| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Driver for Lineage Compact Power Line series of power entry modules. |
| * |
| * Copyright (C) 2010, 2011 Ericsson AB. |
| * |
| * Documentation: |
| * http://www.lineagepower.com/oem/pdf/CPLI2C.pdf |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/err.h> |
| #include <linux/slab.h> |
| #include <linux/i2c.h> |
| #include <linux/hwmon.h> |
| #include <linux/hwmon-sysfs.h> |
| #include <linux/jiffies.h> |
| |
| /* |
| * This driver supports various Lineage Compact Power Line DC/DC and AC/DC |
| * converters such as CP1800, CP2000AC, CP2000DC, CP2100DC, and others. |
| * |
| * The devices are nominally PMBus compliant. However, most standard PMBus |
| * commands are not supported. Specifically, all hardware monitoring and |
| * status reporting commands are non-standard. For this reason, a standard |
| * PMBus driver can not be used. |
| * |
| * All Lineage CPL devices have a built-in I2C bus master selector (PCA9541). |
| * To ensure device access, this driver should only be used as client driver |
| * to the pca9541 I2C master selector driver. |
| */ |
| |
| /* Command codes */ |
| #define PEM_OPERATION 0x01 |
| #define PEM_CLEAR_INFO_FLAGS 0x03 |
| #define PEM_VOUT_COMMAND 0x21 |
| #define PEM_VOUT_OV_FAULT_LIMIT 0x40 |
| #define PEM_READ_DATA_STRING 0xd0 |
| #define PEM_READ_INPUT_STRING 0xdc |
| #define PEM_READ_FIRMWARE_REV 0xdd |
| #define PEM_READ_RUN_TIMER 0xde |
| #define PEM_FAN_HI_SPEED 0xdf |
| #define PEM_FAN_NORMAL_SPEED 0xe0 |
| #define PEM_READ_FAN_SPEED 0xe1 |
| |
| /* offsets in data string */ |
| #define PEM_DATA_STATUS_2 0 |
| #define PEM_DATA_STATUS_1 1 |
| #define PEM_DATA_ALARM_2 2 |
| #define PEM_DATA_ALARM_1 3 |
| #define PEM_DATA_VOUT_LSB 4 |
| #define PEM_DATA_VOUT_MSB 5 |
| #define PEM_DATA_CURRENT 6 |
| #define PEM_DATA_TEMP 7 |
| |
| /* Virtual entries, to report constants */ |
| #define PEM_DATA_TEMP_MAX 10 |
| #define PEM_DATA_TEMP_CRIT 11 |
| |
| /* offsets in input string */ |
| #define PEM_INPUT_VOLTAGE 0 |
| #define PEM_INPUT_POWER_LSB 1 |
| #define PEM_INPUT_POWER_MSB 2 |
| |
| /* offsets in fan data */ |
| #define PEM_FAN_ADJUSTMENT 0 |
| #define PEM_FAN_FAN1 1 |
| #define PEM_FAN_FAN2 2 |
| #define PEM_FAN_FAN3 3 |
| |
| /* Status register bits */ |
| #define STS1_OUTPUT_ON (1 << 0) |
| #define STS1_LEDS_FLASHING (1 << 1) |
| #define STS1_EXT_FAULT (1 << 2) |
| #define STS1_SERVICE_LED_ON (1 << 3) |
| #define STS1_SHUTDOWN_OCCURRED (1 << 4) |
| #define STS1_INT_FAULT (1 << 5) |
| #define STS1_ISOLATION_TEST_OK (1 << 6) |
| |
| #define STS2_ENABLE_PIN_HI (1 << 0) |
| #define STS2_DATA_OUT_RANGE (1 << 1) |
| #define STS2_RESTARTED_OK (1 << 1) |
| #define STS2_ISOLATION_TEST_FAIL (1 << 3) |
| #define STS2_HIGH_POWER_CAP (1 << 4) |
| #define STS2_INVALID_INSTR (1 << 5) |
| #define STS2_WILL_RESTART (1 << 6) |
| #define STS2_PEC_ERR (1 << 7) |
| |
| /* Alarm register bits */ |
| #define ALRM1_VIN_OUT_LIMIT (1 << 0) |
| #define ALRM1_VOUT_OUT_LIMIT (1 << 1) |
| #define ALRM1_OV_VOLT_SHUTDOWN (1 << 2) |
| #define ALRM1_VIN_OVERCURRENT (1 << 3) |
