| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2016-17 Synopsys, Inc. (www.synopsys.com) |
| * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com) |
| */ |
| |
| /* ARC700 has two 32bit independent prog Timers: TIMER0 and TIMER1, Each can be |
| * programmed to go from @count to @limit and optionally interrupt. |
| * We've designated TIMER0 for clockevents and TIMER1 for clocksource |
| * |
| * ARCv2 based HS38 cores have RTC (in-core) and GFRC (inside ARConnect/MCIP) |
| * which are suitable for UP and SMP based clocksources respectively |
| */ |
| |
| #include <linux/interrupt.h> |
| #include <linux/bits.h> |
| #include <linux/clk.h> |
| #include <linux/clk-provider.h> |
| #include <linux/clocksource.h> |
| #include <linux/clockchips.h> |
| #include <linux/cpu.h> |
| #include <linux/of.h> |
| #include <linux/of_irq.h> |
| #include <linux/sched_clock.h> |
| |
| #include <soc/arc/timers.h> |
| #include <soc/arc/mcip.h> |
| |
| |
| static unsigned long arc_timer_freq; |
| |
| static int noinline arc_get_timer_clk(struct device_node *node) |
| { |
| struct clk *clk; |
| int ret; |
| |
| clk = of_clk_get(node, 0); |
| if (IS_ERR(clk)) { |
| pr_err("timer missing clk\n"); |
| return PTR_ERR(clk); |
| } |
| |
| ret = clk_prepare_enable(clk); |
| if (ret) { |
| pr_err("Couldn't enable parent clk\n"); |
| return ret; |
| } |
| |
| arc_timer_freq = clk_get_rate(clk); |
| |
| return 0; |
| } |
| |
| /********** Clock Source Device *********/ |
| |
| #ifdef CONFIG_ARC_TIMERS_64BIT |
| |
| static u64 arc_read_gfrc(struct clocksource *cs) |
| { |
| unsigned long flags; |
| u32 l, h; |
| |
| /* |
| * From a programming model pov, there seems to be just one instance of |
| * MCIP_CMD/MCIP_READBACK however micro-architecturally there's |
| * an instance PER ARC CORE (not per cluster), and there are dedicated |
| * hardware decode logic (per core) inside ARConnect to handle |
| * simultaneous read/write accesses from cores via those two registers. |
| * So several concurrent commands to ARConnect are OK if they are |
| * trying to access two different sub-components (like GFRC, |
| * inter-core interrupt, etc...). HW also supports simultaneously |
| * accessing GFRC by multiple cores. |
| * That's why it is safe to disable hard interrupts on the local CPU |
| * before access to GFRC instead of taking global MCIP spinlock |
| * defined in arch/arc/kernel/mcip.c |
| */ |
| local_irq_save(flags); |
| |
| __mcip_cmd(CMD_GFRC_READ_LO, 0); |
| l = read_aux_reg(ARC_REG_MCIP_READBACK); |
| |
| __mcip_cmd(CMD_GFRC_READ_HI, 0); |
| h = read_aux_reg(ARC_REG_MCIP_READBACK); |
| |
| local_irq_restore(flags); |
| |
| return (((u64)h) << 32) | l; |
| } |
| |
| static notrace u64 arc_gfrc_clock_read(void) |
| { |
| return arc_read_gfrc(NULL); |
| } |
| |
| static struct clocksource arc_counter_gfrc = { |
| .name = "ARConnect GFRC", |
| .rating = 400, |
| .read = arc_read_gfrc, |
| .mask = CLOCKSOURCE_MASK(64), |
| .flags = CLOCK_SOURCE_IS_CONTINUOUS, |
| }; |
| |
| static int __init arc_cs_setup_gfrc(struct device_node *node) |
| { |
| struct mcip_bcr mp; |
| int ret; |
| |
| READ_BCR(ARC_REG_MCIP_BCR, mp); |
| if (!mp.gfrc) { |
| pr_warn("Global-64-bit-Ctr clocksource not detected\n"); |
| return -ENXIO; |
| } |
| |
| ret = arc_get_timer_clk(node); |
| if (ret) |
| return ret; |
| |
| sched_clock_register(arc_gfrc_clock_read, 64, arc_timer_freq); |
| |
| return clocksource_register_hz(&arc_counter_gfrc, arc_timer_freq); |
