blob: bdec051107a6bff92d3c4b1a0b708cb8f7c44116 [file] [log] [blame]
/**********************************************************************
* Author: Cavium, Inc.
*
* Contact: support@cavium.com
* Please include "LiquidIO" in the subject.
*
* Copyright (c) 2003-2016 Cavium, Inc.
*
* This file is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, Version 2, as
* published by the Free Software Foundation.
*
* This file is distributed in the hope that it will be useful, but
* AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
* NONINFRINGEMENT. See the GNU General Public License for more details.
***********************************************************************/
#include <linux/pci.h>
#include <linux/netdevice.h>
#include "liquidio_common.h"
#include "octeon_droq.h"
#include "octeon_iq.h"
#include "response_manager.h"
#include "octeon_device.h"
#include "octeon_main.h"
#include "cn66xx_regs.h"
#include "cn66xx_device.h"
int lio_cn6xxx_soft_reset(struct octeon_device *oct)
{
octeon_write_csr64(oct, CN6XXX_WIN_WR_MASK_REG, 0xFF);
dev_dbg(&oct->pci_dev->dev, "BIST enabled for soft reset\n");
lio_pci_writeq(oct, 1, CN6XXX_CIU_SOFT_BIST);
octeon_write_csr64(oct, CN6XXX_SLI_SCRATCH1, 0x1234ULL);
lio_pci_readq(oct, CN6XXX_CIU_SOFT_RST);
lio_pci_writeq(oct, 1, CN6XXX_CIU_SOFT_RST);
/* make sure that the reset is written before starting timer */
mmiowb();
/* Wait for 10ms as Octeon resets. */
mdelay(100);
if (octeon_read_csr64(oct, CN6XXX_SLI_SCRATCH1) == 0x1234ULL) {
dev_err(&oct->pci_dev->dev, "Soft reset failed\n");
return 1;
}
dev_dbg(&oct->pci_dev->dev, "Reset completed\n");
octeon_write_csr64(oct, CN6XXX_WIN_WR_MASK_REG, 0xFF);
return 0;
}
void lio_cn6xxx_enable_error_reporting(struct octeon_device *oct)
{
u32 val;
pci_read_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, &val);
if (val & 0x000c0000) {
dev_err(&oct->pci_dev->dev, "PCI-E Link error detected: 0x%08x\n",
val & 0x000c0000);
}
val |= 0xf; /* Enable Link error reporting */
dev_dbg(&oct->pci_dev->dev, "Enabling PCI-E error reporting..\n");
pci_write_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, val);
}
void lio_cn6xxx_setup_pcie_mps(struct octeon_device *oct,
enum octeon_pcie_mps mps)
{
u32 val;
u64 r64;
/* Read config register for MPS */
pci_read_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, &val);
if (mps == PCIE_MPS_DEFAULT) {
mps = ((val & (0x7 << 5)) >> 5);
} else {
val &= ~(0x7 << 5); /* Turn off any MPS bits */
val |= (mps << 5); /* Set MPS */
pci_write_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, val);
}
/* Set MPS in DPI_SLI_PRT0_CFG to the same value. */
r64 = lio_pci_readq(oct, CN6XXX_DPI_SLI_PRTX_CFG(oct->pcie_port));
r64 |= (mps << 4);
lio_pci_writeq(oct, r64, CN6XXX_DPI_SLI_PRTX_CFG(oct->pcie_port));
}
void lio_cn6xxx_setup_pcie_mrrs(struct octeon_device *oct,
enum octeon_pcie_mrrs mrrs)
{
u32 val;
u64 r64;
/* Read config register for MRRS */
pci_read_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, &val);
if (mrrs == PCIE_MRRS_DEFAULT) {
mrrs = ((val & (0x7 << 12)) >> 12);
} else {
val &= ~(0x7 << 12); /* Turn off any MRRS bits */
val |= (mrrs << 12); /* Set MRRS */
pci_write_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, val);
}
/* Set MRRS in SLI_S2M_PORT0_CTL to the same value. */
r64 = octeon_read_csr64(oct, CN6XXX_SLI_S2M_PORTX_CTL(oct->pcie_port));
r64 |= mrrs;
octeon_write_csr64(oct, CN6XXX_SLI_S2M_PORTX_CTL(oct->pcie_port), r64);
/* Set MRRS in DPI_SLI_PRT0_CFG to the same value. */
r64 = lio_pci_readq(oct, CN6XXX_DPI_SLI_PRTX_CFG(oct->pcie_port));
r64 |= mrrs;
lio_pci_writeq(oct, r64, CN6XXX_DPI_SLI_PRTX_CFG(oct->pcie_port));
}
u32 lio_cn6xxx_coprocessor_clock(struct octeon_device *oct)
{
/* Bits 29:24 of MIO_RST_BOOT holds the ref. clock multiplier
* for SLI.
