| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * fs/f2fs/inline.c |
| * Copyright (c) 2013, Intel Corporation |
| * Authors: Huajun Li <huajun.li@intel.com> |
| * Haicheng Li <haicheng.li@intel.com> |
| */ |
| |
| #include <linux/fs.h> |
| #include <linux/f2fs_fs.h> |
| #include <linux/fiemap.h> |
| |
| #include "f2fs.h" |
| #include "node.h" |
| #include <trace/events/f2fs.h> |
| |
| static bool support_inline_data(struct inode *inode) |
| { |
| if (f2fs_is_atomic_file(inode)) |
| return false; |
| if (!S_ISREG(inode->i_mode) && !S_ISLNK(inode->i_mode)) |
| return false; |
| if (i_size_read(inode) > MAX_INLINE_DATA(inode)) |
| return false; |
| return true; |
| } |
| |
| bool f2fs_may_inline_data(struct inode *inode) |
| { |
| if (!support_inline_data(inode)) |
| return false; |
| |
| return !f2fs_post_read_required(inode); |
| } |
| |
| bool f2fs_sanity_check_inline_data(struct inode *inode) |
| { |
| if (!f2fs_has_inline_data(inode)) |
| return false; |
| |
| if (!support_inline_data(inode)) |
| return true; |
| |
| /* |
| * used by sanity_check_inode(), when disk layout fields has not |
| * been synchronized to inmem fields. |
| */ |
| return (S_ISREG(inode->i_mode) && |
| (file_is_encrypt(inode) || file_is_verity(inode) || |
| (F2FS_I(inode)->i_flags & F2FS_COMPR_FL))); |
| } |
| |
| bool f2fs_may_inline_dentry(struct inode *inode) |
| { |
| if (!test_opt(F2FS_I_SB(inode), INLINE_DENTRY)) |
| return false; |
| |
| if (!S_ISDIR(inode->i_mode)) |
| return false; |
| |
| return true; |
| } |
| |
| void f2fs_do_read_inline_data(struct page *page, struct page *ipage) |
| { |
| struct inode *inode = page->mapping->host; |
| void *src_addr, *dst_addr; |
| |
| if (PageUptodate(page)) |
| return; |
| |
| f2fs_bug_on(F2FS_P_SB(page), page->index); |
| |
| zero_user_segment(page, MAX_INLINE_DATA(inode), PAGE_SIZE); |
| |
| /* Copy the whole inline data block */ |
| src_addr = inline_data_addr(inode, ipage); |
| dst_addr = kmap_atomic(page); |
| memcpy(dst_addr, src_addr, MAX_INLINE_DATA(inode)); |
| flush_dcache_page(page); |
| kunmap_atomic(dst_addr); |
| if (!PageUptodate(page)) |
| SetPageUptodate(page); |
| } |
| |
| void f2fs_truncate_inline_inode(struct inode *inode, |
| struct page *ipage, u64 from) |
| { |
| void *addr; |
| |
| if (from >= MAX_INLINE_DATA(inode)) |
| return; |
| |
| addr = inline_data_addr(inode, ipage); |
| |
| f2fs_wait_on_page_writeback(ipage, NODE, true, true); |
| memset(addr + from, 0, MAX_INLINE_DATA(inode) - from); |
| set_page_dirty(ipage); |
| |
| if (from == 0) |
| clear_inode_flag(inode, FI_DATA_EXIST); |
| } |
| |
| int f2fs_read_inline_data(struct inode *inode, struct page *page) |
| { |
| struct page *ipage; |
| |
| ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino); |
| if (IS_ERR(ipage)) { |
| unlock_page(page); |
| return PTR_ERR(ipage); |
| } |
| |
| if (!f2fs_has_inline_data(inode)) { |
| f2fs_put_page(ipage, 1); |
| return -EAGAIN; |
| } |
| |
| if (page->index) |
| zero_user_segment(page, 0, PAGE_SIZE); |
| else |
| f2fs_do_read_inline_data(page, ipage); |
| |
| if (!PageUptodate(page)) |
| SetPageUptodate(page); |
