| /* |
| * Driver for Nuvoton Technology Corporation w83667hg/w83677hg-i CIR |
| * |
| * Copyright (C) 2010 Jarod Wilson <jarod@redhat.com> |
| * Copyright (C) 2009 Nuvoton PS Team |
| * |
| * Special thanks to Nuvoton for providing hardware, spec sheets and |
| * sample code upon which portions of this driver are based. Indirect |
| * thanks also to Maxim Levitsky, whose ene_ir driver this driver is |
| * modeled after. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation; either version 2 of the |
| * License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 |
| * USA |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/pnp.h> |
| #include <linux/io.h> |
| #include <linux/interrupt.h> |
| #include <linux/sched.h> |
| #include <linux/slab.h> |
| #include <linux/input.h> |
| #include <media/ir-core.h> |
| #include <linux/pci_ids.h> |
| |
| #include "nuvoton-cir.h" |
| |
| static char *chip_id = "w836x7hg"; |
| |
| /* write val to config reg */ |
| static inline void nvt_cr_write(struct nvt_dev *nvt, u8 val, u8 reg) |
| { |
| outb(reg, nvt->cr_efir); |
| outb(val, nvt->cr_efdr); |
| } |
| |
| /* read val from config reg */ |
| static inline u8 nvt_cr_read(struct nvt_dev *nvt, u8 reg) |
| { |
| outb(reg, nvt->cr_efir); |
| return inb(nvt->cr_efdr); |
| } |
| |
| /* update config register bit without changing other bits */ |
| static inline void nvt_set_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg) |
| { |
| u8 tmp = nvt_cr_read(nvt, reg) | val; |
| nvt_cr_write(nvt, tmp, reg); |
| } |
| |
| /* clear config register bit without changing other bits */ |
| static inline void nvt_clear_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg) |
| { |
| u8 tmp = nvt_cr_read(nvt, reg) & ~val; |
| nvt_cr_write(nvt, tmp, reg); |
| } |
| |
| /* enter extended function mode */ |
| static inline void nvt_efm_enable(struct nvt_dev *nvt) |
| { |
| /* Enabling Extended Function Mode explicitly requires writing 2x */ |
| outb(EFER_EFM_ENABLE, nvt->cr_efir); |
| outb(EFER_EFM_ENABLE, nvt->cr_efir); |
| } |
| |
| /* exit extended function mode */ |
| static inline void nvt_efm_disable(struct nvt_dev *nvt) |
| { |
| outb(EFER_EFM_DISABLE, nvt->cr_efir); |
| } |
| |
| /* |
| * When you want to address a specific logical device, write its logical |
| * device number to CR_LOGICAL_DEV_SEL, then enable/disable by writing |
| * 0x1/0x0 respectively to CR_LOGICAL_DEV_EN. |
| */ |
| static inline void nvt_select_logical_dev(struct nvt_dev *nvt, u8 ldev) |
| { |
| outb(CR_LOGICAL_DEV_SEL, nvt->cr_efir); |
| outb(ldev, nvt->cr_efdr); |
| } |
| |
| /* write val to cir config register */ |
| static inline void nvt_cir_reg_write(struct nvt_dev *nvt, u8 val, u8 offset) |
| { |
| outb(val, nvt->cir_addr + offset); |
| } |
| |
| /* read val from cir config register */ |
| static u8 nvt_cir_reg_read(struct nvt_dev *nvt, u8 offset) |
| { |
| u8 val; |
| |
| val = inb(nvt->cir_addr + offset); |
| |
| return val; |
| } |
| |
| /* write val to cir wake register */ |
| static inline void nvt_cir_wake_reg_write(struct nvt_dev *nvt, |
| u8 val, u8 offset) |
| { |
| outb(val, nvt->cir_wake_addr + offset); |
| } |
| |
| /* read val from cir wake config register */ |
| static u8 nvt_cir_wake_reg_read(struct nvt_dev *nvt, u8 offset) |
| { |
| u8 val; |
| |
| val = inb(nvt->cir_wake_addr + offset); |
| |
| return val; |
| } |
| |
| #define pr_reg(text, ...) \ |
| printk(KERN_INFO KBUILD_MODNAME ": " text, ## __VA_ARGS__) |
| |
| /* dump current cir register contents */ |
| static void cir_dump_regs(struct nvt_dev *nvt) |
| { |
| nvt_efm_enable(nvt); |
| nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR); |
| |
| pr_reg("%s: Dump CIR logical device registers:\n", NVT_DRIVER_NAME); |
| pr_reg(" * CR CIR ACTIVE : 0x%x\n", |
| nvt_cr_read(nvt, CR_LOGICAL_DEV_EN)); |
| pr_reg(" * CR CIR BASE ADDR: 0x%x\n", |
| (nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) | |
| nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO)); |
| pr_reg(" * CR CIR IRQ NUM: 0x%x\n", |
| nvt_cr_read(nvt, CR_CIR_IRQ_RSRC)); |
| |
| nvt_efm_disable(nvt); |
| |
| pr_reg("%s: Dump CIR registers:\n", NVT_DRIVER_NAME); |
| pr_reg(" * IRCON: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRCON)); |
| pr_reg(" * IRSTS: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRSTS)); |
| pr_reg(" * IREN: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IREN)); |
| pr_reg(" * RXFCONT: 0x%x\n", nvt_cir_reg_read(nvt, CIR_RXFCONT)); |
| pr_reg(" * CP: 0x%x\n", nvt_cir_reg_read(nvt, CIR_CP)); |
| pr_reg(" * CC: 0x%x\n", nvt_cir_reg_read(nvt, CIR_CC)); |
| pr_reg(" * SLCH: 0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCH)); |
| pr_reg(" * SLCL: 0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCL)); |
