| // SPDX-License-Identifier: GPL-2.0 |
| |
| #include <linux/slab.h> |
| #include "ctree.h" |
| #include "subpage.h" |
| #include "btrfs_inode.h" |
| |
| /* |
| * Subpage (sectorsize < PAGE_SIZE) support overview: |
| * |
| * Limitations: |
| * |
| * - Only support 64K page size for now |
| * This is to make metadata handling easier, as 64K page would ensure |
| * all nodesize would fit inside one page, thus we don't need to handle |
| * cases where a tree block crosses several pages. |
| * |
| * - Only metadata read-write for now |
| * The data read-write part is in development. |
| * |
| * - Metadata can't cross 64K page boundary |
| * btrfs-progs and kernel have done that for a while, thus only ancient |
| * filesystems could have such problem. For such case, do a graceful |
| * rejection. |
| * |
| * Special behavior: |
| * |
| * - Metadata |
| * Metadata read is fully supported. |
| * Meaning when reading one tree block will only trigger the read for the |
| * needed range, other unrelated range in the same page will not be touched. |
| * |
| * Metadata write support is partial. |
| * The writeback is still for the full page, but we will only submit |
| * the dirty extent buffers in the page. |
| * |
| * This means, if we have a metadata page like this: |
| * |
| * Page offset |
| * 0 16K 32K 48K 64K |
| * |/////////| |///////////| |
| * \- Tree block A \- Tree block B |
| * |
| * Even if we just want to writeback tree block A, we will also writeback |
| * tree block B if it's also dirty. |
| * |
| * This may cause extra metadata writeback which results more COW. |
| * |
| * Implementation: |
| * |
| * - Common |
| * Both metadata and data will use a new structure, btrfs_subpage, to |
| * record the status of each sector inside a page. This provides the extra |
| * granularity needed. |
| * |
| * - Metadata |
| * Since we have multiple tree blocks inside one page, we can't rely on page |
| * locking anymore, or we will have greatly reduced concurrency or even |
| * deadlocks (hold one tree lock while trying to lock another tree lock in |
| * the same page). |
| * |
| * Thus for metadata locking, subpage support relies on io_tree locking only. |
| * This means a slightly higher tree locking latency. |
| */ |
| |
| bool btrfs_is_subpage(const struct btrfs_fs_info *fs_info, struct page *page) |
| { |
| if (fs_info->sectorsize >= PAGE_SIZE) |
| return false; |
| |
| /* |
| * Only data pages (either through DIO or compression) can have no |
| * mapping. And if page->mapping->host is data inode, it's subpage. |
| * As we have ruled our sectorsize >= PAGE_SIZE case already. |
| */ |
| if (!page->mapping || !page->mapping->host || |
| is_data_inode(page->mapping->host)) |
| return true; |
| |
| /* |
| * Now the only remaining case is metadata, which we only go subpage |
| * routine if nodesize < PAGE_SIZE. |
| */ |
| if (fs_info->nodesize < PAGE_SIZE) |
| return true; |
| return false; |
| } |
| |
| void btrfs_init_subpage_info(struct btrfs_subpage_info *subpage_info, u32 sectorsize) |
| { |
| unsigned int cur = 0; |
| unsigned int nr_bits; |
| |
| ASSERT(IS_ALIGNED(PAGE_SIZE, sectorsize)); |
| |
| nr_bits = PAGE_SIZE / sectorsize; |
| subpage_info->bitmap_nr_bits = nr_bits; |
| |
| subpage_info->uptodate_offset = cur; |
| cur += nr_bits; |
| |
| subpage_info->error_offset = cur; |
| cur += nr_bits; |
| |
| subpage_info->dirty_offset = cur; |
| cur += nr_bits; |
| |
| subpage_info->writeback_offset = cur; |
| cur += nr_bits; |
| |
| subpage_info->ordered_offset = cur; |
| cur += nr_bits; |
| |
| subpage_info->checked_offset = cur; |
| cur += nr_bits; |
| |
| subpage_info->total_nr_bits = cur; |
| } |
| |
| int btrfs_attach_subpage(const struct btrfs_fs_info *fs_info, |