| f2fs_put_page(ipage, 1); |
| unlock_page(page); |
| return 0; |
| } |
| |
| int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page) |
| { |
| struct f2fs_io_info fio = { |
| .sbi = F2FS_I_SB(dn->inode), |
| .ino = dn->inode->i_ino, |
| .type = DATA, |
| .op = REQ_OP_WRITE, |
| .op_flags = REQ_SYNC | REQ_PRIO, |
| .page = page, |
| .encrypted_page = NULL, |
| .io_type = FS_DATA_IO, |
| }; |
| struct node_info ni; |
| int dirty, err; |
| |
| if (!f2fs_exist_data(dn->inode)) |
| goto clear_out; |
| |
| err = f2fs_reserve_block(dn, 0); |
| if (err) |
| return err; |
| |
| err = f2fs_get_node_info(fio.sbi, dn->nid, &ni, false); |
| if (err) { |
| f2fs_truncate_data_blocks_range(dn, 1); |
| f2fs_put_dnode(dn); |
| return err; |
| } |
| |
| fio.version = ni.version; |
| |
| if (unlikely(dn->data_blkaddr != NEW_ADDR)) { |
| f2fs_put_dnode(dn); |
| set_sbi_flag(fio.sbi, SBI_NEED_FSCK); |
| f2fs_warn(fio.sbi, "%s: corrupted inline inode ino=%lx, i_addr[0]:0x%x, run fsck to fix.", |
| __func__, dn->inode->i_ino, dn->data_blkaddr); |
| return -EFSCORRUPTED; |
| } |
| |
| f2fs_bug_on(F2FS_P_SB(page), PageWriteback(page)); |
| |
| f2fs_do_read_inline_data(page, dn->inode_page); |
| set_page_dirty(page); |
| |
| /* clear dirty state */ |
| dirty = clear_page_dirty_for_io(page); |
| |
| /* write data page to try to make data consistent */ |
| set_page_writeback(page); |
| ClearPageError(page); |
| fio.old_blkaddr = dn->data_blkaddr; |
| set_inode_flag(dn->inode, FI_HOT_DATA); |
| f2fs_outplace_write_data(dn, &fio); |
| f2fs_wait_on_page_writeback(page, DATA, true, true); |
| if (dirty) { |
| inode_dec_dirty_pages(dn->inode); |
| f2fs_remove_dirty_inode(dn->inode); |
| } |
| |
| /* this converted inline_data should be recovered. */ |
| set_inode_flag(dn->inode, FI_APPEND_WRITE); |
| |
| /* clear inline data and flag after data writeback */ |
| f2fs_truncate_inline_inode(dn->inode, dn->inode_page, 0); |
| clear_page_private_inline(dn->inode_page); |
| clear_out: |
| stat_dec_inline_inode(dn->inode); |
| clear_inode_flag(dn->inode, FI_INLINE_DATA); |
| f2fs_put_dnode(dn); |
| return 0; |
| } |
| |
| int f2fs_convert_inline_inode(struct inode *inode) |
| { |
| struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| struct dnode_of_data dn; |
| struct page *ipage, *page; |
| int err = 0; |
| |
| if (!f2fs_has_inline_data(inode) || |
| f2fs_hw_is_readonly(sbi) || f2fs_readonly(sbi->sb)) |
| return 0; |
| |
| err = f2fs_dquot_initialize(inode); |
| if (err) |
| return err; |
| |
| page = f2fs_grab_cache_page(inode->i_mapping, 0, false); |
| if (!page) |
| return -ENOMEM; |
| |
| f2fs_lock_op(sbi); |
| |
| ipage = f2fs_get_node_page(sbi, inode->i_ino); |
| if (IS_ERR(ipage)) { |
| err = PTR_ERR(ipage); |
| goto out; |
| } |
| |
| set_new_dnode(&dn, inode, ipage, ipage, 0); |
| |
| if (f2fs_has_inline_data(inode)) |
| err = f2fs_convert_inline_page(&dn, page); |
| |
| f2fs_put_dnode(&dn); |
| out: |
| f2fs_unlock_op(sbi); |
| |
| f2fs_put_page(page, 1); |
| |
| if (!err) |
| f2fs_balance_fs(sbi, dn.node_changed); |
| |
| return err; |
| } |
| |