*/
return ((lio_pci_readq(oct, CN6XXX_MIO_RST_BOOT) >> 24) & 0x3f) * 50;
}
u32 lio_cn6xxx_get_oq_ticks(struct octeon_device *oct,
u32 time_intr_in_us)
{
/* This gives the SLI clock per microsec */
u32 oqticks_per_us = lio_cn6xxx_coprocessor_clock(oct);
/* core clock per us / oq ticks will be fractional. TO avoid that
* we use the method below.
*/
/* This gives the clock cycles per millisecond */
oqticks_per_us *= 1000;
/* This gives the oq ticks (1024 core clock cycles) per millisecond */
oqticks_per_us /= 1024;
/* time_intr is in microseconds. The next 2 steps gives the oq ticks
* corressponding to time_intr.
*/
oqticks_per_us *= time_intr_in_us;
oqticks_per_us /= 1000;
return oqticks_per_us;
}
void lio_cn6xxx_setup_global_input_regs(struct octeon_device *oct)
{
/* Select Round-Robin Arb, ES, RO, NS for Input Queues */
octeon_write_csr(oct, CN6XXX_SLI_PKT_INPUT_CONTROL,
CN6XXX_INPUT_CTL_MASK);
/* Instruction Read Size - Max 4 instructions per PCIE Read */
octeon_write_csr64(oct, CN6XXX_SLI_PKT_INSTR_RD_SIZE,
0xFFFFFFFFFFFFFFFFULL);
/* Select PCIE Port for all Input rings. */
octeon_write_csr64(oct, CN6XXX_SLI_IN_PCIE_PORT,
(oct->pcie_port * 0x5555555555555555ULL));
}
static void lio_cn66xx_setup_pkt_ctl_regs(struct octeon_device *oct)
{
u64 pktctl;
struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip;
pktctl = octeon_read_csr64(oct, CN6XXX_SLI_PKT_CTL);
/* 66XX SPECIFIC */
if (CFG_GET_OQ_MAX_Q(cn6xxx->conf) <= 4)
/* Disable RING_EN if only upto 4 rings are used. */
pktctl &= ~(1 << 4);
else
pktctl |= (1 << 4);
if (CFG_GET_IS_SLI_BP_ON(cn6xxx->conf))
pktctl |= 0xF;
else
/* Disable per-port backpressure. */
pktctl &= ~0xF;
octeon_write_csr64(oct, CN6XXX_SLI_PKT_CTL, pktctl);
}
void lio_cn6xxx_setup_global_output_regs(struct octeon_device *oct)
{
u32 time_threshold;
struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip;
/* / Select PCI-E Port for all Output queues */
octeon_write_csr64(oct, CN6XXX_SLI_PKT_PCIE_PORT64,
(oct->pcie_port * 0x5555555555555555ULL));
if (CFG_GET_IS_SLI_BP_ON(cn6xxx->conf)) {
octeon_write_csr64(oct, CN6XXX_SLI_OQ_WMARK, 32);
} else {
/* / Set Output queue watermark to 0 to disable backpressure */
octeon_write_csr64(oct, CN6XXX_SLI_OQ_WMARK, 0);
}
/* / Select Info Ptr for length & data */
octeon_write_csr(oct, CN6XXX_SLI_PKT_IPTR, 0xFFFFFFFF);
/* / Select Packet count instead of bytes for SLI_PKTi_CNTS[CNT] */
octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_BMODE, 0);
/* Select ES, RO, NS setting from register for Output Queue Packet
* Address
*/
octeon_write_csr(oct, CN6XXX_SLI_PKT_DPADDR, 0xFFFFFFFF);
