| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * This file is part of UBIFS. |
| * |
| * Copyright (C) 2006-2008 Nokia Corporation. |
| * |
| * Authors: Adrian Hunter |
| * Artem Bityutskiy (Битюцкий Артём) |
| */ |
| |
| /* |
| * This file implements functions that manage the running of the commit process. |
| * Each affected module has its own functions to accomplish their part in the |
| * commit and those functions are called here. |
| * |
| * The commit is the process whereby all updates to the index and LEB properties |
| * are written out together and the journal becomes empty. This keeps the |
| * file system consistent - at all times the state can be recreated by reading |
| * the index and LEB properties and then replaying the journal. |
| * |
| * The commit is split into two parts named "commit start" and "commit end". |
| * During commit start, the commit process has exclusive access to the journal |
| * by holding the commit semaphore down for writing. As few I/O operations as |
| * possible are performed during commit start, instead the nodes that are to be |
| * written are merely identified. During commit end, the commit semaphore is no |
| * longer held and the journal is again in operation, allowing users to continue |
| * to use the file system while the bulk of the commit I/O is performed. The |
| * purpose of this two-step approach is to prevent the commit from causing any |
| * latency blips. Note that in any case, the commit does not prevent lookups |
| * (as permitted by the TNC mutex), or access to VFS data structures e.g. page |
| * cache. |
| */ |
| |
| #include <linux/freezer.h> |
| #include <linux/kthread.h> |
| #include <linux/slab.h> |
| #include "ubifs.h" |
| |
| /* |
| * nothing_to_commit - check if there is nothing to commit. |
| * @c: UBIFS file-system description object |
| * |
| * This is a helper function which checks if there is anything to commit. It is |
| * used as an optimization to avoid starting the commit if it is not really |
| * necessary. Indeed, the commit operation always assumes flash I/O (e.g., |
| * writing the commit start node to the log), and it is better to avoid doing |
| * this unnecessarily. E.g., 'ubifs_sync_fs()' runs the commit, but if there is |
| * nothing to commit, it is more optimal to avoid any flash I/O. |
| * |
| * This function has to be called with @c->commit_sem locked for writing - |
| * this function does not take LPT/TNC locks because the @c->commit_sem |
| * guarantees that we have exclusive access to the TNC and LPT data structures. |
| * |
| * This function returns %1 if there is nothing to commit and %0 otherwise. |
| */ |
| static int nothing_to_commit(struct ubifs_info *c) |
| { |
| /* |
| * During mounting or remounting from R/O mode to R/W mode we may |
| * commit for various recovery-related reasons. |
| */ |
| if (c->mounting || c->remounting_rw) |
| return 0; |
| |
| /* |
| * If the root TNC node is dirty, we definitely have something to |
| * commit. |
| */ |
| if (c->zroot.znode && ubifs_zn_dirty(c->zroot.znode)) |
| return 0; |
| |
| /* |
| * Even though the TNC is clean, the LPT tree may have dirty nodes. For |
| * example, this may happen if the budgeting subsystem invoked GC to |
| * make some free space, and the GC found an LEB with only dirty and |
| * free space. In this case GC would just change the lprops of this |
| * LEB (by turning all space into free space) and unmap it. |
| */ |
| if (c->nroot && test_bit(DIRTY_CNODE, &c->nroot->flags)) |
| return 0; |
| |
| ubifs_assert(c, atomic_long_read(&c->dirty_zn_cnt) == 0); |
| ubifs_assert(c, c->dirty_pn_cnt == 0); |
| ubifs_assert(c, c->dirty_nn_cnt == 0); |
| |
| return 1; |