| int f2fs_write_inline_data(struct inode *inode, struct page *page) |
| { |
| void *src_addr, *dst_addr; |
| struct dnode_of_data dn; |
| int err; |
| |
| set_new_dnode(&dn, inode, NULL, NULL, 0); |
| err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE); |
| if (err) |
| return err; |
| |
| if (!f2fs_has_inline_data(inode)) { |
| f2fs_put_dnode(&dn); |
| return -EAGAIN; |
| } |
| |
| f2fs_bug_on(F2FS_I_SB(inode), page->index); |
| |
| f2fs_wait_on_page_writeback(dn.inode_page, NODE, true, true); |
| src_addr = kmap_atomic(page); |
| dst_addr = inline_data_addr(inode, dn.inode_page); |
| memcpy(dst_addr, src_addr, MAX_INLINE_DATA(inode)); |
| kunmap_atomic(src_addr); |
| set_page_dirty(dn.inode_page); |
| |
| f2fs_clear_page_cache_dirty_tag(page); |
| |
| set_inode_flag(inode, FI_APPEND_WRITE); |
| set_inode_flag(inode, FI_DATA_EXIST); |
| |
| clear_page_private_inline(dn.inode_page); |
| f2fs_put_dnode(&dn); |
| return 0; |
| } |
| |
| int f2fs_recover_inline_data(struct inode *inode, struct page *npage) |
| { |
| struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| struct f2fs_inode *ri = NULL; |
| void *src_addr, *dst_addr; |
| struct page *ipage; |
| |
| /* |
| * The inline_data recovery policy is as follows. |
| * [prev.] [next] of inline_data flag |
| * o o -> recover inline_data |
| * o x -> remove inline_data, and then recover data blocks |
| * x o -> remove data blocks, and then recover inline_data |
| * x x -> recover data blocks |
| */ |
| if (IS_INODE(npage)) |
| ri = F2FS_INODE(npage); |
| |
| if (f2fs_has_inline_data(inode) && |
| ri && (ri->i_inline & F2FS_INLINE_DATA)) { |
| process_inline: |
| ipage = f2fs_get_node_page(sbi, inode->i_ino); |
| if (IS_ERR(ipage)) |
| return PTR_ERR(ipage); |
| |
| f2fs_wait_on_page_writeback(ipage, NODE, true, true); |
| |
| src_addr = inline_data_addr(inode, npage); |
| dst_addr = inline_data_addr(inode, ipage); |
| memcpy(dst_addr, src_addr, MAX_INLINE_DATA(inode)); |
| |
| set_inode_flag(inode, FI_INLINE_DATA); |
| set_inode_flag(inode, FI_DATA_EXIST); |
| |
| set_page_dirty(ipage); |
| f2fs_put_page(ipage, 1); |
| return 1; |
| } |
| |
| if (f2fs_has_inline_data(inode)) { |
| ipage = f2fs_get_node_page(sbi, inode->i_ino); |
| if (IS_ERR(ipage)) |
| return PTR_ERR(ipage); |
| f2fs_truncate_inline_inode(inode, ipage, 0); |
| stat_dec_inline_inode(inode); |
| clear_inode_flag(inode, FI_INLINE_DATA); |
| f2fs_put_page(ipage, 1); |
| } else if (ri && (ri->i_inline & F2FS_INLINE_DATA)) { |
| int ret; |
| |
| ret = f2fs_truncate_blocks(inode, 0, false); |
| if (ret) |
| return ret; |
| stat_inc_inline_inode(inode); |
| goto process_inline; |
| } |
| return 0; |
| } |
| |
| struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir, |
| const struct f2fs_filename *fname, |
| struct page **res_page) |
| { |
| struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb); |
| struct f2fs_dir_entry *de; |
| struct f2fs_dentry_ptr d; |
| struct page *ipage; |
| void *inline_dentry; |
| |
| ipage = f2fs_get_node_page(sbi, dir->i_ino); |
| if (IS_ERR(ipage)) { |
| *res_page = ipage; |
| return NULL; |
| } |
| |
