| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * PCI VPD support |
| * |
| * Copyright (C) 2010 Broadcom Corporation. |
| */ |
| |
| #include <linux/pci.h> |
| #include <linux/delay.h> |
| #include <linux/export.h> |
| #include <linux/sched/signal.h> |
| #include "pci.h" |
| |
| /* VPD access through PCI 2.2+ VPD capability */ |
| |
| struct pci_vpd_ops { |
| ssize_t (*read)(struct pci_dev *dev, loff_t pos, size_t count, void *buf); |
| ssize_t (*write)(struct pci_dev *dev, loff_t pos, size_t count, const void *buf); |
| int (*set_size)(struct pci_dev *dev, size_t len); |
| }; |
| |
| struct pci_vpd { |
| const struct pci_vpd_ops *ops; |
| struct bin_attribute *attr; /* Descriptor for sysfs VPD entry */ |
| struct mutex lock; |
| unsigned int len; |
| u16 flag; |
| u8 cap; |
| unsigned int busy:1; |
| unsigned int valid:1; |
| }; |
| |
| /** |
| * pci_read_vpd - Read one entry from Vital Product Data |
| * @dev: pci device struct |
| * @pos: offset in vpd space |
| * @count: number of bytes to read |
| * @buf: pointer to where to store result |
| */ |
| ssize_t pci_read_vpd(struct pci_dev *dev, loff_t pos, size_t count, void *buf) |
| { |
| if (!dev->vpd || !dev->vpd->ops) |
| return -ENODEV; |
| return dev->vpd->ops->read(dev, pos, count, buf); |
| } |
| EXPORT_SYMBOL(pci_read_vpd); |
| |
| /** |
| * pci_write_vpd - Write entry to Vital Product Data |
| * @dev: pci device struct |
| * @pos: offset in vpd space |
| * @count: number of bytes to write |
| * @buf: buffer containing write data |
| */ |
| ssize_t pci_write_vpd(struct pci_dev *dev, loff_t pos, size_t count, const void *buf) |
| { |
| if (!dev->vpd || !dev->vpd->ops) |
| return -ENODEV; |
| return dev->vpd->ops->write(dev, pos, count, buf); |
| } |
| EXPORT_SYMBOL(pci_write_vpd); |
| |
| /** |
| * pci_set_vpd_size - Set size of Vital Product Data space |
| * @dev: pci device struct |
| * @len: size of vpd space |
| */ |
| int pci_set_vpd_size(struct pci_dev *dev, size_t len) |
| { |
| if (!dev->vpd || !dev->vpd->ops) |
| return -ENODEV; |
| return dev->vpd->ops->set_size(dev, len); |
| } |
| EXPORT_SYMBOL(pci_set_vpd_size); |
| |
| #define PCI_VPD_MAX_SIZE (PCI_VPD_ADDR_MASK + 1) |
| |
| /** |
| * pci_vpd_size - determine actual size of Vital Product Data |
| * @dev: pci device struct |
| * @old_size: current assumed size, also maximum allowed size |
| */ |
| static size_t pci_vpd_size(struct pci_dev *dev, size_t old_size) |
| { |
| size_t off = 0; |
| unsigned char header[1+2]; /* 1 byte tag, 2 bytes length */ |
| |
| while (off < old_size && |
| pci_read_vpd(dev, off, 1, header) == 1) { |
| unsigned char tag; |
| |
| if (header[0] & PCI_VPD_LRDT) { |
| /* Large Resource Data Type Tag */ |
| tag = pci_vpd_lrdt_tag(header); |
| /* Only read length from known tag items */ |
| if ((tag == PCI_VPD_LTIN_ID_STRING) || |
| (tag == PCI_VPD_LTIN_RO_DATA) || |
| (tag == PCI_VPD_LTIN_RW_DATA)) { |
| if (pci_read_vpd(dev, off+1, 2, |
| &header[1]) != 2) { |