| struct page *page, enum btrfs_subpage_type type) |
| { |
| struct btrfs_subpage *subpage; |
| |
| /* |
| * We have cases like a dummy extent buffer page, which is not mapped |
| * and doesn't need to be locked. |
| */ |
| if (page->mapping) |
| ASSERT(PageLocked(page)); |
| |
| /* Either not subpage, or the page already has private attached */ |
| if (!btrfs_is_subpage(fs_info, page) || PagePrivate(page)) |
| return 0; |
| |
| subpage = btrfs_alloc_subpage(fs_info, type); |
| if (IS_ERR(subpage)) |
| return PTR_ERR(subpage); |
| |
| attach_page_private(page, subpage); |
| return 0; |
| } |
| |
| void btrfs_detach_subpage(const struct btrfs_fs_info *fs_info, |
| struct page *page) |
| { |
| struct btrfs_subpage *subpage; |
| |
| /* Either not subpage, or already detached */ |
| if (!btrfs_is_subpage(fs_info, page) || !PagePrivate(page)) |
| return; |
| |
| subpage = detach_page_private(page); |
| ASSERT(subpage); |
| btrfs_free_subpage(subpage); |
| } |
| |
| struct btrfs_subpage *btrfs_alloc_subpage(const struct btrfs_fs_info *fs_info, |
| enum btrfs_subpage_type type) |
| { |
| struct btrfs_subpage *ret; |
| unsigned int real_size; |
| |
| ASSERT(fs_info->sectorsize < PAGE_SIZE); |
| |
| real_size = struct_size(ret, bitmaps, |
| BITS_TO_LONGS(fs_info->subpage_info->total_nr_bits)); |
| ret = kzalloc(real_size, GFP_NOFS); |
| if (!ret) |
| return ERR_PTR(-ENOMEM); |
| |
| spin_lock_init(&ret->lock); |
| if (type == BTRFS_SUBPAGE_METADATA) { |
| atomic_set(&ret->eb_refs, 0); |
| } else { |
| atomic_set(&ret->readers, 0); |
| atomic_set(&ret->writers, 0); |
| } |
| return ret; |
| } |
| |
| void btrfs_free_subpage(struct btrfs_subpage *subpage) |
| { |
| kfree(subpage); |
| } |
| |
| /* |
| * Increase the eb_refs of current subpage. |
| * |
| * This is important for eb allocation, to prevent race with last eb freeing |
| * of the same page. |
| * With the eb_refs increased before the eb inserted into radix tree, |
| * detach_extent_buffer_page() won't detach the page private while we're still |
| * allocating the extent buffer. |
| */ |
| void btrfs_page_inc_eb_refs(const struct btrfs_fs_info *fs_info, |
| struct page *page) |
| { |
| struct btrfs_subpage *subpage; |
| |
| if (!btrfs_is_subpage(fs_info, page)) |
| return; |
| |
| ASSERT(PagePrivate(page) && page->mapping); |
| lockdep_assert_held(&page->mapping->private_lock); |
| |
| subpage = (struct btrfs_subpage *)page->private; |
| atomic_inc(&subpage->eb_refs); |
| } |
| |
| void btrfs_page_dec_eb_refs(const struct btrfs_fs_info *fs_info, |
| struct page *page) |
| { |
| struct btrfs_subpage *subpage; |
| |
| if (!btrfs_is_subpage(fs_info, page)) |
| return; |
| |
| ASSERT(PagePrivate(page) && page->mapping); |
| lockdep_assert_held(&page->mapping->private_lock); |
| |
| subpage = (struct btrfs_subpage *)page->private; |
| ASSERT(atomic_read(&subpage->eb_refs)); |
| atomic_dec(&subpage->eb_refs); |
| } |
| |
| static void btrfs_subpage_assert(const struct btrfs_fs_info *fs_info, |
| struct page *page, u64 start, u32 len) |
| { |
| /* Basic checks */ |
| ASSERT(PagePrivate(page) && page->private); |
| ASSERT(IS_ALIGNED(start, fs_info->sectorsize) && |
| IS_ALIGNED(len, fs_info->sectorsize)); |
| /* |
| * The range check only works for mapped page, we can still have |
| * unmapped page like dummy extent buffer pages. |
| */ |
| if (page->mapping) |
| ASSERT(page_offset(page) <= start && |
| start + len <= page_offset(page) + PAGE_SIZE); |
| } |
| |
| void btrfs_subpage_start_reader(const struct btrfs_fs_info *fs_info, |
| struct page *page, u64 start, u32 len) |
| { |
| struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; |
| const int nbits = len >> fs_info->sectorsize_bits; |