/* No Relaxed Ordering, No Snoop, 64-bit swap for Output
* Queue ScatterList
*/
octeon_write_csr(oct, CN6XXX_SLI_PKT_SLIST_ROR, 0);
octeon_write_csr(oct, CN6XXX_SLI_PKT_SLIST_NS, 0);
/* / ENDIAN_SPECIFIC CHANGES - 0 works for LE. */
#ifdef __BIG_ENDIAN_BITFIELD
octeon_write_csr64(oct, CN6XXX_SLI_PKT_SLIST_ES64,
0x5555555555555555ULL);
#else
octeon_write_csr64(oct, CN6XXX_SLI_PKT_SLIST_ES64, 0ULL);
#endif
/* / No Relaxed Ordering, No Snoop, 64-bit swap for Output Queue Data */
octeon_write_csr(oct, CN6XXX_SLI_PKT_DATA_OUT_ROR, 0);
octeon_write_csr(oct, CN6XXX_SLI_PKT_DATA_OUT_NS, 0);
octeon_write_csr64(oct, CN6XXX_SLI_PKT_DATA_OUT_ES64,
0x5555555555555555ULL);
/* / Set up interrupt packet and time threshold */
octeon_write_csr(oct, CN6XXX_SLI_OQ_INT_LEVEL_PKTS,
(u32)CFG_GET_OQ_INTR_PKT(cn6xxx->conf));
time_threshold =
lio_cn6xxx_get_oq_ticks(oct, (u32)
CFG_GET_OQ_INTR_TIME(cn6xxx->conf));
octeon_write_csr(oct, CN6XXX_SLI_OQ_INT_LEVEL_TIME, time_threshold);
}
static int lio_cn6xxx_setup_device_regs(struct octeon_device *oct)
{
lio_cn6xxx_setup_pcie_mps(oct, PCIE_MPS_DEFAULT);
lio_cn6xxx_setup_pcie_mrrs(oct, PCIE_MRRS_512B);
lio_cn6xxx_enable_error_reporting(oct);
lio_cn6xxx_setup_global_input_regs(oct);
lio_cn66xx_setup_pkt_ctl_regs(oct);
lio_cn6xxx_setup_global_output_regs(oct);
/* Default error timeout value should be 0x200000 to avoid host hang
* when reads invalid register
*/
octeon_write_csr64(oct, CN6XXX_SLI_WINDOW_CTL, 0x200000ULL);
return 0;
}
void lio_cn6xxx_setup_iq_regs(struct octeon_device *oct, u32 iq_no)
{
struct octeon_instr_queue *iq = oct->instr_queue[iq_no];
octeon_write_csr64(oct, CN6XXX_SLI_IQ_PKT_INSTR_HDR64(iq_no), 0);
/* Write the start of the input queue's ring and its size */
octeon_write_csr64(oct, CN6XXX_SLI_IQ_BASE_ADDR64(iq_no),
iq->base_addr_dma);
octeon_write_csr(oct, CN6XXX_SLI_IQ_SIZE(iq_no), iq->max_count);
/* Remember the doorbell & instruction count register addr for this
* queue
*/
iq->doorbell_reg = oct->mmio[0].hw_addr + CN6XXX_SLI_IQ_DOORBELL(iq_no);
iq->inst_cnt_reg = oct->mmio[0].hw_addr
+ CN6XXX_SLI_IQ_INSTR_COUNT(iq_no);
dev_dbg(&oct->pci_dev->dev, "InstQ[%d]:dbell reg @ 0x%p instcnt_reg @ 0x%p\n",
iq_no, iq->doorbell_reg, iq->inst_cnt_reg);
/* Store the current instruction counter
* (used in flush_iq calculation)
*/
iq->reset_instr_cnt = readl(iq->inst_cnt_reg);
}
static void lio_cn66xx_setup_iq_regs(struct octeon_device *oct, u32 iq_no)
{
lio_cn6xxx_setup_iq_regs(oct, iq_no);
/* Backpressure for this queue - WMARK set to all F's. This effectively
* disables the backpressure mechanism.