| } |
| |
| /** |
| * do_commit - commit the journal. |
| * @c: UBIFS file-system description object |
| * |
| * This function implements UBIFS commit. It has to be called with commit lock |
| * locked. Returns zero in case of success and a negative error code in case of |
| * failure. |
| */ |
| static int do_commit(struct ubifs_info *c) |
| { |
| int err, new_ltail_lnum, old_ltail_lnum, i; |
| struct ubifs_zbranch zroot; |
| struct ubifs_lp_stats lst; |
| |
| dbg_cmt("start"); |
| ubifs_assert(c, !c->ro_media && !c->ro_mount); |
| |
| if (c->ro_error) { |
| err = -EROFS; |
| goto out_up; |
| } |
| |
| if (nothing_to_commit(c)) { |
| up_write(&c->commit_sem); |
| err = 0; |
| goto out_cancel; |
| } |
| |
| /* Sync all write buffers (necessary for recovery) */ |
| for (i = 0; i < c->jhead_cnt; i++) { |
| err = ubifs_wbuf_sync(&c->jheads[i].wbuf); |
| if (err) |
| goto out_up; |
| } |
| |
| c->cmt_no += 1; |
| err = ubifs_gc_start_commit(c); |
| if (err) |
| goto out_up; |
| err = dbg_check_lprops(c); |
| if (err) |
| goto out_up; |
| err = ubifs_log_start_commit(c, &new_ltail_lnum); |
| if (err) |
| goto out_up; |
| err = ubifs_tnc_start_commit(c, &zroot); |
| if (err) |
| goto out_up; |
| err = ubifs_lpt_start_commit(c); |
| if (err) |
| goto out_up; |
| err = ubifs_orphan_start_commit(c); |
| if (err) |
| goto out_up; |
| |
| ubifs_get_lp_stats(c, &lst); |
| |
| up_write(&c->commit_sem); |
| |
| err = ubifs_tnc_end_commit(c); |
| if (err) |
| goto out; |
| err = ubifs_lpt_end_commit(c); |
| if (err) |
| goto out; |
| err = ubifs_orphan_end_commit(c); |
| if (err) |
| goto out; |
| err = dbg_check_old_index(c, &zroot); |
| if (err) |
| goto out; |
| |
| c->mst_node->cmt_no = cpu_to_le64(c->cmt_no); |
| c->mst_node->log_lnum = cpu_to_le32(new_ltail_lnum); |
| c->mst_node->root_lnum = cpu_to_le32(zroot.lnum); |
| c->mst_node->root_offs = cpu_to_le32(zroot.offs); |
| c->mst_node->root_len = cpu_to_le32(zroot.len); |
| c->mst_node->ihead_lnum = cpu_to_le32(c->ihead_lnum); |
| c->mst_node->ihead_offs = cpu_to_le32(c->ihead_offs); |
| c->mst_node->index_size = cpu_to_le64(c->bi.old_idx_sz); |
| c->mst_node->lpt_lnum = cpu_to_le32(c->lpt_lnum); |
| c->mst_node->lpt_offs = cpu_to_le32(c->lpt_offs); |
| c->mst_node->nhead_lnum = cpu_to_le32(c->nhead_lnum); |
| c->mst_node->nhead_offs = cpu_to_le32(c->nhead_offs); |
| c->mst_node->ltab_lnum = cpu_to_le32(c->ltab_lnum); |
| c->mst_node->ltab_offs = cpu_to_le32(c->ltab_offs); |
| c->mst_node->lsave_lnum = cpu_to_le32(c->lsave_lnum); |
| c->mst_node->lsave_offs = cpu_to_le32(c->lsave_offs); |
| c->mst_node->lscan_lnum = cpu_to_le32(c->lscan_lnum); |
| c->mst_node->empty_lebs = cpu_to_le32(lst.empty_lebs); |
| c->mst_node->idx_lebs = cpu_to_le32(lst.idx_lebs); |
| c->mst_node->total_free = cpu_to_le64(lst.total_free); |
| c->mst_node->total_dirty = cpu_to_le64(lst.total_dirty); |
| c->mst_node->total_used = cpu_to_le64(lst.total_used); |
| c->mst_node->total_dead = cpu_to_le64(lst.total_dead); |
| c->mst_node->total_dark = cpu_to_le64(lst.total_dark); |
| if (c->no_orphs) |
| c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); |
| else |
| c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_NO_ORPHS); |
| |
| old_ltail_lnum = c->ltail_lnum; |
| err = ubifs_log_end_commit(c, new_ltail_lnum); |
| if (err) |
| goto out; |
| |
| err = ubifs_log_post_commit(c, old_ltail_lnum); |
| if (err) |
| goto out; |
| err = ubifs_gc_end_commit(c); |
| if (err) |
| goto out; |
| err = ubifs_lpt_post_commit(c); |
| if (err) |
| goto out; |
| |
| out_cancel: |
| spin_lock(&c->cs_lock); |
| c->cmt_state = COMMIT_RESTING; |
| wake_up(&c->cmt_wq); |
| dbg_cmt("commit end"); |
| spin_unlock(&c->cs_lock); |