| #define ALRM1_TEMP_WARNING (1 << 4) |
| #define ALRM1_TEMP_SHUTDOWN (1 << 5) |
| #define ALRM1_PRIMARY_FAULT (1 << 6) |
| #define ALRM1_POWER_LIMIT (1 << 7) |
| |
| #define ALRM2_5V_OUT_LIMIT (1 << 1) |
| #define ALRM2_TEMP_FAULT (1 << 2) |
| #define ALRM2_OV_LOW (1 << 3) |
| #define ALRM2_DCDC_TEMP_HIGH (1 << 4) |
| #define ALRM2_PRI_TEMP_HIGH (1 << 5) |
| #define ALRM2_NO_PRIMARY (1 << 6) |
| #define ALRM2_FAN_FAULT (1 << 7) |
| |
| #define FIRMWARE_REV_LEN 4 |
| #define DATA_STRING_LEN 9 |
| #define INPUT_STRING_LEN 5 /* 4 for most devices */ |
| #define FAN_SPEED_LEN 5 |
| |
| struct pem_data { |
| struct i2c_client *client; |
| const struct attribute_group *groups[4]; |
| |
| struct mutex update_lock; |
| bool valid; |
| bool fans_supported; |
| int input_length; |
| unsigned long last_updated; /* in jiffies */ |
| |
| u8 firmware_rev[FIRMWARE_REV_LEN]; |
| u8 data_string[DATA_STRING_LEN]; |
| u8 input_string[INPUT_STRING_LEN]; |
| u8 fan_speed[FAN_SPEED_LEN]; |
| }; |
| |
| static int pem_read_block(struct i2c_client *client, u8 command, u8 *data, |
| int data_len) |
| { |
| u8 block_buffer[I2C_SMBUS_BLOCK_MAX]; |
| int result; |
| |
| result = i2c_smbus_read_block_data(client, command, block_buffer); |
| if (unlikely(result < 0)) |
| goto abort; |
| if (unlikely(result == 0xff || result != data_len)) { |
| result = -EIO; |
| goto abort; |
| } |
| memcpy(data, block_buffer, data_len); |
| result = 0; |
| abort: |
| return result; |
| } |
| |
| static struct pem_data *pem_update_device(struct device *dev) |
| { |
| struct pem_data *data = dev_get_drvdata(dev); |
| struct i2c_client *client = data->client; |
| struct pem_data *ret = data; |
| |
| mutex_lock(&data->update_lock); |
| |
| if (time_after(jiffies, data->last_updated + HZ) || !data->valid) { |
| int result; |
| |
| /* Read data string */ |
| result = pem_read_block(client, PEM_READ_DATA_STRING, |
| data->data_string, |
| sizeof(data->data_string)); |
| if (unlikely(result < 0)) { |
| ret = ERR_PTR(result); |
| goto abort; |
| } |
| |
| /* Read input string */ |
| if (data->input_length) { |
| result = pem_read_block(client, PEM_READ_INPUT_STRING, |
| data->input_string, |
| data->input_length); |
| if (unlikely(result < 0)) { |
| ret = ERR_PTR(result); |
| goto abort; |
| } |
| } |
| |
| /* Read fan speeds */ |
| if (data->fans_supported) { |
| result = pem_read_block(client, PEM_READ_FAN_SPEED, |
| data->fan_speed, |
| sizeof(data->fan_speed)); |
| if (unlikely(result < 0)) { |
| ret = ERR_PTR(result); |
| goto abort; |
| } |
| } |
| |
| i2c_smbus_write_byte(client, PEM_CLEAR_INFO_FLAGS); |
| |
| data->last_updated = jiffies; |
| data->valid = 1; |
| } |
| abort: |
| mutex_unlock(&data->update_lock); |
| return ret; |
| } |
| |
| static long pem_get_data(u8 *data, int len, int index) |
| { |
| long val; |
| |
| switch (index) { |
| case PEM_DATA_VOUT_LSB: |
| val = (data[index] + (data[index+1] << 8)) * 5 / 2; |
| break; |
| case PEM_DATA_CURRENT: |
| val = data[index] * 200; |
| break; |
| case PEM_DATA_TEMP: |
| val = data[index] * 1000; |
| break; |
| case PEM_DATA_TEMP_MAX: |