*/
octeon_write_csr64(oct, CN66XX_SLI_IQ_BP64(iq_no),
(0xFFFFFFFFULL << 32));
}
void lio_cn6xxx_setup_oq_regs(struct octeon_device *oct, u32 oq_no)
{
u32 intr;
struct octeon_droq *droq = oct->droq[oq_no];
octeon_write_csr64(oct, CN6XXX_SLI_OQ_BASE_ADDR64(oq_no),
droq->desc_ring_dma);
octeon_write_csr(oct, CN6XXX_SLI_OQ_SIZE(oq_no), droq->max_count);
octeon_write_csr(oct, CN6XXX_SLI_OQ_BUFF_INFO_SIZE(oq_no),
(droq->buffer_size | (OCT_RH_SIZE << 16)));
/* Get the mapped address of the pkt_sent and pkts_credit regs */
droq->pkts_sent_reg =
oct->mmio[0].hw_addr + CN6XXX_SLI_OQ_PKTS_SENT(oq_no);
droq->pkts_credit_reg =
oct->mmio[0].hw_addr + CN6XXX_SLI_OQ_PKTS_CREDIT(oq_no);
/* Enable this output queue to generate Packet Timer Interrupt */
intr = octeon_read_csr(oct, CN6XXX_SLI_PKT_TIME_INT_ENB);
intr |= (1 << oq_no);
octeon_write_csr(oct, CN6XXX_SLI_PKT_TIME_INT_ENB, intr);
/* Enable this output queue to generate Packet Timer Interrupt */
intr = octeon_read_csr(oct, CN6XXX_SLI_PKT_CNT_INT_ENB);
intr |= (1 << oq_no);
octeon_write_csr(oct, CN6XXX_SLI_PKT_CNT_INT_ENB, intr);
}
int lio_cn6xxx_enable_io_queues(struct octeon_device *oct)
{
u32 mask;
mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_INSTR_SIZE);
mask |= oct->io_qmask.iq64B;
octeon_write_csr(oct, CN6XXX_SLI_PKT_INSTR_SIZE, mask);
mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB);
mask |= oct->io_qmask.iq;
octeon_write_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB, mask);
mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_OUT_ENB);
mask |= oct->io_qmask.oq;
octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_ENB, mask);
return 0;
}
void lio_cn6xxx_disable_io_queues(struct octeon_device *oct)
{
int i;
u32 mask, loop = HZ;
u32 d32;
/* Reset the Enable bits for Input Queues. */
mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB);
mask ^= oct->io_qmask.iq;
octeon_write_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB, mask);
/* Wait until hardware indicates that the queues are out of reset. */
mask = (u32)oct->io_qmask.iq;
d32 = octeon_read_csr(oct, CN6XXX_SLI_PORT_IN_RST_IQ);
while (((d32 & mask) != mask) && loop--) {
d32 = octeon_read_csr(oct, CN6XXX_SLI_PORT_IN_RST_IQ);
schedule_timeout_uninterruptible(1);
}
/* Reset the doorbell register for each Input queue. */
for (i = 0; i < MAX_OCTEON_INSTR_QUEUES(oct); i++) {
if (!(oct->io_qmask.iq & BIT_ULL(i)))
continue;
octeon_write_csr(oct, CN6XXX_SLI_IQ_DOORBELL(i), 0xFFFFFFFF);
d32 = octeon_read_csr(oct, CN6XXX_SLI_IQ_DOORBELL(i));
}
/* Reset the Enable bits for Output Queues. */
mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_OUT_ENB);
mask ^= oct->io_qmask.oq;
octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_ENB, mask);
/* Wait until hardware indicates that the queues are out of reset. */
loop = HZ;
mask = (u32)oct->io_qmask.oq;
d32 = octeon_read_csr(oct, CN6XXX_SLI_PORT_IN_RST_OQ);
while (((d32 & mask) != mask) && loop--) {
d32 = octeon_read_csr(oct, CN6XXX_SLI_PORT_IN_RST_OQ);
schedule_timeout_uninterruptible(1);
}
;
/* Reset the doorbell register for each Output queue. */
for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES(oct); i++) {
if (!(oct->io_qmask.oq & BIT_ULL(i)))
continue;
octeon_write_csr(oct, CN6XXX_SLI_OQ_PKTS_CREDIT(i), 0xFFFFFFFF);
d32 = octeon_read_csr(oct, CN6XXX_SLI_OQ_PKTS_CREDIT(i));
d32 = octeon_read_csr(oct, CN6XXX_SLI_OQ_PKTS_SENT(i));
octeon_write_csr(oct, CN6XXX_SLI_OQ_PKTS_SENT(i), d32);
}
d32 = octeon_read_csr(oct, CN6XXX_SLI_PKT_CNT_INT);
if (d32)
octeon_write_csr(oct, CN6XXX_SLI_PKT_CNT_INT, d32);
d32 = octeon_read_csr(oct, CN6XXX_SLI_PKT_TIME_INT);
if (d32)
octeon_write_csr(oct, CN6XXX_SLI_PKT_TIME_INT, d32);
}
void
lio_cn6xxx_bar1_idx_setup(struct octeon_device *oct,
