| /* | 
 |  *  linux/kernel/time/timekeeping.c | 
 |  * | 
 |  *  Kernel timekeeping code and accessor functions | 
 |  * | 
 |  *  This code was moved from linux/kernel/timer.c. | 
 |  *  Please see that file for copyright and history logs. | 
 |  * | 
 |  */ | 
 |  | 
 | #include <linux/timekeeper_internal.h> | 
 | #include <linux/module.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/percpu.h> | 
 | #include <linux/init.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/syscore_ops.h> | 
 | #include <linux/clocksource.h> | 
 | #include <linux/jiffies.h> | 
 | #include <linux/time.h> | 
 | #include <linux/tick.h> | 
 | #include <linux/stop_machine.h> | 
 | #include <linux/pvclock_gtod.h> | 
 | #include <linux/compiler.h> | 
 |  | 
 | #include "tick-internal.h" | 
 | #include "ntp_internal.h" | 
 | #include "timekeeping_internal.h" | 
 |  | 
 | #define TK_CLEAR_NTP		(1 << 0) | 
 | #define TK_MIRROR		(1 << 1) | 
 | #define TK_CLOCK_WAS_SET	(1 << 2) | 
 |  | 
 | /* | 
 |  * The most important data for readout fits into a single 64 byte | 
 |  * cache line. | 
 |  */ | 
 | static struct { | 
 | 	seqcount_t		seq; | 
 | 	struct timekeeper	timekeeper; | 
 | } tk_core ____cacheline_aligned; | 
 |  | 
 | static DEFINE_RAW_SPINLOCK(timekeeper_lock); | 
 | static struct timekeeper shadow_timekeeper; | 
 |  | 
 | /** | 
 |  * struct tk_fast - NMI safe timekeeper | 
 |  * @seq:	Sequence counter for protecting updates. The lowest bit | 
 |  *		is the index for the tk_read_base array | 
 |  * @base:	tk_read_base array. Access is indexed by the lowest bit of | 
 |  *		@seq. | 
 |  * | 
 |  * See @update_fast_timekeeper() below. | 
 |  */ | 
 | struct tk_fast { | 
 | 	seqcount_t		seq; | 
 | 	struct tk_read_base	base[2]; | 
 | }; | 
 |  | 
 | static struct tk_fast tk_fast_mono ____cacheline_aligned; | 
 | static struct tk_fast tk_fast_raw  ____cacheline_aligned; | 
 |  | 
 | /* flag for if timekeeping is suspended */ | 
 | int __read_mostly timekeeping_suspended; | 
 |  | 
 | static inline void tk_normalize_xtime(struct timekeeper *tk) | 
 | { | 
 | 	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) { | 
 | 		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift; | 
 | 		tk->xtime_sec++; | 
 | 	} | 
 | } | 
 |  | 
 | static inline struct timespec64 tk_xtime(struct timekeeper *tk) | 
 | { | 
 | 	struct timespec64 ts; | 
 |  | 
 | 	ts.tv_sec = tk->xtime_sec; | 
 | 	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); | 
 | 	return ts; | 
 | } | 
 |  | 
 | static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts) | 
 | { | 
 | 	tk->xtime_sec = ts->tv_sec; | 
 | 	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift; | 
 | } | 
 |  | 
 | static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts) | 
 | { | 
 | 	tk->xtime_sec += ts->tv_sec; | 
 | 	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift; | 
 | 	tk_normalize_xtime(tk); | 
 | } | 
 |  | 
 | static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm) | 
 | { | 
 | 	struct timespec64 tmp; | 
 |  | 
 | 	/* | 
 | 	 * Verify consistency of: offset_real = -wall_to_monotonic | 
 | 	 * before modifying anything | 
 | 	 */ | 
 | 	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec, | 
 | 					-tk->wall_to_monotonic.tv_nsec); | 
 | 	WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64); | 
 | 	tk->wall_to_monotonic = wtm; | 
 | 	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec); | 
 | 	tk->offs_real = timespec64_to_ktime(tmp); | 
 | 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0)); | 
 | } | 
 |  | 
 | static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta) | 
 | { | 
 | 	tk->offs_boot = ktime_add(tk->offs_boot, delta); | 
 | } | 
 |  | 
 | #ifdef CONFIG_DEBUG_TIMEKEEPING | 
 | #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */ | 
 |  | 
 | static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset) | 
 | { | 
 |  | 
 | 	cycle_t max_cycles = tk->tkr_mono.clock->max_cycles; | 
 | 	const char *name = tk->tkr_mono.clock->name; | 
 |  | 
 | 	if (offset > max_cycles) { | 
 | 		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n", | 
 | 				offset, name, max_cycles); | 
 | 		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n"); | 
 | 	} else { | 
 | 		if (offset > (max_cycles >> 1)) { | 
 | 			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the the '%s' clock's 50%% safety margin (%lld)\n", | 
 | 					offset, name, max_cycles >> 1); | 
 | 			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n"); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (tk->underflow_seen) { | 
 | 		if (jiffies - tk->last_warning > WARNING_FREQ) { | 
 | 			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name); | 
 | 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n"); | 
 | 			printk_deferred("         Your kernel is probably still fine.\n"); | 
 | 			tk->last_warning = jiffies; | 
 | 		} | 
 | 		tk->underflow_seen = 0; | 
 | 	} | 
 |  | 
 | 	if (tk->overflow_seen) { | 
 | 		if (jiffies - tk->last_warning > WARNING_FREQ) { | 
 | 			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name); | 
 | 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n"); | 
 | 			printk_deferred("         Your kernel is probably still fine.\n"); | 
 | 			tk->last_warning = jiffies; | 
 | 		} | 
 | 		tk->overflow_seen = 0; | 
 | 	} | 
 | } | 
 |  | 
 | static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 | 	cycle_t now, last, mask, max, delta; | 
 | 	unsigned int seq; | 
 |  | 
 | 	/* | 
 | 	 * Since we're called holding a seqlock, the data may shift | 
 | 	 * under us while we're doing the calculation. This can cause | 
 | 	 * false positives, since we'd note a problem but throw the | 
 | 	 * results away. So nest another seqlock here to atomically | 
 | 	 * grab the points we are checking with. | 
 | 	 */ | 
 | 	do { | 
 | 		seq = read_seqcount_begin(&tk_core.seq); | 
 | 		now = tkr->read(tkr->clock); | 
 | 		last = tkr->cycle_last; | 
 | 		mask = tkr->mask; | 
 | 		max = tkr->clock->max_cycles; | 
 | 	} while (read_seqcount_retry(&tk_core.seq, seq)); | 
 |  | 
 | 	delta = clocksource_delta(now, last, mask); | 
 |  | 
 | 	/* | 
 | 	 * Try to catch underflows by checking if we are seeing small | 
 | 	 * mask-relative negative values. | 
 | 	 */ | 
 | 	if (unlikely((~delta & mask) < (mask >> 3))) { | 
 | 		tk->underflow_seen = 1; | 
 | 		delta = 0; | 
 | 	} | 
 |  | 
 | 	/* Cap delta value to the max_cycles values to avoid mult overflows */ | 
 | 	if (unlikely(delta > max)) { | 
 | 		tk->overflow_seen = 1; | 
 | 		delta = tkr->clock->max_cycles; | 
 | 	} | 
 |  | 
 | 	return delta; | 
 | } | 
 | #else | 
 | static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset) | 
 | { | 
 | } | 
 | static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr) | 
 | { | 
 | 	cycle_t cycle_now, delta; | 