| pr_reg(" * FIFOCON: 0x%x\n", nvt_cir_reg_read(nvt, CIR_FIFOCON)); |
| pr_reg(" * IRFIFOSTS: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFIFOSTS)); |
| pr_reg(" * SRXFIFO: 0x%x\n", nvt_cir_reg_read(nvt, CIR_SRXFIFO)); |
| pr_reg(" * TXFCONT: 0x%x\n", nvt_cir_reg_read(nvt, CIR_TXFCONT)); |
| pr_reg(" * STXFIFO: 0x%x\n", nvt_cir_reg_read(nvt, CIR_STXFIFO)); |
| pr_reg(" * FCCH: 0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCH)); |
| pr_reg(" * FCCL: 0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCL)); |
| pr_reg(" * IRFSM: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFSM)); |
| } |
| |
| /* dump current cir wake register contents */ |
| static void cir_wake_dump_regs(struct nvt_dev *nvt) |
| { |
| u8 i, fifo_len; |
| |
| nvt_efm_enable(nvt); |
| nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE); |
| |
| pr_reg("%s: Dump CIR WAKE logical device registers:\n", |
| NVT_DRIVER_NAME); |
| pr_reg(" * CR CIR WAKE ACTIVE : 0x%x\n", |
| nvt_cr_read(nvt, CR_LOGICAL_DEV_EN)); |
| pr_reg(" * CR CIR WAKE BASE ADDR: 0x%x\n", |
| (nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) | |
| nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO)); |
| pr_reg(" * CR CIR WAKE IRQ NUM: 0x%x\n", |
| nvt_cr_read(nvt, CR_CIR_IRQ_RSRC)); |
| |
| nvt_efm_disable(nvt); |
| |
| pr_reg("%s: Dump CIR WAKE registers\n", NVT_DRIVER_NAME); |
| pr_reg(" * IRCON: 0x%x\n", |
| nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON)); |
| pr_reg(" * IRSTS: 0x%x\n", |
| nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS)); |
| pr_reg(" * IREN: 0x%x\n", |
| nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN)); |
| pr_reg(" * FIFO CMP DEEP: 0x%x\n", |
| nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_DEEP)); |
| pr_reg(" * FIFO CMP TOL: 0x%x\n", |
| nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_TOL)); |
| pr_reg(" * FIFO COUNT: 0x%x\n", |
| nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT)); |
| pr_reg(" * SLCH: 0x%x\n", |
| nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCH)); |
| pr_reg(" * SLCL: 0x%x\n", |
| nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCL)); |
| pr_reg(" * FIFOCON: 0x%x\n", |
| nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON)); |
| pr_reg(" * SRXFSTS: 0x%x\n", |
| nvt_cir_wake_reg_read(nvt, CIR_WAKE_SRXFSTS)); |
| pr_reg(" * SAMPLE RX FIFO: 0x%x\n", |
| nvt_cir_wake_reg_read(nvt, CIR_WAKE_SAMPLE_RX_FIFO)); |
| pr_reg(" * WR FIFO DATA: 0x%x\n", |
| nvt_cir_wake_reg_read(nvt, CIR_WAKE_WR_FIFO_DATA)); |
| pr_reg(" * RD FIFO ONLY: 0x%x\n", |
| nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY)); |
| pr_reg(" * RD FIFO ONLY IDX: 0x%x\n", |
| nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX)); |
| pr_reg(" * FIFO IGNORE: 0x%x\n", |
| nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_IGNORE)); |
| pr_reg(" * IRFSM: 0x%x\n", |
| nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRFSM)); |
| |
| fifo_len = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT); |
| pr_reg("%s: Dump CIR WAKE FIFO (len %d)\n", NVT_DRIVER_NAME, fifo_len); |
| pr_reg("* Contents = "); |
| for (i = 0; i < fifo_len; i++) |
| printk(KERN_CONT "%02x ", |
| nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY)); |
| printk(KERN_CONT "\n"); |
| } |
| |
| /* detect hardware features */ |
| static int nvt_hw_detect(struct nvt_dev *nvt) |
| { |
| unsigned long flags; |
| u8 chip_major, chip_minor; |
| int ret = 0; |
| |
| nvt_efm_enable(nvt); |
| |
| /* Check if we're wired for the alternate EFER setup */ |
| chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI); |
| if (chip_major == 0xff) { |
| nvt->cr_efir = CR_EFIR2; |
| nvt->cr_efdr = CR_EFDR2; |
| nvt_efm_enable(nvt); |
| chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI); |
| } |
| |
| chip_minor = nvt_cr_read(nvt, CR_CHIP_ID_LO); |
| nvt_dbg("%s: chip id: 0x%02x 0x%02x", chip_id, chip_major, chip_minor); |
| |
| if (chip_major != CHIP_ID_HIGH && |
| (chip_minor != CHIP_ID_LOW || chip_minor != CHIP_ID_LOW2)) |
| ret = -ENODEV; |
| |
| nvt_efm_disable(nvt); |
| |
| spin_lock_irqsave(&nvt->nvt_lock, flags); |
| nvt->chip_major = chip_major; |
| nvt->chip_minor = chip_minor; |
| spin_unlock_irqrestore(&nvt->nvt_lock, flags); |
| |
| return ret; |
| } |
| |
| static void nvt_cir_ldev_init(struct nvt_dev *nvt) |
| { |
| u8 val; |
| |
| /* output pin selection (Pin95=CIRRX, Pin96=CIRTX1, WB enabled */ |
| val = nvt_cr_read(nvt, CR_OUTPUT_PIN_SEL); |
| val &= OUTPUT_PIN_SEL_MASK; |
| val |= (OUTPUT_ENABLE_CIR | OUTPUT_ENABLE_CIRWB); |
| nvt_cr_write(nvt, val, CR_OUTPUT_PIN_SEL); |
| |
| /* Select CIR logical device and enable */ |
| nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR); |
| nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN); |
| |
| nvt_cr_write(nvt, nvt->cir_addr >> 8, CR_CIR_BASE_ADDR_HI); |
| nvt_cr_write(nvt, nvt->cir_addr & 0xff, CR_CIR_BASE_ADDR_LO); |
| |
| nvt_cr_write(nvt, nvt->cir_irq, CR_CIR_IRQ_RSRC); |
| |
| nvt_dbg("CIR initialized, base io port address: 0x%lx, irq: %d", |
| nvt->cir_addr, nvt->cir_irq); |
| } |
| |
| static void nvt_cir_wake_ldev_init(struct nvt_dev *nvt) |
| { |
| /* Select ACPI logical device, enable it and CIR Wake */ |
| nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI); |
| nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN); |
| |
| /* Enable CIR Wake via PSOUT# (Pin60) */ |
| nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE); |
| |
| /* enable cir interrupt of mouse/keyboard IRQ event */ |
| nvt_set_reg_bit(nvt, CIR_INTR_MOUSE_IRQ_BIT, CR_ACPI_IRQ_EVENTS); |
| |
| /* enable pme interrupt of cir wakeup event */ |
| nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2); |
| |
| /* Select CIR Wake logical device and enable */ |
| nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE); |
| nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN); |
| |
| nvt_cr_write(nvt, nvt->cir_wake_addr >> 8, CR_CIR_BASE_ADDR_HI); |
| nvt_cr_write(nvt, nvt->cir_wake_addr & 0xff, CR_CIR_BASE_ADDR_LO); |
| |
| nvt_cr_write(nvt, nvt->cir_wake_irq, CR_CIR_IRQ_RSRC); |
| |
| nvt_dbg("CIR Wake initialized, base io port address: 0x%lx, irq: %d", |
| nvt->cir_wake_addr, nvt->cir_wake_irq); |
| } |
| |
| /* clear out the hardware's cir rx fifo */ |
| static void nvt_clear_cir_fifo(struct nvt_dev *nvt) |
| { |
| u8 val; |
| |
| val = nvt_cir_reg_read(nvt, CIR_FIFOCON); |
| nvt_cir_reg_write(nvt, val | CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON); |
| } |
| |
| /* clear out the hardware's cir wake rx fifo */ |
| static void nvt_clear_cir_wake_fifo(struct nvt_dev *nvt) |
| { |
| u8 val; |
| |
| val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON); |
| nvt_cir_wake_reg_write(nvt, val | CIR_WAKE_FIFOCON_RXFIFOCLR, |
| CIR_WAKE_FIFOCON); |
| } |
| |
| /* clear out the hardware's cir tx fifo */ |
| static void nvt_clear_tx_fifo(struct nvt_dev *nvt) |
| { |
| u8 val; |
| |
| val = nvt_cir_reg_read(nvt, CIR_FIFOCON); |
| nvt_cir_reg_write(nvt, val | CIR_FIFOCON_TXFIFOCLR, CIR_FIFOCON); |
| } |
| |
| /* enable RX Trigger Level Reach and Packet End interrupts */ |
| static void nvt_set_cir_iren(struct nvt_dev *nvt) |
| { |
| u8 iren; |
| |
| iren = CIR_IREN_RTR | CIR_IREN_PE; |
| nvt_cir_reg_write(nvt, iren, CIR_IREN); |
| } |
| |
| static void nvt_cir_regs_init(struct nvt_dev *nvt) |
| { |
| /* set sample limit count (PE interrupt raised when reached) */ |
| nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_SLCH); |
| nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_SLCL); |
| |
| /* set fifo irq trigger levels */ |
| nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV | |
| CIR_FIFOCON_RX_TRIGGER_LEV, CIR_FIFOCON); |
| |
| /* |
| * Enable TX and RX, specify carrier on = low, off = high, and set |
| * sample period (currently 50us) |
| */ |
| nvt_cir_reg_write(nvt, |
| CIR_IRCON_TXEN | CIR_IRCON_RXEN | |
| CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL, |
| CIR_IRCON); |
| |
| /* clear hardware rx and tx fifos */ |
| nvt_clear_cir_fifo(nvt); |
| nvt_clear_tx_fifo(nvt); |
| |
| /* clear any and all stray interrupts */ |
| nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS); |
| |
| /* and finally, enable interrupts */ |
| nvt_set_cir_iren(nvt); |
| } |
| |
| static void nvt_cir_wake_regs_init(struct nvt_dev *nvt) |
| { |
| /* set number of bytes needed for wake key comparison (default 67) */ |
| nvt_cir_wake_reg_write(nvt, CIR_WAKE_FIFO_LEN, CIR_WAKE_FIFO_CMP_DEEP); |
| |
| /* set tolerance/variance allowed per byte during wake compare */ |
| nvt_cir_wake_reg_write(nvt, CIR_WAKE_CMP_TOLERANCE, |
| CIR_WAKE_FIFO_CMP_TOL); |
| |
| /* set sample limit count (PE interrupt raised when reached) */ |
| nvt_cir_wake_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_WAKE_SLCH); |
| nvt_cir_wake_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_WAKE_SLCL); |
| |
| /* set cir wake fifo rx trigger level (currently 67) */ |
| nvt_cir_wake_reg_write(nvt, CIR_WAKE_FIFOCON_RX_TRIGGER_LEV, |
| CIR_WAKE_FIFOCON); |
| |
| /* |
| * Enable TX and RX, specific carrier on = low, off = high, and set |
| * sample period (currently 50us) |
| */ |
| nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN | |
| CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV | |
| CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL, |
| CIR_WAKE_IRCON); |
| |
| /* clear cir wake rx fifo */ |
| nvt_clear_cir_wake_fifo(nvt); |
| |