u64 core_addr,
u32 idx,
int valid)
{
u64 bar1;
if (valid == 0) {
bar1 = lio_pci_readq(oct, CN6XXX_BAR1_REG(idx, oct->pcie_port));
lio_pci_writeq(oct, (bar1 & 0xFFFFFFFEULL),
CN6XXX_BAR1_REG(idx, oct->pcie_port));
bar1 = lio_pci_readq(oct, CN6XXX_BAR1_REG(idx, oct->pcie_port));
return;
}
/* Bits 17:4 of the PCI_BAR1_INDEXx stores bits 35:22 of
* the Core Addr
*/
lio_pci_writeq(oct, (((core_addr >> 22) << 4) | PCI_BAR1_MASK),
CN6XXX_BAR1_REG(idx, oct->pcie_port));
bar1 = lio_pci_readq(oct, CN6XXX_BAR1_REG(idx, oct->pcie_port));
}
void lio_cn6xxx_bar1_idx_write(struct octeon_device *oct,
u32 idx,
u32 mask)
{
lio_pci_writeq(oct, mask, CN6XXX_BAR1_REG(idx, oct->pcie_port));
}
u32 lio_cn6xxx_bar1_idx_read(struct octeon_device *oct, u32 idx)
{
return (u32)lio_pci_readq(oct, CN6XXX_BAR1_REG(idx, oct->pcie_port));
}
u32
lio_cn6xxx_update_read_index(struct octeon_instr_queue *iq)
{
u32 new_idx = readl(iq->inst_cnt_reg);
/* The new instr cnt reg is a 32-bit counter that can roll over. We have
* noted the counter's initial value at init time into
* reset_instr_cnt
*/
if (iq->reset_instr_cnt < new_idx)
new_idx -= iq->reset_instr_cnt;
else
new_idx += (0xffffffff - iq->reset_instr_cnt) + 1;
/* Modulo of the new index with the IQ size will give us
* the new index.
*/
new_idx %= iq->max_count;
return new_idx;
}
void lio_cn6xxx_enable_interrupt(struct octeon_device *oct,
u8 unused __attribute__((unused)))
{
struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip;
u64 mask = cn6xxx->intr_mask64 | CN6XXX_INTR_DMA0_FORCE;
/* Enable Interrupt */
writeq(mask, cn6xxx->intr_enb_reg64);
}
void lio_cn6xxx_disable_interrupt(struct octeon_device *oct,
u8 unused __attribute__((unused)))
{
struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip;
/* Disable Interrupts */
writeq(0, cn6xxx->intr_enb_reg64);
/* make sure interrupts are really disabled */
mmiowb();
}
static void lio_cn6xxx_get_pcie_qlmport(struct octeon_device *oct)
{
/* CN63xx Pass2 and newer parts implements the SLI_MAC_NUMBER register
* to determine the PCIE port #
*/
oct->pcie_port = octeon_read_csr(oct, CN6XXX_SLI_MAC_NUMBER) & 0xff;
dev_dbg(&oct->pci_dev->dev, "Using PCIE Port %d\n", oct->pcie_port);
}
static void
lio_cn6xxx_process_pcie_error_intr(struct octeon_device *oct, u64 intr64)
{
dev_err(&oct->pci_dev->dev, "Error Intr: 0x%016llx\n",
CVM_CAST64(intr64));
}
static int lio_cn6xxx_process_droq_intr_regs(struct octeon_device *oct)
{
struct octeon_droq *droq;
int oq_no;
u32 pkt_count, droq_time_mask, droq_mask, droq_int_enb;
u32 droq_cnt_enb, droq_cnt_mask;
droq_cnt_enb = octeon_read_csr(oct, CN6XXX_SLI_PKT_CNT_INT_ENB);
droq_cnt_mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_CNT_INT);
droq_mask = droq_cnt_mask & droq_cnt_enb;
droq_time_mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_TIME_INT);
droq_int_enb = octeon_read_csr(oct, CN6XXX_SLI_PKT_TIME_INT_ENB);
droq_mask |= (droq_time_mask & droq_int_enb);
droq_mask &= oct->io_qmask.oq;
oct->droq_intr = 0;
for (oq_no = 0; oq_no < MAX_OCTEON_OUTPUT_QUEUES(oct); oq_no++) {
if (!(droq_mask & BIT_ULL(oq_no)))
continue;
droq = oct->droq[oq_no];
pkt_count = octeon_droq_check_hw_for_pkts(droq);
if (pkt_count) {
oct->droq_intr |= BIT_ULL(oq_no);
if (droq->ops.poll_mode) {
u32 value;
u32 reg;
struct octeon_cn6xxx *cn6xxx =
(struct octeon_cn6xxx *)oct->chip;
/* disable interrupts for this droq */
spin_lock
(&cn6xxx->lock_for_droq_int_enb_reg);
reg = CN6XXX_SLI_PKT_TIME_INT_ENB;
value = octeon_read_csr(oct, reg);
value &= ~(1 << oq_no);
octeon_write_csr(oct, reg, value);
reg = CN6XXX_SLI_PKT_CNT_INT_ENB;
value = octeon_read_csr(oct, reg);
value &= ~(1 << oq_no);
octeon_write_csr(oct, reg, value);
/* Ensure that the enable register is written.