| val = 97 * 1000; /* 97 degrees C per datasheet */ |
| break; |
| case PEM_DATA_TEMP_CRIT: |
| val = 107 * 1000; /* 107 degrees C per datasheet */ |
| break; |
| default: |
| WARN_ON_ONCE(1); |
| val = 0; |
| } |
| return val; |
| } |
| |
| static long pem_get_input(u8 *data, int len, int index) |
| { |
| long val; |
| |
| switch (index) { |
| case PEM_INPUT_VOLTAGE: |
| if (len == INPUT_STRING_LEN) |
| val = (data[index] + (data[index+1] << 8) - 75) * 1000; |
| else |
| val = (data[index] - 75) * 1000; |
| break; |
| case PEM_INPUT_POWER_LSB: |
| if (len == INPUT_STRING_LEN) |
| index++; |
| val = (data[index] + (data[index+1] << 8)) * 1000000L; |
| break; |
| default: |
| WARN_ON_ONCE(1); |
| val = 0; |
| } |
| return val; |
| } |
| |
| static long pem_get_fan(u8 *data, int len, int index) |
| { |
| long val; |
| |
| switch (index) { |
| case PEM_FAN_FAN1: |
| case PEM_FAN_FAN2: |
| case PEM_FAN_FAN3: |
| val = data[index] * 100; |
| break; |
| default: |
| WARN_ON_ONCE(1); |
| val = 0; |
| } |
| return val; |
| } |
| |
| /* |
| * Show boolean, either a fault or an alarm. |
| * .nr points to the register, .index is the bit mask to check |
| */ |
| static ssize_t pem_bool_show(struct device *dev, struct device_attribute *da, |
| char *buf) |
| { |
| struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(da); |
| struct pem_data *data = pem_update_device(dev); |
| u8 status; |
| |
| if (IS_ERR(data)) |
| return PTR_ERR(data); |
| |
| status = data->data_string[attr->nr] & attr->index; |
| return snprintf(buf, PAGE_SIZE, "%d\n", !!status); |
| } |
| |
| static ssize_t pem_data_show(struct device *dev, struct device_attribute *da, |
| char *buf) |
| { |
| struct sensor_device_attribute *attr = to_sensor_dev_attr(da); |
| struct pem_data *data = pem_update_device(dev); |
| long value; |
| |
| if (IS_ERR(data)) |
| return PTR_ERR(data); |
| |
| value = pem_get_data(data->data_string, sizeof(data->data_string), |
| attr->index); |
| |
| return snprintf(buf, PAGE_SIZE, "%ld\n", value); |
| } |
| |
| static ssize_t pem_input_show(struct device *dev, struct device_attribute *da, |
| char *buf) |
| { |
| struct sensor_device_attribute *attr = to_sensor_dev_attr(da); |
| struct pem_data *data = pem_update_device(dev); |
| long value; |
| |
| if (IS_ERR(data)) |
| return PTR_ERR(data); |
| |
| value = pem_get_input(data->input_string, sizeof(data->input_string), |
| attr->index); |
| |
| return snprintf(buf, PAGE_SIZE, "%ld\n", value); |
| } |
| |
| static ssize_t pem_fan_show(struct device *dev, struct device_attribute *da, |
| char *buf) |
| { |
| struct sensor_device_attribute *attr = to_sensor_dev_attr(da); |
| struct pem_data *data = pem_update_device(dev); |
| long value; |
| |
| if (IS_ERR(data)) |
| return PTR_ERR(data); |
| |
| value = pem_get_fan(data->fan_speed, sizeof(data->fan_speed), |
| attr->index); |
| |
| return snprintf(buf, PAGE_SIZE, "%ld\n", value); |
| } |
| |
| /* Voltages */ |
| static SENSOR_DEVICE_ATTR_RO(in1_input, pem_data, PEM_DATA_VOUT_LSB); |
| static SENSOR_DEVICE_ATTR_2_RO(in1_alarm, pem_bool, PEM_DATA_ALARM_1, |
| ALRM1_VOUT_OUT_LIMIT); |