| /* clear any and all stray interrupts */ |
| nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS); |
| } |
| |
| static void nvt_enable_wake(struct nvt_dev *nvt) |
| { |
| nvt_efm_enable(nvt); |
| |
| nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI); |
| nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE); |
| nvt_set_reg_bit(nvt, CIR_INTR_MOUSE_IRQ_BIT, CR_ACPI_IRQ_EVENTS); |
| nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2); |
| |
| nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE); |
| nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN); |
| |
| nvt_efm_disable(nvt); |
| |
| nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN | |
| CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV | |
| CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL, |
| CIR_WAKE_IRCON); |
| nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS); |
| nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN); |
| } |
| |
| /* rx carrier detect only works in learning mode, must be called w/nvt_lock */ |
| static u32 nvt_rx_carrier_detect(struct nvt_dev *nvt) |
| { |
| u32 count, carrier, duration = 0; |
| int i; |
| |
| count = nvt_cir_reg_read(nvt, CIR_FCCL) | |
| nvt_cir_reg_read(nvt, CIR_FCCH) << 8; |
| |
| for (i = 0; i < nvt->pkts; i++) { |
| if (nvt->buf[i] & BUF_PULSE_BIT) |
| duration += nvt->buf[i] & BUF_LEN_MASK; |
| } |
| |
| duration *= SAMPLE_PERIOD; |
| |
| if (!count || !duration) { |
| nvt_pr(KERN_NOTICE, "Unable to determine carrier! (c:%u, d:%u)", |
| count, duration); |
| return 0; |
| } |
| |
| carrier = (count * 1000000) / duration; |
| |
| if ((carrier > MAX_CARRIER) || (carrier < MIN_CARRIER)) |
| nvt_dbg("WTF? Carrier frequency out of range!"); |
| |
| nvt_dbg("Carrier frequency: %u (count %u, duration %u)", |
| carrier, count, duration); |
| |
| return carrier; |
| } |
| |
| /* |
| * set carrier frequency |
| * |
| * set carrier on 2 registers: CP & CC |
| * always set CP as 0x81 |
| * set CC by SPEC, CC = 3MHz/carrier - 1 |
| */ |
| static int nvt_set_tx_carrier(void *data, u32 carrier) |
| { |
| struct nvt_dev *nvt = data; |
| u16 val; |
| |
| nvt_cir_reg_write(nvt, 1, CIR_CP); |
| val = 3000000 / (carrier) - 1; |
| nvt_cir_reg_write(nvt, val & 0xff, CIR_CC); |
| |
| nvt_dbg("cp: 0x%x cc: 0x%x\n", |
| nvt_cir_reg_read(nvt, CIR_CP), nvt_cir_reg_read(nvt, CIR_CC)); |
| |
| return 0; |
| } |
| |
| /* |
| * nvt_tx_ir |
| * |
| * 1) clean TX fifo first (handled by AP) |
| * 2) copy data from user space |
| * 3) disable RX interrupts, enable TX interrupts: TTR & TFU |
| * 4) send 9 packets to TX FIFO to open TTR |
| * in interrupt_handler: |
| * 5) send all data out |
| * go back to write(): |
| * 6) disable TX interrupts, re-enable RX interupts |
| * |
| * The key problem of this function is user space data may larger than |
| * driver's data buf length. So nvt_tx_ir() will only copy TX_BUF_LEN data to |
| * buf, and keep current copied data buf num in cur_buf_num. But driver's buf |
| * number may larger than TXFCONT (0xff). So in interrupt_handler, it has to |
| * set TXFCONT as 0xff, until buf_count less than 0xff. |
| */ |
| static int nvt_tx_ir(void *priv, int *txbuf, u32 n) |
| { |
| struct nvt_dev *nvt = priv; |
| unsigned long flags; |
| size_t cur_count; |
| unsigned int i; |
| u8 iren; |
| int ret; |
| |
| spin_lock_irqsave(&nvt->tx.lock, flags); |
| |
| if (n >= TX_BUF_LEN) { |
| nvt->tx.buf_count = cur_count = TX_BUF_LEN; |
| ret = TX_BUF_LEN; |
| } else { |
| nvt->tx.buf_count = cur_count = n; |
| ret = n; |
| } |
| |
| memcpy(nvt->tx.buf, txbuf, nvt->tx.buf_count); |
| |
| nvt->tx.cur_buf_num = 0; |
| |
| /* save currently enabled interrupts */ |
| iren = nvt_cir_reg_read(nvt, CIR_IREN); |
| |
| /* now disable all interrupts, save TFU & TTR */ |
| nvt_cir_reg_write(nvt, CIR_IREN_TFU | CIR_IREN_TTR, CIR_IREN); |
| |
| nvt->tx.tx_state = ST_TX_REPLY; |
| |
| nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV_8 | |
| CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON); |
| |
| /* trigger TTR interrupt by writing out ones, (yes, it's ugly) */ |
| for (i = 0; i < 9; i++) |
| nvt_cir_reg_write(nvt, 0x01, CIR_STXFIFO); |
| |
| spin_unlock_irqrestore(&nvt->tx.lock, flags); |
| |
| wait_event(nvt->tx.queue, nvt->tx.tx_state == ST_TX_REQUEST); |
| |
| spin_lock_irqsave(&nvt->tx.lock, flags); |
| nvt->tx.tx_state = ST_TX_NONE; |
| spin_unlock_irqrestore(&nvt->tx.lock, flags); |
| |
| /* restore enabled interrupts to prior state */ |
| nvt_cir_reg_write(nvt, iren, CIR_IREN); |
| |
| return ret; |
| } |
| |
| /* dump contents of the last rx buffer we got from the hw rx fifo */ |
| static void nvt_dump_rx_buf(struct nvt_dev *nvt) |
| { |
| int i; |
| |
| printk(KERN_DEBUG "%s (len %d): ", __func__, nvt->pkts); |