*/
mmiowb();
spin_unlock(&cn6xxx->lock_for_droq_int_enb_reg);
}
}
}
droq_time_mask &= oct->io_qmask.oq;
droq_cnt_mask &= oct->io_qmask.oq;
/* Reset the PKT_CNT/TIME_INT registers. */
if (droq_time_mask)
octeon_write_csr(oct, CN6XXX_SLI_PKT_TIME_INT, droq_time_mask);
if (droq_cnt_mask) /* reset PKT_CNT register:66xx */
octeon_write_csr(oct, CN6XXX_SLI_PKT_CNT_INT, droq_cnt_mask);
return 0;
}
irqreturn_t lio_cn6xxx_process_interrupt_regs(void *dev)
{
struct octeon_device *oct = (struct octeon_device *)dev;
struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip;
u64 intr64;
intr64 = readq(cn6xxx->intr_sum_reg64);
/* If our device has interrupted, then proceed.
* Also check for all f's if interrupt was triggered on an error
* and the PCI read fails.
*/
if (!intr64 || (intr64 == 0xFFFFFFFFFFFFFFFFULL))
return IRQ_NONE;
oct->int_status = 0;
if (intr64 & CN6XXX_INTR_ERR)
lio_cn6xxx_process_pcie_error_intr(oct, intr64);
if (intr64 & CN6XXX_INTR_PKT_DATA) {
lio_cn6xxx_process_droq_intr_regs(oct);
oct->int_status |= OCT_DEV_INTR_PKT_DATA;
}
if (intr64 & CN6XXX_INTR_DMA0_FORCE)
oct->int_status |= OCT_DEV_INTR_DMA0_FORCE;
if (intr64 & CN6XXX_INTR_DMA1_FORCE)
oct->int_status |= OCT_DEV_INTR_DMA1_FORCE;
/* Clear the current interrupts */
writeq(intr64, cn6xxx->intr_sum_reg64);
return IRQ_HANDLED;
}
void lio_cn6xxx_setup_reg_address(struct octeon_device *oct,
void *chip,
struct octeon_reg_list *reg_list)
{
u8 __iomem *bar0_pciaddr = oct->mmio[0].hw_addr;
struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)chip;
reg_list->pci_win_wr_addr_hi =
(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_ADDR_HI);
reg_list->pci_win_wr_addr_lo =
(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_ADDR_LO);
reg_list->pci_win_wr_addr =
(u64 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_ADDR64);
reg_list->pci_win_rd_addr_hi =
(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_ADDR_HI);
reg_list->pci_win_rd_addr_lo =
(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_ADDR_LO);
reg_list->pci_win_rd_addr =
(u64 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_ADDR64);
reg_list->pci_win_wr_data_hi =
(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_DATA_HI);
reg_list->pci_win_wr_data_lo =
(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_DATA_LO);
reg_list->pci_win_wr_data =
(u64 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_DATA64);
reg_list->pci_win_rd_data_hi =
(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_DATA_HI);
reg_list->pci_win_rd_data_lo =
(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_DATA_LO);
reg_list->pci_win_rd_data =
(u64 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_DATA64);
lio_cn6xxx_get_pcie_qlmport(oct);
