| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * LoongArch KGDB support |
| * |
| * Copyright (C) 2023 Loongson Technology Corporation Limited |
| */ |
| |
| #include <linux/hw_breakpoint.h> |
| #include <linux/kdebug.h> |
| #include <linux/kgdb.h> |
| #include <linux/processor.h> |
| #include <linux/ptrace.h> |
| #include <linux/sched.h> |
| #include <linux/smp.h> |
| |
| #include <asm/cacheflush.h> |
| #include <asm/fpu.h> |
| #include <asm/hw_breakpoint.h> |
| #include <asm/inst.h> |
| #include <asm/irq_regs.h> |
| #include <asm/ptrace.h> |
| #include <asm/sigcontext.h> |
| |
| int kgdb_watch_activated; |
| static unsigned int stepped_opcode; |
| static unsigned long stepped_address; |
| |
| struct dbg_reg_def_t dbg_reg_def[DBG_MAX_REG_NUM] = { |
| { "r0", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[0]) }, |
| { "r1", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[1]) }, |
| { "r2", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[2]) }, |
| { "r3", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[3]) }, |
| { "r4", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[4]) }, |
| { "r5", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[5]) }, |
| { "r6", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[6]) }, |
| { "r7", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[7]) }, |
| { "r8", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[8]) }, |
| { "r9", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[9]) }, |
| { "r10", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[10]) }, |
| { "r11", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[11]) }, |
| { "r12", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[12]) }, |
| { "r13", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[13]) }, |
| { "r14", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[14]) }, |
| { "r15", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[15]) }, |
| { "r16", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[16]) }, |
| { "r17", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[17]) }, |
| { "r18", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[18]) }, |
| { "r19", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[19]) }, |
| { "r20", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[20]) }, |
| { "r21", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[21]) }, |
| { "r22", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[22]) }, |
| { "r23", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[23]) }, |
| { "r24", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[24]) }, |
| { "r25", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[25]) }, |
| { "r26", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[26]) }, |
| { "r27", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[27]) }, |
| { "r28", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[28]) }, |
| { "r29", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[29]) }, |