 |  | 
 | 	/* read clocksource */ | 
 | 	cycle_now = tkr->read(tkr->clock); | 
 |  | 
 | 	/* calculate the delta since the last update_wall_time */ | 
 | 	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask); | 
 |  | 
 | 	return delta; | 
 | } | 
 | #endif | 
 |  | 
 | /** | 
 |  * tk_setup_internals - Set up internals to use clocksource clock. | 
 |  * | 
 |  * @tk:		The target timekeeper to setup. | 
 |  * @clock:		Pointer to clocksource. | 
 |  * | 
 |  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment | 
 |  * pair and interval request. | 
 |  * | 
 |  * Unless you're the timekeeping code, you should not be using this! | 
 |  */ | 
 | static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) | 
 | { | 
 | 	cycle_t interval; | 
 | 	u64 tmp, ntpinterval; | 
 | 	struct clocksource *old_clock; | 
 |  | 
 | 	old_clock = tk->tkr_mono.clock; | 
 | 	tk->tkr_mono.clock = clock; | 
 | 	tk->tkr_mono.read = clock->read; | 
 | 	tk->tkr_mono.mask = clock->mask; | 
 | 	tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock); | 
 |  | 
 | 	tk->tkr_raw.clock = clock; | 
 | 	tk->tkr_raw.read = clock->read; | 
 | 	tk->tkr_raw.mask = clock->mask; | 
 | 	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last; | 
 |  | 
 | 	/* Do the ns -> cycle conversion first, using original mult */ | 
 | 	tmp = NTP_INTERVAL_LENGTH; | 
 | 	tmp <<= clock->shift; | 
 | 	ntpinterval = tmp; | 
 | 	tmp += clock->mult/2; | 
 | 	do_div(tmp, clock->mult); | 
 | 	if (tmp == 0) | 
 | 		tmp = 1; | 
 |  | 
 | 	interval = (cycle_t) tmp; | 
 | 	tk->cycle_interval = interval; | 
 |  | 
 | 	/* Go back from cycles -> shifted ns */ | 
 | 	tk->xtime_interval = (u64) interval * clock->mult; | 
 | 	tk->xtime_remainder = ntpinterval - tk->xtime_interval; | 
 | 	tk->raw_interval = | 
 | 		((u64) interval * clock->mult) >> clock->shift; | 
 |  | 
 | 	 /* if changing clocks, convert xtime_nsec shift units */ | 
 | 	if (old_clock) { | 
 | 		int shift_change = clock->shift - old_clock->shift; | 
 | 		if (shift_change < 0) | 
 | 			tk->tkr_mono.xtime_nsec >>= -shift_change; | 
 | 		else | 
 | 			tk->tkr_mono.xtime_nsec <<= shift_change; | 
 | 	} | 
 | 	tk->tkr_raw.xtime_nsec = 0; | 
 |  | 
 | 	tk->tkr_mono.shift = clock->shift; | 
 | 	tk->tkr_raw.shift = clock->shift; | 
 |  | 
 | 	tk->ntp_error = 0; | 
 | 	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; | 
 | 	tk->ntp_tick = ntpinterval << tk->ntp_error_shift; | 
 |  | 
 | 	/* | 
 | 	 * The timekeeper keeps its own mult values for the currently | 
 | 	 * active clocksource. These value will be adjusted via NTP | 
 | 	 * to counteract clock drifting. | 
 | 	 */ | 
 | 	tk->tkr_mono.mult = clock->mult; | 
 | 	tk->tkr_raw.mult = clock->mult; | 
 | 	tk->ntp_err_mult = 0; | 
 | } | 
 |  | 
 | /* Timekeeper helper functions. */ | 
 |  | 
 | #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET | 
 | static u32 default_arch_gettimeoffset(void) { return 0; } | 
 | u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset; | 
 | #else | 
 | static inline u32 arch_gettimeoffset(void) { return 0; } | 
 | #endif | 
 |  | 
 | static inline s64 timekeeping_get_ns(struct tk_read_base *tkr) | 
 | { | 
 | 	cycle_t delta; | 
 | 	s64 nsec; | 
 |  | 
 | 	delta = timekeeping_get_delta(tkr); | 
 |  | 
 | 	nsec = (delta * tkr->mult + tkr->xtime_nsec) >> tkr->shift; | 
 |  | 
 | 	/* If arch requires, add in get_arch_timeoffset() */ | 
 | 	return nsec + arch_gettimeoffset(); | 
 | } | 
 |  | 
 | /** | 
 |  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper. | 
 |  * @tkr: Timekeeping readout base from which we take the update | 
 |  * | 
 |  * We want to use this from any context including NMI and tracing / | 
 |  * instrumenting the timekeeping code itself. | 
 |  * | 
 |  * Employ the latch technique; see @raw_write_seqcount_latch. | 
 |  * | 
 |  * So if a NMI hits the update of base[0] then it will use base[1] | 
 |  * which is still consistent. In the worst case this can result is a | 
 |  * slightly wrong timestamp (a few nanoseconds). See | 
 |  * @ktime_get_mono_fast_ns. | 
 |  */ | 
 | static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf) | 
 | { | 
 | 	struct tk_read_base *base = tkf->base; | 
 |  | 
 | 	/* Force readers off to base[1] */ | 
 | 	raw_write_seqcount_latch(&tkf->seq); | 
 |  | 
 | 	/* Update base[0] */ | 
 | 	memcpy(base, tkr, sizeof(*base)); | 
 |  | 
 | 	/* Force readers back to base[0] */ | 
 | 	raw_write_seqcount_latch(&tkf->seq); | 
 |  | 
 | 	/* Update base[1] */ | 
 | 	memcpy(base + 1, base, sizeof(*base)); | 
 | } | 
 |  | 
 | /** | 
 |  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic | 
 |  * | 
 |  * This timestamp is not guaranteed to be monotonic across an update. | 
 |  * The timestamp is calculated by: | 
 |  * | 
 |  *	now = base_mono + clock_delta * slope | 
 |  * | 
 |  * So if the update lowers the slope, readers who are forced to the | 
 |  * not yet updated second array are still using the old steeper slope. | 
 |  * | 
 |  * tmono | 
 |  * ^ | 
 |  * |    o  n | 
 |  * |   o n | 
 |  * |  u | 
 |  * | o | 
 |  * |o | 
 |  * |12345678---> reader order | 
 |  * | 
 |  * o = old slope | 
 |  * u = update | 
 |  * n = new slope | 
 |  * | 
 |  * So reader 6 will observe time going backwards versus reader 5. | 
 |  * | 
 |  * While other CPUs are likely to be able observe that, the only way | 
 |  * for a CPU local observation is when an NMI hits in the middle of | 
 |  * the update. Timestamps taken from that NMI context might be ahead | 
 |  * of the following timestamps. Callers need to be aware of that and | 
 |  * deal with it. | 
 |  */ | 
 | static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf) | 
 | { | 
 | 	struct tk_read_base *tkr; | 
 | 	unsigned int seq; | 
 | 	u64 now; | 
 |  | 
 | 	do { | 
 | 		seq = raw_read_seqcount_latch(&tkf->seq); | 
 | 		tkr = tkf->base + (seq & 0x01); | 
 | 		now = ktime_to_ns(tkr->base) + timekeeping_get_ns(tkr); | 
 | 	} while (read_seqcount_retry(&tkf->seq, seq)); | 
 |  | 
 | 	return now; | 
 | } | 
 |  | 
 | u64 ktime_get_mono_fast_ns(void) | 
 | { | 
 | 	return __ktime_get_fast_ns(&tk_fast_mono); | 
 | } | 
 | EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns); | 
 |  | 
 | u64 ktime_get_raw_fast_ns(void) | 
 | { | 
 | 	return __ktime_get_fast_ns(&tk_fast_raw); | 
 | } | 
 | EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns); | 
 |  | 
 | /* Suspend-time cycles value for halted fast timekeeper. */ | 
 | static cycle_t cycles_at_suspend; | 
 |  | 
 | static cycle_t dummy_clock_read(struct clocksource *cs) | 
 | { | 
 | 	return cycles_at_suspend; | 
 | } | 
 |  | 
 | /** | 
 |  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource. | 
 |  * @tk: Timekeeper to snapshot. | 
 |  * | 
 |  * It generally is unsafe to access the clocksource after timekeeping has been | 
