| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Motorola CPCAP PMIC RTC driver |
| * |
| * Based on cpcap-regulator.c from Motorola Linux kernel tree |
| * Copyright (C) 2009 Motorola, Inc. |
| * |
| * Rewritten for mainline kernel |
| * - use DT |
| * - use regmap |
| * - use standard interrupt framework |
| * - use managed device resources |
| * - remove custom "secure clock daemon" helpers |
| * |
| * Copyright (C) 2017 Sebastian Reichel <sre@kernel.org> |
| */ |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/mod_devicetable.h> |
| #include <linux/init.h> |
| #include <linux/device.h> |
| #include <linux/platform_device.h> |
| #include <linux/rtc.h> |
| #include <linux/err.h> |
| #include <linux/regmap.h> |
| #include <linux/mfd/motorola-cpcap.h> |
| #include <linux/slab.h> |
| #include <linux/sched.h> |
| |
| #define SECS_PER_DAY 86400 |
| #define DAY_MASK 0x7FFF |
| #define TOD1_MASK 0x00FF |
| #define TOD2_MASK 0x01FF |
| |
| struct cpcap_time { |
| int day; |
| int tod1; |
| int tod2; |
| }; |
| |
| struct cpcap_rtc { |
| struct regmap *regmap; |
| struct rtc_device *rtc_dev; |
| u16 vendor; |
| int alarm_irq; |
| bool alarm_enabled; |
| int update_irq; |
| bool update_enabled; |
| }; |
| |
| static void cpcap2rtc_time(struct rtc_time *rtc, struct cpcap_time *cpcap) |
| { |
| unsigned long int tod; |
| unsigned long int time; |
| |
| tod = (cpcap->tod1 & TOD1_MASK) | ((cpcap->tod2 & TOD2_MASK) << 8); |
| time = tod + ((cpcap->day & DAY_MASK) * SECS_PER_DAY); |
| |
| rtc_time_to_tm(time, rtc); |
| } |
| |
| static void rtc2cpcap_time(struct cpcap_time *cpcap, struct rtc_time *rtc) |
| { |
| unsigned long time; |
| |
| rtc_tm_to_time(rtc, &time); |
| |
| cpcap->day = time / SECS_PER_DAY; |
| time %= SECS_PER_DAY; |
| cpcap->tod2 = (time >> 8) & TOD2_MASK; |
| cpcap->tod1 = time & TOD1_MASK; |
| } |
| |
| static int cpcap_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled) |
| { |
| struct cpcap_rtc *rtc = dev_get_drvdata(dev); |
| |
| if (rtc->alarm_enabled == enabled) |
| return 0; |
| |
| if (enabled) |
| enable_irq(rtc->alarm_irq); |
| else |
| disable_irq(rtc->alarm_irq); |
| |
| rtc->alarm_enabled = !!enabled; |
| |
| return 0; |
| } |
| |
| static int cpcap_rtc_read_time(struct device *dev, struct rtc_time *tm) |
| { |
| struct cpcap_rtc *rtc; |
| struct cpcap_time cpcap_tm; |
| int temp_tod2; |
| int ret; |
| |
| rtc = dev_get_drvdata(dev); |
| |
| ret = regmap_read(rtc->regmap, CPCAP_REG_TOD2, &temp_tod2); |
| ret |= regmap_read(rtc->regmap, CPCAP_REG_DAY, &cpcap_tm.day); |
| ret |= regmap_read(rtc->regmap, CPCAP_REG_TOD1, &cpcap_tm.tod1); |
| ret |= regmap_read(rtc->regmap, CPCAP_REG_TOD2, &cpcap_tm.tod2); |
| |
| if (temp_tod2 > cpcap_tm.tod2) |
| ret |= regmap_read(rtc->regmap, CPCAP_REG_DAY, &cpcap_tm.day); |
| |
| if (ret) { |
| dev_err(dev, "Failed to read time\n"); |
| return -EIO; |
| } |
| |
| cpcap2rtc_time(tm, &cpcap_tm); |
| |
| return 0; |
| } |
| |
| static int cpcap_rtc_set_time(struct device *dev, struct rtc_time *tm) |