| pci_warn(dev, "invalid large VPD tag %02x size at offset %zu", |
| tag, off + 1); |
| return 0; |
| } |
| off += PCI_VPD_LRDT_TAG_SIZE + |
| pci_vpd_lrdt_size(header); |
| } |
| } else { |
| /* Short Resource Data Type Tag */ |
| off += PCI_VPD_SRDT_TAG_SIZE + |
| pci_vpd_srdt_size(header); |
| tag = pci_vpd_srdt_tag(header); |
| } |
| |
| if (tag == PCI_VPD_STIN_END) /* End tag descriptor */ |
| return off; |
| |
| if ((tag != PCI_VPD_LTIN_ID_STRING) && |
| (tag != PCI_VPD_LTIN_RO_DATA) && |
| (tag != PCI_VPD_LTIN_RW_DATA)) { |
| pci_warn(dev, "invalid %s VPD tag %02x at offset %zu", |
| (header[0] & PCI_VPD_LRDT) ? "large" : "short", |
| tag, off); |
| return 0; |
| } |
| } |
| return 0; |
| } |
| |
| /* |
| * Wait for last operation to complete. |
| * This code has to spin since there is no other notification from the PCI |
| * hardware. Since the VPD is often implemented by serial attachment to an |
| * EEPROM, it may take many milliseconds to complete. |
| * |
| * Returns 0 on success, negative values indicate error. |
| */ |
| static int pci_vpd_wait(struct pci_dev *dev) |
| { |
| struct pci_vpd *vpd = dev->vpd; |
| unsigned long timeout = jiffies + msecs_to_jiffies(125); |
| unsigned long max_sleep = 16; |
| u16 status; |
| int ret; |
| |
| if (!vpd->busy) |
| return 0; |
| |
| do { |
| ret = pci_user_read_config_word(dev, vpd->cap + PCI_VPD_ADDR, |
| &status); |
| if (ret < 0) |
| return ret; |
| |
| if ((status & PCI_VPD_ADDR_F) == vpd->flag) { |
| vpd->busy = 0; |
| return 0; |
| } |
| |
| if (fatal_signal_pending(current)) |
| return -EINTR; |
| |
| if (time_after(jiffies, timeout)) |
| break; |
| |
| usleep_range(10, max_sleep); |
| if (max_sleep < 1024) |
| max_sleep *= 2; |
| } while (true); |
| |
| pci_warn(dev, "VPD access failed. This is likely a firmware bug on this device. Contact the card vendor for a firmware update\n"); |
| return -ETIMEDOUT; |
| } |
| |
| static ssize_t pci_vpd_read(struct pci_dev *dev, loff_t pos, size_t count, |
| void *arg) |
| { |
| struct pci_vpd *vpd = dev->vpd; |
| int ret; |
| loff_t end = pos + count; |
| u8 *buf = arg; |
| |
| if (pos < 0) |
| return -EINVAL; |
| |
| if (!vpd->valid) { |
| vpd->valid = 1; |
| vpd->len = pci_vpd_size(dev, vpd->len); |
| } |
| |
| if (vpd->len == 0) |
| return -EIO; |
| |
| if (pos > vpd->len) |
| return 0; |
| |
| if (end > vpd->len) { |
| end = vpd->len; |
| count = end - pos; |
| } |
| |
| if (mutex_lock_killable(&vpd->lock)) |
| return -EINTR; |
| |
| ret = pci_vpd_wait(dev); |
| if (ret < 0) |
| goto out; |
| |
| while (pos < end) { |
| u32 val; |
| unsigned int i, skip; |
| |
| ret = pci_user_write_config_word(dev, vpd->cap + PCI_VPD_ADDR, |
| pos & ~3); |
| if (ret < 0) |
| break; |
| vpd->busy = 1; |
| vpd->flag = PCI_VPD_ADDR_F; |
| ret = pci_vpd_wait(dev); |
| if (ret < 0) |
| break; |
| |
| ret = pci_user_read_config_dword(dev, vpd->cap + PCI_VPD_DATA, &val); |
| if (ret < 0) |
| break; |
| |
| skip = pos & 3; |
| for (i = 0; i < sizeof(u32); i++) { |
| if (i >= skip) { |