| for (i = 0; (i < nvt->pkts) && (i < RX_BUF_LEN); i++) |
| printk(KERN_CONT "0x%02x ", nvt->buf[i]); |
| printk(KERN_CONT "\n"); |
| } |
| |
| /* |
| * Process raw data in rx driver buffer, store it in raw IR event kfifo, |
| * trigger decode when appropriate. |
| * |
| * We get IR data samples one byte at a time. If the msb is set, its a pulse, |
| * otherwise its a space. The lower 7 bits are the count of SAMPLE_PERIOD |
| * (default 50us) intervals for that pulse/space. A discrete signal is |
| * followed by a series of 0x7f packets, then either 0x7<something> or 0x80 |
| * to signal more IR coming (repeats) or end of IR, respectively. We store |
| * sample data in the raw event kfifo until we see 0x7<something> (except f) |
| * or 0x80, at which time, we trigger a decode operation. |
| */ |
| static void nvt_process_rx_ir_data(struct nvt_dev *nvt) |
| { |
| struct ir_raw_event rawir = { .pulse = false, .duration = 0 }; |
| unsigned int count; |
| u32 carrier; |
| u8 sample; |
| int i; |
| |
| nvt_dbg_verbose("%s firing", __func__); |
| |
| if (debug) |
| nvt_dump_rx_buf(nvt); |
| |
| if (nvt->carrier_detect_enabled) |
| carrier = nvt_rx_carrier_detect(nvt); |
| |
| count = nvt->pkts; |
| nvt_dbg_verbose("Processing buffer of len %d", count); |
| |
| for (i = 0; i < count; i++) { |
| nvt->pkts--; |
| sample = nvt->buf[i]; |
| |
| rawir.pulse = ((sample & BUF_PULSE_BIT) != 0); |
| rawir.duration = (sample & BUF_LEN_MASK) |
| * SAMPLE_PERIOD * 1000; |
| |
| if ((sample & BUF_LEN_MASK) == BUF_LEN_MASK) { |
| if (nvt->rawir.pulse == rawir.pulse) |
| nvt->rawir.duration += rawir.duration; |
| else { |
| nvt->rawir.duration = rawir.duration; |
| nvt->rawir.pulse = rawir.pulse; |
| } |
| continue; |
| } |
| |
| rawir.duration += nvt->rawir.duration; |
| nvt->rawir.duration = 0; |
| nvt->rawir.pulse = rawir.pulse; |
| |
| if (sample == BUF_PULSE_BIT) |
| rawir.pulse = false; |
| |
| if (rawir.duration) { |
| nvt_dbg("Storing %s with duration %d", |
| rawir.pulse ? "pulse" : "space", |
| rawir.duration); |
| |
| ir_raw_event_store(nvt->rdev, &rawir); |
| } |
| |
| /* |
| * BUF_PULSE_BIT indicates end of IR data, BUF_REPEAT_BYTE |
| * indicates end of IR signal, but new data incoming. In both |
| * cases, it means we're ready to call ir_raw_event_handle |
| */ |
| if (sample == BUF_PULSE_BIT || ((sample != BUF_LEN_MASK) && |
| (sample & BUF_REPEAT_MASK) == BUF_REPEAT_BYTE)) |
| ir_raw_event_handle(nvt->rdev); |
| } |
| |
| if (nvt->pkts) { |
| nvt_dbg("Odd, pkts should be 0 now... (its %u)", nvt->pkts); |
| nvt->pkts = 0; |
| } |
| |
| nvt_dbg_verbose("%s done", __func__); |
| } |
| |
| static void nvt_handle_rx_fifo_overrun(struct nvt_dev *nvt) |
| { |
| nvt_pr(KERN_WARNING, "RX FIFO overrun detected, flushing data!"); |
| |
| nvt->pkts = 0; |
| nvt_clear_cir_fifo(nvt); |
| ir_raw_event_reset(nvt->rdev); |
| } |
| |
| /* copy data from hardware rx fifo into driver buffer */ |
| static void nvt_get_rx_ir_data(struct nvt_dev *nvt) |
| { |
| unsigned long flags; |
| u8 fifocount, val; |
| unsigned int b_idx; |
| bool overrun = false; |
| int i; |
| |
| /* Get count of how many bytes to read from RX FIFO */ |
| fifocount = nvt_cir_reg_read(nvt, CIR_RXFCONT); |
| /* if we get 0xff, probably means the logical dev is disabled */ |
| if (fifocount == 0xff) |
| return; |
| /* watch out for a fifo overrun condition */ |
| else if (fifocount > RX_BUF_LEN) { |
| overrun = true; |
| fifocount = RX_BUF_LEN; |
| } |
| |
| nvt_dbg("attempting to fetch %u bytes from hw rx fifo", fifocount); |
| |
| spin_lock_irqsave(&nvt->nvt_lock, flags); |
| |
| b_idx = nvt->pkts; |
| |
| /* This should never happen, but lets check anyway... */ |
| if (b_idx + fifocount > RX_BUF_LEN) { |
| nvt_process_rx_ir_data(nvt); |
| b_idx = 0; |
| } |
| |
| /* Read fifocount bytes from CIR Sample RX FIFO register */ |
| for (i = 0; i < fifocount; i++) { |
| val = nvt_cir_reg_read(nvt, CIR_SRXFIFO); |
| nvt->buf[b_idx + i] = val; |
| } |
| |
| nvt->pkts += fifocount; |
| nvt_dbg("%s: pkts now %d", __func__, nvt->pkts); |
| |
| nvt_process_rx_ir_data(nvt); |
| |
| if (overrun) |
| nvt_handle_rx_fifo_overrun(nvt); |
| |
| spin_unlock_irqrestore(&nvt->nvt_lock, flags); |
| } |
| |
| static void nvt_cir_log_irqs(u8 status, u8 iren) |
| { |
| nvt_pr(KERN_INFO, "IRQ 0x%02x (IREN 0x%02x) :%s%s%s%s%s%s%s%s%s", |
| status, iren, |
| status & CIR_IRSTS_RDR ? " RDR" : "", |
| status & CIR_IRSTS_RTR ? " RTR" : "", |
| status & CIR_IRSTS_PE ? " PE" : "", |
| status & CIR_IRSTS_RFO ? " RFO" : "", |
| status & CIR_IRSTS_TE ? " TE" : "", |
| status & CIR_IRSTS_TTR ? " TTR" : "", |
| status & CIR_IRSTS_TFU ? " TFU" : "", |
| status & CIR_IRSTS_GH ? " GH" : "", |