| { "r30", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[30]) }, |
| { "r31", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[31]) }, |
| { "orig_a0", GDB_SIZEOF_REG, offsetof(struct pt_regs, orig_a0) }, |
| { "pc", GDB_SIZEOF_REG, offsetof(struct pt_regs, csr_era) }, |
| { "badv", GDB_SIZEOF_REG, offsetof(struct pt_regs, csr_badvaddr) }, |
| { "f0", GDB_SIZEOF_REG, 0 }, |
| { "f1", GDB_SIZEOF_REG, 1 }, |
| { "f2", GDB_SIZEOF_REG, 2 }, |
| { "f3", GDB_SIZEOF_REG, 3 }, |
| { "f4", GDB_SIZEOF_REG, 4 }, |
| { "f5", GDB_SIZEOF_REG, 5 }, |
| { "f6", GDB_SIZEOF_REG, 6 }, |
| { "f7", GDB_SIZEOF_REG, 7 }, |
| { "f8", GDB_SIZEOF_REG, 8 }, |
| { "f9", GDB_SIZEOF_REG, 9 }, |
| { "f10", GDB_SIZEOF_REG, 10 }, |
| { "f11", GDB_SIZEOF_REG, 11 }, |
| { "f12", GDB_SIZEOF_REG, 12 }, |
| { "f13", GDB_SIZEOF_REG, 13 }, |
| { "f14", GDB_SIZEOF_REG, 14 }, |
| { "f15", GDB_SIZEOF_REG, 15 }, |
| { "f16", GDB_SIZEOF_REG, 16 }, |
| { "f17", GDB_SIZEOF_REG, 17 }, |
| { "f18", GDB_SIZEOF_REG, 18 }, |
| { "f19", GDB_SIZEOF_REG, 19 }, |
| { "f20", GDB_SIZEOF_REG, 20 }, |
| { "f21", GDB_SIZEOF_REG, 21 }, |
| { "f22", GDB_SIZEOF_REG, 22 }, |
| { "f23", GDB_SIZEOF_REG, 23 }, |
| { "f24", GDB_SIZEOF_REG, 24 }, |
| { "f25", GDB_SIZEOF_REG, 25 }, |
| { "f26", GDB_SIZEOF_REG, 26 }, |
| { "f27", GDB_SIZEOF_REG, 27 }, |
| { "f28", GDB_SIZEOF_REG, 28 }, |
| { "f29", GDB_SIZEOF_REG, 29 }, |
| { "f30", GDB_SIZEOF_REG, 30 }, |
| { "f31", GDB_SIZEOF_REG, 31 }, |
| { "fcc0", 1, 0 }, |
| { "fcc1", 1, 1 }, |
| { "fcc2", 1, 2 }, |
| { "fcc3", 1, 3 }, |
| { "fcc4", 1, 4 }, |
| { "fcc5", 1, 5 }, |
| { "fcc6", 1, 6 }, |
| { "fcc7", 1, 7 }, |
| { "fcsr", 4, 0 }, |
| }; |
| |
| char *dbg_get_reg(int regno, void *mem, struct pt_regs *regs) |
| { |
| int reg_offset, reg_size; |
| |
| if (regno < 0 || regno >= DBG_MAX_REG_NUM) |
| return NULL; |
| |
| reg_offset = dbg_reg_def[regno].offset; |
| reg_size = dbg_reg_def[regno].size; |
| |
| if (reg_offset == -1) |
| goto out; |
| |
| /* Handle general-purpose/orig_a0/pc/badv registers */ |
| if (regno <= DBG_PT_REGS_END) { |
| memcpy(mem, (void *)regs + reg_offset, reg_size); |
| goto out; |
| } |
| |
| if (!(regs->csr_euen & CSR_EUEN_FPEN)) |
| goto out; |
| |
| save_fp(current); |
| |
| /* Handle FP registers */ |
| switch (regno) { |
| case DBG_FCSR: /* Process the fcsr */ |
| memcpy(mem, (void *)¤t->thread.fpu.fcsr, reg_size); |
| break; |
| case DBG_FCC_BASE ... DBG_FCC_END: /* Process the fcc */ |
| memcpy(mem, (void *)¤t->thread.fpu.fcc + reg_offset, reg_size); |
| break; |
| case DBG_FPR_BASE ... DBG_FPR_END: /* Process the fpr */ |
| memcpy(mem, (void *)¤t->thread.fpu.fpr[reg_offset], reg_size); |
| break; |
| default: |
| break; |
| } |
| |
| out: |
| return dbg_reg_def[regno].name; |
| } |
| |
| int dbg_set_reg(int regno, void *mem, struct pt_regs *regs) |
| { |
| int reg_offset, reg_size; |
| |
| if (regno < 0 || regno >= DBG_MAX_REG_NUM) |
| return -EINVAL; |
