| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * fs/crypto/hooks.c |
| * |
| * Encryption hooks for higher-level filesystem operations. |
| */ |
| |
| #include "fscrypt_private.h" |
| |
| /** |
| * fscrypt_file_open - prepare to open a possibly-encrypted regular file |
| * @inode: the inode being opened |
| * @filp: the struct file being set up |
| * |
| * Currently, an encrypted regular file can only be opened if its encryption key |
| * is available; access to the raw encrypted contents is not supported. |
| * Therefore, we first set up the inode's encryption key (if not already done) |
| * and return an error if it's unavailable. |
| * |
| * We also verify that if the parent directory (from the path via which the file |
| * is being opened) is encrypted, then the inode being opened uses the same |
| * encryption policy. This is needed as part of the enforcement that all files |
| * in an encrypted directory tree use the same encryption policy, as a |
| * protection against certain types of offline attacks. Note that this check is |
| * needed even when opening an *unencrypted* file, since it's forbidden to have |
| * an unencrypted file in an encrypted directory. |
| * |
| * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code |
| */ |
| int fscrypt_file_open(struct inode *inode, struct file *filp) |
| { |
| int err; |
| struct dentry *dir; |
| |
| err = fscrypt_require_key(inode); |
| if (err) |
| return err; |
| |
| dir = dget_parent(file_dentry(filp)); |
| if (IS_ENCRYPTED(d_inode(dir)) && |
| !fscrypt_has_permitted_context(d_inode(dir), inode)) { |
| fscrypt_warn(inode->i_sb, |
| "inconsistent encryption contexts: %lu/%lu", |
| d_inode(dir)->i_ino, inode->i_ino); |
| err = -EPERM; |
| } |
| dput(dir); |
| return err; |
| } |
| EXPORT_SYMBOL_GPL(fscrypt_file_open); |
| |
| int __fscrypt_prepare_link(struct inode *inode, struct inode *dir, |
| struct dentry *dentry) |
| { |
| int err; |
| |
| err = fscrypt_require_key(dir); |
| if (err) |
| return err; |
| |
| /* ... in case we looked up ciphertext name before key was added */ |
| if (dentry->d_flags & DCACHE_ENCRYPTED_NAME) |
| return -ENOKEY; |
| |
| if (!fscrypt_has_permitted_context(dir, inode)) |
| return -EXDEV; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(__fscrypt_prepare_link); |
| |
| int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry, |
| struct inode *new_dir, struct dentry *new_dentry, |
| unsigned int flags) |
| { |
| int err; |
| |
| err = fscrypt_require_key(old_dir); |
| if (err) |
| return err; |
| |
| err = fscrypt_require_key(new_dir); |
| if (err) |
| return err; |
| |
| /* ... in case we looked up ciphertext name(s) before key was added */ |
| if ((old_dentry->d_flags | new_dentry->d_flags) & |
| DCACHE_ENCRYPTED_NAME) |
| return -ENOKEY; |
| |
| if (old_dir != new_dir) { |
| if (IS_ENCRYPTED(new_dir) && |
| !fscrypt_has_permitted_context(new_dir, |
| d_inode(old_dentry))) |
| return -EXDEV; |
| |
| if ((flags & RENAME_EXCHANGE) && |
| IS_ENCRYPTED(old_dir) && |
| !fscrypt_has_permitted_context(old_dir, |
| d_inode(new_dentry))) |
| return -EXDEV; |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(__fscrypt_prepare_rename); |
| |
| int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry, |
| struct fscrypt_name *fname) |
| { |
| int err = fscrypt_setup_filename(dir, &dentry->d_name, 1, fname); |
| |
| if (err && err != -ENOENT) |
| return err; |
| |
| if (fname->is_ciphertext_name) { |
| spin_lock(&dentry->d_lock); |
| dentry->d_flags |= DCACHE_ENCRYPTED_NAME; |
| spin_unlock(&dentry->d_lock); |
| d_set_d_op(dentry, &fscrypt_d_ops); |
| } |
| return err; |
| } |
| EXPORT_SYMBOL_GPL(__fscrypt_prepare_lookup); |
| |
| int __fscrypt_prepare_symlink(struct inode *dir, unsigned int len, |
| unsigned int max_len, |
| struct fscrypt_str *disk_link) |
| { |
| int err; |
| |
| /* |
| * To calculate the size of the encrypted symlink target we need to know |
| * the amount of NUL padding, which is determined by the flags set in |
| * the encryption policy which will be inherited from the directory. |
| * The easiest way to get access to this is to just load the directory's |
| * fscrypt_info, since we'll need it to create the dir_entry anyway. |
| * |
| * Note: in test_dummy_encryption mode, @dir may be unencrypted. |
| */ |
| err = fscrypt_get_encryption_info(dir); |
| if (err) |
| return err; |
| if (!fscrypt_has_encryption_key(dir)) |
| return -ENOKEY; |
| |
| /* |
| * Calculate the size of the encrypted symlink and verify it won't |
| * exceed max_len. Note that for historical reasons, encrypted symlink |
| * targets are prefixed with the ciphertext length, despite this |
| * actually being redundant with i_size. This decreases by 2 bytes the |