| return 0; |
| |
| out_up: |
| up_write(&c->commit_sem); |
| out: |
| ubifs_err(c, "commit failed, error %d", err); |
| spin_lock(&c->cs_lock); |
| c->cmt_state = COMMIT_BROKEN; |
| wake_up(&c->cmt_wq); |
| spin_unlock(&c->cs_lock); |
| ubifs_ro_mode(c, err); |
| return err; |
| } |
| |
| /** |
| * run_bg_commit - run background commit if it is needed. |
| * @c: UBIFS file-system description object |
| * |
| * This function runs background commit if it is needed. Returns zero in case |
| * of success and a negative error code in case of failure. |
| */ |
| static int run_bg_commit(struct ubifs_info *c) |
| { |
| spin_lock(&c->cs_lock); |
| /* |
| * Run background commit only if background commit was requested or if |
| * commit is required. |
| */ |
| if (c->cmt_state != COMMIT_BACKGROUND && |
| c->cmt_state != COMMIT_REQUIRED) |
| goto out; |
| spin_unlock(&c->cs_lock); |
| |
| down_write(&c->commit_sem); |
| spin_lock(&c->cs_lock); |
| if (c->cmt_state == COMMIT_REQUIRED) |
| c->cmt_state = COMMIT_RUNNING_REQUIRED; |
| else if (c->cmt_state == COMMIT_BACKGROUND) |
| c->cmt_state = COMMIT_RUNNING_BACKGROUND; |
| else |
| goto out_cmt_unlock; |
| spin_unlock(&c->cs_lock); |
| |
| return do_commit(c); |
| |
| out_cmt_unlock: |
| up_write(&c->commit_sem); |
| out: |
| spin_unlock(&c->cs_lock); |
| return 0; |
| } |
| |
| /** |
| * ubifs_bg_thread - UBIFS background thread function. |
| * @info: points to the file-system description object |
| * |
| * This function implements various file-system background activities: |
| * o when a write-buffer timer expires it synchronizes the appropriate |
| * write-buffer; |
| * o when the journal is about to be full, it starts in-advance commit. |
| * |
| * Note, other stuff like background garbage collection may be added here in |
| * future. |
| */ |
| int ubifs_bg_thread(void *info) |
| { |
| int err; |
| struct ubifs_info *c = info; |
| |
| ubifs_msg(c, "background thread \"%s\" started, PID %d", |
| c->bgt_name, current->pid); |
| set_freezable(); |
| |
| while (1) { |
| if (kthread_should_stop()) |
| break; |
| |
| if (try_to_freeze()) |
| continue; |
| |
| set_current_state(TASK_INTERRUPTIBLE); |
| /* Check if there is something to do */ |
| if (!c->need_bgt) { |
| /* |
| * Nothing prevents us from going sleep now and |
| * be never woken up and block the task which |
| * could wait in 'kthread_stop()' forever. |
| */ |
| if (kthread_should_stop()) |
| break; |
| schedule(); |
| continue; |
| } else |
| __set_current_state(TASK_RUNNING); |
| |
| c->need_bgt = 0; |
| err = ubifs_bg_wbufs_sync(c); |
| if (err) |
| ubifs_ro_mode(c, err); |
| |
| run_bg_commit(c); |
| cond_resched(); |
| } |
| |
| ubifs_msg(c, "background thread \"%s\" stops", c->bgt_name); |
| return 0; |
| } |
| |
| /** |
| * ubifs_commit_required - set commit state to "required". |
| * @c: UBIFS file-system description object |
| * |
| * This function is called if a commit is required but cannot be done from the |
| * calling function, so it is just flagged instead. |
| */ |
| void ubifs_commit_required(struct ubifs_info *c) |
| { |
| spin_lock(&c->cs_lock); |
| switch (c->cmt_state) { |
| case COMMIT_RESTING: |
| case COMMIT_BACKGROUND: |
| dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state), |
| dbg_cstate(COMMIT_REQUIRED)); |
| c->cmt_state = COMMIT_REQUIRED; |
| break; |
| case COMMIT_RUNNING_BACKGROUND: |
| dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state), |
| dbg_cstate(COMMIT_RUNNING_REQUIRED)); |
| c->cmt_state = COMMIT_RUNNING_REQUIRED; |
| break; |
| case COMMIT_REQUIRED: |
| case COMMIT_RUNNING_REQUIRED: |
| case COMMIT_BROKEN: |
| break; |
| } |
| spin_unlock(&c->cs_lock); |