| |
| reg_offset = dbg_reg_def[regno].offset; |
| reg_size = dbg_reg_def[regno].size; |
| |
| if (reg_offset == -1) |
| return 0; |
| |
| /* Handle general-purpose/orig_a0/pc/badv registers */ |
| if (regno <= DBG_PT_REGS_END) { |
| memcpy((void *)regs + reg_offset, mem, reg_size); |
| return 0; |
| } |
| |
| if (!(regs->csr_euen & CSR_EUEN_FPEN)) |
| return 0; |
| |
| /* Handle FP registers */ |
| switch (regno) { |
| case DBG_FCSR: /* Process the fcsr */ |
| memcpy((void *)¤t->thread.fpu.fcsr, mem, reg_size); |
| break; |
| case DBG_FCC_BASE ... DBG_FCC_END: /* Process the fcc */ |
| memcpy((void *)¤t->thread.fpu.fcc + reg_offset, mem, reg_size); |
| break; |
| case DBG_FPR_BASE ... DBG_FPR_END: /* Process the fpr */ |
| memcpy((void *)¤t->thread.fpu.fpr[reg_offset], mem, reg_size); |
| break; |
| default: |
| break; |
| } |
| |
| restore_fp(current); |
| |
| return 0; |
| } |
| |
| /* |
| * Similar to regs_to_gdb_regs() except that process is sleeping and so |
| * we may not be able to get all the info. |
| */ |
| void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p) |
| { |
| /* Initialize to zero */ |
| memset((char *)gdb_regs, 0, NUMREGBYTES); |
| |
| gdb_regs[DBG_LOONGARCH_RA] = p->thread.reg01; |
| gdb_regs[DBG_LOONGARCH_TP] = (long)p; |
| gdb_regs[DBG_LOONGARCH_SP] = p->thread.reg03; |
| |
| /* S0 - S8 */ |
| gdb_regs[DBG_LOONGARCH_S0] = p->thread.reg23; |
| gdb_regs[DBG_LOONGARCH_S1] = p->thread.reg24; |
| gdb_regs[DBG_LOONGARCH_S2] = p->thread.reg25; |
| gdb_regs[DBG_LOONGARCH_S3] = p->thread.reg26; |
| gdb_regs[DBG_LOONGARCH_S4] = p->thread.reg27; |
| gdb_regs[DBG_LOONGARCH_S5] = p->thread.reg28; |
| gdb_regs[DBG_LOONGARCH_S6] = p->thread.reg29; |
| gdb_regs[DBG_LOONGARCH_S7] = p->thread.reg30; |
| gdb_regs[DBG_LOONGARCH_S8] = p->thread.reg31; |
| |
| /* |
| * PC use return address (RA), i.e. the moment after return from __switch_to() |
| */ |
| gdb_regs[DBG_LOONGARCH_PC] = p->thread.reg01; |
| } |
| |
| void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long pc) |
| { |
| regs->csr_era = pc; |
| } |
| |
| void arch_kgdb_breakpoint(void) |
| { |
| __asm__ __volatile__ ( \ |
| ".globl kgdb_breakinst\n\t" \ |
| "nop\n" \ |
| "kgdb_breakinst:\tbreak 2\n\t"); /* BRK_KDB = 2 */ |
| } |
| |
| /* |
| * Calls linux_debug_hook before the kernel dies. If KGDB is enabled, |
| * then try to fall into the debugger |
| */ |
| static int kgdb_loongarch_notify(struct notifier_block *self, unsigned long cmd, void *ptr) |
| { |
| struct die_args *args = (struct die_args *)ptr; |
| struct pt_regs *regs = args->regs; |
| |
| /* Userspace events, ignore. */ |
| if (user_mode(regs)) |
| return NOTIFY_DONE; |
| |
| if (!kgdb_io_module_registered) |
| return NOTIFY_DONE; |
| |
| if (atomic_read(&kgdb_active) != -1) |
| kgdb_nmicallback(smp_processor_id(), regs); |
| |
| if (kgdb_handle_exception(args->trapnr, args->signr, cmd, regs)) |
| return NOTIFY_DONE; |
| |