| |
| btrfs_subpage_assert(fs_info, page, start, len); |
| |
| atomic_add(nbits, &subpage->readers); |
| } |
| |
| void btrfs_subpage_end_reader(const struct btrfs_fs_info *fs_info, |
| struct page *page, u64 start, u32 len) |
| { |
| struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; |
| const int nbits = len >> fs_info->sectorsize_bits; |
| bool is_data; |
| bool last; |
| |
| btrfs_subpage_assert(fs_info, page, start, len); |
| is_data = is_data_inode(page->mapping->host); |
| ASSERT(atomic_read(&subpage->readers) >= nbits); |
| last = atomic_sub_and_test(nbits, &subpage->readers); |
| |
| /* |
| * For data we need to unlock the page if the last read has finished. |
| * |
| * And please don't replace @last with atomic_sub_and_test() call |
| * inside if () condition. |
| * As we want the atomic_sub_and_test() to be always executed. |
| */ |
| if (is_data && last) |
| unlock_page(page); |
| } |
| |
| static void btrfs_subpage_clamp_range(struct page *page, u64 *start, u32 *len) |
| { |
| u64 orig_start = *start; |
| u32 orig_len = *len; |
| |
| *start = max_t(u64, page_offset(page), orig_start); |
| /* |
| * For certain call sites like btrfs_drop_pages(), we may have pages |
| * beyond the target range. In that case, just set @len to 0, subpage |
| * helpers can handle @len == 0 without any problem. |
| */ |
| if (page_offset(page) >= orig_start + orig_len) |
| *len = 0; |
| else |
| *len = min_t(u64, page_offset(page) + PAGE_SIZE, |
| orig_start + orig_len) - *start; |
| } |
| |
| void btrfs_subpage_start_writer(const struct btrfs_fs_info *fs_info, |
| struct page *page, u64 start, u32 len) |
| { |
| struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; |
| const int nbits = (len >> fs_info->sectorsize_bits); |
| int ret; |
| |
| btrfs_subpage_assert(fs_info, page, start, len); |
| |
| ASSERT(atomic_read(&subpage->readers) == 0); |
| ret = atomic_add_return(nbits, &subpage->writers); |
| ASSERT(ret == nbits); |
| } |
| |
| bool btrfs_subpage_end_and_test_writer(const struct btrfs_fs_info *fs_info, |
| struct page *page, u64 start, u32 len) |
| { |
| struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; |
| const int nbits = (len >> fs_info->sectorsize_bits); |
| |
| btrfs_subpage_assert(fs_info, page, start, len); |
| |
| /* |
| * We have call sites passing @lock_page into |
| * extent_clear_unlock_delalloc() for compression path. |
| * |
| * This @locked_page is locked by plain lock_page(), thus its |
| * subpage::writers is 0. Handle them in a special way. |
| */ |
| if (atomic_read(&subpage->writers) == 0) |
| return true; |
| |
| ASSERT(atomic_read(&subpage->writers) >= nbits); |
| return atomic_sub_and_test(nbits, &subpage->writers); |
| } |
| |
| /* |
| * Lock a page for delalloc page writeback. |
| * |
| * Return -EAGAIN if the page is not properly initialized. |
| * Return 0 with the page locked, and writer counter updated. |
| * |
| * Even with 0 returned, the page still need extra check to make sure |
| * it's really the correct page, as the caller is using |
| * find_get_pages_contig(), which can race with page invalidating. |
| */ |
| int btrfs_page_start_writer_lock(const struct btrfs_fs_info *fs_info, |
| struct page *page, u64 start, u32 len) |
| { |
| if (unlikely(!fs_info) || !btrfs_is_subpage(fs_info, page)) { |
| lock_page(page); |
| return 0; |
| } |
| lock_page(page); |
| if (!PagePrivate(page) || !page->private) { |
| unlock_page(page); |
| return -EAGAIN; |
| } |
| btrfs_subpage_clamp_range(page, &start, &len); |
| btrfs_subpage_start_writer(fs_info, page, start, len); |
| return 0; |
| } |
| |
| void btrfs_page_end_writer_lock(const struct btrfs_fs_info *fs_info, |
| struct page *page, u64 start, u32 len) |