| status & ~(CIR_IRSTS_RDR | CIR_IRSTS_RTR | CIR_IRSTS_PE | |
| CIR_IRSTS_RFO | CIR_IRSTS_TE | CIR_IRSTS_TTR | |
| CIR_IRSTS_TFU | CIR_IRSTS_GH) ? " ?" : ""); |
| } |
| |
| static bool nvt_cir_tx_inactive(struct nvt_dev *nvt) |
| { |
| unsigned long flags; |
| bool tx_inactive; |
| u8 tx_state; |
| |
| spin_lock_irqsave(&nvt->tx.lock, flags); |
| tx_state = nvt->tx.tx_state; |
| spin_unlock_irqrestore(&nvt->tx.lock, flags); |
| |
| tx_inactive = (tx_state == ST_TX_NONE); |
| |
| return tx_inactive; |
| } |
| |
| /* interrupt service routine for incoming and outgoing CIR data */ |
| static irqreturn_t nvt_cir_isr(int irq, void *data) |
| { |
| struct nvt_dev *nvt = data; |
| u8 status, iren, cur_state; |
| unsigned long flags; |
| |
| nvt_dbg_verbose("%s firing", __func__); |
| |
| nvt_efm_enable(nvt); |
| nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR); |
| nvt_efm_disable(nvt); |
| |
| /* |
| * Get IR Status register contents. Write 1 to ack/clear |
| * |
| * bit: reg name - description |
| * 7: CIR_IRSTS_RDR - RX Data Ready |
| * 6: CIR_IRSTS_RTR - RX FIFO Trigger Level Reach |
| * 5: CIR_IRSTS_PE - Packet End |
| * 4: CIR_IRSTS_RFO - RX FIFO Overrun (RDR will also be set) |
| * 3: CIR_IRSTS_TE - TX FIFO Empty |
| * 2: CIR_IRSTS_TTR - TX FIFO Trigger Level Reach |
| * 1: CIR_IRSTS_TFU - TX FIFO Underrun |
| * 0: CIR_IRSTS_GH - Min Length Detected |
| */ |
| status = nvt_cir_reg_read(nvt, CIR_IRSTS); |
| if (!status) { |
| nvt_dbg_verbose("%s exiting, IRSTS 0x0", __func__); |
| nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS); |
| return IRQ_RETVAL(IRQ_NONE); |
| } |
| |
| /* ack/clear all irq flags we've got */ |
| nvt_cir_reg_write(nvt, status, CIR_IRSTS); |
| nvt_cir_reg_write(nvt, 0, CIR_IRSTS); |
| |
| /* Interrupt may be shared with CIR Wake, bail if CIR not enabled */ |
| iren = nvt_cir_reg_read(nvt, CIR_IREN); |
| if (!iren) { |
| nvt_dbg_verbose("%s exiting, CIR not enabled", __func__); |
| return IRQ_RETVAL(IRQ_NONE); |
| } |
| |
| if (debug) |
| nvt_cir_log_irqs(status, iren); |
| |
| if (status & CIR_IRSTS_RTR) { |
| /* FIXME: add code for study/learn mode */ |
| /* We only do rx if not tx'ing */ |
| if (nvt_cir_tx_inactive(nvt)) |
| nvt_get_rx_ir_data(nvt); |
| } |
| |
| if (status & CIR_IRSTS_PE) { |
| if (nvt_cir_tx_inactive(nvt)) |
| nvt_get_rx_ir_data(nvt); |
| |
| spin_lock_irqsave(&nvt->nvt_lock, flags); |
| |
| cur_state = nvt->study_state; |
| |
| spin_unlock_irqrestore(&nvt->nvt_lock, flags); |
| |
| if (cur_state == ST_STUDY_NONE) |
| nvt_clear_cir_fifo(nvt); |
| } |
| |
| if (status & CIR_IRSTS_TE) |
| nvt_clear_tx_fifo(nvt); |
| |
| if (status & CIR_IRSTS_TTR) { |
| unsigned int pos, count; |
| u8 tmp; |
| |
| spin_lock_irqsave(&nvt->tx.lock, flags); |
| |
| pos = nvt->tx.cur_buf_num; |
| count = nvt->tx.buf_count; |
| |
| /* Write data into the hardware tx fifo while pos < count */ |
| if (pos < count) { |
| nvt_cir_reg_write(nvt, nvt->tx.buf[pos], CIR_STXFIFO); |
| nvt->tx.cur_buf_num++; |
| /* Disable TX FIFO Trigger Level Reach (TTR) interrupt */ |
| } else { |
| tmp = nvt_cir_reg_read(nvt, CIR_IREN); |
| nvt_cir_reg_write(nvt, tmp & ~CIR_IREN_TTR, CIR_IREN); |
| } |
| |
| spin_unlock_irqrestore(&nvt->tx.lock, flags); |
| |
| } |
| |
| if (status & CIR_IRSTS_TFU) { |
| spin_lock_irqsave(&nvt->tx.lock, flags); |
| if (nvt->tx.tx_state == ST_TX_REPLY) { |
| nvt->tx.tx_state = ST_TX_REQUEST; |
| wake_up(&nvt->tx.queue); |
| } |
| spin_unlock_irqrestore(&nvt->tx.lock, flags); |
| } |
| |
| nvt_dbg_verbose("%s done", __func__); |
| return IRQ_RETVAL(IRQ_HANDLED); |
| } |
| |
| /* Interrupt service routine for CIR Wake */ |
| static irqreturn_t nvt_cir_wake_isr(int irq, void *data) |
| { |
| u8 status, iren, val; |
| struct nvt_dev *nvt = data; |
| unsigned long flags; |
| |
| nvt_dbg_wake("%s firing", __func__); |
| |
| status = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS); |
| if (!status) |
| return IRQ_RETVAL(IRQ_NONE); |
| |
| if (status & CIR_WAKE_IRSTS_IR_PENDING) |
| nvt_clear_cir_wake_fifo(nvt); |
| |
| nvt_cir_wake_reg_write(nvt, status, CIR_WAKE_IRSTS); |
| nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IRSTS); |
| |
| /* Interrupt may be shared with CIR, bail if Wake not enabled */ |
| iren = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN); |
| if (!iren) { |
| nvt_dbg_wake("%s exiting, wake not enabled", __func__); |
| return IRQ_RETVAL(IRQ_HANDLED); |
| } |
| |
| if ((status & CIR_WAKE_IRSTS_PE) && |
| (nvt->wake_state == ST_WAKE_START)) { |
| while (nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX)) { |
| val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY); |
| nvt_dbg("setting wake up key: 0x%x", val); |
| } |
| |
| nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN); |