| { |
| struct cpcap_rtc *rtc; |
| struct cpcap_time cpcap_tm; |
| int ret = 0; |
| |
| rtc = dev_get_drvdata(dev); |
| |
| rtc2cpcap_time(&cpcap_tm, tm); |
| |
| if (rtc->alarm_enabled) |
| disable_irq(rtc->alarm_irq); |
| if (rtc->update_enabled) |
| disable_irq(rtc->update_irq); |
| |
| if (rtc->vendor == CPCAP_VENDOR_ST) { |
| /* The TOD1 and TOD2 registers MUST be written in this order |
| * for the change to properly set. |
| */ |
| ret |= regmap_update_bits(rtc->regmap, CPCAP_REG_TOD1, |
| TOD1_MASK, cpcap_tm.tod1); |
| ret |= regmap_update_bits(rtc->regmap, CPCAP_REG_TOD2, |
| TOD2_MASK, cpcap_tm.tod2); |
| ret |= regmap_update_bits(rtc->regmap, CPCAP_REG_DAY, |
| DAY_MASK, cpcap_tm.day); |
| } else { |
| /* Clearing the upper lower 8 bits of the TOD guarantees that |
| * the upper half of TOD (TOD2) will not increment for 0xFF RTC |
| * ticks (255 seconds). During this time we can safely write |
| * to DAY, TOD2, then TOD1 (in that order) and expect RTC to be |
| * synchronized to the exact time requested upon the final write |
| * to TOD1. |
| */ |
| ret |= regmap_update_bits(rtc->regmap, CPCAP_REG_TOD1, |
| TOD1_MASK, 0); |
| ret |= regmap_update_bits(rtc->regmap, CPCAP_REG_DAY, |
| DAY_MASK, cpcap_tm.day); |
| ret |= regmap_update_bits(rtc->regmap, CPCAP_REG_TOD2, |
| TOD2_MASK, cpcap_tm.tod2); |
| ret |= regmap_update_bits(rtc->regmap, CPCAP_REG_TOD1, |
| TOD1_MASK, cpcap_tm.tod1); |
| } |
| |
| if (rtc->update_enabled) |
| enable_irq(rtc->update_irq); |
| if (rtc->alarm_enabled) |
| enable_irq(rtc->alarm_irq); |
| |
| return ret; |
| } |
| |
| static int cpcap_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm) |
| { |
| struct cpcap_rtc *rtc; |
| struct cpcap_time cpcap_tm; |
| int ret; |
| |
| rtc = dev_get_drvdata(dev); |
| |
| alrm->enabled = rtc->alarm_enabled; |
| |
| ret = regmap_read(rtc->regmap, CPCAP_REG_DAYA, &cpcap_tm.day); |
| ret |= regmap_read(rtc->regmap, CPCAP_REG_TODA2, &cpcap_tm.tod2); |
| ret |= regmap_read(rtc->regmap, CPCAP_REG_TODA1, &cpcap_tm.tod1); |
| |
| if (ret) { |
| dev_err(dev, "Failed to read time\n"); |
| return -EIO; |
| } |
| |
| cpcap2rtc_time(&alrm->time, &cpcap_tm); |
| return rtc_valid_tm(&alrm->time); |
| } |
| |
| static int cpcap_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm) |
| { |
| struct cpcap_rtc *rtc; |
| struct cpcap_time cpcap_tm; |
| int ret; |
| |
| rtc = dev_get_drvdata(dev); |
| |
| rtc2cpcap_time(&cpcap_tm, &alrm->time); |
| |
| if (rtc->alarm_enabled) |
| disable_irq(rtc->alarm_irq); |
| |
| ret = regmap_update_bits(rtc->regmap, CPCAP_REG_DAYA, DAY_MASK, |
| cpcap_tm.day); |
| ret |= regmap_update_bits(rtc->regmap, CPCAP_REG_TODA2, TOD2_MASK, |
| cpcap_tm.tod2); |
| ret |= regmap_update_bits(rtc->regmap, CPCAP_REG_TODA1, TOD1_MASK, |
| cpcap_tm.tod1); |
| |
| if (!ret) { |
| enable_irq(rtc->alarm_irq); |
| rtc->alarm_enabled = true; |
| } |
| |
| return ret; |
| } |
| |
| static const struct rtc_class_ops cpcap_rtc_ops = { |
