| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Load ELF vmlinux file for the kexec_file_load syscall. |
| * |
| * Copyright (C) 2004 Adam Litke (agl@us.ibm.com) |
| * Copyright (C) 2004 IBM Corp. |
| * Copyright (C) 2005 R Sharada (sharada@in.ibm.com) |
| * Copyright (C) 2006 Mohan Kumar M (mohan@in.ibm.com) |
| * Copyright (C) 2016 IBM Corporation |
| * |
| * Based on kexec-tools' kexec-elf-exec.c and kexec-elf-ppc64.c. |
| * Heavily modified for the kernel by |
| * Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com>. |
| */ |
| |
| #define pr_fmt(fmt) "kexec_elf: " fmt |
| |
| #include <linux/elf.h> |
| #include <linux/kexec.h> |
| #include <linux/libfdt.h> |
| #include <linux/module.h> |
| #include <linux/of_fdt.h> |
| #include <linux/slab.h> |
| #include <linux/types.h> |
| |
| #define PURGATORY_STACK_SIZE (16 * 1024) |
| |
| #define elf_addr_to_cpu elf64_to_cpu |
| |
| #ifndef Elf_Rel |
| #define Elf_Rel Elf64_Rel |
| #endif /* Elf_Rel */ |
| |
| struct elf_info { |
| /* |
| * Where the ELF binary contents are kept. |
| * Memory managed by the user of the struct. |
| */ |
| const char *buffer; |
| |
| const struct elfhdr *ehdr; |
| const struct elf_phdr *proghdrs; |
| struct elf_shdr *sechdrs; |
| }; |
| |
| static inline bool elf_is_elf_file(const struct elfhdr *ehdr) |
| { |
| return memcmp(ehdr->e_ident, ELFMAG, SELFMAG) == 0; |
| } |
| |
| static uint64_t elf64_to_cpu(const struct elfhdr *ehdr, uint64_t value) |
| { |
| if (ehdr->e_ident[EI_DATA] == ELFDATA2LSB) |
| value = le64_to_cpu(value); |
| else if (ehdr->e_ident[EI_DATA] == ELFDATA2MSB) |
| value = be64_to_cpu(value); |
| |
| return value; |
| } |
| |
| static uint16_t elf16_to_cpu(const struct elfhdr *ehdr, uint16_t value) |
| { |
| if (ehdr->e_ident[EI_DATA] == ELFDATA2LSB) |
| value = le16_to_cpu(value); |
| else if (ehdr->e_ident[EI_DATA] == ELFDATA2MSB) |
| value = be16_to_cpu(value); |
| |
| return value; |
| } |
| |
| static uint32_t elf32_to_cpu(const struct elfhdr *ehdr, uint32_t value) |
| { |
| if (ehdr->e_ident[EI_DATA] == ELFDATA2LSB) |
| value = le32_to_cpu(value); |
| else if (ehdr->e_ident[EI_DATA] == ELFDATA2MSB) |
| value = be32_to_cpu(value); |
| |
| return value; |
| } |
| |
| /** |
| * elf_is_ehdr_sane - check that it is safe to use the ELF header |
| * @buf_len: size of the buffer in which the ELF file is loaded. |
| */ |
| static bool elf_is_ehdr_sane(const struct elfhdr *ehdr, size_t buf_len) |
| { |
| if (ehdr->e_phnum > 0 && ehdr->e_phentsize != sizeof(struct elf_phdr)) { |
| pr_debug("Bad program header size.\n"); |
| return false; |
| } else if (ehdr->e_shnum > 0 && |
| ehdr->e_shentsize != sizeof(struct elf_shdr)) { |
| pr_debug("Bad section header size.\n"); |
| return false; |
| } else if (ehdr->e_ident[EI_VERSION] != EV_CURRENT || |
| ehdr->e_version != EV_CURRENT) { |
| pr_debug("Unknown ELF version.\n"); |
| return false; |
| } |
| |
| if (ehdr->e_phoff > 0 && ehdr->e_phnum > 0) { |
| size_t phdr_size; |
| |
| /* |
| * e_phnum is at most 65535 so calculating the size of the |
| * program header cannot overflow. |
| */ |
| phdr_size = sizeof(struct elf_phdr) * ehdr->e_phnum; |
| |
| /* Sanity check the program header table location. */ |