 |  * suspended, so take a snapshot of the readout base of @tk and use it as the | 
 |  * fast timekeeper's readout base while suspended.  It will return the same | 
 |  * number of cycles every time until timekeeping is resumed at which time the | 
 |  * proper readout base for the fast timekeeper will be restored automatically. | 
 |  */ | 
 | static void halt_fast_timekeeper(struct timekeeper *tk) | 
 | { | 
 | 	static struct tk_read_base tkr_dummy; | 
 | 	struct tk_read_base *tkr = &tk->tkr_mono; | 
 |  | 
 | 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); | 
 | 	cycles_at_suspend = tkr->read(tkr->clock); | 
 | 	tkr_dummy.read = dummy_clock_read; | 
 | 	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono); | 
 |  | 
 | 	tkr = &tk->tkr_raw; | 
 | 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); | 
 | 	tkr_dummy.read = dummy_clock_read; | 
 | 	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw); | 
 | } | 
 |  | 
 | #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD | 
 |  | 
 | static inline void update_vsyscall(struct timekeeper *tk) | 
 | { | 
 | 	struct timespec xt, wm; | 
 |  | 
 | 	xt = timespec64_to_timespec(tk_xtime(tk)); | 
 | 	wm = timespec64_to_timespec(tk->wall_to_monotonic); | 
 | 	update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult, | 
 | 			    tk->tkr_mono.cycle_last); | 
 | } | 
 |  | 
 | static inline void old_vsyscall_fixup(struct timekeeper *tk) | 
 | { | 
 | 	s64 remainder; | 
 |  | 
 | 	/* | 
 | 	* Store only full nanoseconds into xtime_nsec after rounding | 
 | 	* it up and add the remainder to the error difference. | 
 | 	* XXX - This is necessary to avoid small 1ns inconsistnecies caused | 
 | 	* by truncating the remainder in vsyscalls. However, it causes | 
 | 	* additional work to be done in timekeeping_adjust(). Once | 
 | 	* the vsyscall implementations are converted to use xtime_nsec | 
 | 	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD | 
 | 	* users are removed, this can be killed. | 
 | 	*/ | 
 | 	remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1); | 
 | 	tk->tkr_mono.xtime_nsec -= remainder; | 
 | 	tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift; | 
 | 	tk->ntp_error += remainder << tk->ntp_error_shift; | 
 | 	tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift; | 
 | } | 
 | #else | 
 | #define old_vsyscall_fixup(tk) | 
 | #endif | 
 |  | 
 | static RAW_NOTIFIER_HEAD(pvclock_gtod_chain); | 
 |  | 
 | static void update_pvclock_gtod(struct timekeeper *tk, bool was_set) | 
 | { | 
 | 	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk); | 
 | } | 
 |  | 
 | /** | 
 |  * pvclock_gtod_register_notifier - register a pvclock timedata update listener | 
 |  */ | 
 | int pvclock_gtod_register_notifier(struct notifier_block *nb) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 | 	unsigned long flags; | 
 | 	int ret; | 
 |  | 
 | 	raw_spin_lock_irqsave(&timekeeper_lock, flags); | 
 | 	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb); | 
 | 	update_pvclock_gtod(tk, true); | 
 | 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags); | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier); | 
 |  | 
 | /** | 
 |  * pvclock_gtod_unregister_notifier - unregister a pvclock | 
 |  * timedata update listener | 
 |  */ | 
 | int pvclock_gtod_unregister_notifier(struct notifier_block *nb) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int ret; | 
 |  | 
 | 	raw_spin_lock_irqsave(&timekeeper_lock, flags); | 
 | 	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb); | 
 | 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags); | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier); | 
 |  | 
 | /* | 
 |  * tk_update_leap_state - helper to update the next_leap_ktime | 
 |  */ | 
 | static inline void tk_update_leap_state(struct timekeeper *tk) | 
 | { | 
 | 	tk->next_leap_ktime = ntp_get_next_leap(); | 
 | 	if (tk->next_leap_ktime.tv64 != KTIME_MAX) | 
 | 		/* Convert to monotonic time */ | 
 | 		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real); | 
 | } | 
 |  | 
 | /* | 
 |  * Update the ktime_t based scalar nsec members of the timekeeper | 
 |  */ | 
 | static inline void tk_update_ktime_data(struct timekeeper *tk) | 
 | { | 
 | 	u64 seconds; | 
 | 	u32 nsec; | 
 |  | 
 | 	/* | 
 | 	 * The xtime based monotonic readout is: | 
 | 	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now(); | 
 | 	 * The ktime based monotonic readout is: | 
 | 	 *	nsec = base_mono + now(); | 
 | 	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec | 
 | 	 */ | 
 | 	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec); | 
 | 	nsec = (u32) tk->wall_to_monotonic.tv_nsec; | 
 | 	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec); | 
 |  | 
 | 	/* Update the monotonic raw base */ | 
 | 	tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time); | 
 |  | 
 | 	/* | 
 | 	 * The sum of the nanoseconds portions of xtime and | 
 | 	 * wall_to_monotonic can be greater/equal one second. Take | 
 | 	 * this into account before updating tk->ktime_sec. | 
 | 	 */ | 
 | 	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); | 
 | 	if (nsec >= NSEC_PER_SEC) | 
 | 		seconds++; | 
 | 	tk->ktime_sec = seconds; | 
 | } | 
 |  | 
 | /* must hold timekeeper_lock */ | 
 | static void timekeeping_update(struct timekeeper *tk, unsigned int action) | 
 | { | 
 | 	if (action & TK_CLEAR_NTP) { | 
 | 		tk->ntp_error = 0; | 
 | 		ntp_clear(); | 
 | 	} | 
 |  | 
 | 	tk_update_leap_state(tk); | 
 | 	tk_update_ktime_data(tk); | 
 |  | 
 | 	update_vsyscall(tk); | 
 | 	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET); | 
 |  | 
 | 	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono); | 
 | 	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw); | 
 |  | 
 | 	if (action & TK_CLOCK_WAS_SET) | 
 | 		tk->clock_was_set_seq++; | 
 | 	/* | 
 | 	 * The mirroring of the data to the shadow-timekeeper needs | 
 | 	 * to happen last here to ensure we don't over-write the | 
 | 	 * timekeeper structure on the next update with stale data | 
 | 	 */ | 
 | 	if (action & TK_MIRROR) | 
 | 		memcpy(&shadow_timekeeper, &tk_core.timekeeper, | 
 | 		       sizeof(tk_core.timekeeper)); | 
 | } | 
 |  | 
 | /** | 
 |  * timekeeping_forward_now - update clock to the current time | 
 |  * | 
 |  * Forward the current clock to update its state since the last call to | 
 |  * update_wall_time(). This is useful before significant clock changes, | 
 |  * as it avoids having to deal with this time offset explicitly. | 
 |  */ | 
 | static void timekeeping_forward_now(struct timekeeper *tk) | 
 | { | 
 | 	struct clocksource *clock = tk->tkr_mono.clock; | 
 | 	cycle_t cycle_now, delta; | 
 | 	s64 nsec; | 
 |  | 
 | 	cycle_now = tk->tkr_mono.read(clock); | 