| } |
| |
| /** |
| * ubifs_request_bg_commit - notify the background thread to do a commit. |
| * @c: UBIFS file-system description object |
| * |
| * This function is called if the journal is full enough to make a commit |
| * worthwhile, so background thread is kicked to start it. |
| */ |
| void ubifs_request_bg_commit(struct ubifs_info *c) |
| { |
| spin_lock(&c->cs_lock); |
| if (c->cmt_state == COMMIT_RESTING) { |
| dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state), |
| dbg_cstate(COMMIT_BACKGROUND)); |
| c->cmt_state = COMMIT_BACKGROUND; |
| spin_unlock(&c->cs_lock); |
| ubifs_wake_up_bgt(c); |
| } else |
| spin_unlock(&c->cs_lock); |
| } |
| |
| /** |
| * wait_for_commit - wait for commit. |
| * @c: UBIFS file-system description object |
| * |
| * This function sleeps until the commit operation is no longer running. |
| */ |
| static int wait_for_commit(struct ubifs_info *c) |
| { |
| dbg_cmt("pid %d goes sleep", current->pid); |
| |
| /* |
| * The following sleeps if the condition is false, and will be woken |
| * when the commit ends. It is possible, although very unlikely, that we |
| * will wake up and see the subsequent commit running, rather than the |
| * one we were waiting for, and go back to sleep. However, we will be |
| * woken again, so there is no danger of sleeping forever. |
| */ |
| wait_event(c->cmt_wq, c->cmt_state != COMMIT_RUNNING_BACKGROUND && |
| c->cmt_state != COMMIT_RUNNING_REQUIRED); |
| dbg_cmt("commit finished, pid %d woke up", current->pid); |
| return 0; |
| } |
| |
| /** |
| * ubifs_run_commit - run or wait for commit. |
| * @c: UBIFS file-system description object |
| * |
| * This function runs commit and returns zero in case of success and a negative |
| * error code in case of failure. |
| */ |
| int ubifs_run_commit(struct ubifs_info *c) |
| { |
| int err = 0; |
| |
| spin_lock(&c->cs_lock); |
| if (c->cmt_state == COMMIT_BROKEN) { |
| err = -EROFS; |
| goto out; |
| } |
| |
| if (c->cmt_state == COMMIT_RUNNING_BACKGROUND) |
| /* |
| * We set the commit state to 'running required' to indicate |
| * that we want it to complete as quickly as possible. |
| */ |
| c->cmt_state = COMMIT_RUNNING_REQUIRED; |
| |
| if (c->cmt_state == COMMIT_RUNNING_REQUIRED) { |
| spin_unlock(&c->cs_lock); |
| return wait_for_commit(c); |
| } |
| spin_unlock(&c->cs_lock); |
| |
| /* Ok, the commit is indeed needed */ |
| |
| down_write(&c->commit_sem); |
| spin_lock(&c->cs_lock); |
| /* |
| * Since we unlocked 'c->cs_lock', the state may have changed, so |
| * re-check it. |
| */ |
| if (c->cmt_state == COMMIT_BROKEN) { |
| err = -EROFS; |
| goto out_cmt_unlock; |
| } |
| |
| if (c->cmt_state == COMMIT_RUNNING_BACKGROUND) |
| c->cmt_state = COMMIT_RUNNING_REQUIRED; |
| |
| if (c->cmt_state == COMMIT_RUNNING_REQUIRED) { |
| up_write(&c->commit_sem); |
| spin_unlock(&c->cs_lock); |
| return wait_for_commit(c); |
| } |
| c->cmt_state = COMMIT_RUNNING_REQUIRED; |
| spin_unlock(&c->cs_lock); |
| |
| err = do_commit(c); |
| return err; |
| |
| out_cmt_unlock: |
| up_write(&c->commit_sem); |
| out: |
| spin_unlock(&c->cs_lock); |
| return err; |
| } |
| |
| /** |
| * ubifs_gc_should_commit - determine if it is time for GC to run commit. |
| * @c: UBIFS file-system description object |
| * |
| * This function is called by garbage collection to determine if commit should |
| * be run. If commit state is @COMMIT_BACKGROUND, which means that the journal |
| * is full enough to start commit, this function returns true. It is not |
| * absolutely necessary to commit yet, but it feels like this should be better |
| * then to keep doing GC. This function returns %1 if GC has to initiate commit |