| inline_dentry = inline_data_addr(dir, ipage); |
| |
| make_dentry_ptr_inline(dir, &d, inline_dentry); |
| de = f2fs_find_target_dentry(&d, fname, NULL); |
| unlock_page(ipage); |
| if (IS_ERR(de)) { |
| *res_page = ERR_CAST(de); |
| de = NULL; |
| } |
| if (de) |
| *res_page = ipage; |
| else |
| f2fs_put_page(ipage, 0); |
| |
| return de; |
| } |
| |
| int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent, |
| struct page *ipage) |
| { |
| struct f2fs_dentry_ptr d; |
| void *inline_dentry; |
| |
| inline_dentry = inline_data_addr(inode, ipage); |
| |
| make_dentry_ptr_inline(inode, &d, inline_dentry); |
| f2fs_do_make_empty_dir(inode, parent, &d); |
| |
| set_page_dirty(ipage); |
| |
| /* update i_size to MAX_INLINE_DATA */ |
| if (i_size_read(inode) < MAX_INLINE_DATA(inode)) |
| f2fs_i_size_write(inode, MAX_INLINE_DATA(inode)); |
| return 0; |
| } |
| |
| /* |
| * NOTE: ipage is grabbed by caller, but if any error occurs, we should |
| * release ipage in this function. |
| */ |
| static int f2fs_move_inline_dirents(struct inode *dir, struct page *ipage, |
| void *inline_dentry) |
| { |
| struct page *page; |
| struct dnode_of_data dn; |
| struct f2fs_dentry_block *dentry_blk; |
| struct f2fs_dentry_ptr src, dst; |
| int err; |
| |
| page = f2fs_grab_cache_page(dir->i_mapping, 0, true); |
| if (!page) { |
| f2fs_put_page(ipage, 1); |
| return -ENOMEM; |
| } |
| |
| set_new_dnode(&dn, dir, ipage, NULL, 0); |
| err = f2fs_reserve_block(&dn, 0); |
| if (err) |
| goto out; |
| |
| if (unlikely(dn.data_blkaddr != NEW_ADDR)) { |
| f2fs_put_dnode(&dn); |
| set_sbi_flag(F2FS_P_SB(page), SBI_NEED_FSCK); |
| f2fs_warn(F2FS_P_SB(page), "%s: corrupted inline inode ino=%lx, i_addr[0]:0x%x, run fsck to fix.", |
| __func__, dir->i_ino, dn.data_blkaddr); |
| err = -EFSCORRUPTED; |
| goto out; |
| } |
| |
| f2fs_wait_on_page_writeback(page, DATA, true, true); |
| |
| dentry_blk = page_address(page); |
| |
| make_dentry_ptr_inline(dir, &src, inline_dentry); |
| make_dentry_ptr_block(dir, &dst, dentry_blk); |
| |
| /* copy data from inline dentry block to new dentry block */ |
| memcpy(dst.bitmap, src.bitmap, src.nr_bitmap); |
| memset(dst.bitmap + src.nr_bitmap, 0, dst.nr_bitmap - src.nr_bitmap); |
| /* |
| * we do not need to zero out remainder part of dentry and filename |
| * field, since we have used bitmap for marking the usage status of |
| * them, besides, we can also ignore copying/zeroing reserved space |
| * of dentry block, because them haven't been used so far. |
| */ |
| memcpy(dst.dentry, src.dentry, SIZE_OF_DIR_ENTRY * src.max); |
| memcpy(dst.filename, src.filename, src.max * F2FS_SLOT_LEN); |
| |
| if (!PageUptodate(page)) |
| SetPageUptodate(page); |
| set_page_dirty(page); |
| |
| /* clear inline dir and flag after data writeback */ |
| f2fs_truncate_inline_inode(dir, ipage, 0); |
| |
| stat_dec_inline_dir(dir); |
| clear_inode_flag(dir, FI_INLINE_DENTRY); |
| |
| /* |
| * should retrieve reserved space which was used to keep |
| * inline_dentry's structure for backward compatibility. |
| */ |
| if (!f2fs_sb_has_flexible_inline_xattr(F2FS_I_SB(dir)) && |