 | 	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask); | 
 | 	tk->tkr_mono.cycle_last = cycle_now; | 
 | 	tk->tkr_raw.cycle_last  = cycle_now; | 
 |  | 
 | 	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult; | 
 |  | 
 | 	/* If arch requires, add in get_arch_timeoffset() */ | 
 | 	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift; | 
 |  | 
 | 	tk_normalize_xtime(tk); | 
 |  | 
 | 	nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift); | 
 | 	timespec64_add_ns(&tk->raw_time, nsec); | 
 | } | 
 |  | 
 | /** | 
 |  * __getnstimeofday64 - Returns the time of day in a timespec64. | 
 |  * @ts:		pointer to the timespec to be set | 
 |  * | 
 |  * Updates the time of day in the timespec. | 
 |  * Returns 0 on success, or -ve when suspended (timespec will be undefined). | 
 |  */ | 
 | int __getnstimeofday64(struct timespec64 *ts) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 | 	unsigned long seq; | 
 | 	s64 nsecs = 0; | 
 |  | 
 | 	do { | 
 | 		seq = read_seqcount_begin(&tk_core.seq); | 
 |  | 
 | 		ts->tv_sec = tk->xtime_sec; | 
 | 		nsecs = timekeeping_get_ns(&tk->tkr_mono); | 
 |  | 
 | 	} while (read_seqcount_retry(&tk_core.seq, seq)); | 
 |  | 
 | 	ts->tv_nsec = 0; | 
 | 	timespec64_add_ns(ts, nsecs); | 
 |  | 
 | 	/* | 
 | 	 * Do not bail out early, in case there were callers still using | 
 | 	 * the value, even in the face of the WARN_ON. | 
 | 	 */ | 
 | 	if (unlikely(timekeeping_suspended)) | 
 | 		return -EAGAIN; | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(__getnstimeofday64); | 
 |  | 
 | /** | 
 |  * getnstimeofday64 - Returns the time of day in a timespec64. | 
 |  * @ts:		pointer to the timespec64 to be set | 
 |  * | 
 |  * Returns the time of day in a timespec64 (WARN if suspended). | 
 |  */ | 
 | void getnstimeofday64(struct timespec64 *ts) | 
 | { | 
 | 	WARN_ON(__getnstimeofday64(ts)); | 
 | } | 
 | EXPORT_SYMBOL(getnstimeofday64); | 
 |  | 
 | ktime_t ktime_get(void) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 | 	unsigned int seq; | 
 | 	ktime_t base; | 
 | 	s64 nsecs; | 
 |  | 
 | 	WARN_ON(timekeeping_suspended); | 
 |  | 
 | 	do { | 
 | 		seq = read_seqcount_begin(&tk_core.seq); | 
 | 		base = tk->tkr_mono.base; | 
 | 		nsecs = timekeeping_get_ns(&tk->tkr_mono); | 
 |  | 
 | 	} while (read_seqcount_retry(&tk_core.seq, seq)); | 
 |  | 
 | 	return ktime_add_ns(base, nsecs); | 
 | } | 
 | EXPORT_SYMBOL_GPL(ktime_get); | 
 |  | 
 | u32 ktime_get_resolution_ns(void) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 | 	unsigned int seq; | 
 | 	u32 nsecs; | 
 |  | 
 | 	WARN_ON(timekeeping_suspended); | 
 |  | 
 | 	do { | 
 | 		seq = read_seqcount_begin(&tk_core.seq); | 
 | 		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift; | 
 | 	} while (read_seqcount_retry(&tk_core.seq, seq)); | 
 |  | 
 | 	return nsecs; | 
 | } | 
 | EXPORT_SYMBOL_GPL(ktime_get_resolution_ns); | 
 |  | 
 | static ktime_t *offsets[TK_OFFS_MAX] = { | 
 | 	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real, | 
 | 	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot, | 
 | 	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai, | 
 | }; | 
 |  | 
 | ktime_t ktime_get_with_offset(enum tk_offsets offs) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 | 	unsigned int seq; | 
 | 	ktime_t base, *offset = offsets[offs]; | 
 | 	s64 nsecs; | 
 |  | 
 | 	WARN_ON(timekeeping_suspended); | 
 |  | 
 | 	do { | 
 | 		seq = read_seqcount_begin(&tk_core.seq); | 
 | 		base = ktime_add(tk->tkr_mono.base, *offset); | 
 | 		nsecs = timekeeping_get_ns(&tk->tkr_mono); | 
 |  | 
 | 	} while (read_seqcount_retry(&tk_core.seq, seq)); | 
 |  | 
 | 	return ktime_add_ns(base, nsecs); | 
 |  | 
 | } | 
 | EXPORT_SYMBOL_GPL(ktime_get_with_offset); | 
 |  | 
 | /** | 
 |  * ktime_mono_to_any() - convert mononotic time to any other time | 
 |  * @tmono:	time to convert. | 
 |  * @offs:	which offset to use | 
 |  */ | 
 | ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs) | 
 | { | 
 | 	ktime_t *offset = offsets[offs]; | 
 | 	unsigned long seq; | 
 | 	ktime_t tconv; | 
 |  | 
 | 	do { | 
 | 		seq = read_seqcount_begin(&tk_core.seq); | 
 | 		tconv = ktime_add(tmono, *offset); | 
 | 	} while (read_seqcount_retry(&tk_core.seq, seq)); | 
 |  | 
 | 	return tconv; | 
 | } | 
 | EXPORT_SYMBOL_GPL(ktime_mono_to_any); | 
 |  | 
 | /** | 
 |  * ktime_get_raw - Returns the raw monotonic time in ktime_t format | 
 |  */ | 
 | ktime_t ktime_get_raw(void) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 | 	unsigned int seq; | 
 | 	ktime_t base; | 
 | 	s64 nsecs; | 
 |  | 
 | 	do { | 
 | 		seq = read_seqcount_begin(&tk_core.seq); | 
 | 		base = tk->tkr_raw.base; | 
 | 		nsecs = timekeeping_get_ns(&tk->tkr_raw); | 
 |  | 
 | 	} while (read_seqcount_retry(&tk_core.seq, seq)); | 
 |  | 
 | 	return ktime_add_ns(base, nsecs); | 
 | } | 
 | EXPORT_SYMBOL_GPL(ktime_get_raw); | 
 |  | 
 | /** | 
 |  * ktime_get_ts64 - get the monotonic clock in timespec64 format | 
 |  * @ts:		pointer to timespec variable | 
 |  * | 
 |  * The function calculates the monotonic clock from the realtime | 
 |  * clock and the wall_to_monotonic offset and stores the result | 
 |  * in normalized timespec64 format in the variable pointed to by @ts. | 
 |  */ | 
 | void ktime_get_ts64(struct timespec64 *ts) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 | 	struct timespec64 tomono; | 
 | 	s64 nsec; | 
 | 	unsigned int seq; | 
 |  | 
 | 	WARN_ON(timekeeping_suspended); | 
 |  | 
 | 	do { | 
 | 		seq = read_seqcount_begin(&tk_core.seq); | 
 | 		ts->tv_sec = tk->xtime_sec; | 
 | 		nsec = timekeeping_get_ns(&tk->tkr_mono); | 
 | 		tomono = tk->wall_to_monotonic; | 
 |  | 
 | 	} while (read_seqcount_retry(&tk_core.seq, seq)); | 
 |  | 
 | 	ts->tv_sec += tomono.tv_sec; | 
 | 	ts->tv_nsec = 0; | 
 | 	timespec64_add_ns(ts, nsec + tomono.tv_nsec); | 
 | } | 
 | EXPORT_SYMBOL_GPL(ktime_get_ts64); | 
 |  | 
 | /** | 
 |  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC | 
 |  * | 
 |  * Returns the seconds portion of CLOCK_MONOTONIC with a single non | 
 |  * serialized read. tk->ktime_sec is of type 'unsigned long' so this | 
 |  * works on both 32 and 64 bit systems. On 32 bit systems the readout | 
 |  * covers ~136 years of uptime which should be enough to prevent | 
 |  * premature wrap arounds. | 
 |  */ | 
 | time64_t ktime_get_seconds(void) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 |  | 
 | 	WARN_ON(timekeeping_suspended); | 
 | 	return tk->ktime_sec; | 
 | } | 
 | EXPORT_SYMBOL_GPL(ktime_get_seconds); | 
 |  | 
 | /** | 
 |  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME | 
 |  * | 
 |  * Returns the wall clock seconds since 1970. This replaces the | 
 |  * get_seconds() interface which is not y2038 safe on 32bit systems. | 
 |  * | 
 |  * For 64bit systems the fast access to tk->xtime_sec is preserved. On | 