| .read_time = cpcap_rtc_read_time, |
| .set_time = cpcap_rtc_set_time, |
| .read_alarm = cpcap_rtc_read_alarm, |
| .set_alarm = cpcap_rtc_set_alarm, |
| .alarm_irq_enable = cpcap_rtc_alarm_irq_enable, |
| }; |
| |
| static irqreturn_t cpcap_rtc_alarm_irq(int irq, void *data) |
| { |
| struct cpcap_rtc *rtc = data; |
| |
| rtc_update_irq(rtc->rtc_dev, 1, RTC_AF | RTC_IRQF); |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t cpcap_rtc_update_irq(int irq, void *data) |
| { |
| struct cpcap_rtc *rtc = data; |
| |
| rtc_update_irq(rtc->rtc_dev, 1, RTC_UF | RTC_IRQF); |
| return IRQ_HANDLED; |
| } |
| |
| static int cpcap_rtc_probe(struct platform_device *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| struct cpcap_rtc *rtc; |
| int err; |
| |
| rtc = devm_kzalloc(dev, sizeof(*rtc), GFP_KERNEL); |
| if (!rtc) |
| return -ENOMEM; |
| |
| rtc->regmap = dev_get_regmap(dev->parent, NULL); |
| if (!rtc->regmap) |
| return -ENODEV; |
| |
| platform_set_drvdata(pdev, rtc); |
| rtc->rtc_dev = devm_rtc_device_register(dev, "cpcap_rtc", |
| &cpcap_rtc_ops, THIS_MODULE); |
| |
| if (IS_ERR(rtc->rtc_dev)) |
| return PTR_ERR(rtc->rtc_dev); |
| |
| err = cpcap_get_vendor(dev, rtc->regmap, &rtc->vendor); |
| if (err) |
| return err; |
| |
| rtc->alarm_irq = platform_get_irq(pdev, 0); |
| err = devm_request_threaded_irq(dev, rtc->alarm_irq, NULL, |
| cpcap_rtc_alarm_irq, IRQF_TRIGGER_NONE, |
| "rtc_alarm", rtc); |
| if (err) { |
| dev_err(dev, "Could not request alarm irq: %d\n", err); |
| return err; |
| } |
| disable_irq(rtc->alarm_irq); |
| |
| /* Stock Android uses the 1 Hz interrupt for "secure clock daemon", |
| * which is not supported by the mainline kernel. The mainline kernel |
| * does not use the irq at the moment, but we explicitly request and |
| * disable it, so that its masked and does not wake up the processor |
| * every second. |
| */ |
| rtc->update_irq = platform_get_irq(pdev, 1); |
| err = devm_request_threaded_irq(dev, rtc->update_irq, NULL, |
| cpcap_rtc_update_irq, IRQF_TRIGGER_NONE, |
| "rtc_1hz", rtc); |
| if (err) { |
| dev_err(dev, "Could not request update irq: %d\n", err); |
| return err; |
| } |
| disable_irq(rtc->update_irq); |
| |
| err = device_init_wakeup(dev, 1); |
| if (err) { |
| dev_err(dev, "wakeup initialization failed (%d)\n", err); |
| /* ignore error and continue without wakeup support */ |
| } |
| |
| return 0; |
| } |
| |
| static const struct of_device_id cpcap_rtc_of_match[] = { |
| { .compatible = "motorola,cpcap-rtc", }, |
| {}, |
| }; |
| MODULE_DEVICE_TABLE(of, cpcap_rtc_of_match); |
| |
| static struct platform_driver cpcap_rtc_driver = { |
| .probe = cpcap_rtc_probe, |
| .driver = { |
| .name = "cpcap-rtc", |
| .of_match_table = cpcap_rtc_of_match, |
| }, |
| }; |
| |
| module_platform_driver(cpcap_rtc_driver); |
| |
| MODULE_ALIAS("platform:cpcap-rtc"); |
| MODULE_DESCRIPTION("CPCAP RTC driver"); |
| MODULE_AUTHOR("Sebastian Reichel <sre@kernel.org>"); |
| MODULE_LICENSE("GPL"); |