| if (atomic_read(&kgdb_setting_breakpoint)) |
| if (regs->csr_era == (unsigned long)&kgdb_breakinst) |
| regs->csr_era += LOONGARCH_INSN_SIZE; |
| |
| return NOTIFY_STOP; |
| } |
| |
| bool kgdb_breakpoint_handler(struct pt_regs *regs) |
| { |
| struct die_args args = { |
| .regs = regs, |
| .str = "Break", |
| .err = BRK_KDB, |
| .trapnr = read_csr_excode(), |
| .signr = SIGTRAP, |
| |
| }; |
| |
| return (kgdb_loongarch_notify(NULL, DIE_TRAP, &args) == NOTIFY_STOP) ? true : false; |
| } |
| |
| static struct notifier_block kgdb_notifier = { |
| .notifier_call = kgdb_loongarch_notify, |
| }; |
| |
| static inline void kgdb_arch_update_addr(struct pt_regs *regs, |
| char *remcom_in_buffer) |
| { |
| unsigned long addr; |
| char *ptr; |
| |
| ptr = &remcom_in_buffer[1]; |
| if (kgdb_hex2long(&ptr, &addr)) |
| regs->csr_era = addr; |
| } |
| |
| /* Calculate the new address for after a step */ |
| static int get_step_address(struct pt_regs *regs, unsigned long *next_addr) |
| { |
| char cj_val; |
| unsigned int si, si_l, si_h, rd, rj, cj; |
| unsigned long pc = instruction_pointer(regs); |
| union loongarch_instruction *ip = (union loongarch_instruction *)pc; |
| |
| if (pc & 3) { |
| pr_warn("%s: invalid pc 0x%lx\n", __func__, pc); |
| return -EINVAL; |
| } |
| |
| *next_addr = pc + LOONGARCH_INSN_SIZE; |
| |
| si_h = ip->reg0i26_format.immediate_h; |
| si_l = ip->reg0i26_format.immediate_l; |
| switch (ip->reg0i26_format.opcode) { |
| case b_op: |
| *next_addr = pc + sign_extend64((si_h << 16 | si_l) << 2, 27); |
| return 0; |
| case bl_op: |
| *next_addr = pc + sign_extend64((si_h << 16 | si_l) << 2, 27); |
| regs->regs[1] = pc + LOONGARCH_INSN_SIZE; |
| return 0; |
| } |
| |
| rj = ip->reg1i21_format.rj; |
| cj = (rj & 0x07) + DBG_FCC_BASE; |
| si_l = ip->reg1i21_format.immediate_l; |
| si_h = ip->reg1i21_format.immediate_h; |
| dbg_get_reg(cj, &cj_val, regs); |
| switch (ip->reg1i21_format.opcode) { |
| case beqz_op: |
| if (regs->regs[rj] == 0) |
| *next_addr = pc + sign_extend64((si_h << 16 | si_l) << 2, 22); |
| return 0; |
| case bnez_op: |
| if (regs->regs[rj] != 0) |
| *next_addr = pc + sign_extend64((si_h << 16 | si_l) << 2, 22); |
| return 0; |
| case bceqz_op: /* bceqz_op = bcnez_op */ |
| if (((rj & 0x18) == 0x00) && !cj_val) /* bceqz */ |
| *next_addr = pc + sign_extend64((si_h << 16 | si_l) << 2, 22); |
| if (((rj & 0x18) == 0x08) && cj_val) /* bcnez */ |
| *next_addr = pc + sign_extend64((si_h << 16 | si_l) << 2, 22); |
| return 0; |
| } |
| |
| rj = ip->reg2i16_format.rj; |
| rd = ip->reg2i16_format.rd; |
| si = ip->reg2i16_format.immediate; |
| switch (ip->reg2i16_format.opcode) { |
| case beq_op: |
| if (regs->regs[rj] == regs->regs[rd]) |
| *next_addr = pc + sign_extend64(si << 2, 17); |
| return 0; |
| case bne_op: |
| if (regs->regs[rj] != regs->regs[rd]) |
| *next_addr = pc + sign_extend64(si << 2, 17); |
| return 0; |
| case blt_op: |
| if ((long)regs->regs[rj] < (long)regs->regs[rd]) |