 |  * 32bit systems the access must be protected with the sequence | 
 |  * counter to provide "atomic" access to the 64bit tk->xtime_sec | 
 |  * value. | 
 |  */ | 
 | time64_t ktime_get_real_seconds(void) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 | 	time64_t seconds; | 
 | 	unsigned int seq; | 
 |  | 
 | 	if (IS_ENABLED(CONFIG_64BIT)) | 
 | 		return tk->xtime_sec; | 
 |  | 
 | 	do { | 
 | 		seq = read_seqcount_begin(&tk_core.seq); | 
 | 		seconds = tk->xtime_sec; | 
 |  | 
 | 	} while (read_seqcount_retry(&tk_core.seq, seq)); | 
 |  | 
 | 	return seconds; | 
 | } | 
 | EXPORT_SYMBOL_GPL(ktime_get_real_seconds); | 
 |  | 
 | /** | 
 |  * __ktime_get_real_seconds - The same as ktime_get_real_seconds | 
 |  * but without the sequence counter protect. This internal function | 
 |  * is called just when timekeeping lock is already held. | 
 |  */ | 
 | time64_t __ktime_get_real_seconds(void) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 |  | 
 | 	return tk->xtime_sec; | 
 | } | 
 |  | 
 |  | 
 | #ifdef CONFIG_NTP_PPS | 
 |  | 
 | /** | 
 |  * ktime_get_raw_and_real_ts64 - get day and raw monotonic time in timespec format | 
 |  * @ts_raw:	pointer to the timespec to be set to raw monotonic time | 
 |  * @ts_real:	pointer to the timespec to be set to the time of day | 
 |  * | 
 |  * This function reads both the time of day and raw monotonic time at the | 
 |  * same time atomically and stores the resulting timestamps in timespec | 
 |  * format. | 
 |  */ | 
 | void ktime_get_raw_and_real_ts64(struct timespec64 *ts_raw, struct timespec64 *ts_real) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 | 	unsigned long seq; | 
 | 	s64 nsecs_raw, nsecs_real; | 
 |  | 
 | 	WARN_ON_ONCE(timekeeping_suspended); | 
 |  | 
 | 	do { | 
 | 		seq = read_seqcount_begin(&tk_core.seq); | 
 |  | 
 | 		*ts_raw = tk->raw_time; | 
 | 		ts_real->tv_sec = tk->xtime_sec; | 
 | 		ts_real->tv_nsec = 0; | 
 |  | 
 | 		nsecs_raw  = timekeeping_get_ns(&tk->tkr_raw); | 
 | 		nsecs_real = timekeeping_get_ns(&tk->tkr_mono); | 
 |  | 
 | 	} while (read_seqcount_retry(&tk_core.seq, seq)); | 
 |  | 
 | 	timespec64_add_ns(ts_raw, nsecs_raw); | 
 | 	timespec64_add_ns(ts_real, nsecs_real); | 
 | } | 
 | EXPORT_SYMBOL(ktime_get_raw_and_real_ts64); | 
 |  | 
 | #endif /* CONFIG_NTP_PPS */ | 
 |  | 
 | /** | 
 |  * do_gettimeofday - Returns the time of day in a timeval | 
 |  * @tv:		pointer to the timeval to be set | 
 |  * | 
 |  * NOTE: Users should be converted to using getnstimeofday() | 
 |  */ | 
 | void do_gettimeofday(struct timeval *tv) | 
 | { | 
 | 	struct timespec64 now; | 
 |  | 
 | 	getnstimeofday64(&now); | 
 | 	tv->tv_sec = now.tv_sec; | 
 | 	tv->tv_usec = now.tv_nsec/1000; | 
 | } | 
 | EXPORT_SYMBOL(do_gettimeofday); | 
 |  | 
 | /** | 
 |  * do_settimeofday64 - Sets the time of day. | 
 |  * @ts:     pointer to the timespec64 variable containing the new time | 
 |  * | 
 |  * Sets the time of day to the new time and update NTP and notify hrtimers | 
 |  */ | 
 | int do_settimeofday64(const struct timespec64 *ts) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 | 	struct timespec64 ts_delta, xt; | 
 | 	unsigned long flags; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (!timespec64_valid_strict(ts)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	raw_spin_lock_irqsave(&timekeeper_lock, flags); | 
 | 	write_seqcount_begin(&tk_core.seq); | 
 |  | 
 | 	timekeeping_forward_now(tk); | 
 |  | 
 | 	xt = tk_xtime(tk); | 
 | 	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec; | 
 | 	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec; | 
 |  | 
 | 	if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) { | 
 | 		ret = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta)); | 
 |  | 
 | 	tk_set_xtime(tk, ts); | 
 | out: | 
 | 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); | 
 |  | 
 | 	write_seqcount_end(&tk_core.seq); | 
 | 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags); | 
 |  | 
 | 	/* signal hrtimers about time change */ | 
 | 	clock_was_set(); | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(do_settimeofday64); | 
 |  | 
 | /** | 
 |  * timekeeping_inject_offset - Adds or subtracts from the current time. | 
 |  * @tv:		pointer to the timespec variable containing the offset | 
 |  * | 
 |  * Adds or subtracts an offset value from the current time. | 
 |  */ | 
 | int timekeeping_inject_offset(struct timespec *ts) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 | 	unsigned long flags; | 
 | 	struct timespec64 ts64, tmp; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (!timespec_inject_offset_valid(ts)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	ts64 = timespec_to_timespec64(*ts); | 
 |  | 
 | 	raw_spin_lock_irqsave(&timekeeper_lock, flags); | 
 | 	write_seqcount_begin(&tk_core.seq); | 
 |  | 
 | 	timekeeping_forward_now(tk); | 
 |  | 
 | 	/* Make sure the proposed value is valid */ | 
 | 	tmp = timespec64_add(tk_xtime(tk),  ts64); | 
 | 	if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 || | 
 | 	    !timespec64_valid_strict(&tmp)) { | 
 | 		ret = -EINVAL; | 
 | 		goto error; | 
 | 	} | 
 |  | 
 | 	tk_xtime_add(tk, &ts64); | 
 | 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64)); | 
 |  | 
 | error: /* even if we error out, we forwarded the time, so call update */ | 
 | 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); | 
 |  | 
 | 	write_seqcount_end(&tk_core.seq); | 
 | 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags); | 
 |  | 
 | 	/* signal hrtimers about time change */ | 
 | 	clock_was_set(); | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(timekeeping_inject_offset); | 
 |  | 
 |  | 
 | /** | 
 |  * timekeeping_get_tai_offset - Returns current TAI offset from UTC | 
 |  * | 
 |  */ | 
 | s32 timekeeping_get_tai_offset(void) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 | 	unsigned int seq; | 
 | 	s32 ret; | 
 |  | 
 | 	do { | 
 | 		seq = read_seqcount_begin(&tk_core.seq); | 
 | 		ret = tk->tai_offset; | 
 | 	} while (read_seqcount_retry(&tk_core.seq, seq)); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * __timekeeping_set_tai_offset - Lock free worker function | 
 |  * | 
 |  */ | 
 | static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset) | 
 | { | 
 | 	tk->tai_offset = tai_offset; | 
 | 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0)); | 
 | } | 
 |  | 
 | /** | 
 |  * timekeeping_set_tai_offset - Sets the current TAI offset from UTC | 
 |  * | 
 |  */ | 
 | void timekeeping_set_tai_offset(s32 tai_offset) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 | 	unsigned long flags; | 
 |  | 
 | 	raw_spin_lock_irqsave(&timekeeper_lock, flags); | 
 | 	write_seqcount_begin(&tk_core.seq); | 
 | 	__timekeeping_set_tai_offset(tk, tai_offset); | 