| *buf++ = val; |
| if (++pos == end) |
| break; |
| } |
| val >>= 8; |
| } |
| } |
| out: |
| mutex_unlock(&vpd->lock); |
| return ret ? ret : count; |
| } |
| |
| static ssize_t pci_vpd_write(struct pci_dev *dev, loff_t pos, size_t count, |
| const void *arg) |
| { |
| struct pci_vpd *vpd = dev->vpd; |
| const u8 *buf = arg; |
| loff_t end = pos + count; |
| int ret = 0; |
| |
| if (pos < 0 || (pos & 3) || (count & 3)) |
| return -EINVAL; |
| |
| if (!vpd->valid) { |
| vpd->valid = 1; |
| vpd->len = pci_vpd_size(dev, vpd->len); |
| } |
| |
| if (vpd->len == 0) |
| return -EIO; |
| |
| if (end > vpd->len) |
| return -EINVAL; |
| |
| if (mutex_lock_killable(&vpd->lock)) |
| return -EINTR; |
| |
| ret = pci_vpd_wait(dev); |
| if (ret < 0) |
| goto out; |
| |
| while (pos < end) { |
| u32 val; |
| |
| val = *buf++; |
| val |= *buf++ << 8; |
| val |= *buf++ << 16; |
| val |= *buf++ << 24; |
| |
| ret = pci_user_write_config_dword(dev, vpd->cap + PCI_VPD_DATA, val); |
| if (ret < 0) |
| break; |
| ret = pci_user_write_config_word(dev, vpd->cap + PCI_VPD_ADDR, |
| pos | PCI_VPD_ADDR_F); |
| if (ret < 0) |
| break; |
| |
| vpd->busy = 1; |
| vpd->flag = 0; |
| ret = pci_vpd_wait(dev); |
| if (ret < 0) |
| break; |
| |
| pos += sizeof(u32); |
| } |
| out: |
| mutex_unlock(&vpd->lock); |
| return ret ? ret : count; |
| } |
| |
| static int pci_vpd_set_size(struct pci_dev *dev, size_t len) |
| { |
| struct pci_vpd *vpd = dev->vpd; |
| |
| if (len == 0 || len > PCI_VPD_MAX_SIZE) |
| return -EIO; |
| |
| vpd->valid = 1; |
| vpd->len = len; |
| |
| return 0; |
| } |
| |
| static const struct pci_vpd_ops pci_vpd_ops = { |
| .read = pci_vpd_read, |
| .write = pci_vpd_write, |
| .set_size = pci_vpd_set_size, |
| }; |
| |
| static ssize_t pci_vpd_f0_read(struct pci_dev *dev, loff_t pos, size_t count, |
| void *arg) |
| { |
| struct pci_dev *tdev = pci_get_slot(dev->bus, |
| PCI_DEVFN(PCI_SLOT(dev->devfn), 0)); |
| ssize_t ret; |
| |
| if (!tdev) |
| return -ENODEV; |
| |
| ret = pci_read_vpd(tdev, pos, count, arg); |
| pci_dev_put(tdev); |
| return ret; |
| } |
| |
| static ssize_t pci_vpd_f0_write(struct pci_dev *dev, loff_t pos, size_t count, |
| const void *arg) |
| { |
| struct pci_dev *tdev = pci_get_slot(dev->bus, |
| PCI_DEVFN(PCI_SLOT(dev->devfn), 0)); |
| ssize_t ret; |
| |
| if (!tdev) |
| return -ENODEV; |
| |
| ret = pci_write_vpd(tdev, pos, count, arg); |
| pci_dev_put(tdev); |
| return ret; |
| } |
| |
| static int pci_vpd_f0_set_size(struct pci_dev *dev, size_t len) |
| { |
| struct pci_dev *tdev = pci_get_slot(dev->bus, |
| PCI_DEVFN(PCI_SLOT(dev->devfn), 0)); |
| int ret; |
| |
| if (!tdev) |
| return -ENODEV; |
| |
| ret = pci_set_vpd_size(tdev, len); |
| pci_dev_put(tdev); |
| return ret; |
| } |
| |
| static const struct pci_vpd_ops pci_vpd_f0_ops = { |
| .read = pci_vpd_f0_read, |
| .write = pci_vpd_f0_write, |
| .set_size = pci_vpd_f0_set_size, |
| }; |
| |
| int pci_vpd_init(struct pci_dev *dev) |
| { |
| struct pci_vpd *vpd; |