| *next_addr = pc + sign_extend64(si << 2, 17); |
| return 0; |
| case bge_op: |
| if ((long)regs->regs[rj] >= (long)regs->regs[rd]) |
| *next_addr = pc + sign_extend64(si << 2, 17); |
| return 0; |
| case bltu_op: |
| if (regs->regs[rj] < regs->regs[rd]) |
| *next_addr = pc + sign_extend64(si << 2, 17); |
| return 0; |
| case bgeu_op: |
| if (regs->regs[rj] >= regs->regs[rd]) |
| *next_addr = pc + sign_extend64(si << 2, 17); |
| return 0; |
| case jirl_op: |
| regs->regs[rd] = pc + LOONGARCH_INSN_SIZE; |
| *next_addr = regs->regs[rj] + sign_extend64(si << 2, 17); |
| return 0; |
| } |
| |
| return 0; |
| } |
| |
| static int do_single_step(struct pt_regs *regs) |
| { |
| int error = 0; |
| unsigned long addr = 0; /* Determine where the target instruction will send us to */ |
| |
| error = get_step_address(regs, &addr); |
| if (error) |
| return error; |
| |
| /* Store the opcode in the stepped address */ |
| error = get_kernel_nofault(stepped_opcode, (void *)addr); |
| if (error) |
| return error; |
| |
| stepped_address = addr; |
| |
| /* Replace the opcode with the break instruction */ |
| error = copy_to_kernel_nofault((void *)stepped_address, |
| arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE); |
| flush_icache_range(addr, addr + BREAK_INSTR_SIZE); |
| |
| if (error) { |
| stepped_opcode = 0; |
| stepped_address = 0; |
| } else { |
| kgdb_single_step = 1; |
| atomic_set(&kgdb_cpu_doing_single_step, raw_smp_processor_id()); |
| } |
| |
| return error; |
| } |
| |
| /* Undo a single step */ |
| static void undo_single_step(struct pt_regs *regs) |
| { |
| if (stepped_opcode) { |
| copy_to_kernel_nofault((void *)stepped_address, |
| (void *)&stepped_opcode, BREAK_INSTR_SIZE); |
| flush_icache_range(stepped_address, stepped_address + BREAK_INSTR_SIZE); |
| } |
| |
| stepped_opcode = 0; |
| stepped_address = 0; |
| kgdb_single_step = 0; |
| atomic_set(&kgdb_cpu_doing_single_step, -1); |
| } |
| |
| int kgdb_arch_handle_exception(int vector, int signo, int err_code, |
| char *remcom_in_buffer, char *remcom_out_buffer, |
| struct pt_regs *regs) |
| { |
| int ret = 0; |
| |
| undo_single_step(regs); |
| regs->csr_prmd |= CSR_PRMD_PWE; |
| |
| switch (remcom_in_buffer[0]) { |
| case 'D': |
| case 'k': |
| regs->csr_prmd &= ~CSR_PRMD_PWE; |
| fallthrough; |
| case 'c': |
| kgdb_arch_update_addr(regs, remcom_in_buffer); |
| break; |
| case 's': |
| kgdb_arch_update_addr(regs, remcom_in_buffer); |
| ret = do_single_step(regs); |
| break; |
| default: |
| ret = -1; |
| } |
| |
| return ret; |
| } |
| |
| static struct hw_breakpoint { |
| unsigned int enabled; |
| unsigned long addr; |
| int len; |
| int type; |
| struct perf_event * __percpu *pev; |
| } breakinfo[LOONGARCH_MAX_BRP]; |
| |
| static int hw_break_reserve_slot(int breakno) |
| { |
| int cpu, cnt = 0; |
| struct perf_event **pevent; |
| |
| for_each_online_cpu(cpu) { |
| cnt++; |
| pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu); |
