpu_cache_init(); |
| tlb_init(); |
| TLBMISS_HANDLER_SETUP(); |
| } |
| |
| /* Install CPU exception handler */ |
| void set_handler(unsigned long offset, void *addr, unsigned long size) |
| { |
| #ifdef CONFIG_CPU_MICROMIPS |
| memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size); |
| #else |
| memcpy((void *)(ebase + offset), addr, size); |
| #endif |
| local_flush_icache_range(ebase + offset, ebase + offset + size); |
| } |
| |
| static const char panic_null_cerr[] = |
| "Trying to set NULL cache error exception handler\n"; |
| |
| /* |
| * Install uncached CPU exception handler. |
| * This is suitable only for the cache error exception which is the only |
| * exception handler that is being run uncached. |
| */ |
| void set_uncached_handler(unsigned long offset, void *addr, |
| unsigned long size) |
| { |
| unsigned long uncached_ebase = CKSEG1ADDR(ebase); |
| |
| if (!addr) |
| panic(panic_null_cerr); |
| |
| memcpy((void *)(uncached_ebase + offset), addr, size); |
| } |
| |
| static int __initdata rdhwr_noopt; |
| static int __init set_rdhwr_noopt(char *str) |
| { |
| rdhwr_noopt = 1; |
| return 1; |
| } |
| |
| __setup("rdhwr_noopt", set_rdhwr_noopt); |
| |
| void __init trap_init(void) |
| { |
| extern char except_vec3_generic; |
| extern char except_vec4; |
| extern char except_vec3_r4000; |
| unsigned long i, vec_size; |
| phys_addr_t ebase_pa; |
| |
| check_wait(); |
| |
| if (!cpu_has_mips_r2_r6) { |
| ebase = CAC_BASE; |
| ebase_pa = virt_to_phys((void *)ebase); |
| vec_size = 0x400; |
| |
| memblock_reserve(ebase_pa, vec_size); |
| } else { |
| if (cpu_has_veic || cpu_has_vint) |
| vec_size = 0x200 + VECTORSPACING*64; |
| else |
| vec_size = PAGE_SIZE; |
| |
| ebase_pa = memblock_phys_alloc(vec_size, 1 << fls(vec_size)); |
| if (!ebase_pa) |
| panic("%s: Failed to allocate %lu bytes align=0x%x\n", |
| __func__, vec_size, 1 << fls(vec_size)); |
| |
| /* |
| * Try to ensure ebase resides in KSeg0 if possible. |
| * |
| * It shouldn't generally be in XKPhys on MIPS64 to avoid |
| * hitting a poorly defined exception base for Cache Errors. |
| * The allocation is likely to be in the low 512MB of physical, |
| * in which case we should be able to convert to KSeg0. |
| * |
| * EVA is special though as it allows segments to be rearranged |
| * and to become uncached during cache error handling. |
| */ |
| if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000)) |
| ebase = CKSEG0ADDR(ebase_pa); |
| else |
| ebase = (unsigned long)phys_to_virt(ebase_pa); |
| } |
| |
| if (cpu_has_mmips) { |
| unsigned int config3 = read_c0_config3(); |
| |
| if (IS_ENABLED(CONFIG_CPU_MICROMIPS)) |
| write_c0_config3(config3 | MIPS_CONF3_ISA_OE); |
| else |
| write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE); |
| } |
| |
| if (board_ebase_setup) |
| board_ebase_setup(); |
| per_cpu_trap_init(true); |
| memblock_set_bottom_up(false); |
| |
| /* |
| * Copy the generic exception handlers to their final destination. |
| * This will be overridden later as suitable for a particular |
| * configuration. |
| */ |
| set_handler(0x180, &except_vec3_generic, 0x80); |
| |
| /* |
| * Setup default vectors |
| */ |
| for (i = 0; i <= 31; i++) |
| set_except_vector(i, handle_reserved); |
| |
| /* |
| * Copy the EJTAG debug exception vector handler code to it's final |
| * destination. |
| */ |
| if (cpu_has_ejtag && board_ejtag_handler_setup) |
| board_ejtag_handler_setup(); |
| |
| /* |
| * Only some CPUs have the watch exceptions. |
| */ |
| if (cpu_has_watch) |
| set_except_vector(EXCCODE_WATCH, handle_watch); |
| |
| /* |
| * Initialise interrupt handlers |