| if (ehdr->e_phoff + phdr_size < ehdr->e_phoff) { |
| pr_debug("Program headers at invalid location.\n"); |
| return false; |
| } else if (ehdr->e_phoff + phdr_size > buf_len) { |
| pr_debug("Program headers truncated.\n"); |
| return false; |
| } |
| } |
| |
| if (ehdr->e_shoff > 0 && ehdr->e_shnum > 0) { |
| size_t shdr_size; |
| |
| /* |
| * e_shnum is at most 65536 so calculating |
| * the size of the section header cannot overflow. |
| */ |
| shdr_size = sizeof(struct elf_shdr) * ehdr->e_shnum; |
| |
| /* Sanity check the section header table location. */ |
| if (ehdr->e_shoff + shdr_size < ehdr->e_shoff) { |
| pr_debug("Section headers at invalid location.\n"); |
| return false; |
| } else if (ehdr->e_shoff + shdr_size > buf_len) { |
| pr_debug("Section headers truncated.\n"); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| static int elf_read_ehdr(const char *buf, size_t len, struct elfhdr *ehdr) |
| { |
| struct elfhdr *buf_ehdr; |
| |
| if (len < sizeof(*buf_ehdr)) { |
| pr_debug("Buffer is too small to hold ELF header.\n"); |
| return -ENOEXEC; |
| } |
| |
| memset(ehdr, 0, sizeof(*ehdr)); |
| memcpy(ehdr->e_ident, buf, sizeof(ehdr->e_ident)); |
| if (!elf_is_elf_file(ehdr)) { |
| pr_debug("No ELF header magic.\n"); |
| return -ENOEXEC; |
| } |
| |
| if (ehdr->e_ident[EI_CLASS] != ELF_CLASS) { |
| pr_debug("Not a supported ELF class.\n"); |
| return -ENOEXEC; |
| } else if (ehdr->e_ident[EI_DATA] != ELFDATA2LSB && |
| ehdr->e_ident[EI_DATA] != ELFDATA2MSB) { |
| pr_debug("Not a supported ELF data format.\n"); |
| return -ENOEXEC; |
| } |
| |
| buf_ehdr = (struct elfhdr *) buf; |
| if (elf16_to_cpu(ehdr, buf_ehdr->e_ehsize) != sizeof(*buf_ehdr)) { |
| pr_debug("Bad ELF header size.\n"); |
| return -ENOEXEC; |
| } |
| |
| ehdr->e_type = elf16_to_cpu(ehdr, buf_ehdr->e_type); |
| ehdr->e_machine = elf16_to_cpu(ehdr, buf_ehdr->e_machine); |
| ehdr->e_version = elf32_to_cpu(ehdr, buf_ehdr->e_version); |
| ehdr->e_entry = elf_addr_to_cpu(ehdr, buf_ehdr->e_entry); |
| ehdr->e_phoff = elf_addr_to_cpu(ehdr, buf_ehdr->e_phoff); |
| ehdr->e_shoff = elf_addr_to_cpu(ehdr, buf_ehdr->e_shoff); |
| ehdr->e_flags = elf32_to_cpu(ehdr, buf_ehdr->e_flags); |
| ehdr->e_phentsize = elf16_to_cpu(ehdr, buf_ehdr->e_phentsize); |
| ehdr->e_phnum = elf16_to_cpu(ehdr, buf_ehdr->e_phnum); |
| ehdr->e_shentsize = elf16_to_cpu(ehdr, buf_ehdr->e_shentsize); |
| ehdr->e_shnum = elf16_to_cpu(ehdr, buf_ehdr->e_shnum); |
| ehdr->e_shstrndx = elf16_to_cpu(ehdr, buf_ehdr->e_shstrndx); |
| |
| return elf_is_ehdr_sane(ehdr, len) ? 0 : -ENOEXEC; |
| } |
| |
| /** |
| * elf_is_phdr_sane - check that it is safe to use the program header |
| * @buf_len: size of the buffer in which the ELF file is loaded. |
| */ |
| static bool elf_is_phdr_sane(const struct elf_phdr *phdr, size_t buf_len) |
| { |
| |
| if (phdr->p_offset + phdr->p_filesz < phdr->p_offset) { |
| pr_debug("ELF segment location wraps around.\n"); |
| return false; |
| } else if (phdr->p_offset + phdr->p_filesz > buf_len) { |
| pr_debug("ELF segment not in file.\n"); |
| return false; |
| } else if (phdr->p_paddr + phdr->p_memsz < phdr->p_paddr) { |