| !f2fs_has_inline_xattr(dir)) |
| F2FS_I(dir)->i_inline_xattr_size = 0; |
| |
| f2fs_i_depth_write(dir, 1); |
| if (i_size_read(dir) < PAGE_SIZE) |
| f2fs_i_size_write(dir, PAGE_SIZE); |
| out: |
| f2fs_put_page(page, 1); |
| return err; |
| } |
| |
| static int f2fs_add_inline_entries(struct inode *dir, void *inline_dentry) |
| { |
| struct f2fs_dentry_ptr d; |
| unsigned long bit_pos = 0; |
| int err = 0; |
| |
| make_dentry_ptr_inline(dir, &d, inline_dentry); |
| |
| while (bit_pos < d.max) { |
| struct f2fs_dir_entry *de; |
| struct f2fs_filename fname; |
| nid_t ino; |
| umode_t fake_mode; |
| |
| if (!test_bit_le(bit_pos, d.bitmap)) { |
| bit_pos++; |
| continue; |
| } |
| |
| de = &d.dentry[bit_pos]; |
| |
| if (unlikely(!de->name_len)) { |
| bit_pos++; |
| continue; |
| } |
| |
| /* |
| * We only need the disk_name and hash to move the dentry. |
| * We don't need the original or casefolded filenames. |
| */ |
| memset(&fname, 0, sizeof(fname)); |
| fname.disk_name.name = d.filename[bit_pos]; |
| fname.disk_name.len = le16_to_cpu(de->name_len); |
| fname.hash = de->hash_code; |
| |
| ino = le32_to_cpu(de->ino); |
| fake_mode = f2fs_get_de_type(de) << S_SHIFT; |
| |
| err = f2fs_add_regular_entry(dir, &fname, NULL, ino, fake_mode); |
| if (err) |
| goto punch_dentry_pages; |
| |
| bit_pos += GET_DENTRY_SLOTS(le16_to_cpu(de->name_len)); |
| } |
| return 0; |
| punch_dentry_pages: |
| truncate_inode_pages(&dir->i_data, 0); |
| f2fs_truncate_blocks(dir, 0, false); |
| f2fs_remove_dirty_inode(dir); |
| return err; |
| } |
| |
| static int f2fs_move_rehashed_dirents(struct inode *dir, struct page *ipage, |
| void *inline_dentry) |
| { |
| void *backup_dentry; |
| int err; |
| |
| backup_dentry = f2fs_kmalloc(F2FS_I_SB(dir), |
| MAX_INLINE_DATA(dir), GFP_F2FS_ZERO); |
| if (!backup_dentry) { |
| f2fs_put_page(ipage, 1); |
| return -ENOMEM; |
| } |
| |
| memcpy(backup_dentry, inline_dentry, MAX_INLINE_DATA(dir)); |
| f2fs_truncate_inline_inode(dir, ipage, 0); |
| |
| unlock_page(ipage); |
| |
| err = f2fs_add_inline_entries(dir, backup_dentry); |
| if (err) |
| goto recover; |
| |
| lock_page(ipage); |
| |
| stat_dec_inline_dir(dir); |
| clear_inode_flag(dir, FI_INLINE_DENTRY); |
| |
| /* |
| * should retrieve reserved space which was used to keep |
| * inline_dentry's structure for backward compatibility. |
| */ |
| if (!f2fs_sb_has_flexible_inline_xattr(F2FS_I_SB(dir)) && |
| !f2fs_has_inline_xattr(dir)) |
| F2FS_I(dir)->i_inline_xattr_size = 0; |
| |
| kfree(backup_dentry); |
| return 0; |
| recover: |
| lock_page(ipage); |
| f2fs_wait_on_page_writeback(ipage, NODE, true, true); |
| memcpy(inline_dentry, backup_dentry, MAX_INLINE_DATA(dir)); |
| f2fs_i_depth_write(dir, 0); |
| f2fs_i_size_write(dir, MAX_INLINE_DATA(dir)); |
| set_page_dirty(ipage); |
| f2fs_put_page(ipage, 1); |
| |
| kfree(backup_dentry); |
| return err; |
| } |
| |
| static int do_convert_inline_dir(struct inode *dir, struct page *ipage, |
| void *inline_dentry) |
| { |
| if (!F2FS_I(dir)->i_dir_level) |
| return f2fs_move_inline_dirents(dir, ipage, inline_dentry); |
| else |