 | 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); | 
 | 	write_seqcount_end(&tk_core.seq); | 
 | 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags); | 
 | 	clock_was_set(); | 
 | } | 
 |  | 
 | /** | 
 |  * change_clocksource - Swaps clocksources if a new one is available | 
 |  * | 
 |  * Accumulates current time interval and initializes new clocksource | 
 |  */ | 
 | static int change_clocksource(void *data) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 | 	struct clocksource *new, *old; | 
 | 	unsigned long flags; | 
 |  | 
 | 	new = (struct clocksource *) data; | 
 |  | 
 | 	raw_spin_lock_irqsave(&timekeeper_lock, flags); | 
 | 	write_seqcount_begin(&tk_core.seq); | 
 |  | 
 | 	timekeeping_forward_now(tk); | 
 | 	/* | 
 | 	 * If the cs is in module, get a module reference. Succeeds | 
 | 	 * for built-in code (owner == NULL) as well. | 
 | 	 */ | 
 | 	if (try_module_get(new->owner)) { | 
 | 		if (!new->enable || new->enable(new) == 0) { | 
 | 			old = tk->tkr_mono.clock; | 
 | 			tk_setup_internals(tk, new); | 
 | 			if (old->disable) | 
 | 				old->disable(old); | 
 | 			module_put(old->owner); | 
 | 		} else { | 
 | 			module_put(new->owner); | 
 | 		} | 
 | 	} | 
 | 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); | 
 |  | 
 | 	write_seqcount_end(&tk_core.seq); | 
 | 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * timekeeping_notify - Install a new clock source | 
 |  * @clock:		pointer to the clock source | 
 |  * | 
 |  * This function is called from clocksource.c after a new, better clock | 
 |  * source has been registered. The caller holds the clocksource_mutex. | 
 |  */ | 
 | int timekeeping_notify(struct clocksource *clock) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 |  | 
 | 	if (tk->tkr_mono.clock == clock) | 
 | 		return 0; | 
 | 	stop_machine(change_clocksource, clock, NULL); | 
 | 	tick_clock_notify(); | 
 | 	return tk->tkr_mono.clock == clock ? 0 : -1; | 
 | } | 
 |  | 
 | /** | 
 |  * getrawmonotonic64 - Returns the raw monotonic time in a timespec | 
 |  * @ts:		pointer to the timespec64 to be set | 
 |  * | 
 |  * Returns the raw monotonic time (completely un-modified by ntp) | 
 |  */ | 
 | void getrawmonotonic64(struct timespec64 *ts) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 | 	struct timespec64 ts64; | 
 | 	unsigned long seq; | 
 | 	s64 nsecs; | 
 |  | 
 | 	do { | 
 | 		seq = read_seqcount_begin(&tk_core.seq); | 
 | 		nsecs = timekeeping_get_ns(&tk->tkr_raw); | 
 | 		ts64 = tk->raw_time; | 
 |  | 
 | 	} while (read_seqcount_retry(&tk_core.seq, seq)); | 
 |  | 
 | 	timespec64_add_ns(&ts64, nsecs); | 
 | 	*ts = ts64; | 
 | } | 
 | EXPORT_SYMBOL(getrawmonotonic64); | 
 |  | 
 |  | 
 | /** | 
 |  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres | 
 |  */ | 
 | int timekeeping_valid_for_hres(void) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 | 	unsigned long seq; | 
 | 	int ret; | 
 |  | 
 | 	do { | 
 | 		seq = read_seqcount_begin(&tk_core.seq); | 
 |  | 
 | 		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; | 
 |  | 
 | 	} while (read_seqcount_retry(&tk_core.seq, seq)); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * timekeeping_max_deferment - Returns max time the clocksource can be deferred | 
 |  */ | 
 | u64 timekeeping_max_deferment(void) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 | 	unsigned long seq; | 
 | 	u64 ret; | 
 |  | 
 | 	do { | 
 | 		seq = read_seqcount_begin(&tk_core.seq); | 
 |  | 
 | 		ret = tk->tkr_mono.clock->max_idle_ns; | 
 |  | 
 | 	} while (read_seqcount_retry(&tk_core.seq, seq)); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * read_persistent_clock -  Return time from the persistent clock. | 
 |  * | 
 |  * Weak dummy function for arches that do not yet support it. | 
 |  * Reads the time from the battery backed persistent clock. | 
 |  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. | 
 |  * | 
 |  *  XXX - Do be sure to remove it once all arches implement it. | 
 |  */ | 
 | void __weak read_persistent_clock(struct timespec *ts) | 
 | { | 
 | 	ts->tv_sec = 0; | 
 | 	ts->tv_nsec = 0; | 
 | } | 
 |  | 
 | void __weak read_persistent_clock64(struct timespec64 *ts64) | 
 | { | 
 | 	struct timespec ts; | 
 |  | 
 | 	read_persistent_clock(&ts); | 
 | 	*ts64 = timespec_to_timespec64(ts); | 
 | } | 
 |  | 
 | /** | 
 |  * read_boot_clock64 -  Return time of the system start. | 
 |  * | 
 |  * Weak dummy function for arches that do not yet support it. | 
 |  * Function to read the exact time the system has been started. | 
 |  * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported. | 
 |  * | 
 |  *  XXX - Do be sure to remove it once all arches implement it. | 
 |  */ | 
 | void __weak read_boot_clock64(struct timespec64 *ts) | 
 | { | 
 | 	ts->tv_sec = 0; | 
 | 	ts->tv_nsec = 0; | 
 | } | 
 |  | 
 | /* Flag for if timekeeping_resume() has injected sleeptime */ | 
 | static bool sleeptime_injected; | 
 |  | 
 | /* Flag for if there is a persistent clock on this platform */ | 
 | static bool persistent_clock_exists; | 
 |  | 
 | /* | 
 |  * timekeeping_init - Initializes the clocksource and common timekeeping values | 
 |  */ | 
 | void __init timekeeping_init(void) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 | 	struct clocksource *clock; | 
 | 	unsigned long flags; | 
 | 	struct timespec64 now, boot, tmp; | 
 |  | 
 | 	read_persistent_clock64(&now); | 
 | 	if (!timespec64_valid_strict(&now)) { | 
 | 		pr_warn("WARNING: Persistent clock returned invalid value!\n" | 
 | 			"         Check your CMOS/BIOS settings.\n"); | 
 | 		now.tv_sec = 0; | 
 | 		now.tv_nsec = 0; | 
 | 	} else if (now.tv_sec || now.tv_nsec) | 
 | 		persistent_clock_exists = true; | 
 |  | 
 | 	read_boot_clock64(&boot); | 
 | 	if (!timespec64_valid_strict(&boot)) { | 
 | 		pr_warn("WARNING: Boot clock returned invalid value!\n" | 
 | 			"         Check your CMOS/BIOS settings.\n"); | 
 | 		boot.tv_sec = 0; | 
 | 		boot.tv_nsec = 0; | 
 | 	} | 
 |  | 
 | 	raw_spin_lock_irqsave(&timekeeper_lock, flags); | 
 | 	write_seqcount_begin(&tk_core.seq); | 
 | 	ntp_init(); | 
 |  | 
 | 	clock = clocksource_default_clock(); | 
 | 	if (clock->enable) | 
 | 		clock->enable(clock); | 
 | 	tk_setup_internals(tk, clock); | 
 |  | 
 | 	tk_set_xtime(tk, &now); | 
 | 	tk->raw_time.tv_sec = 0; | 
 | 	tk->raw_time.tv_nsec = 0; | 
 | 	if (boot.tv_sec == 0 && boot.tv_nsec == 0) | 
 | 		boot = tk_xtime(tk); | 
 |  | 
 | 	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec); | 
 | 	tk_set_wall_to_mono(tk, tmp); | 
 |  | 
 | 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); | 
 |  | 
 | 	write_seqcount_end(&tk_core.seq); | 
 | 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags); | 
 | } | 
 |  | 
 | /* time in seconds when suspend began for persistent clock */ | 