| static SENSOR_DEVICE_ATTR_2_RO(in1_crit_alarm, pem_bool, PEM_DATA_ALARM_1, |
| ALRM1_OV_VOLT_SHUTDOWN); |
| static SENSOR_DEVICE_ATTR_RO(in2_input, pem_input, PEM_INPUT_VOLTAGE); |
| static SENSOR_DEVICE_ATTR_2_RO(in2_alarm, pem_bool, PEM_DATA_ALARM_1, |
| ALRM1_VIN_OUT_LIMIT | ALRM1_PRIMARY_FAULT); |
| |
| /* Currents */ |
| static SENSOR_DEVICE_ATTR_RO(curr1_input, pem_data, PEM_DATA_CURRENT); |
| static SENSOR_DEVICE_ATTR_2_RO(curr1_alarm, pem_bool, PEM_DATA_ALARM_1, |
| ALRM1_VIN_OVERCURRENT); |
| |
| /* Power */ |
| static SENSOR_DEVICE_ATTR_RO(power1_input, pem_input, PEM_INPUT_POWER_LSB); |
| static SENSOR_DEVICE_ATTR_2_RO(power1_alarm, pem_bool, PEM_DATA_ALARM_1, |
| ALRM1_POWER_LIMIT); |
| |
| /* Fans */ |
| static SENSOR_DEVICE_ATTR_RO(fan1_input, pem_fan, PEM_FAN_FAN1); |
| static SENSOR_DEVICE_ATTR_RO(fan2_input, pem_fan, PEM_FAN_FAN2); |
| static SENSOR_DEVICE_ATTR_RO(fan3_input, pem_fan, PEM_FAN_FAN3); |
| static SENSOR_DEVICE_ATTR_2_RO(fan1_alarm, pem_bool, PEM_DATA_ALARM_2, |
| ALRM2_FAN_FAULT); |
| |
| /* Temperatures */ |
| static SENSOR_DEVICE_ATTR_RO(temp1_input, pem_data, PEM_DATA_TEMP); |
| static SENSOR_DEVICE_ATTR_RO(temp1_max, pem_data, PEM_DATA_TEMP_MAX); |
| static SENSOR_DEVICE_ATTR_RO(temp1_crit, pem_data, PEM_DATA_TEMP_CRIT); |
| static SENSOR_DEVICE_ATTR_2_RO(temp1_alarm, pem_bool, PEM_DATA_ALARM_1, |
| ALRM1_TEMP_WARNING); |
| static SENSOR_DEVICE_ATTR_2_RO(temp1_crit_alarm, pem_bool, PEM_DATA_ALARM_1, |
| ALRM1_TEMP_SHUTDOWN); |
| static SENSOR_DEVICE_ATTR_2_RO(temp1_fault, pem_bool, PEM_DATA_ALARM_2, |
| ALRM2_TEMP_FAULT); |
| |
| static struct attribute *pem_attributes[] = { |
| &sensor_dev_attr_in1_input.dev_attr.attr, |
| &sensor_dev_attr_in1_alarm.dev_attr.attr, |
| &sensor_dev_attr_in1_crit_alarm.dev_attr.attr, |
| &sensor_dev_attr_in2_alarm.dev_attr.attr, |
| |
| &sensor_dev_attr_curr1_alarm.dev_attr.attr, |
| |
| &sensor_dev_attr_power1_alarm.dev_attr.attr, |
| |
| &sensor_dev_attr_fan1_alarm.dev_attr.attr, |
| |
| &sensor_dev_attr_temp1_input.dev_attr.attr, |
| &sensor_dev_attr_temp1_max.dev_attr.attr, |
| &sensor_dev_attr_temp1_crit.dev_attr.attr, |
| &sensor_dev_attr_temp1_alarm.dev_attr.attr, |
| &sensor_dev_attr_temp1_crit_alarm.dev_attr.attr, |
| &sensor_dev_attr_temp1_fault.dev_attr.attr, |
| |
| NULL, |
| }; |
| |
| static const struct attribute_group pem_group = { |
| .attrs = pem_attributes, |
| }; |
| |
| static struct attribute *pem_input_attributes[] = { |
| &sensor_dev_attr_in2_input.dev_attr.attr, |
| &sensor_dev_attr_curr1_input.dev_attr.attr, |
| &sensor_dev_attr_power1_input.dev_attr.attr, |
| NULL |
| }; |
| |
| static const struct attribute_group pem_input_group = { |
| .attrs = pem_input_attributes, |
| }; |
| |
| static struct attribute *pem_fan_attributes[] = { |
| &sensor_dev_attr_fan1_input.dev_attr.attr, |
| &sensor_dev_attr_fan2_input.dev_attr.attr, |
| &sensor_dev_attr_fan3_input.dev_attr.attr, |
| NULL |
| }; |
| |
| static const struct attribute_group pem_fan_group = { |
| .attrs = pem_fan_attributes, |
| }; |
| |
| static int pem_probe(struct i2c_client *client, |