| if (dbg_reserve_bp_slot(*pevent)) |
| goto fail; |
| } |
| |
| return 0; |
| |
| fail: |
| for_each_online_cpu(cpu) { |
| cnt--; |
| if (!cnt) |
| break; |
| pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu); |
| dbg_release_bp_slot(*pevent); |
| } |
| |
| return -1; |
| } |
| |
| static int hw_break_release_slot(int breakno) |
| { |
| int cpu; |
| struct perf_event **pevent; |
| |
| if (dbg_is_early) |
| return 0; |
| |
| for_each_online_cpu(cpu) { |
| pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu); |
| if (dbg_release_bp_slot(*pevent)) |
| /* |
| * The debugger is responsible for handing the retry on |
| * remove failure. |
| */ |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static int kgdb_set_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype) |
| { |
| int i; |
| |
| for (i = 0; i < LOONGARCH_MAX_BRP; i++) |
| if (!breakinfo[i].enabled) |
| break; |
| |
| if (i == LOONGARCH_MAX_BRP) |
| return -1; |
| |
| switch (bptype) { |
| case BP_HARDWARE_BREAKPOINT: |
| breakinfo[i].type = HW_BREAKPOINT_X; |
| break; |
| case BP_READ_WATCHPOINT: |
| breakinfo[i].type = HW_BREAKPOINT_R; |
| break; |
| case BP_WRITE_WATCHPOINT: |
| breakinfo[i].type = HW_BREAKPOINT_W; |
| break; |
| case BP_ACCESS_WATCHPOINT: |
| breakinfo[i].type = HW_BREAKPOINT_RW; |
| break; |
| default: |
| return -1; |
| } |
| |
| switch (len) { |
| case 1: |
| breakinfo[i].len = HW_BREAKPOINT_LEN_1; |
| break; |
| case 2: |
| breakinfo[i].len = HW_BREAKPOINT_LEN_2; |
| break; |
| case 4: |
| breakinfo[i].len = HW_BREAKPOINT_LEN_4; |
| break; |
| case 8: |
| breakinfo[i].len = HW_BREAKPOINT_LEN_8; |
| break; |
| default: |
| return -1; |
| } |
| |
| breakinfo[i].addr = addr; |
| if (hw_break_reserve_slot(i)) { |
| breakinfo[i].addr = 0; |
| return -1; |
| } |
| breakinfo[i].enabled = 1; |
| |
| return 0; |
| } |
| |
| static int kgdb_remove_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype) |
| { |
| int i; |
| |
| for (i = 0; i < LOONGARCH_MAX_BRP; i++) |
| if (breakinfo[i].addr == addr && breakinfo[i].enabled) |
| break; |
| |
| if (i == LOONGARCH_MAX_BRP) |
| return -1; |
| |
| if (hw_break_release_slot(i)) { |
| pr_err("Cannot remove hw breakpoint at %lx\n", addr); |
| return -1; |
| } |
| breakinfo[i].enabled = 0; |
| |
| return 0; |
| } |
| |
| static void kgdb_disable_hw_break(struct pt_regs *regs) |
| { |
| int i; |
| int cpu = raw_smp_processor_id(); |
| struct perf_event *bp; |
| |
| for (i = 0; i < LOONGARCH_MAX_BRP; i++) { |
| if (!breakinfo[i].enabled) |
| continue; |
| |
| bp = *per_cpu_ptr(breakinfo[i].pev, cpu); |
| if (bp->attr.disabled == 1) |
| continue; |
| |
| arch_uninstall_hw_breakpoint(bp); |
| bp->attr.disabled = 1; |
| } |
| |
| /* Disable hardware debugging while we are in kgdb */ |
| csr_xchg32(0, CSR_CRMD_WE, LOONGARCH_CSR_CRMD); |
| } |
| |
| static void kgdb_remove_all_hw_break(void) |
| { |
| int i; |
| int cpu = raw_smp_processor_id(); |