 | static struct timespec64 timekeeping_suspend_time; | 
 |  | 
 | /** | 
 |  * __timekeeping_inject_sleeptime - Internal function to add sleep interval | 
 |  * @delta: pointer to a timespec delta value | 
 |  * | 
 |  * Takes a timespec offset measuring a suspend interval and properly | 
 |  * adds the sleep offset to the timekeeping variables. | 
 |  */ | 
 | static void __timekeeping_inject_sleeptime(struct timekeeper *tk, | 
 | 					   struct timespec64 *delta) | 
 | { | 
 | 	if (!timespec64_valid_strict(delta)) { | 
 | 		printk_deferred(KERN_WARNING | 
 | 				"__timekeeping_inject_sleeptime: Invalid " | 
 | 				"sleep delta value!\n"); | 
 | 		return; | 
 | 	} | 
 | 	tk_xtime_add(tk, delta); | 
 | 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta)); | 
 | 	tk_update_sleep_time(tk, timespec64_to_ktime(*delta)); | 
 | 	tk_debug_account_sleep_time(delta); | 
 | } | 
 |  | 
 | #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) | 
 | /** | 
 |  * We have three kinds of time sources to use for sleep time | 
 |  * injection, the preference order is: | 
 |  * 1) non-stop clocksource | 
 |  * 2) persistent clock (ie: RTC accessible when irqs are off) | 
 |  * 3) RTC | 
 |  * | 
 |  * 1) and 2) are used by timekeeping, 3) by RTC subsystem. | 
 |  * If system has neither 1) nor 2), 3) will be used finally. | 
 |  * | 
 |  * | 
 |  * If timekeeping has injected sleeptime via either 1) or 2), | 
 |  * 3) becomes needless, so in this case we don't need to call | 
 |  * rtc_resume(), and this is what timekeeping_rtc_skipresume() | 
 |  * means. | 
 |  */ | 
 | bool timekeeping_rtc_skipresume(void) | 
 | { | 
 | 	return sleeptime_injected; | 
 | } | 
 |  | 
 | /** | 
 |  * 1) can be determined whether to use or not only when doing | 
 |  * timekeeping_resume() which is invoked after rtc_suspend(), | 
 |  * so we can't skip rtc_suspend() surely if system has 1). | 
 |  * | 
 |  * But if system has 2), 2) will definitely be used, so in this | 
 |  * case we don't need to call rtc_suspend(), and this is what | 
 |  * timekeeping_rtc_skipsuspend() means. | 
 |  */ | 
 | bool timekeeping_rtc_skipsuspend(void) | 
 | { | 
 | 	return persistent_clock_exists; | 
 | } | 
 |  | 
 | /** | 
 |  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values | 
 |  * @delta: pointer to a timespec64 delta value | 
 |  * | 
 |  * This hook is for architectures that cannot support read_persistent_clock64 | 
 |  * because their RTC/persistent clock is only accessible when irqs are enabled. | 
 |  * and also don't have an effective nonstop clocksource. | 
 |  * | 
 |  * This function should only be called by rtc_resume(), and allows | 
 |  * a suspend offset to be injected into the timekeeping values. | 
 |  */ | 
 | void timekeeping_inject_sleeptime64(struct timespec64 *delta) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 | 	unsigned long flags; | 
 |  | 
 | 	raw_spin_lock_irqsave(&timekeeper_lock, flags); | 
 | 	write_seqcount_begin(&tk_core.seq); | 
 |  | 
 | 	timekeeping_forward_now(tk); | 
 |  | 
 | 	__timekeeping_inject_sleeptime(tk, delta); | 
 |  | 
 | 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); | 
 |  | 
 | 	write_seqcount_end(&tk_core.seq); | 
 | 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags); | 
 |  | 
 | 	/* signal hrtimers about time change */ | 
 | 	clock_was_set(); | 
 | } | 
 | #endif | 
 |  | 
 | /** | 
 |  * timekeeping_resume - Resumes the generic timekeeping subsystem. | 
 |  */ | 
 | void timekeeping_resume(void) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 | 	struct clocksource *clock = tk->tkr_mono.clock; | 
 | 	unsigned long flags; | 
 | 	struct timespec64 ts_new, ts_delta; | 
 | 	cycle_t cycle_now, cycle_delta; | 
 |  | 
 | 	sleeptime_injected = false; | 
 | 	read_persistent_clock64(&ts_new); | 
 |  | 
 | 	clockevents_resume(); | 
 | 	clocksource_resume(); | 
 |  | 
 | 	raw_spin_lock_irqsave(&timekeeper_lock, flags); | 
 | 	write_seqcount_begin(&tk_core.seq); | 
 |  | 
 | 	/* | 
 | 	 * After system resumes, we need to calculate the suspended time and | 
 | 	 * compensate it for the OS time. There are 3 sources that could be | 
 | 	 * used: Nonstop clocksource during suspend, persistent clock and rtc | 
 | 	 * device. | 
 | 	 * | 
 | 	 * One specific platform may have 1 or 2 or all of them, and the | 
 | 	 * preference will be: | 
 | 	 *	suspend-nonstop clocksource -> persistent clock -> rtc | 
 | 	 * The less preferred source will only be tried if there is no better | 
 | 	 * usable source. The rtc part is handled separately in rtc core code. | 
 | 	 */ | 
 | 	cycle_now = tk->tkr_mono.read(clock); | 
 | 	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) && | 
 | 		cycle_now > tk->tkr_mono.cycle_last) { | 
 | 		u64 num, max = ULLONG_MAX; | 
 | 		u32 mult = clock->mult; | 
 | 		u32 shift = clock->shift; | 
 | 		s64 nsec = 0; | 
 |  | 
 | 		cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, | 
 | 						tk->tkr_mono.mask); | 
 |  | 
 | 		/* | 
 | 		 * "cycle_delta * mutl" may cause 64 bits overflow, if the | 
 | 		 * suspended time is too long. In that case we need do the | 
 | 		 * 64 bits math carefully | 
 | 		 */ | 
 | 		do_div(max, mult); | 
 | 		if (cycle_delta > max) { | 
 | 			num = div64_u64(cycle_delta, max); | 
 | 			nsec = (((u64) max * mult) >> shift) * num; | 
 | 			cycle_delta -= num * max; | 
 | 		} | 
 | 		nsec += ((u64) cycle_delta * mult) >> shift; | 
 |  | 
 | 		ts_delta = ns_to_timespec64(nsec); | 
 | 		sleeptime_injected = true; | 
 | 	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) { | 
 | 		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time); | 
 | 		sleeptime_injected = true; | 
 | 	} | 
 |  | 
 | 	if (sleeptime_injected) | 
 | 		__timekeeping_inject_sleeptime(tk, &ts_delta); | 
 |  | 
 | 	/* Re-base the last cycle value */ | 
 | 	tk->tkr_mono.cycle_last = cycle_now; | 
 | 	tk->tkr_raw.cycle_last  = cycle_now; | 
 |  | 
 | 	tk->ntp_error = 0; | 
 | 	timekeeping_suspended = 0; | 
 | 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); | 
 | 	write_seqcount_end(&tk_core.seq); | 
 | 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags); | 
 |  | 
 | 	touch_softlockup_watchdog(); | 
 |  | 
 | 	tick_resume(); | 
 | 	hrtimers_resume(); | 
 | } | 
 |  | 
 | int timekeeping_suspend(void) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 | 	unsigned long flags; | 
 | 	struct timespec64		delta, delta_delta; | 
 | 	static struct timespec64	old_delta; | 
 |  | 
 | 	read_persistent_clock64(&timekeeping_suspend_time); | 
 |  | 
 | 	/* | 
 | 	 * On some systems the persistent_clock can not be detected at | 
 | 	 * timekeeping_init by its return value, so if we see a valid | 
 | 	 * value returned, update the persistent_clock_exists flag. | 
 | 	 */ | 
 | 	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec) | 