| u8 cap; |
| |
| cap = pci_find_capability(dev, PCI_CAP_ID_VPD); |
| if (!cap) |
| return -ENODEV; |
| |
| vpd = kzalloc(sizeof(*vpd), GFP_ATOMIC); |
| if (!vpd) |
| return -ENOMEM; |
| |
| vpd->len = PCI_VPD_MAX_SIZE; |
| if (dev->dev_flags & PCI_DEV_FLAGS_VPD_REF_F0) |
| vpd->ops = &pci_vpd_f0_ops; |
| else |
| vpd->ops = &pci_vpd_ops; |
| mutex_init(&vpd->lock); |
| vpd->cap = cap; |
| vpd->busy = 0; |
| vpd->valid = 0; |
| dev->vpd = vpd; |
| return 0; |
| } |
| |
| void pci_vpd_release(struct pci_dev *dev) |
| { |
| kfree(dev->vpd); |
| } |
| |
| static ssize_t read_vpd_attr(struct file *filp, struct kobject *kobj, |
| struct bin_attribute *bin_attr, char *buf, |
| loff_t off, size_t count) |
| { |
| struct pci_dev *dev = to_pci_dev(kobj_to_dev(kobj)); |
| |
| if (bin_attr->size > 0) { |
| if (off > bin_attr->size) |
| count = 0; |
| else if (count > bin_attr->size - off) |
| count = bin_attr->size - off; |
| } |
| |
| return pci_read_vpd(dev, off, count, buf); |
| } |
| |
| static ssize_t write_vpd_attr(struct file *filp, struct kobject *kobj, |
| struct bin_attribute *bin_attr, char *buf, |
| loff_t off, size_t count) |
| { |
| struct pci_dev *dev = to_pci_dev(kobj_to_dev(kobj)); |
| |
| if (bin_attr->size > 0) { |
| if (off > bin_attr->size) |
| count = 0; |
| else if (count > bin_attr->size - off) |
| count = bin_attr->size - off; |
| } |
| |
| return pci_write_vpd(dev, off, count, buf); |
| } |
| |
| void pcie_vpd_create_sysfs_dev_files(struct pci_dev *dev) |
| { |
| int retval; |
| struct bin_attribute *attr; |
| |
| if (!dev->vpd) |
| return; |
| |
| attr = kzalloc(sizeof(*attr), GFP_ATOMIC); |
| if (!attr) |
| return; |
| |
| sysfs_bin_attr_init(attr); |
| attr->size = 0; |
| attr->attr.name = "vpd"; |
| attr->attr.mode = S_IRUSR | S_IWUSR; |
| attr->read = read_vpd_attr; |
| attr->write = write_vpd_attr; |
| retval = sysfs_create_bin_file(&dev->dev.kobj, attr); |
| if (retval) { |
| kfree(attr); |
| return; |
| } |
| |
| dev->vpd->attr = attr; |
| } |
| |
| void pcie_vpd_remove_sysfs_dev_files(struct pci_dev *dev) |
| { |
| if (dev->vpd && dev->vpd->attr) { |
| sysfs_remove_bin_file(&dev->dev.kobj, dev->vpd->attr); |
| kfree(dev->vpd->attr); |
| } |
| } |
| |
| int pci_vpd_find_tag(const u8 *buf, unsigned int off, unsigned int len, u8 rdt) |
| { |
| int i; |
| |
| for (i = off; i < len; ) { |
| u8 val = buf[i]; |
| |
| if (val & PCI_VPD_LRDT) { |
| /* Don't return success of the tag isn't complete */ |
| if (i + PCI_VPD_LRDT_TAG_SIZE > len) |
| break; |
| |
| if (val == rdt) |
| return i; |
| |
| i += PCI_VPD_LRDT_TAG_SIZE + |
| pci_vpd_lrdt_size(&buf[i]); |
| } else { |
| u8 tag = val & ~PCI_VPD_SRDT_LEN_MASK; |
| |
| if (tag == rdt) |
| return i; |
| |
| if (tag == PCI_VPD_SRDT_END) |
| break; |
| |
| i += PCI_VPD_SRDT_TAG_SIZE + |
| pci_vpd_srdt_size(&buf[i]); |
| } |
| } |
| |
| return -ENOENT; |
| } |
| EXPORT_SYMBOL_GPL(pci_vpd_find_tag); |
| |
| int pci_vpd_find_info_keyword(const u8 *buf, unsigned int off, |