| * and %0 if not. |
| */ |
| int ubifs_gc_should_commit(struct ubifs_info *c) |
| { |
| int ret = 0; |
| |
| spin_lock(&c->cs_lock); |
| if (c->cmt_state == COMMIT_BACKGROUND) { |
| dbg_cmt("commit required now"); |
| c->cmt_state = COMMIT_REQUIRED; |
| } else |
| dbg_cmt("commit not requested"); |
| if (c->cmt_state == COMMIT_REQUIRED) |
| ret = 1; |
| spin_unlock(&c->cs_lock); |
| return ret; |
| } |
| |
| /* |
| * Everything below is related to debugging. |
| */ |
| |
| /** |
| * struct idx_node - hold index nodes during index tree traversal. |
| * @list: list |
| * @iip: index in parent (slot number of this indexing node in the parent |
| * indexing node) |
| * @upper_key: all keys in this indexing node have to be less or equivalent to |
| * this key |
| * @idx: index node (8-byte aligned because all node structures must be 8-byte |
| * aligned) |
| */ |
| struct idx_node { |
| struct list_head list; |
| int iip; |
| union ubifs_key upper_key; |
| struct ubifs_idx_node idx __aligned(8); |
| }; |
| |
| /** |
| * dbg_old_index_check_init - get information for the next old index check. |
| * @c: UBIFS file-system description object |
| * @zroot: root of the index |
| * |
| * This function records information about the index that will be needed for the |
| * next old index check i.e. 'dbg_check_old_index()'. |
| * |
| * This function returns %0 on success and a negative error code on failure. |
| */ |
| int dbg_old_index_check_init(struct ubifs_info *c, struct ubifs_zbranch *zroot) |
| { |
| struct ubifs_idx_node *idx; |
| int lnum, offs, len, err = 0; |
| struct ubifs_debug_info *d = c->dbg; |
| |
| d->old_zroot = *zroot; |
| lnum = d->old_zroot.lnum; |
| offs = d->old_zroot.offs; |
| len = d->old_zroot.len; |
| |
| idx = kmalloc(c->max_idx_node_sz, GFP_NOFS); |
| if (!idx) |
| return -ENOMEM; |
| |
| err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs); |
| if (err) |
| goto out; |
| |
| d->old_zroot_level = le16_to_cpu(idx->level); |
| d->old_zroot_sqnum = le64_to_cpu(idx->ch.sqnum); |
| out: |
| kfree(idx); |
| return err; |
| } |
| |
| /** |
| * dbg_check_old_index - check the old copy of the index. |
| * @c: UBIFS file-system description object |
| * @zroot: root of the new index |
| * |
| * In order to be able to recover from an unclean unmount, a complete copy of |
| * the index must exist on flash. This is the "old" index. The commit process |
| * must write the "new" index to flash without overwriting or destroying any |
| * part of the old index. This function is run at commit end in order to check |
| * that the old index does indeed exist completely intact. |
| * |
| * This function returns %0 on success and a negative error code on failure. |
| */ |
| int dbg_check_old_index(struct ubifs_info *c, struct ubifs_zbranch *zroot) |
| { |
| int lnum, offs, len, err = 0, uninitialized_var(last_level), child_cnt; |
| int first = 1, iip; |
| struct ubifs_debug_info *d = c->dbg; |
| union ubifs_key uninitialized_var(lower_key), upper_key, l_key, u_key; |
| unsigned long long uninitialized_var(last_sqnum); |
| struct ubifs_idx_node *idx; |
| struct list_head list; |
| struct idx_node *i; |
| size_t sz; |
| |
| if (!dbg_is_chk_index(c)) |
| return 0; |
| |
| INIT_LIST_HEAD(&list); |
| |
| sz = sizeof(struct idx_node) + ubifs_idx_node_sz(c, c->fanout) - |
| UBIFS_IDX_NODE_SZ; |
| |
| /* Start at the old zroot */ |
| lnum = d->old_zroot.lnum; |
| offs = d->old_zroot.offs; |
| len = d->old_zroot.len; |
| iip = 0; |
| |
| /* |
| * Traverse the index tree preorder depth-first i.e. do a node and then |
| * its subtrees from left to right. |
| */ |
| while (1) { |
| struct ubifs_branch *br; |
| |
| /* Get the next index node */ |