| { |
| if (unlikely(!fs_info) || !btrfs_is_subpage(fs_info, page)) |
| return unlock_page(page); |
| btrfs_subpage_clamp_range(page, &start, &len); |
| if (btrfs_subpage_end_and_test_writer(fs_info, page, start, len)) |
| unlock_page(page); |
| } |
| |
| static bool bitmap_test_range_all_set(unsigned long *addr, unsigned int start, |
| unsigned int nbits) |
| { |
| unsigned int found_zero; |
| |
| found_zero = find_next_zero_bit(addr, start + nbits, start); |
| if (found_zero == start + nbits) |
| return true; |
| return false; |
| } |
| |
| static bool bitmap_test_range_all_zero(unsigned long *addr, unsigned int start, |
| unsigned int nbits) |
| { |
| unsigned int found_set; |
| |
| found_set = find_next_bit(addr, start + nbits, start); |
| if (found_set == start + nbits) |
| return true; |
| return false; |
| } |
| |
| #define subpage_calc_start_bit(fs_info, page, name, start, len) \ |
| ({ \ |
| unsigned int start_bit; \ |
| \ |
| btrfs_subpage_assert(fs_info, page, start, len); \ |
| start_bit = offset_in_page(start) >> fs_info->sectorsize_bits; \ |
| start_bit += fs_info->subpage_info->name##_offset; \ |
| start_bit; \ |
| }) |
| |
| #define subpage_test_bitmap_all_set(fs_info, subpage, name) \ |
| bitmap_test_range_all_set(subpage->bitmaps, \ |
| fs_info->subpage_info->name##_offset, \ |
| fs_info->subpage_info->bitmap_nr_bits) |
| |
| #define subpage_test_bitmap_all_zero(fs_info, subpage, name) \ |
| bitmap_test_range_all_zero(subpage->bitmaps, \ |
| fs_info->subpage_info->name##_offset, \ |
| fs_info->subpage_info->bitmap_nr_bits) |
| |
| void btrfs_subpage_set_uptodate(const struct btrfs_fs_info *fs_info, |
| struct page *page, u64 start, u32 len) |
| { |
| struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; |
| unsigned int start_bit = subpage_calc_start_bit(fs_info, page, |
| uptodate, start, len); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&subpage->lock, flags); |
| bitmap_set(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits); |
| if (subpage_test_bitmap_all_set(fs_info, subpage, uptodate)) |
| SetPageUptodate(page); |
| spin_unlock_irqrestore(&subpage->lock, flags); |
| } |
| |
| void btrfs_subpage_clear_uptodate(const struct btrfs_fs_info *fs_info, |
| struct page *page, u64 start, u32 len) |
| { |
| struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; |
| unsigned int start_bit = subpage_calc_start_bit(fs_info, page, |
| uptodate, start, len); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&subpage->lock, flags); |
| bitmap_clear(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits); |
| ClearPageUptodate(page); |
| spin_unlock_irqrestore(&subpage->lock, flags); |
| } |
| |
| void btrfs_subpage_set_error(const struct btrfs_fs_info *fs_info, |
| struct page *page, u64 start, u32 len) |
| { |
| struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; |
| unsigned int start_bit = subpage_calc_start_bit(fs_info, page, |
| error, start, len); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&subpage->lock, flags); |
| bitmap_set(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits); |
| SetPageError(page); |
| spin_unlock_irqrestore(&subpage->lock, flags); |
| } |
| |
| void btrfs_subpage_clear_error(const struct btrfs_fs_info *fs_info, |
| struct page *page, u64 start, u32 len) |
| { |
| struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; |
| unsigned int start_bit = subpage_calc_start_bit(fs_info, page, |
| error, start, len); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&subpage->lock, flags); |
| bitmap_clear(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits); |
| if (subpage_test_bitmap_all_zero(fs_info, subpage, error)) |
| ClearPageError(page); |