| } |
| TIMER_OF_DECLARE(arc_gfrc, "snps,archs-timer-gfrc", arc_cs_setup_gfrc); |
| |
| #define AUX_RTC_CTRL 0x103 |
| #define AUX_RTC_LOW 0x104 |
| #define AUX_RTC_HIGH 0x105 |
| |
| static u64 arc_read_rtc(struct clocksource *cs) |
| { |
| unsigned long status; |
| u32 l, h; |
| |
| /* |
| * hardware has an internal state machine which tracks readout of |
| * low/high and updates the CTRL.status if |
| * - interrupt/exception taken between the two reads |
| * - high increments after low has been read |
| */ |
| do { |
| l = read_aux_reg(AUX_RTC_LOW); |
| h = read_aux_reg(AUX_RTC_HIGH); |
| status = read_aux_reg(AUX_RTC_CTRL); |
| } while (!(status & BIT(31))); |
| |
| return (((u64)h) << 32) | l; |
| } |
| |
| static notrace u64 arc_rtc_clock_read(void) |
| { |
| return arc_read_rtc(NULL); |
| } |
| |
| static struct clocksource arc_counter_rtc = { |
| .name = "ARCv2 RTC", |
| .rating = 350, |
| .read = arc_read_rtc, |
| .mask = CLOCKSOURCE_MASK(64), |
| .flags = CLOCK_SOURCE_IS_CONTINUOUS, |
| }; |
| |
| static int __init arc_cs_setup_rtc(struct device_node *node) |
| { |
| struct bcr_timer timer; |
| int ret; |
| |
| READ_BCR(ARC_REG_TIMERS_BCR, timer); |
| if (!timer.rtc) { |
| pr_warn("Local-64-bit-Ctr clocksource not detected\n"); |
| return -ENXIO; |
| } |
| |
| /* Local to CPU hence not usable in SMP */ |
| if (IS_ENABLED(CONFIG_SMP)) { |
| pr_warn("Local-64-bit-Ctr not usable in SMP\n"); |
| return -EINVAL; |
| } |
| |
| ret = arc_get_timer_clk(node); |
| if (ret) |
| return ret; |
| |
| write_aux_reg(AUX_RTC_CTRL, 1); |
| |
| sched_clock_register(arc_rtc_clock_read, 64, arc_timer_freq); |
| |
| return clocksource_register_hz(&arc_counter_rtc, arc_timer_freq); |
| } |
| TIMER_OF_DECLARE(arc_rtc, "snps,archs-timer-rtc", arc_cs_setup_rtc); |
| |
| #endif |
| |
| /* |
| * 32bit TIMER1 to keep counting monotonically and wraparound |
| */ |
| |
| static u64 arc_read_timer1(struct clocksource *cs) |
| { |
| return (u64) read_aux_reg(ARC_REG_TIMER1_CNT); |
| } |
| |
| static notrace u64 arc_timer1_clock_read(void) |
| { |
| return arc_read_timer1(NULL); |
| } |
| |
| static struct clocksource arc_counter_timer1 = { |
| .name = "ARC Timer1", |
| .rating = 300, |
| .read = arc_read_timer1, |
| .mask = CLOCKSOURCE_MASK(32), |
| .flags = CLOCK_SOURCE_IS_CONTINUOUS, |
| }; |
| |
| static int __init arc_cs_setup_timer1(struct device_node *node) |
| { |
| int ret; |
| |
| /* Local to CPU hence not usable in SMP */ |
| if (IS_ENABLED(CONFIG_SMP)) |
| return -EINVAL; |
| |
| ret = arc_get_timer_clk(node); |
| if (ret) |
| return ret; |
| |
| write_aux_reg(ARC_REG_TIMER1_LIMIT, ARC_TIMERN_MAX); |
| write_aux_reg(ARC_REG_TIMER1_CNT, 0); |
| write_aux_reg(ARC_REG_TIMER1_CTRL, TIMER_CTRL_NH); |
| |
| sched_clock_register(arc_timer1_clock_read, 32, arc_timer_freq); |
| |
| return clocksource_register_hz(&arc_counter_timer1, arc_timer_freq); |
| } |
| |
| /********** Clock Event Device *********/ |
| |
| static int arc_timer_irq; |
| |
| /* |
| * Arm the timer to interrupt after @cycles |
| * The distinction for oneshot/periodic is done in arc_event_timer_ack() below |
| */ |
| static void arc_timer_event_setup(unsigned int cycles) |
| { |
| write_aux_reg(ARC_REG_TIMER0_LIMIT, cycles); |
| write_aux_reg(ARC_REG_TIMER0_CNT, 0); /* start from 0 */ |
| |
| write_aux_reg(ARC_REG_TIMER0_CTRL, TIMER_CTRL_IE | TIMER_CTRL_NH); |
| } |
| |
| |