| spin_lock_irqsave(&nvt->nvt_lock, flags); |
| nvt->wake_state = ST_WAKE_FINISH; |
| spin_unlock_irqrestore(&nvt->nvt_lock, flags); |
| } |
| |
| nvt_dbg_wake("%s done", __func__); |
| return IRQ_RETVAL(IRQ_HANDLED); |
| } |
| |
| static void nvt_enable_cir(struct nvt_dev *nvt) |
| { |
| /* set function enable flags */ |
| nvt_cir_reg_write(nvt, CIR_IRCON_TXEN | CIR_IRCON_RXEN | |
| CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL, |
| CIR_IRCON); |
| |
| nvt_efm_enable(nvt); |
| |
| /* enable the CIR logical device */ |
| nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR); |
| nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN); |
| |
| nvt_efm_disable(nvt); |
| |
| /* clear all pending interrupts */ |
| nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS); |
| |
| /* enable interrupts */ |
| nvt_set_cir_iren(nvt); |
| } |
| |
| static void nvt_disable_cir(struct nvt_dev *nvt) |
| { |
| /* disable CIR interrupts */ |
| nvt_cir_reg_write(nvt, 0, CIR_IREN); |
| |
| /* clear any and all pending interrupts */ |
| nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS); |
| |
| /* clear all function enable flags */ |
| nvt_cir_reg_write(nvt, 0, CIR_IRCON); |
| |
| /* clear hardware rx and tx fifos */ |
| nvt_clear_cir_fifo(nvt); |
| nvt_clear_tx_fifo(nvt); |
| |
| nvt_efm_enable(nvt); |
| |
| /* disable the CIR logical device */ |
| nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR); |
| nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN); |
| |
| nvt_efm_disable(nvt); |
| } |
| |
| static int nvt_open(void *data) |
| { |
| struct nvt_dev *nvt = (struct nvt_dev *)data; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&nvt->nvt_lock, flags); |
| nvt->in_use = true; |
| nvt_enable_cir(nvt); |
| spin_unlock_irqrestore(&nvt->nvt_lock, flags); |
| |
| return 0; |
| } |
| |
| static void nvt_close(void *data) |
| { |
| struct nvt_dev *nvt = (struct nvt_dev *)data; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&nvt->nvt_lock, flags); |
| nvt->in_use = false; |
| nvt_disable_cir(nvt); |
| spin_unlock_irqrestore(&nvt->nvt_lock, flags); |
| } |
| |
| /* Allocate memory, probe hardware, and initialize everything */ |
| static int nvt_probe(struct pnp_dev *pdev, const struct pnp_device_id *dev_id) |
| { |
| struct nvt_dev *nvt = NULL; |
| struct input_dev *rdev = NULL; |
| struct ir_dev_props *props = NULL; |
| int ret = -ENOMEM; |
| |
| nvt = kzalloc(sizeof(struct nvt_dev), GFP_KERNEL); |
| if (!nvt) |
| return ret; |
| |
| props = kzalloc(sizeof(struct ir_dev_props), GFP_KERNEL); |
| if (!props) |
| goto failure; |
| |
| /* input device for IR remote (and tx) */ |
| rdev = input_allocate_device(); |
| if (!rdev) |
| goto failure; |
| |
| ret = -ENODEV; |
| /* validate pnp resources */ |
| if (!pnp_port_valid(pdev, 0) || |
| pnp_port_len(pdev, 0) < CIR_IOREG_LENGTH) { |
| dev_err(&pdev->dev, "IR PNP Port not valid!\n"); |
| goto failure; |
| } |
| |
| if (!pnp_irq_valid(pdev, 0)) { |
| dev_err(&pdev->dev, "PNP IRQ not valid!\n"); |
| goto failure; |
| } |
| |
| if (!pnp_port_valid(pdev, 1) || |
| pnp_port_len(pdev, 1) < CIR_IOREG_LENGTH) { |
| dev_err(&pdev->dev, "Wake PNP Port not valid!\n"); |
| goto failure; |
| } |
| |
| nvt->cir_addr = pnp_port_start(pdev, 0); |
| nvt->cir_irq = pnp_irq(pdev, 0); |
| |
| nvt->cir_wake_addr = pnp_port_start(pdev, 1); |
| /* irq is always shared between cir and cir wake */ |
| nvt->cir_wake_irq = nvt->cir_irq; |
| |
| nvt->cr_efir = CR_EFIR; |
| nvt->cr_efdr = CR_EFDR; |
| |
| spin_lock_init(&nvt->nvt_lock); |
| spin_lock_init(&nvt->tx.lock); |
| |
| ret = -EBUSY; |
| /* now claim resources */ |
| if (!request_region(nvt->cir_addr, |
| CIR_IOREG_LENGTH, NVT_DRIVER_NAME)) |
| goto failure; |
| |
| if (request_irq(nvt->cir_irq, nvt_cir_isr, IRQF_SHARED, |
| NVT_DRIVER_NAME, (void *)nvt)) |
| goto failure; |
| |
| if (!request_region(nvt->cir_wake_addr, |
| CIR_IOREG_LENGTH, NVT_DRIVER_NAME)) |
| goto failure; |
| |
| if (request_irq(nvt->cir_wake_irq, nvt_cir_wake_isr, IRQF_SHARED, |
| NVT_DRIVER_NAME, (void *)nvt)) |
| goto failure; |
| |
| pnp_set_drvdata(pdev, nvt); |
| nvt->pdev = pdev; |
| |
| init_waitqueue_head(&nvt->tx.queue); |
| |
| ret = nvt_hw_detect(nvt); |
| if (ret) |
| goto failure; |
| |
| /* Initialize CIR & CIR Wake Logical Devices */ |
| nvt_efm_enable(nvt); |
| nvt_cir_ldev_init(nvt); |
| nvt_cir_wake_ldev_init(nvt); |
| nvt_efm_disable(nvt); |
| |
| /* Initialize CIR & CIR Wake Config Registers */ |
| nvt_cir_regs_init(nvt); |
| nvt_cir_wake_regs_init(nvt); |
| |
| /* Set up ir-core props */ |
| props->priv = nvt; |
| props->driver_type = RC_DRIVER_IR_RAW; |
| props->allowed_protos = IR_TYPE_ALL; |
| props->open = nvt_open; |