cn6xxx->intr_sum_reg64 = bar0_pciaddr + CN6XXX_SLI_INT_SUM64;
cn6xxx->intr_mask64 = CN6XXX_INTR_MASK;
cn6xxx->intr_enb_reg64 =
bar0_pciaddr + CN6XXX_SLI_INT_ENB64(oct->pcie_port);
}
int lio_setup_cn66xx_octeon_device(struct octeon_device *oct)
{
struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip;
if (octeon_map_pci_barx(oct, 0, 0))
return 1;
if (octeon_map_pci_barx(oct, 1, MAX_BAR1_IOREMAP_SIZE)) {
dev_err(&oct->pci_dev->dev, "%s CN66XX BAR1 map failed\n",
__func__);
octeon_unmap_pci_barx(oct, 0);
return 1;
}
spin_lock_init(&cn6xxx->lock_for_droq_int_enb_reg);
oct->fn_list.setup_iq_regs = lio_cn66xx_setup_iq_regs;
oct->fn_list.setup_oq_regs = lio_cn6xxx_setup_oq_regs;
oct->fn_list.soft_reset = lio_cn6xxx_soft_reset;
oct->fn_list.setup_device_regs = lio_cn6xxx_setup_device_regs;
oct->fn_list.update_iq_read_idx = lio_cn6xxx_update_read_index;
oct->fn_list.bar1_idx_setup = lio_cn6xxx_bar1_idx_setup;
oct->fn_list.bar1_idx_write = lio_cn6xxx_bar1_idx_write;
oct->fn_list.bar1_idx_read = lio_cn6xxx_bar1_idx_read;
oct->fn_list.process_interrupt_regs = lio_cn6xxx_process_interrupt_regs;
oct->fn_list.enable_interrupt = lio_cn6xxx_enable_interrupt;
oct->fn_list.disable_interrupt = lio_cn6xxx_disable_interrupt;
oct->fn_list.enable_io_queues = lio_cn6xxx_enable_io_queues;
oct->fn_list.disable_io_queues = lio_cn6xxx_disable_io_queues;
lio_cn6xxx_setup_reg_address(oct, oct->chip, &oct->reg_list);
cn6xxx->conf = (struct octeon_config *)
oct_get_config_info(oct, LIO_210SV);
if (!cn6xxx->conf) {
dev_err(&oct->pci_dev->dev, "%s No Config found for CN66XX\n",
__func__);
octeon_unmap_pci_barx(oct, 0);
octeon_unmap_pci_barx(oct, 1);
return 1;
}
oct->coproc_clock_rate = 1000000ULL * lio_cn6xxx_coprocessor_clock(oct);
return 0;
}
int lio_validate_cn6xxx_config_info(struct octeon_device *oct,
struct octeon_config *conf6xxx)
{
if (CFG_GET_IQ_MAX_Q(conf6xxx) > CN6XXX_MAX_INPUT_QUEUES) {
dev_err(&oct->pci_dev->dev, "%s: Num IQ (%d) exceeds Max (%d)\n",
__func__, CFG_GET_IQ_MAX_Q(conf6xxx),
CN6XXX_MAX_INPUT_QUEUES);
return 1;
}
if (CFG_GET_OQ_MAX_Q(conf6xxx) > CN6XXX_MAX_OUTPUT_QUEUES) {
dev_err(&oct->pci_dev->dev, "%s: Num OQ (%d) exceeds Max (%d)\n",
__func__, CFG_GET_OQ_MAX_Q(conf6xxx),
CN6XXX_MAX_OUTPUT_QUEUES);
return 1;
}
if (CFG_GET_IQ_INSTR_TYPE(conf6xxx) != OCTEON_32BYTE_INSTR &&
CFG_GET_IQ_INSTR_TYPE(conf6xxx) != OCTEON_64BYTE_INSTR) {
dev_err(&oct->pci_dev->dev, "%s: Invalid instr type for IQ\n",
__func__);
return 1;
}
if (!(CFG_GET_OQ_INFO_PTR(conf6xxx)) ||
!(CFG_GET_OQ_REFILL_THRESHOLD(conf6xxx))) {
dev_err(&oct->pci_dev->dev, "%s: Invalid parameter for OQ\n",
__func__);
return 1;
}
if (!(CFG_GET_OQ_INTR_TIME(conf6xxx))) {
dev_err(&oct->pci_dev->dev, "%s: No Time Interrupt for OQ\n",
__func__);
return 1;
}
return 0;
}