| static int arc_clkevent_set_next_event(unsigned long delta, |
| struct clock_event_device *dev) |
| { |
| arc_timer_event_setup(delta); |
| return 0; |
| } |
| |
| static int arc_clkevent_set_periodic(struct clock_event_device *dev) |
| { |
| /* |
| * At X Hz, 1 sec = 1000ms -> X cycles; |
| * 10ms -> X / 100 cycles |
| */ |
| arc_timer_event_setup(arc_timer_freq / HZ); |
| return 0; |
| } |
| |
| static DEFINE_PER_CPU(struct clock_event_device, arc_clockevent_device) = { |
| .name = "ARC Timer0", |
| .features = CLOCK_EVT_FEAT_ONESHOT | |
| CLOCK_EVT_FEAT_PERIODIC, |
| .rating = 300, |
| .set_next_event = arc_clkevent_set_next_event, |
| .set_state_periodic = arc_clkevent_set_periodic, |
| }; |
| |
| static irqreturn_t timer_irq_handler(int irq, void *dev_id) |
| { |
| /* |
| * Note that generic IRQ core could have passed @evt for @dev_id if |
| * irq_set_chip_and_handler() asked for handle_percpu_devid_irq() |
| */ |
| struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device); |
| int irq_reenable = clockevent_state_periodic(evt); |
| |
| /* |
| * 1. ACK the interrupt |
| * - For ARC700, any write to CTRL reg ACKs it, so just rewrite |
| * Count when [N]ot [H]alted bit. |
| * - For HS3x, it is a bit subtle. On taken count-down interrupt, |
| * IP bit [3] is set, which needs to be cleared for ACK'ing. |
| * The write below can only update the other two bits, hence |
| * explicitly clears IP bit |
| * 2. Re-arm interrupt if periodic by writing to IE bit [0] |
| */ |
| write_aux_reg(ARC_REG_TIMER0_CTRL, irq_reenable | TIMER_CTRL_NH); |
| |
| evt->event_handler(evt); |
| |
| return IRQ_HANDLED; |
| } |
| |
| |
| static int arc_timer_starting_cpu(unsigned int cpu) |
| { |
| struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device); |
| |
| evt->cpumask = cpumask_of(smp_processor_id()); |
| |
| clockevents_config_and_register(evt, arc_timer_freq, 0, ARC_TIMERN_MAX); |
| enable_percpu_irq(arc_timer_irq, 0); |
| return 0; |
| } |
| |
| static int arc_timer_dying_cpu(unsigned int cpu) |
| { |
| disable_percpu_irq(arc_timer_irq); |
| return 0; |
| } |
| |
| /* |
| * clockevent setup for boot CPU |
| */ |
| static int __init arc_clockevent_setup(struct device_node *node) |
| { |
| struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device); |
| int ret; |
| |
| arc_timer_irq = irq_of_parse_and_map(node, 0); |
| if (arc_timer_irq <= 0) { |
| pr_err("clockevent: missing irq\n"); |
| return -EINVAL; |
| } |
| |
| ret = arc_get_timer_clk(node); |
| if (ret) { |
| pr_err("clockevent: missing clk\n"); |
| return ret; |
| } |
| |
| /* Needs apriori irq_set_percpu_devid() done in intc map function */ |
| ret = request_percpu_irq(arc_timer_irq, timer_irq_handler, |
| "Timer0 (per-cpu-tick)", evt); |
| if (ret) { |
| pr_err("clockevent: unable to request irq\n"); |
| return ret; |
| } |
| |
| ret = cpuhp_setup_state(CPUHP_AP_ARC_TIMER_STARTING, |
| "clockevents/arc/timer:starting", |
| arc_timer_starting_cpu, |
| arc_timer_dying_cpu); |
| if (ret) { |
| pr_err("Failed to setup hotplug state\n"); |
| return ret; |
| } |
| return 0; |
| } |
| |
| static int __init arc_of_timer_init(struct device_node *np) |
| { |
| static int init_count = 0; |
| int ret; |
| |
| if (!init_count) { |
| init_count = 1; |
| ret = arc_clockevent_setup(np); |
| } else { |
| ret = arc_cs_setup_timer1(np); |
| } |
| |
| return ret; |
| } |
| TIMER_OF_DECLARE(arc_clkevt, "snps,arc-timer", arc_of_timer_init); |