| pr_debug("ELF segment address wraps around.\n"); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static int elf_read_phdr(const char *buf, size_t len, struct elf_info *elf_info, |
| int idx) |
| { |
| /* Override the const in proghdrs, we are the ones doing the loading. */ |
| struct elf_phdr *phdr = (struct elf_phdr *) &elf_info->proghdrs[idx]; |
| const char *pbuf; |
| struct elf_phdr *buf_phdr; |
| |
| pbuf = buf + elf_info->ehdr->e_phoff + (idx * sizeof(*buf_phdr)); |
| buf_phdr = (struct elf_phdr *) pbuf; |
| |
| phdr->p_type = elf32_to_cpu(elf_info->ehdr, buf_phdr->p_type); |
| phdr->p_offset = elf_addr_to_cpu(elf_info->ehdr, buf_phdr->p_offset); |
| phdr->p_paddr = elf_addr_to_cpu(elf_info->ehdr, buf_phdr->p_paddr); |
| phdr->p_vaddr = elf_addr_to_cpu(elf_info->ehdr, buf_phdr->p_vaddr); |
| phdr->p_flags = elf32_to_cpu(elf_info->ehdr, buf_phdr->p_flags); |
| |
| /* |
| * The following fields have a type equivalent to Elf_Addr |
| * both in 32 bit and 64 bit ELF. |
| */ |
| phdr->p_filesz = elf_addr_to_cpu(elf_info->ehdr, buf_phdr->p_filesz); |
| phdr->p_memsz = elf_addr_to_cpu(elf_info->ehdr, buf_phdr->p_memsz); |
| phdr->p_align = elf_addr_to_cpu(elf_info->ehdr, buf_phdr->p_align); |
| |
| return elf_is_phdr_sane(phdr, len) ? 0 : -ENOEXEC; |
| } |
| |
| /** |
| * elf_read_phdrs - read the program headers from the buffer |
| * |
| * This function assumes that the program header table was checked for sanity. |
| * Use elf_is_ehdr_sane() if it wasn't. |
| */ |
| static int elf_read_phdrs(const char *buf, size_t len, |
| struct elf_info *elf_info) |
| { |
| size_t phdr_size, i; |
| const struct elfhdr *ehdr = elf_info->ehdr; |
| |
| /* |
| * e_phnum is at most 65535 so calculating the size of the |
| * program header cannot overflow. |
| */ |
| phdr_size = sizeof(struct elf_phdr) * ehdr->e_phnum; |
| |
| elf_info->proghdrs = kzalloc(phdr_size, GFP_KERNEL); |
| if (!elf_info->proghdrs) |
| return -ENOMEM; |
| |
| for (i = 0; i < ehdr->e_phnum; i++) { |
| int ret; |
| |
| ret = elf_read_phdr(buf, len, elf_info, i); |
| if (ret) { |
| kfree(elf_info->proghdrs); |
| elf_info->proghdrs = NULL; |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * elf_is_shdr_sane - check that it is safe to use the section header |
| * @buf_len: size of the buffer in which the ELF file is loaded. |
| */ |
| static bool elf_is_shdr_sane(const struct elf_shdr *shdr, size_t buf_len) |
| { |
| bool size_ok; |
| |
| /* SHT_NULL headers have undefined values, so we can't check them. */ |
| if (shdr->sh_type == SHT_NULL) |
| return true; |
| |
| /* Now verify sh_entsize */ |
| switch (shdr->sh_type) { |
| case SHT_SYMTAB: |
| size_ok = shdr->sh_entsize == sizeof(Elf_Sym); |
| break; |
| case SHT_RELA: |
| size_ok = shdr->sh_entsize == sizeof(Elf_Rela); |
| break; |
| case SHT_DYNAMIC: |
| size_ok = shdr->sh_entsize == sizeof(Elf_Dyn); |
| break; |
| case SHT_REL: |
| size_ok = shdr->sh_entsize == sizeof(Elf_Rel); |
| break; |
| case SHT_NOTE: |
| case SHT_PROGBITS: |
| case SHT_HASH: |
| case SHT_NOBITS: |
| default: |
| /* |
| * This is a section whose entsize requirements |
| * I don't care about. If I don't know about |
| * the section I can't care about it's entsize |
| * requirements. |
| */ |
| size_ok = true; |
| break; |
| } |
| |
| if (!size_ok) { |