| unsigned int len, const char *kw) |
| { |
| int i; |
| |
| for (i = off; i + PCI_VPD_INFO_FLD_HDR_SIZE <= off + len;) { |
| if (buf[i + 0] == kw[0] && |
| buf[i + 1] == kw[1]) |
| return i; |
| |
| i += PCI_VPD_INFO_FLD_HDR_SIZE + |
| pci_vpd_info_field_size(&buf[i]); |
| } |
| |
| return -ENOENT; |
| } |
| EXPORT_SYMBOL_GPL(pci_vpd_find_info_keyword); |
| |
| #ifdef CONFIG_PCI_QUIRKS |
| /* |
| * Quirk non-zero PCI functions to route VPD access through function 0 for |
| * devices that share VPD resources between functions. The functions are |
| * expected to be identical devices. |
| */ |
| static void quirk_f0_vpd_link(struct pci_dev *dev) |
| { |
| struct pci_dev *f0; |
| |
| if (!PCI_FUNC(dev->devfn)) |
| return; |
| |
| f0 = pci_get_slot(dev->bus, PCI_DEVFN(PCI_SLOT(dev->devfn), 0)); |
| if (!f0) |
| return; |
| |
| if (f0->vpd && dev->class == f0->class && |
| dev->vendor == f0->vendor && dev->device == f0->device) |
| dev->dev_flags |= PCI_DEV_FLAGS_VPD_REF_F0; |
| |
| pci_dev_put(f0); |
| } |
| DECLARE_PCI_FIXUP_CLASS_EARLY(PCI_VENDOR_ID_INTEL, PCI_ANY_ID, |
| PCI_CLASS_NETWORK_ETHERNET, 8, quirk_f0_vpd_link); |
| |
| /* |
| * If a device follows the VPD format spec, the PCI core will not read or |
| * write past the VPD End Tag. But some vendors do not follow the VPD |
| * format spec, so we can't tell how much data is safe to access. Devices |
| * may behave unpredictably if we access too much. Blacklist these devices |
| * so we don't touch VPD at all. |
| */ |
| static void quirk_blacklist_vpd(struct pci_dev *dev) |
| { |
| if (dev->vpd) { |
| dev->vpd->len = 0; |
| pci_warn(dev, FW_BUG "disabling VPD access (can't determine size of non-standard VPD format)\n"); |
| } |
| } |
| DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_LSI_LOGIC, 0x0060, quirk_blacklist_vpd); |
| DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_LSI_LOGIC, 0x007c, quirk_blacklist_vpd); |
| DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_LSI_LOGIC, 0x0413, quirk_blacklist_vpd); |
| DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_LSI_LOGIC, 0x0078, quirk_blacklist_vpd); |
| DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_LSI_LOGIC, 0x0079, quirk_blacklist_vpd); |
| DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_LSI_LOGIC, 0x0073, quirk_blacklist_vpd); |
| DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_LSI_LOGIC, 0x0071, quirk_blacklist_vpd); |
| DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_LSI_LOGIC, 0x005b, quirk_blacklist_vpd); |
| DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_LSI_LOGIC, 0x002f, quirk_blacklist_vpd); |
| DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_LSI_LOGIC, 0x005d, quirk_blacklist_vpd); |
| DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_LSI_LOGIC, 0x005f, quirk_blacklist_vpd); |
| DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_ATTANSIC, PCI_ANY_ID, |
| quirk_blacklist_vpd); |
| DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_QLOGIC, 0x2261, quirk_blacklist_vpd); |