| * longest symlink target we can accept. |
| * |
| * We could recover 1 byte by not counting a null terminator, but |
| * counting it (even though it is meaningless for ciphertext) is simpler |
| * for now since filesystems will assume it is there and subtract it. |
| */ |
| if (!fscrypt_fname_encrypted_size(dir, len, |
| max_len - sizeof(struct fscrypt_symlink_data), |
| &disk_link->len)) |
| return -ENAMETOOLONG; |
| disk_link->len += sizeof(struct fscrypt_symlink_data); |
| |
| disk_link->name = NULL; |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(__fscrypt_prepare_symlink); |
| |
| int __fscrypt_encrypt_symlink(struct inode *inode, const char *target, |
| unsigned int len, struct fscrypt_str *disk_link) |
| { |
| int err; |
| struct qstr iname = QSTR_INIT(target, len); |
| struct fscrypt_symlink_data *sd; |
| unsigned int ciphertext_len; |
| |
| err = fscrypt_require_key(inode); |
| if (err) |
| return err; |
| |
| if (disk_link->name) { |
| /* filesystem-provided buffer */ |
| sd = (struct fscrypt_symlink_data *)disk_link->name; |
| } else { |
| sd = kmalloc(disk_link->len, GFP_NOFS); |
| if (!sd) |
| return -ENOMEM; |
| } |
| ciphertext_len = disk_link->len - sizeof(*sd); |
| sd->len = cpu_to_le16(ciphertext_len); |
| |
| err = fname_encrypt(inode, &iname, sd->encrypted_path, ciphertext_len); |
| if (err) |
| goto err_free_sd; |
| |
| /* |
| * Null-terminating the ciphertext doesn't make sense, but we still |
| * count the null terminator in the length, so we might as well |
| * initialize it just in case the filesystem writes it out. |
| */ |
| sd->encrypted_path[ciphertext_len] = '\0'; |
| |
| /* Cache the plaintext symlink target for later use by get_link() */ |
| err = -ENOMEM; |
| inode->i_link = kmemdup(target, len + 1, GFP_NOFS); |
| if (!inode->i_link) |
| goto err_free_sd; |
| |
| if (!disk_link->name) |
| disk_link->name = (unsigned char *)sd; |
| return 0; |
| |
| err_free_sd: |
| if (!disk_link->name) |
| kfree(sd); |
| return err; |
| } |
| EXPORT_SYMBOL_GPL(__fscrypt_encrypt_symlink); |
| |
| /** |
| * fscrypt_get_symlink - get the target of an encrypted symlink |
| * @inode: the symlink inode |
| * @caddr: the on-disk contents of the symlink |
| * @max_size: size of @caddr buffer |
| * @done: if successful, will be set up to free the returned target if needed |
| * |
| * If the symlink's encryption key is available, we decrypt its target. |
| * Otherwise, we encode its target for presentation. |
| * |
| * This may sleep, so the filesystem must have dropped out of RCU mode already. |
| * |
| * Return: the presentable symlink target or an ERR_PTR() |
| */ |
| const char *fscrypt_get_symlink(struct inode *inode, const void *caddr, |
| unsigned int max_size, |
| struct delayed_call *done) |
| { |
| const struct fscrypt_symlink_data *sd; |
| struct fscrypt_str cstr, pstr; |
| bool has_key; |
| int err; |
| |
| /* This is for encrypted symlinks only */ |
| if (WARN_ON(!IS_ENCRYPTED(inode))) |
| return ERR_PTR(-EINVAL); |
| |
| /* If the decrypted target is already cached, just return it. */ |
| pstr.name = READ_ONCE(inode->i_link); |
| if (pstr.name) |
| return pstr.name; |
| |
| /* |
| * Try to set up the symlink's encryption key, but we can continue |
| * regardless of whether the key is available or not. |
| */ |
| err = fscrypt_get_encryption_info(inode); |
| if (err) |
| return ERR_PTR(err); |
| has_key = fscrypt_has_encryption_key(inode); |
| |
| /* |
| * For historical reasons, encrypted symlink targets are prefixed with |
| * the ciphertext length, even though this is redundant with i_size. |
| */ |
| |
| if (max_size < sizeof(*sd)) |
| return ERR_PTR(-EUCLEAN); |
| sd = caddr; |
| cstr.name = (unsigned char *)sd->encrypted_path; |
| cstr.len = le16_to_cpu(sd->len); |
| |
| if (cstr.len == 0) |
| return ERR_PTR(-EUCLEAN); |
| |
| if (cstr.len + sizeof(*sd) - 1 > max_size) |
| return ERR_PTR(-EUCLEAN); |
| |
| err = fscrypt_fname_alloc_buffer(inode, cstr.len, &pstr); |
| if (err) |
| return ERR_PTR(err); |
| |
| err = fscrypt_fname_disk_to_usr(inode, 0, 0, &cstr, &pstr); |
| if (err) |
| goto err_kfree; |
| |
| err = -EUCLEAN; |
| if (pstr.name[0] == '\0') |
| goto err_kfree; |
| |
| pstr.name[pstr.len] = '\0'; |
| |
| /* |
| * Cache decrypted symlink targets in i_link for later use. Don't cache |
| * symlink targets encoded without the key, since those become outdated |
| * once the key is added. This pairs with the READ_ONCE() above and in |
| * the VFS path lookup code. |
| */ |
| if (!has_key || |
| cmpxchg_release(&inode->i_link, NULL, pstr.name) != NULL) |
| set_delayed_call(done, kfree_link, pstr.name); |
| |
| return pstr.name; |
| |
| err_kfree: |
| kfree(pstr.name); |
| return ERR_PTR(err); |
| } |
| EXPORT_SYMBOL_GPL(fscrypt_get_symlink); |