| struct perf_event *bp; |
| |
| for (i = 0; i < LOONGARCH_MAX_BRP; i++) { |
| if (!breakinfo[i].enabled) |
| continue; |
| |
| bp = *per_cpu_ptr(breakinfo[i].pev, cpu); |
| if (!bp->attr.disabled) { |
| arch_uninstall_hw_breakpoint(bp); |
| bp->attr.disabled = 1; |
| continue; |
| } |
| |
| if (hw_break_release_slot(i)) |
| pr_err("KGDB: hw bpt remove failed %lx\n", breakinfo[i].addr); |
| breakinfo[i].enabled = 0; |
| } |
| |
| csr_xchg32(0, CSR_CRMD_WE, LOONGARCH_CSR_CRMD); |
| kgdb_watch_activated = 0; |
| } |
| |
| static void kgdb_correct_hw_break(void) |
| { |
| int i, activated = 0; |
| |
| for (i = 0; i < LOONGARCH_MAX_BRP; i++) { |
| struct perf_event *bp; |
| int val; |
| int cpu = raw_smp_processor_id(); |
| |
| if (!breakinfo[i].enabled) |
| continue; |
| |
| bp = *per_cpu_ptr(breakinfo[i].pev, cpu); |
| if (bp->attr.disabled != 1) |
| continue; |
| |
| bp->attr.bp_addr = breakinfo[i].addr; |
| bp->attr.bp_len = breakinfo[i].len; |
| bp->attr.bp_type = breakinfo[i].type; |
| |
| val = hw_breakpoint_arch_parse(bp, &bp->attr, counter_arch_bp(bp)); |
| if (val) |
| return; |
| |
| val = arch_install_hw_breakpoint(bp); |
| if (!val) |
| bp->attr.disabled = 0; |
| activated = 1; |
| } |
| |
| csr_xchg32(activated ? CSR_CRMD_WE : 0, CSR_CRMD_WE, LOONGARCH_CSR_CRMD); |
| kgdb_watch_activated = activated; |
| } |
| |
| const struct kgdb_arch arch_kgdb_ops = { |
| .gdb_bpt_instr = {0x02, 0x00, break_op >> 1, 0x00}, /* BRK_KDB = 2 */ |
| .flags = KGDB_HW_BREAKPOINT, |
| .set_hw_breakpoint = kgdb_set_hw_break, |
| .remove_hw_breakpoint = kgdb_remove_hw_break, |
| .disable_hw_break = kgdb_disable_hw_break, |
| .remove_all_hw_break = kgdb_remove_all_hw_break, |
| .correct_hw_break = kgdb_correct_hw_break, |
| }; |
| |
| int kgdb_arch_init(void) |
| { |
| return register_die_notifier(&kgdb_notifier); |
| } |
| |
| void kgdb_arch_late(void) |
| { |
| int i, cpu; |
| struct perf_event_attr attr; |
| struct perf_event **pevent; |
| |
| hw_breakpoint_init(&attr); |
| |
| attr.bp_addr = (unsigned long)kgdb_arch_init; |
| attr.bp_len = HW_BREAKPOINT_LEN_4; |
| attr.bp_type = HW_BREAKPOINT_W; |
| attr.disabled = 1; |
| |
| for (i = 0; i < LOONGARCH_MAX_BRP; i++) { |
| if (breakinfo[i].pev) |
| continue; |
| |
| breakinfo[i].pev = register_wide_hw_breakpoint(&attr, NULL, NULL); |
| if (IS_ERR((void * __force)breakinfo[i].pev)) { |
| pr_err("kgdb: Could not allocate hw breakpoints.\n"); |
| breakinfo[i].pev = NULL; |
| return; |
| } |
| |
| for_each_online_cpu(cpu) { |
| pevent = per_cpu_ptr(breakinfo[i].pev, cpu); |
| if (pevent[0]->destroy) { |
| pevent[0]->destroy = NULL; |
| release_bp_slot(*pevent); |
| } |
| } |
| } |
| } |
| |
| void kgdb_arch_exit(void) |
| { |
| int i; |
| |
| for (i = 0; i < LOONGARCH_MAX_BRP; i++) { |
| if (breakinfo[i].pev) { |
| unregister_wide_hw_breakpoint(breakinfo[i].pev); |
| breakinfo[i].pev = NULL; |
| } |
| } |
| |
| unregister_die_notifier(&kgdb_notifier); |
| } |