| pr_debug("ELF section with wrong entry size.\n"); |
| return false; |
| } else if (shdr->sh_addr + shdr->sh_size < shdr->sh_addr) { |
| pr_debug("ELF section address wraps around.\n"); |
| return false; |
| } |
| |
| if (shdr->sh_type != SHT_NOBITS) { |
| if (shdr->sh_offset + shdr->sh_size < shdr->sh_offset) { |
| pr_debug("ELF section location wraps around.\n"); |
| return false; |
| } else if (shdr->sh_offset + shdr->sh_size > buf_len) { |
| pr_debug("ELF section not in file.\n"); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| static int elf_read_shdr(const char *buf, size_t len, struct elf_info *elf_info, |
| int idx) |
| { |
| struct elf_shdr *shdr = &elf_info->sechdrs[idx]; |
| const struct elfhdr *ehdr = elf_info->ehdr; |
| const char *sbuf; |
| struct elf_shdr *buf_shdr; |
| |
| sbuf = buf + ehdr->e_shoff + idx * sizeof(*buf_shdr); |
| buf_shdr = (struct elf_shdr *) sbuf; |
| |
| shdr->sh_name = elf32_to_cpu(ehdr, buf_shdr->sh_name); |
| shdr->sh_type = elf32_to_cpu(ehdr, buf_shdr->sh_type); |
| shdr->sh_addr = elf_addr_to_cpu(ehdr, buf_shdr->sh_addr); |
| shdr->sh_offset = elf_addr_to_cpu(ehdr, buf_shdr->sh_offset); |
| shdr->sh_link = elf32_to_cpu(ehdr, buf_shdr->sh_link); |
| shdr->sh_info = elf32_to_cpu(ehdr, buf_shdr->sh_info); |
| |
| /* |
| * The following fields have a type equivalent to Elf_Addr |
| * both in 32 bit and 64 bit ELF. |
| */ |
| shdr->sh_flags = elf_addr_to_cpu(ehdr, buf_shdr->sh_flags); |
| shdr->sh_size = elf_addr_to_cpu(ehdr, buf_shdr->sh_size); |
| shdr->sh_addralign = elf_addr_to_cpu(ehdr, buf_shdr->sh_addralign); |
| shdr->sh_entsize = elf_addr_to_cpu(ehdr, buf_shdr->sh_entsize); |
| |
| return elf_is_shdr_sane(shdr, len) ? 0 : -ENOEXEC; |
| } |
| |
| /** |
| * elf_read_shdrs - read the section headers from the buffer |
| * |
| * This function assumes that the section header table was checked for sanity. |
| * Use elf_is_ehdr_sane() if it wasn't. |
| */ |
| static int elf_read_shdrs(const char *buf, size_t len, |
| struct elf_info *elf_info) |
| { |
| size_t shdr_size, i; |
| |
| /* |
| * e_shnum is at most 65536 so calculating |
| * the size of the section header cannot overflow. |
| */ |
| shdr_size = sizeof(struct elf_shdr) * elf_info->ehdr->e_shnum; |
| |
| elf_info->sechdrs = kzalloc(shdr_size, GFP_KERNEL); |
| if (!elf_info->sechdrs) |
| return -ENOMEM; |
| |
| for (i = 0; i < elf_info->ehdr->e_shnum; i++) { |
| int ret; |
| |
| ret = elf_read_shdr(buf, len, elf_info, i); |
| if (ret) { |
| kfree(elf_info->sechdrs); |
| elf_info->sechdrs = NULL; |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * elf_read_from_buffer - read ELF file and sets up ELF header and ELF info |
| * @buf: Buffer to read ELF file from. |
| * @len: Size of @buf. |
| * @ehdr: Pointer to existing struct which will be populated. |
| * @elf_info: Pointer to existing struct which will be populated. |
| * |
| * This function allows reading ELF files with different byte order than |
| * the kernel, byte-swapping the fields as needed. |
| * |
| * Return: |
| * On success returns 0, and the caller should call elf_free_info(elf_info) to |
| * free the memory allocated for the section and program headers. |
| */ |