| spin_unlock_irqrestore(&subpage->lock, flags); |
| } |
| |
| void btrfs_subpage_set_dirty(const struct btrfs_fs_info *fs_info, |
| struct page *page, u64 start, u32 len) |
| { |
| struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; |
| unsigned int start_bit = subpage_calc_start_bit(fs_info, page, |
| dirty, start, len); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&subpage->lock, flags); |
| bitmap_set(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits); |
| spin_unlock_irqrestore(&subpage->lock, flags); |
| set_page_dirty(page); |
| } |
| |
| /* |
| * Extra clear_and_test function for subpage dirty bitmap. |
| * |
| * Return true if we're the last bits in the dirty_bitmap and clear the |
| * dirty_bitmap. |
| * Return false otherwise. |
| * |
| * NOTE: Callers should manually clear page dirty for true case, as we have |
| * extra handling for tree blocks. |
| */ |
| bool btrfs_subpage_clear_and_test_dirty(const struct btrfs_fs_info *fs_info, |
| struct page *page, u64 start, u32 len) |
| { |
| struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; |
| unsigned int start_bit = subpage_calc_start_bit(fs_info, page, |
| dirty, start, len); |
| unsigned long flags; |
| bool last = false; |
| |
| spin_lock_irqsave(&subpage->lock, flags); |
| bitmap_clear(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits); |
| if (subpage_test_bitmap_all_zero(fs_info, subpage, dirty)) |
| last = true; |
| spin_unlock_irqrestore(&subpage->lock, flags); |
| return last; |
| } |
| |
| void btrfs_subpage_clear_dirty(const struct btrfs_fs_info *fs_info, |
| struct page *page, u64 start, u32 len) |
| { |
| bool last; |
| |
| last = btrfs_subpage_clear_and_test_dirty(fs_info, page, start, len); |
| if (last) |
| clear_page_dirty_for_io(page); |
| } |
| |
| void btrfs_subpage_set_writeback(const struct btrfs_fs_info *fs_info, |
| struct page *page, u64 start, u32 len) |
| { |
| struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; |
| unsigned int start_bit = subpage_calc_start_bit(fs_info, page, |
| writeback, start, len); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&subpage->lock, flags); |
| bitmap_set(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits); |
| set_page_writeback(page); |
| spin_unlock_irqrestore(&subpage->lock, flags); |
| } |
| |
| void btrfs_subpage_clear_writeback(const struct btrfs_fs_info *fs_info, |
| struct page *page, u64 start, u32 len) |
| { |
| struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; |
| unsigned int start_bit = subpage_calc_start_bit(fs_info, page, |
| writeback, start, len); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&subpage->lock, flags); |
| bitmap_clear(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits); |
| if (subpage_test_bitmap_all_zero(fs_info, subpage, writeback)) { |
| ASSERT(PageWriteback(page)); |
| end_page_writeback(page); |
| } |
| spin_unlock_irqrestore(&subpage->lock, flags); |
| } |
| |
| void btrfs_subpage_set_ordered(const struct btrfs_fs_info *fs_info, |
| struct page *page, u64 start, u32 len) |
| { |
| struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; |
| unsigned int start_bit = subpage_calc_start_bit(fs_info, page, |
| ordered, start, len); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&subpage->lock, flags); |
| bitmap_set(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits); |
| SetPageOrdered(page); |
| spin_unlock_irqrestore(&subpage->lock, flags); |
| } |
| |
| void btrfs_subpage_clear_ordered(const struct btrfs_fs_info *fs_info, |
| struct page *page, u64 start, u32 len) |
| { |
| struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; |
| unsigned int start_bit = subpage_calc_start_bit(fs_info, page, |