| */ |
| if (cpu_has_veic || cpu_has_vint) { |
| int nvec = cpu_has_veic ? 64 : 8; |
| for (i = 0; i < nvec; i++) |
| set_vi_handler(i, NULL); |
| } |
| else if (cpu_has_divec) |
| set_handler(0x200, &except_vec4, 0x8); |
| |
| /* |
| * Some CPUs can enable/disable for cache parity detection, but does |
| * it different ways. |
| */ |
| parity_protection_init(); |
| |
| /* |
| * The Data Bus Errors / Instruction Bus Errors are signaled |
| * by external hardware. Therefore these two exceptions |
| * may have board specific handlers. |
| */ |
| if (board_be_init) |
| board_be_init(); |
| |
| set_except_vector(EXCCODE_INT, using_rollback_handler() ? |
| rollback_handle_int : handle_int); |
| set_except_vector(EXCCODE_MOD, handle_tlbm); |
| set_except_vector(EXCCODE_TLBL, handle_tlbl); |
| set_except_vector(EXCCODE_TLBS, handle_tlbs); |
| |
| set_except_vector(EXCCODE_ADEL, handle_adel); |
| set_except_vector(EXCCODE_ADES, handle_ades); |
| |
| set_except_vector(EXCCODE_IBE, handle_ibe); |
| set_except_vector(EXCCODE_DBE, handle_dbe); |
| |
| set_except_vector(EXCCODE_SYS, handle_sys); |
| set_except_vector(EXCCODE_BP, handle_bp); |
| |
| if (rdhwr_noopt) |
| set_except_vector(EXCCODE_RI, handle_ri); |
| else { |
| if (cpu_has_vtag_icache) |
| set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp); |
| else if (current_cpu_type() == CPU_LOONGSON3) |
| set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp); |
| else |
| set_except_vector(EXCCODE_RI, handle_ri_rdhwr); |
| } |
| |
| set_except_vector(EXCCODE_CPU, handle_cpu); |
| set_except_vector(EXCCODE_OV, handle_ov); |
| set_except_vector(EXCCODE_TR, handle_tr); |
| set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe); |
| |
| if (board_nmi_handler_setup) |
| board_nmi_handler_setup(); |
| |
| if (cpu_has_fpu && !cpu_has_nofpuex) |
| set_except_vector(EXCCODE_FPE, handle_fpe); |
| |
| set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb); |
| |
| if (cpu_has_rixiex) { |
| set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0); |
| set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0); |
| } |
| |
| set_except_vector(EXCCODE_MSADIS, handle_msa); |
| set_except_vector(EXCCODE_MDMX, handle_mdmx); |
| |
| if (cpu_has_mcheck) |
| set_except_vector(EXCCODE_MCHECK, handle_mcheck); |
| |
| if (cpu_has_mipsmt) |
| set_except_vector(EXCCODE_THREAD, handle_mt); |
| |
| set_except_vector(EXCCODE_DSPDIS, handle_dsp); |
| |
| if (board_cache_error_setup) |
| board_cache_error_setup(); |
| |
| if (cpu_has_vce) |
| /* Special exception: R4[04]00 uses also the divec space. */ |
| set_handler(0x180, &except_vec3_r4000, 0x100); |
| else if (cpu_has_4kex) |
| set_handler(0x180, &except_vec3_generic, 0x80); |
| else |
| set_handler(0x080, &except_vec3_generic, 0x80); |
| |
| local_flush_icache_range(ebase, ebase + vec_size); |
| |
| sort_extable(__start___dbe_table, __stop___dbe_table); |
| |
| cu2_notifier(default_cu2_call, 0x80000000); /* Run last */ |
| } |
| |
| static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd, |
| void *v) |
| { |
| switch (cmd) { |
| case CPU_PM_ENTER_FAILED: |
| case CPU_PM_EXIT: |
| configure_status(); |
| configure_hwrena(); |
| configure_exception_vector(); |
| |
| /* Restore register with CPU number for TLB handlers */ |
| TLBMISS_HANDLER_RESTORE(); |
| |
| break; |
| } |
| |
| return NOTIFY_OK; |
| } |
| |
| static struct notifier_block trap_pm_notifier_block = { |
| .notifier_call = trap_pm_notifier, |
| }; |
| |
| static int __init trap_pm_init(void) |
| { |
| return cpu_pm_register_notifier(&trap_pm_notifier_block); |
| } |
| arch_initcall(trap_pm_init); |