| return f2fs_move_rehashed_dirents(dir, ipage, inline_dentry); |
| } |
| |
| int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry) |
| { |
| struct f2fs_sb_info *sbi = F2FS_I_SB(dir); |
| struct page *ipage; |
| struct f2fs_filename fname; |
| void *inline_dentry = NULL; |
| int err = 0; |
| |
| if (!f2fs_has_inline_dentry(dir)) |
| return 0; |
| |
| f2fs_lock_op(sbi); |
| |
| err = f2fs_setup_filename(dir, &dentry->d_name, 0, &fname); |
| if (err) |
| goto out; |
| |
| ipage = f2fs_get_node_page(sbi, dir->i_ino); |
| if (IS_ERR(ipage)) { |
| err = PTR_ERR(ipage); |
| goto out_fname; |
| } |
| |
| if (f2fs_has_enough_room(dir, ipage, &fname)) { |
| f2fs_put_page(ipage, 1); |
| goto out_fname; |
| } |
| |
| inline_dentry = inline_data_addr(dir, ipage); |
| |
| err = do_convert_inline_dir(dir, ipage, inline_dentry); |
| if (!err) |
| f2fs_put_page(ipage, 1); |
| out_fname: |
| f2fs_free_filename(&fname); |
| out: |
| f2fs_unlock_op(sbi); |
| return err; |
| } |
| |
| int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname, |
| struct inode *inode, nid_t ino, umode_t mode) |
| { |
| struct f2fs_sb_info *sbi = F2FS_I_SB(dir); |
| struct page *ipage; |
| unsigned int bit_pos; |
| void *inline_dentry = NULL; |
| struct f2fs_dentry_ptr d; |
| int slots = GET_DENTRY_SLOTS(fname->disk_name.len); |
| struct page *page = NULL; |
| int err = 0; |
| |
| ipage = f2fs_get_node_page(sbi, dir->i_ino); |
| if (IS_ERR(ipage)) |
| return PTR_ERR(ipage); |
| |
| inline_dentry = inline_data_addr(dir, ipage); |
| make_dentry_ptr_inline(dir, &d, inline_dentry); |
| |
| bit_pos = f2fs_room_for_filename(d.bitmap, slots, d.max); |
| if (bit_pos >= d.max) { |
| err = do_convert_inline_dir(dir, ipage, inline_dentry); |
| if (err) |
| return err; |
| err = -EAGAIN; |
| goto out; |
| } |
| |
| if (inode) { |
| f2fs_down_write(&F2FS_I(inode)->i_sem); |
| page = f2fs_init_inode_metadata(inode, dir, fname, ipage); |
| if (IS_ERR(page)) { |
| err = PTR_ERR(page); |
| goto fail; |
| } |
| } |
| |
| f2fs_wait_on_page_writeback(ipage, NODE, true, true); |
| |
| f2fs_update_dentry(ino, mode, &d, &fname->disk_name, fname->hash, |
| bit_pos); |
| |
| set_page_dirty(ipage); |
| |
| /* we don't need to mark_inode_dirty now */ |
| if (inode) { |
| f2fs_i_pino_write(inode, dir->i_ino); |
| |
| /* synchronize inode page's data from inode cache */ |
| if (is_inode_flag_set(inode, FI_NEW_INODE)) |
| f2fs_update_inode(inode, page); |
| |
| f2fs_put_page(page, 1); |
| } |
| |
| f2fs_update_parent_metadata(dir, inode, 0); |
| fail: |
| if (inode) |
| f2fs_up_write(&F2FS_I(inode)->i_sem); |
| out: |
| f2fs_put_page(ipage, 1); |
| return err; |
| } |
| |
| void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page, |
| struct inode *dir, struct inode *inode) |
| { |
| struct f2fs_dentry_ptr d; |
| void *inline_dentry; |
| int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len)); |
| unsigned int bit_pos; |
| int i; |
| |
| lock_page(page); |
| f2fs_wait_on_page_writeback(page, NODE, true, true); |
| |
| inline_dentry = inline_data_addr(dir, page); |
| make_dentry_ptr_inline(dir, &d, inline_dentry); |
| |