| const struct i2c_device_id *id) |
| { |
| struct i2c_adapter *adapter = client->adapter; |
| struct device *dev = &client->dev; |
| struct device *hwmon_dev; |
| struct pem_data *data; |
| int ret, idx = 0; |
| |
| if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BLOCK_DATA |
| | I2C_FUNC_SMBUS_WRITE_BYTE)) |
| return -ENODEV; |
| |
| data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); |
| if (!data) |
| return -ENOMEM; |
| |
| data->client = client; |
| mutex_init(&data->update_lock); |
| |
| /* |
| * We use the next two commands to determine if the device is really |
| * there. |
| */ |
| ret = pem_read_block(client, PEM_READ_FIRMWARE_REV, |
| data->firmware_rev, sizeof(data->firmware_rev)); |
| if (ret < 0) |
| return ret; |
| |
| ret = i2c_smbus_write_byte(client, PEM_CLEAR_INFO_FLAGS); |
| if (ret < 0) |
| return ret; |
| |
| dev_info(dev, "Firmware revision %d.%d.%d\n", |
| data->firmware_rev[0], data->firmware_rev[1], |
| data->firmware_rev[2]); |
| |
| /* sysfs hooks */ |
| data->groups[idx++] = &pem_group; |
| |
| /* |
| * Check if input readings are supported. |
| * This is the case if we can read input data, |
| * and if the returned data is not all zeros. |
| * Note that input alarms are always supported. |
| */ |
| ret = pem_read_block(client, PEM_READ_INPUT_STRING, |
| data->input_string, |
| sizeof(data->input_string) - 1); |
| if (!ret && (data->input_string[0] || data->input_string[1] || |
| data->input_string[2])) |
| data->input_length = sizeof(data->input_string) - 1; |
| else if (ret < 0) { |
| /* Input string is one byte longer for some devices */ |
| ret = pem_read_block(client, PEM_READ_INPUT_STRING, |
| data->input_string, |
| sizeof(data->input_string)); |
| if (!ret && (data->input_string[0] || data->input_string[1] || |
| data->input_string[2] || data->input_string[3])) |
| data->input_length = sizeof(data->input_string); |
| } |
| |
| if (data->input_length) |
| data->groups[idx++] = &pem_input_group; |
| |
| /* |
| * Check if fan speed readings are supported. |
| * This is the case if we can read fan speed data, |
| * and if the returned data is not all zeros. |
| * Note that the fan alarm is always supported. |
| */ |
| ret = pem_read_block(client, PEM_READ_FAN_SPEED, |
| data->fan_speed, |
| sizeof(data->fan_speed)); |
| if (!ret && (data->fan_speed[0] || data->fan_speed[1] || |
| data->fan_speed[2] || data->fan_speed[3])) { |
| data->fans_supported = true; |
| data->groups[idx++] = &pem_fan_group; |
| } |
| |
| hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name, |
| data, data->groups); |
| return PTR_ERR_OR_ZERO(hwmon_dev); |
| } |
| |
| static const struct i2c_device_id pem_id[] = { |
| {"lineage_pem", 0}, |
| {} |
| }; |
| MODULE_DEVICE_TABLE(i2c, pem_id); |
| |
| static struct i2c_driver pem_driver = { |
| .driver = { |
| .name = "lineage_pem", |
| }, |
| .probe = pem_probe, |
| .id_table = pem_id, |
| }; |
| |
| module_i2c_driver(pem_driver); |
| |
| MODULE_AUTHOR("Guenter Roeck <linux@roeck-us.net>"); |
| MODULE_DESCRIPTION("Lineage CPL PEM hardware monitoring driver"); |
| MODULE_LICENSE("GPL"); |