| ordered, start, len); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&subpage->lock, flags); |
| bitmap_clear(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits); |
| if (subpage_test_bitmap_all_zero(fs_info, subpage, ordered)) |
| ClearPageOrdered(page); |
| spin_unlock_irqrestore(&subpage->lock, flags); |
| } |
| |
| void btrfs_subpage_set_checked(const struct btrfs_fs_info *fs_info, |
| struct page *page, u64 start, u32 len) |
| { |
| struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; |
| unsigned int start_bit = subpage_calc_start_bit(fs_info, page, |
| checked, start, len); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&subpage->lock, flags); |
| bitmap_set(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits); |
| if (subpage_test_bitmap_all_set(fs_info, subpage, checked)) |
| SetPageChecked(page); |
| spin_unlock_irqrestore(&subpage->lock, flags); |
| } |
| |
| void btrfs_subpage_clear_checked(const struct btrfs_fs_info *fs_info, |
| struct page *page, u64 start, u32 len) |
| { |
| struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; |
| unsigned int start_bit = subpage_calc_start_bit(fs_info, page, |
| checked, start, len); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&subpage->lock, flags); |
| bitmap_clear(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits); |
| ClearPageChecked(page); |
| spin_unlock_irqrestore(&subpage->lock, flags); |
| } |
| |
| /* |
| * Unlike set/clear which is dependent on each page status, for test all bits |
| * are tested in the same way. |
| */ |
| #define IMPLEMENT_BTRFS_SUBPAGE_TEST_OP(name) \ |
| bool btrfs_subpage_test_##name(const struct btrfs_fs_info *fs_info, \ |
| struct page *page, u64 start, u32 len) \ |
| { \ |
| struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; \ |
| unsigned int start_bit = subpage_calc_start_bit(fs_info, page, \ |
| name, start, len); \ |
| unsigned long flags; \ |
| bool ret; \ |
| \ |
| spin_lock_irqsave(&subpage->lock, flags); \ |
| ret = bitmap_test_range_all_set(subpage->bitmaps, start_bit, \ |
| len >> fs_info->sectorsize_bits); \ |
| spin_unlock_irqrestore(&subpage->lock, flags); \ |
| return ret; \ |
| } |
| IMPLEMENT_BTRFS_SUBPAGE_TEST_OP(uptodate); |
| IMPLEMENT_BTRFS_SUBPAGE_TEST_OP(error); |
| IMPLEMENT_BTRFS_SUBPAGE_TEST_OP(dirty); |
| IMPLEMENT_BTRFS_SUBPAGE_TEST_OP(writeback); |
| IMPLEMENT_BTRFS_SUBPAGE_TEST_OP(ordered); |
| IMPLEMENT_BTRFS_SUBPAGE_TEST_OP(checked); |
| |
| /* |
| * Note that, in selftests (extent-io-tests), we can have empty fs_info passed |
| * in. We only test sectorsize == PAGE_SIZE cases so far, thus we can fall |
| * back to regular sectorsize branch. |
| */ |
| #define IMPLEMENT_BTRFS_PAGE_OPS(name, set_page_func, clear_page_func, \ |
| test_page_func) \ |
| void btrfs_page_set_##name(const struct btrfs_fs_info *fs_info, \ |
| struct page *page, u64 start, u32 len) \ |
| { \ |
| if (unlikely(!fs_info) || !btrfs_is_subpage(fs_info, page)) { \ |
| set_page_func(page); \ |
| return; \ |
| } \ |
| btrfs_subpage_set_##name(fs_info, page, start, len); \ |
| } \ |
| void btrfs_page_clear_##name(const struct btrfs_fs_info *fs_info, \ |
| struct page *page, u64 start, u32 len) \ |
| { \ |
| if (unlikely(!fs_info) || !btrfs_is_subpage(fs_info, page)) { \ |
| clear_page_func(page); \ |
| return; \ |
| } \ |
| btrfs_subpage_clear_##name(fs_info, page, start, len); \ |
| } \ |
| bool btrfs_page_test_##name(const struct btrfs_fs_info *fs_info, \ |
| struct page *page, u64 start, u32 len) \ |
| { \ |
| if (unlikely(!fs_info) || !btrfs_is_subpage(fs_info, page)) \ |
| return test_page_func(page); \ |
| return btrfs_subpage_test_##name(fs_info, page, start, len); \ |
| } \ |
| void btrfs_page_clamp_set_##name(const struct btrfs_fs_info *fs_info, \ |