| props->close = nvt_close; |
| #if 0 |
| props->min_timeout = XYZ; |
| props->max_timeout = XYZ; |
| props->timeout = XYZ; |
| /* rx resolution is hardwired to 50us atm, 1, 25, 100 also possible */ |
| props->rx_resolution = XYZ; |
| |
| /* tx bits */ |
| props->tx_resolution = XYZ; |
| #endif |
| props->tx_ir = nvt_tx_ir; |
| props->s_tx_carrier = nvt_set_tx_carrier; |
| |
| rdev->name = "Nuvoton w836x7hg Infrared Remote Transceiver"; |
| rdev->id.bustype = BUS_HOST; |
| rdev->id.vendor = PCI_VENDOR_ID_WINBOND2; |
| rdev->id.product = nvt->chip_major; |
| rdev->id.version = nvt->chip_minor; |
| |
| nvt->props = props; |
| nvt->rdev = rdev; |
| |
| device_set_wakeup_capable(&pdev->dev, 1); |
| device_set_wakeup_enable(&pdev->dev, 1); |
| |
| ret = ir_input_register(rdev, RC_MAP_RC6_MCE, props, NVT_DRIVER_NAME); |
| if (ret) |
| goto failure; |
| |
| nvt_pr(KERN_NOTICE, "driver has been successfully loaded\n"); |
| if (debug) { |
| cir_dump_regs(nvt); |
| cir_wake_dump_regs(nvt); |
| } |
| |
| return 0; |
| |
| failure: |
| if (nvt->cir_irq) |
| free_irq(nvt->cir_irq, nvt); |
| if (nvt->cir_addr) |
| release_region(nvt->cir_addr, CIR_IOREG_LENGTH); |
| |
| if (nvt->cir_wake_irq) |
| free_irq(nvt->cir_wake_irq, nvt); |
| if (nvt->cir_wake_addr) |
| release_region(nvt->cir_wake_addr, CIR_IOREG_LENGTH); |
| |
| input_free_device(rdev); |
| kfree(props); |
| kfree(nvt); |
| |
| return ret; |
| } |
| |
| static void __devexit nvt_remove(struct pnp_dev *pdev) |
| { |
| struct nvt_dev *nvt = pnp_get_drvdata(pdev); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&nvt->nvt_lock, flags); |
| /* disable CIR */ |
| nvt_cir_reg_write(nvt, 0, CIR_IREN); |
| nvt_disable_cir(nvt); |
| /* enable CIR Wake (for IR power-on) */ |
| nvt_enable_wake(nvt); |
| spin_unlock_irqrestore(&nvt->nvt_lock, flags); |
| |
| /* free resources */ |
| free_irq(nvt->cir_irq, nvt); |
| free_irq(nvt->cir_wake_irq, nvt); |
| release_region(nvt->cir_addr, CIR_IOREG_LENGTH); |
| release_region(nvt->cir_wake_addr, CIR_IOREG_LENGTH); |
| |
| ir_input_unregister(nvt->rdev); |
| |
| kfree(nvt->props); |
| kfree(nvt); |
| } |
| |
| static int nvt_suspend(struct pnp_dev *pdev, pm_message_t state) |
| { |
| struct nvt_dev *nvt = pnp_get_drvdata(pdev); |
| unsigned long flags; |
| |
| nvt_dbg("%s called", __func__); |
| |
| /* zero out misc state tracking */ |
| spin_lock_irqsave(&nvt->nvt_lock, flags); |
| nvt->study_state = ST_STUDY_NONE; |
| nvt->wake_state = ST_WAKE_NONE; |
| spin_unlock_irqrestore(&nvt->nvt_lock, flags); |
| |
| spin_lock_irqsave(&nvt->tx.lock, flags); |
| nvt->tx.tx_state = ST_TX_NONE; |
| spin_unlock_irqrestore(&nvt->tx.lock, flags); |
| |
| /* disable all CIR interrupts */ |
| nvt_cir_reg_write(nvt, 0, CIR_IREN); |
| |
| nvt_efm_enable(nvt); |
| |
| /* disable cir logical dev */ |
| nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR); |
| nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN); |
| |
| nvt_efm_disable(nvt); |
| |
| /* make sure wake is enabled */ |
| nvt_enable_wake(nvt); |
| |
| return 0; |
| } |
| |
| static int nvt_resume(struct pnp_dev *pdev) |
| { |
| int ret = 0; |
| struct nvt_dev *nvt = pnp_get_drvdata(pdev); |
| |
| nvt_dbg("%s called", __func__); |
| |
| /* open interrupt */ |
| nvt_set_cir_iren(nvt); |
| |
| /* Enable CIR logical device */ |
| nvt_efm_enable(nvt); |
| nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR); |
| nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN); |
| |
| nvt_efm_disable(nvt); |
| |
| nvt_cir_regs_init(nvt); |
| nvt_cir_wake_regs_init(nvt); |
| |
| return ret; |
| } |
| |
| static void nvt_shutdown(struct pnp_dev *pdev) |
| { |
| struct nvt_dev *nvt = pnp_get_drvdata(pdev); |
| nvt_enable_wake(nvt); |
| } |
| |
| static const struct pnp_device_id nvt_ids[] = { |
| { "WEC0530", 0 }, /* CIR */ |
| { "NTN0530", 0 }, /* CIR for new chip's pnp id*/ |
| { "", 0 }, |
| }; |
| |
| static struct pnp_driver nvt_driver = { |
| .name = NVT_DRIVER_NAME, |
| .id_table = nvt_ids, |
| .flags = PNP_DRIVER_RES_DO_NOT_CHANGE, |
| .probe = nvt_probe, |
| .remove = __devexit_p(nvt_remove), |
| .suspend = nvt_suspend, |
| .resume = nvt_resume, |
| .shutdown = nvt_shutdown, |
| }; |
| |
| int nvt_init(void) |
| { |
| return pnp_register_driver(&nvt_driver); |
| } |
| |
| void nvt_exit(void) |
| { |
| pnp_unregister_driver(&nvt_driver); |
| } |
| |
| module_param(debug, int, S_IRUGO | S_IWUSR); |
| MODULE_PARM_DESC(debug, "Enable debugging output"); |
| |
| MODULE_DEVICE_TABLE(pnp, nvt_ids); |
| MODULE_DESCRIPTION("Nuvoton W83667HG-A & W83677HG-I CIR driver"); |
| |
| MODULE_AUTHOR("Jarod Wilson <jarod@redhat.com>"); |
| MODULE_LICENSE("GPL"); |
| |
| module_init(nvt_init); |
| module_exit(nvt_exit); |