| int elf_read_from_buffer(const char *buf, size_t len, struct elfhdr *ehdr, |
| struct elf_info *elf_info) |
| { |
| int ret; |
| |
| ret = elf_read_ehdr(buf, len, ehdr); |
| if (ret) |
| return ret; |
| |
| elf_info->buffer = buf; |
| elf_info->ehdr = ehdr; |
| if (ehdr->e_phoff > 0 && ehdr->e_phnum > 0) { |
| ret = elf_read_phdrs(buf, len, elf_info); |
| if (ret) |
| return ret; |
| } |
| if (ehdr->e_shoff > 0 && ehdr->e_shnum > 0) { |
| ret = elf_read_shdrs(buf, len, elf_info); |
| if (ret) { |
| kfree(elf_info->proghdrs); |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * elf_free_info - free memory allocated by elf_read_from_buffer |
| */ |
| void elf_free_info(struct elf_info *elf_info) |
| { |
| kfree(elf_info->proghdrs); |
| kfree(elf_info->sechdrs); |
| memset(elf_info, 0, sizeof(*elf_info)); |
| } |
| /** |
| * build_elf_exec_info - read ELF executable and check that we can use it |
| */ |
| static int build_elf_exec_info(const char *buf, size_t len, struct elfhdr *ehdr, |
| struct elf_info *elf_info) |
| { |
| int i; |
| int ret; |
| |
| ret = elf_read_from_buffer(buf, len, ehdr, elf_info); |
| if (ret) |
| return ret; |
| |
| /* Big endian vmlinux has type ET_DYN. */ |
| if (ehdr->e_type != ET_EXEC && ehdr->e_type != ET_DYN) { |
| pr_err("Not an ELF executable.\n"); |
| goto error; |
| } else if (!elf_info->proghdrs) { |
| pr_err("No ELF program header.\n"); |
| goto error; |
| } |
| |
| for (i = 0; i < ehdr->e_phnum; i++) { |
| /* |
| * Kexec does not support loading interpreters. |
| * In addition this check keeps us from attempting |
| * to kexec ordinay executables. |
| */ |
| if (elf_info->proghdrs[i].p_type == PT_INTERP) { |
| pr_err("Requires an ELF interpreter.\n"); |
| goto error; |
| } |
| } |
| |
| return 0; |
| error: |
| elf_free_info(elf_info); |
| return -ENOEXEC; |
| } |
| |
| static int elf64_probe(const char *buf, unsigned long len) |
| { |
| struct elfhdr ehdr; |
| struct elf_info elf_info; |
| int ret; |
| |
| ret = build_elf_exec_info(buf, len, &ehdr, &elf_info); |
| if (ret) |
| return ret; |
| |
| elf_free_info(&elf_info); |
| |
| return elf_check_arch(&ehdr) ? 0 : -ENOEXEC; |
| } |
| |
| /** |
| * elf_exec_load - load ELF executable image |
| * @lowest_load_addr: On return, will be the address where the first PT_LOAD |
| * section will be loaded in memory. |
| * |
| * Return: |
| * 0 on success, negative value on failure. |
| */ |
| static int elf_exec_load(struct kimage *image, struct elfhdr *ehdr, |
| struct elf_info *elf_info, |
| unsigned long *lowest_load_addr) |
| { |
| unsigned long base = 0, lowest_addr = UINT_MAX; |
| int ret; |
| size_t i; |
| struct kexec_buf kbuf = { .image = image, .buf_max = ppc64_rma_size, |
| .top_down = false }; |
| |
| /* Read in the PT_LOAD segments. */ |
| for (i = 0; i < ehdr->e_phnum; i++) { |
| unsigned long load_addr; |
| size_t size; |
| const struct elf_phdr *phdr; |
| |
| phdr = &elf_info->proghdrs[i]; |
| if (phdr->p_type != PT_LOAD) |
| continue; |
| |
| size = phdr->p_filesz; |
| if (size > phdr->p_memsz) |
| size = phdr->p_memsz; |
| |
| kbuf.buffer = (void *) elf_info->buffer + phdr->p_offset; |
| kbuf.bufsz = size; |
| kbuf.memsz = phdr->p_memsz; |
| kbuf.buf_align = phdr->p_align; |