| struct page *page, u64 start, u32 len) \ |
| { \ |
| if (unlikely(!fs_info) || !btrfs_is_subpage(fs_info, page)) { \ |
| set_page_func(page); \ |
| return; \ |
| } \ |
| btrfs_subpage_clamp_range(page, &start, &len); \ |
| btrfs_subpage_set_##name(fs_info, page, start, len); \ |
| } \ |
| void btrfs_page_clamp_clear_##name(const struct btrfs_fs_info *fs_info, \ |
| struct page *page, u64 start, u32 len) \ |
| { \ |
| if (unlikely(!fs_info) || !btrfs_is_subpage(fs_info, page)) { \ |
| clear_page_func(page); \ |
| return; \ |
| } \ |
| btrfs_subpage_clamp_range(page, &start, &len); \ |
| btrfs_subpage_clear_##name(fs_info, page, start, len); \ |
| } \ |
| bool btrfs_page_clamp_test_##name(const struct btrfs_fs_info *fs_info, \ |
| struct page *page, u64 start, u32 len) \ |
| { \ |
| if (unlikely(!fs_info) || !btrfs_is_subpage(fs_info, page)) \ |
| return test_page_func(page); \ |
| btrfs_subpage_clamp_range(page, &start, &len); \ |
| return btrfs_subpage_test_##name(fs_info, page, start, len); \ |
| } |
| IMPLEMENT_BTRFS_PAGE_OPS(uptodate, SetPageUptodate, ClearPageUptodate, |
| PageUptodate); |
| IMPLEMENT_BTRFS_PAGE_OPS(error, SetPageError, ClearPageError, PageError); |
| IMPLEMENT_BTRFS_PAGE_OPS(dirty, set_page_dirty, clear_page_dirty_for_io, |
| PageDirty); |
| IMPLEMENT_BTRFS_PAGE_OPS(writeback, set_page_writeback, end_page_writeback, |
| PageWriteback); |
| IMPLEMENT_BTRFS_PAGE_OPS(ordered, SetPageOrdered, ClearPageOrdered, |
| PageOrdered); |
| IMPLEMENT_BTRFS_PAGE_OPS(checked, SetPageChecked, ClearPageChecked, PageChecked); |
| |
| /* |
| * Make sure not only the page dirty bit is cleared, but also subpage dirty bit |
| * is cleared. |
| */ |
| void btrfs_page_assert_not_dirty(const struct btrfs_fs_info *fs_info, |
| struct page *page) |
| { |
| struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; |
| |
| if (!IS_ENABLED(CONFIG_BTRFS_ASSERT)) |
| return; |
| |
| ASSERT(!PageDirty(page)); |
| if (!btrfs_is_subpage(fs_info, page)) |
| return; |
| |
| ASSERT(PagePrivate(page) && page->private); |
| ASSERT(subpage_test_bitmap_all_zero(fs_info, subpage, dirty)); |
| } |
| |
| /* |
| * Handle different locked pages with different page sizes: |
| * |
| * - Page locked by plain lock_page() |
| * It should not have any subpage::writers count. |
| * Can be unlocked by unlock_page(). |
| * This is the most common locked page for __extent_writepage() called |
| * inside extent_write_cache_pages(). |
| * Rarer cases include the @locked_page from extent_write_locked_range(). |
| * |
| * - Page locked by lock_delalloc_pages() |
| * There is only one caller, all pages except @locked_page for |
| * extent_write_locked_range(). |
| * In this case, we have to call subpage helper to handle the case. |
| */ |
| void btrfs_page_unlock_writer(struct btrfs_fs_info *fs_info, struct page *page, |
| u64 start, u32 len) |
| { |
| struct btrfs_subpage *subpage; |
| |
| ASSERT(PageLocked(page)); |
| /* For non-subpage case, we just unlock the page */ |
| if (!btrfs_is_subpage(fs_info, page)) |
| return unlock_page(page); |
| |
| ASSERT(PagePrivate(page) && page->private); |
| subpage = (struct btrfs_subpage *)page->private; |
| |
| /* |
| * For subpage case, there are two types of locked page. With or |
| * without writers number. |
| * |
| * Since we own the page lock, no one else could touch subpage::writers |
| * and we are safe to do several atomic operations without spinlock. |
| */ |
| if (atomic_read(&subpage->writers) == 0) |
| /* No writers, locked by plain lock_page() */ |
| return unlock_page(page); |
| |
| /* Have writers, use proper subpage helper to end it */ |
| btrfs_page_end_writer_lock(fs_info, page, start, len); |
| } |