| i = kmalloc(sz, GFP_NOFS); |
| if (!i) { |
| err = -ENOMEM; |
| goto out_free; |
| } |
| i->iip = iip; |
| /* Keep the index nodes on our path in a linked list */ |
| list_add_tail(&i->list, &list); |
| /* Read the index node */ |
| idx = &i->idx; |
| err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs); |
| if (err) |
| goto out_free; |
| /* Validate index node */ |
| child_cnt = le16_to_cpu(idx->child_cnt); |
| if (child_cnt < 1 || child_cnt > c->fanout) { |
| err = 1; |
| goto out_dump; |
| } |
| if (first) { |
| first = 0; |
| /* Check root level and sqnum */ |
| if (le16_to_cpu(idx->level) != d->old_zroot_level) { |
| err = 2; |
| goto out_dump; |
| } |
| if (le64_to_cpu(idx->ch.sqnum) != d->old_zroot_sqnum) { |
| err = 3; |
| goto out_dump; |
| } |
| /* Set last values as though root had a parent */ |
| last_level = le16_to_cpu(idx->level) + 1; |
| last_sqnum = le64_to_cpu(idx->ch.sqnum) + 1; |
| key_read(c, ubifs_idx_key(c, idx), &lower_key); |
| highest_ino_key(c, &upper_key, INUM_WATERMARK); |
| } |
| key_copy(c, &upper_key, &i->upper_key); |
| if (le16_to_cpu(idx->level) != last_level - 1) { |
| err = 3; |
| goto out_dump; |
| } |
| /* |
| * The index is always written bottom up hence a child's sqnum |
| * is always less than the parents. |
| */ |
| if (le64_to_cpu(idx->ch.sqnum) >= last_sqnum) { |
| err = 4; |
| goto out_dump; |
| } |
| /* Check key range */ |
| key_read(c, ubifs_idx_key(c, idx), &l_key); |
| br = ubifs_idx_branch(c, idx, child_cnt - 1); |
| key_read(c, &br->key, &u_key); |
| if (keys_cmp(c, &lower_key, &l_key) > 0) { |
| err = 5; |
| goto out_dump; |
| } |
| if (keys_cmp(c, &upper_key, &u_key) < 0) { |
| err = 6; |
| goto out_dump; |
| } |
| if (keys_cmp(c, &upper_key, &u_key) == 0) |
| if (!is_hash_key(c, &u_key)) { |
| err = 7; |
| goto out_dump; |
| } |
| /* Go to next index node */ |
| if (le16_to_cpu(idx->level) == 0) { |
| /* At the bottom, so go up until can go right */ |
| while (1) { |
| /* Drop the bottom of the list */ |
| list_del(&i->list); |
| kfree(i); |
| /* No more list means we are done */ |
| if (list_empty(&list)) |
| goto out; |
| /* Look at the new bottom */ |
| i = list_entry(list.prev, struct idx_node, |
| list); |
| idx = &i->idx; |
| /* Can we go right */ |
| if (iip + 1 < le16_to_cpu(idx->child_cnt)) { |
| iip = iip + 1; |
| break; |
| } else |
| /* Nope, so go up again */ |
| iip = i->iip; |
| } |
| } else |
| /* Go down left */ |
| iip = 0; |
| /* |
| * We have the parent in 'idx' and now we set up for reading the |
| * child pointed to by slot 'iip'. |
| */ |
| last_level = le16_to_cpu(idx->level); |
| last_sqnum = le64_to_cpu(idx->ch.sqnum); |
| br = ubifs_idx_branch(c, idx, iip); |
| lnum = le32_to_cpu(br->lnum); |
| offs = le32_to_cpu(br->offs); |
| len = le32_to_cpu(br->len); |
| key_read(c, &br->key, &lower_key); |
| if (iip + 1 < le16_to_cpu(idx->child_cnt)) { |
| br = ubifs_idx_branch(c, idx, iip + 1); |
| key_read(c, &br->key, &upper_key); |
| } else |
| key_copy(c, &i->upper_key, &upper_key); |
| } |
| out: |
| err = dbg_old_index_check_init(c, zroot); |
| if (err) |
| goto out_free; |
| |
| return 0; |
| |
| out_dump: |
| ubifs_err(c, "dumping index node (iip=%d)", i->iip); |
| ubifs_dump_node(c, idx); |
| list_del(&i->list); |
| kfree(i); |
| if (!list_empty(&list)) { |
| i = list_entry(list.prev, struct idx_node, list); |
| ubifs_err(c, "dumping parent index node"); |
| ubifs_dump_node(c, &i->idx); |
| } |
| out_free: |
| while (!list_empty(&list)) { |
| i = list_entry(list.next, struct idx_node, list); |
| list_del(&i->list); |
| kfree(i); |
| } |
| ubifs_err(c, "failed, error %d", err); |
| if (err > 0) |
| err = -EINVAL; |
| return err; |
| } |