| kbuf.buf_min = phdr->p_paddr + base; |
| kbuf.mem = KEXEC_BUF_MEM_UNKNOWN; |
| ret = kexec_add_buffer(&kbuf); |
| if (ret) |
| goto out; |
| load_addr = kbuf.mem; |
| |
| if (load_addr < lowest_addr) |
| lowest_addr = load_addr; |
| } |
| |
| /* Update entry point to reflect new load address. */ |
| ehdr->e_entry += base; |
| |
| *lowest_load_addr = lowest_addr; |
| ret = 0; |
| out: |
| return ret; |
| } |
| |
| static void *elf64_load(struct kimage *image, char *kernel_buf, |
| unsigned long kernel_len, char *initrd, |
| unsigned long initrd_len, char *cmdline, |
| unsigned long cmdline_len) |
| { |
| int ret; |
| unsigned int fdt_size; |
| unsigned long kernel_load_addr; |
| unsigned long initrd_load_addr = 0, fdt_load_addr; |
| void *fdt; |
| const void *slave_code; |
| struct elfhdr ehdr; |
| struct elf_info elf_info; |
| struct kexec_buf kbuf = { .image = image, .buf_min = 0, |
| .buf_max = ppc64_rma_size }; |
| struct kexec_buf pbuf = { .image = image, .buf_min = 0, |
| .buf_max = ppc64_rma_size, .top_down = true, |
| .mem = KEXEC_BUF_MEM_UNKNOWN }; |
| |
| ret = build_elf_exec_info(kernel_buf, kernel_len, &ehdr, &elf_info); |
| if (ret) |
| goto out; |
| |
| ret = elf_exec_load(image, &ehdr, &elf_info, &kernel_load_addr); |
| if (ret) |
| goto out; |
| |
| pr_debug("Loaded the kernel at 0x%lx\n", kernel_load_addr); |
| |
| ret = kexec_load_purgatory(image, &pbuf); |
| if (ret) { |
| pr_err("Loading purgatory failed.\n"); |
| goto out; |
| } |
| |
| pr_debug("Loaded purgatory at 0x%lx\n", pbuf.mem); |
| |
| if (initrd != NULL) { |
| kbuf.buffer = initrd; |
| kbuf.bufsz = kbuf.memsz = initrd_len; |
| kbuf.buf_align = PAGE_SIZE; |
| kbuf.top_down = false; |
| kbuf.mem = KEXEC_BUF_MEM_UNKNOWN; |
| ret = kexec_add_buffer(&kbuf); |
| if (ret) |
| goto out; |
| initrd_load_addr = kbuf.mem; |
| |
| pr_debug("Loaded initrd at 0x%lx\n", initrd_load_addr); |
| } |
| |
| fdt_size = fdt_totalsize(initial_boot_params) * 2; |
| fdt = kmalloc(fdt_size, GFP_KERNEL); |
| if (!fdt) { |
| pr_err("Not enough memory for the device tree.\n"); |
| ret = -ENOMEM; |
| goto out; |
| } |
| ret = fdt_open_into(initial_boot_params, fdt, fdt_size); |
| if (ret < 0) { |
| pr_err("Error setting up the new device tree.\n"); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| ret = setup_new_fdt(image, fdt, initrd_load_addr, initrd_len, cmdline); |
| if (ret) |
| goto out; |
| |
| fdt_pack(fdt); |
| |
| kbuf.buffer = fdt; |
| kbuf.bufsz = kbuf.memsz = fdt_size; |
| kbuf.buf_align = PAGE_SIZE; |
| kbuf.top_down = true; |
| kbuf.mem = KEXEC_BUF_MEM_UNKNOWN; |
| ret = kexec_add_buffer(&kbuf); |
| if (ret) |
| goto out; |
| fdt_load_addr = kbuf.mem; |
| |
| pr_debug("Loaded device tree at 0x%lx\n", fdt_load_addr); |
| |
| slave_code = elf_info.buffer + elf_info.proghdrs[0].p_offset; |
| ret = setup_purgatory(image, slave_code, fdt, kernel_load_addr, |
| fdt_load_addr); |
| if (ret) |
| pr_err("Error setting up the purgatory.\n"); |
| |
| out: |
| elf_free_info(&elf_info); |
| |
| /* Make kimage_file_post_load_cleanup free the fdt buffer for us. */ |
| return ret ? ERR_PTR(ret) : fdt; |
| } |
| |
| const struct kexec_file_ops kexec_elf64_ops = { |
| .probe = elf64_probe, |
| .load = elf64_load, |
| }; |