| bit_pos = dentry - d.dentry; |
| for (i = 0; i < slots; i++) |
| __clear_bit_le(bit_pos + i, d.bitmap); |
| |
| set_page_dirty(page); |
| f2fs_put_page(page, 1); |
| |
| dir->i_ctime = dir->i_mtime = current_time(dir); |
| f2fs_mark_inode_dirty_sync(dir, false); |
| |
| if (inode) |
| f2fs_drop_nlink(dir, inode); |
| } |
| |
| bool f2fs_empty_inline_dir(struct inode *dir) |
| { |
| struct f2fs_sb_info *sbi = F2FS_I_SB(dir); |
| struct page *ipage; |
| unsigned int bit_pos = 2; |
| void *inline_dentry; |
| struct f2fs_dentry_ptr d; |
| |
| ipage = f2fs_get_node_page(sbi, dir->i_ino); |
| if (IS_ERR(ipage)) |
| return false; |
| |
| inline_dentry = inline_data_addr(dir, ipage); |
| make_dentry_ptr_inline(dir, &d, inline_dentry); |
| |
| bit_pos = find_next_bit_le(d.bitmap, d.max, bit_pos); |
| |
| f2fs_put_page(ipage, 1); |
| |
| if (bit_pos < d.max) |
| return false; |
| |
| return true; |
| } |
| |
| int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx, |
| struct fscrypt_str *fstr) |
| { |
| struct inode *inode = file_inode(file); |
| struct page *ipage = NULL; |
| struct f2fs_dentry_ptr d; |
| void *inline_dentry = NULL; |
| int err; |
| |
| make_dentry_ptr_inline(inode, &d, inline_dentry); |
| |
| if (ctx->pos == d.max) |
| return 0; |
| |
| ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino); |
| if (IS_ERR(ipage)) |
| return PTR_ERR(ipage); |
| |
| /* |
| * f2fs_readdir was protected by inode.i_rwsem, it is safe to access |
| * ipage without page's lock held. |
| */ |
| unlock_page(ipage); |
| |
| inline_dentry = inline_data_addr(inode, ipage); |
| |
| make_dentry_ptr_inline(inode, &d, inline_dentry); |
| |
| err = f2fs_fill_dentries(ctx, &d, 0, fstr); |
| if (!err) |
| ctx->pos = d.max; |
| |
| f2fs_put_page(ipage, 0); |
| return err < 0 ? err : 0; |
| } |
| |
| int f2fs_inline_data_fiemap(struct inode *inode, |
| struct fiemap_extent_info *fieinfo, __u64 start, __u64 len) |
| { |
| __u64 byteaddr, ilen; |
| __u32 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED | |
| FIEMAP_EXTENT_LAST; |
| struct node_info ni; |
| struct page *ipage; |
| int err = 0; |
| |
| ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino); |
| if (IS_ERR(ipage)) |
| return PTR_ERR(ipage); |
| |
| if ((S_ISREG(inode->i_mode) || S_ISLNK(inode->i_mode)) && |
| !f2fs_has_inline_data(inode)) { |
| err = -EAGAIN; |
| goto out; |
| } |
| |
| if (S_ISDIR(inode->i_mode) && !f2fs_has_inline_dentry(inode)) { |
| err = -EAGAIN; |
| goto out; |
| } |
| |
| ilen = min_t(size_t, MAX_INLINE_DATA(inode), i_size_read(inode)); |
| if (start >= ilen) |
| goto out; |
| if (start + len < ilen) |
| ilen = start + len; |
| ilen -= start; |
| |
| err = f2fs_get_node_info(F2FS_I_SB(inode), inode->i_ino, &ni, false); |
| if (err) |
| goto out; |
| |
| byteaddr = (__u64)ni.blk_addr << inode->i_sb->s_blocksize_bits; |
| byteaddr += (char *)inline_data_addr(inode, ipage) - |
| (char *)F2FS_INODE(ipage); |
| err = fiemap_fill_next_extent(fieinfo, start, byteaddr, ilen, flags); |
| trace_f2fs_fiemap(inode, start, byteaddr, ilen, flags, err); |
| out: |
| f2fs_put_page(ipage, 1); |
| return err; |
| } |