| |
| /* |
| * For Broadcom 5706, 5708, 5709 rev. A nics, any read beyond the |
| * VPD end tag will hang the device. This problem was initially |
| * observed when a vpd entry was created in sysfs |
| * ('/sys/bus/pci/devices/<id>/vpd'). A read to this sysfs entry |
| * will dump 32k of data. Reading a full 32k will cause an access |
| * beyond the VPD end tag causing the device to hang. Once the device |
| * is hung, the bnx2 driver will not be able to reset the device. |
| * We believe that it is legal to read beyond the end tag and |
| * therefore the solution is to limit the read/write length. |
| */ |
| static void quirk_brcm_570x_limit_vpd(struct pci_dev *dev) |
| { |
| /* |
| * Only disable the VPD capability for 5706, 5706S, 5708, |
| * 5708S and 5709 rev. A |
| */ |
| if ((dev->device == PCI_DEVICE_ID_NX2_5706) || |
| (dev->device == PCI_DEVICE_ID_NX2_5706S) || |
| (dev->device == PCI_DEVICE_ID_NX2_5708) || |
| (dev->device == PCI_DEVICE_ID_NX2_5708S) || |
| ((dev->device == PCI_DEVICE_ID_NX2_5709) && |
| (dev->revision & 0xf0) == 0x0)) { |
| if (dev->vpd) |
| dev->vpd->len = 0x80; |
| } |
| } |
| DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_BROADCOM, |
| PCI_DEVICE_ID_NX2_5706, |
| quirk_brcm_570x_limit_vpd); |
| DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_BROADCOM, |
| PCI_DEVICE_ID_NX2_5706S, |
| quirk_brcm_570x_limit_vpd); |
| DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_BROADCOM, |
| PCI_DEVICE_ID_NX2_5708, |
| quirk_brcm_570x_limit_vpd); |
| DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_BROADCOM, |
| PCI_DEVICE_ID_NX2_5708S, |
| quirk_brcm_570x_limit_vpd); |
| DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_BROADCOM, |
| PCI_DEVICE_ID_NX2_5709, |
| quirk_brcm_570x_limit_vpd); |
| DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_BROADCOM, |
| PCI_DEVICE_ID_NX2_5709S, |
| quirk_brcm_570x_limit_vpd); |
| |
| static void quirk_chelsio_extend_vpd(struct pci_dev *dev) |
| { |
| int chip = (dev->device & 0xf000) >> 12; |
| int func = (dev->device & 0x0f00) >> 8; |
| int prod = (dev->device & 0x00ff) >> 0; |
| |
| /* |
| * If this is a T3-based adapter, there's a 1KB VPD area at offset |
| * 0xc00 which contains the preferred VPD values. If this is a T4 or |
| * later based adapter, the special VPD is at offset 0x400 for the |
| * Physical Functions (the SR-IOV Virtual Functions have no VPD |
| * Capabilities). The PCI VPD Access core routines will normally |
| * compute the size of the VPD by parsing the VPD Data Structure at |
| * offset 0x000. This will result in silent failures when attempting |
| * to accesses these other VPD areas which are beyond those computed |
| * limits. |
| */ |
| if (chip == 0x0 && prod >= 0x20) |
| pci_set_vpd_size(dev, 8192); |
| else if (chip >= 0x4 && func < 0x8) |
| pci_set_vpd_size(dev, 2048); |
| } |
| |
| DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_CHELSIO, PCI_ANY_ID, |
| quirk_chelsio_extend_vpd); |
| |
| #endif |