 | 		persistent_clock_exists = true; | 
 |  | 
 | 	raw_spin_lock_irqsave(&timekeeper_lock, flags); | 
 | 	write_seqcount_begin(&tk_core.seq); | 
 | 	timekeeping_forward_now(tk); | 
 | 	timekeeping_suspended = 1; | 
 |  | 
 | 	if (persistent_clock_exists) { | 
 | 		/* | 
 | 		 * To avoid drift caused by repeated suspend/resumes, | 
 | 		 * which each can add ~1 second drift error, | 
 | 		 * try to compensate so the difference in system time | 
 | 		 * and persistent_clock time stays close to constant. | 
 | 		 */ | 
 | 		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time); | 
 | 		delta_delta = timespec64_sub(delta, old_delta); | 
 | 		if (abs(delta_delta.tv_sec) >= 2) { | 
 | 			/* | 
 | 			 * if delta_delta is too large, assume time correction | 
 | 			 * has occurred and set old_delta to the current delta. | 
 | 			 */ | 
 | 			old_delta = delta; | 
 | 		} else { | 
 | 			/* Otherwise try to adjust old_system to compensate */ | 
 | 			timekeeping_suspend_time = | 
 | 				timespec64_add(timekeeping_suspend_time, delta_delta); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	timekeeping_update(tk, TK_MIRROR); | 
 | 	halt_fast_timekeeper(tk); | 
 | 	write_seqcount_end(&tk_core.seq); | 
 | 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags); | 
 |  | 
 | 	tick_suspend(); | 
 | 	clocksource_suspend(); | 
 | 	clockevents_suspend(); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* sysfs resume/suspend bits for timekeeping */ | 
 | static struct syscore_ops timekeeping_syscore_ops = { | 
 | 	.resume		= timekeeping_resume, | 
 | 	.suspend	= timekeeping_suspend, | 
 | }; | 
 |  | 
 | static int __init timekeeping_init_ops(void) | 
 | { | 
 | 	register_syscore_ops(&timekeeping_syscore_ops); | 
 | 	return 0; | 
 | } | 
 | device_initcall(timekeeping_init_ops); | 
 |  | 
 | /* | 
 |  * Apply a multiplier adjustment to the timekeeper | 
 |  */ | 
 | static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk, | 
 | 							 s64 offset, | 
 | 							 bool negative, | 
 | 							 int adj_scale) | 
 | { | 
 | 	s64 interval = tk->cycle_interval; | 
 | 	s32 mult_adj = 1; | 
 |  | 
 | 	if (negative) { | 
 | 		mult_adj = -mult_adj; | 
 | 		interval = -interval; | 
 | 		offset  = -offset; | 
 | 	} | 
 | 	mult_adj <<= adj_scale; | 
 | 	interval <<= adj_scale; | 
 | 	offset <<= adj_scale; | 
 |  | 
 | 	/* | 
 | 	 * So the following can be confusing. | 
 | 	 * | 
 | 	 * To keep things simple, lets assume mult_adj == 1 for now. | 
 | 	 * | 
 | 	 * When mult_adj != 1, remember that the interval and offset values | 
 | 	 * have been appropriately scaled so the math is the same. | 
 | 	 * | 
 | 	 * The basic idea here is that we're increasing the multiplier | 
 | 	 * by one, this causes the xtime_interval to be incremented by | 
 | 	 * one cycle_interval. This is because: | 
 | 	 *	xtime_interval = cycle_interval * mult | 
 | 	 * So if mult is being incremented by one: | 
 | 	 *	xtime_interval = cycle_interval * (mult + 1) | 
 | 	 * Its the same as: | 
 | 	 *	xtime_interval = (cycle_interval * mult) + cycle_interval | 
 | 	 * Which can be shortened to: | 
 | 	 *	xtime_interval += cycle_interval | 
 | 	 * | 
 | 	 * So offset stores the non-accumulated cycles. Thus the current | 
 | 	 * time (in shifted nanoseconds) is: | 
 | 	 *	now = (offset * adj) + xtime_nsec | 
 | 	 * Now, even though we're adjusting the clock frequency, we have | 
 | 	 * to keep time consistent. In other words, we can't jump back | 
 | 	 * in time, and we also want to avoid jumping forward in time. | 
 | 	 * | 
 | 	 * So given the same offset value, we need the time to be the same | 
 | 	 * both before and after the freq adjustment. | 
 | 	 *	now = (offset * adj_1) + xtime_nsec_1 | 
 | 	 *	now = (offset * adj_2) + xtime_nsec_2 | 
 | 	 * So: | 
 | 	 *	(offset * adj_1) + xtime_nsec_1 = | 
 | 	 *		(offset * adj_2) + xtime_nsec_2 | 
 | 	 * And we know: | 
 | 	 *	adj_2 = adj_1 + 1 | 
 | 	 * So: | 
 | 	 *	(offset * adj_1) + xtime_nsec_1 = | 
 | 	 *		(offset * (adj_1+1)) + xtime_nsec_2 | 
 | 	 *	(offset * adj_1) + xtime_nsec_1 = | 
 | 	 *		(offset * adj_1) + offset + xtime_nsec_2 | 
 | 	 * Canceling the sides: | 
 | 	 *	xtime_nsec_1 = offset + xtime_nsec_2 | 
 | 	 * Which gives us: | 
 | 	 *	xtime_nsec_2 = xtime_nsec_1 - offset | 
 | 	 * Which simplfies to: | 
 | 	 *	xtime_nsec -= offset | 
 | 	 * | 
 | 	 * XXX - TODO: Doc ntp_error calculation. | 
 | 	 */ | 
 | 	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) { | 
 | 		/* NTP adjustment caused clocksource mult overflow */ | 
 | 		WARN_ON_ONCE(1); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	tk->tkr_mono.mult += mult_adj; | 
 | 	tk->xtime_interval += interval; | 
 | 	tk->tkr_mono.xtime_nsec -= offset; | 
 | 	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift; | 
 | } | 
 |  | 
 | /* | 
 |  * Calculate the multiplier adjustment needed to match the frequency | 
 |  * specified by NTP | 
 |  */ | 
 | static __always_inline void timekeeping_freqadjust(struct timekeeper *tk, | 
 | 							s64 offset) | 
 | { | 
 | 	s64 interval = tk->cycle_interval; | 
 | 	s64 xinterval = tk->xtime_interval; | 
 | 	u32 base = tk->tkr_mono.clock->mult; | 
 | 	u32 max = tk->tkr_mono.clock->maxadj; | 
 | 	u32 cur_adj = tk->tkr_mono.mult; | 
 | 	s64 tick_error; | 
 | 	bool negative; | 
 | 	u32 adj_scale; | 
 |  | 
 | 	/* Remove any current error adj from freq calculation */ | 
 | 	if (tk->ntp_err_mult) | 
 | 		xinterval -= tk->cycle_interval; | 
 |  | 
 | 	tk->ntp_tick = ntp_tick_length(); | 
 |  | 
 | 	/* Calculate current error per tick */ | 
 | 	tick_error = ntp_tick_length() >> tk->ntp_error_shift; | 
 | 	tick_error -= (xinterval + tk->xtime_remainder); | 
 |  | 
 | 	/* Don't worry about correcting it if its small */ | 
 | 	if (likely((tick_error >= 0) && (tick_error <= interval))) | 
 | 		return; | 
 |  | 
 | 	/* preserve the direction of correction */ | 
 | 	negative = (tick_error < 0); | 
 |  | 
 | 	/* If any adjustment would pass the max, just return */ | 
 | 	if (negative && (cur_adj - 1) <= (base - max)) | 
 | 		return; | 
 | 	if (!negative && (cur_adj + 1) >= (base + max)) | 
 | 		return; | 
 | 	/* | 
 | 	 * Sort out the magnitude of the correction, but | 
 | 	 * avoid making so large a correction that we go | 
 | 	 * over the max adjustment. | 
 | 	 */ | 
 | 	adj_scale = 0; | 
 | 	tick_error = abs(tick_error); | 
 | 	while (tick_error > interval) { | 
 | 		u32 adj = 1 << (adj_scale + 1); | 
 |  | 
 | 		/* Check if adjustment gets us within 1 unit from the max */ | 
 | 		if (negative && (cur_adj - adj) <= (base - max)) | 
 | 			break; | 
 | 		if (!negative && (cur_adj + adj) >= (base + max)) | 
 | 			break; | 
 |  | 
 | 		adj_scale++; | 
 | 		tick_error >>= 1; | 
 | 	} | 
 |  | 
 | 	/* scale the corrections */ | 
 | 	timekeeping_apply_adjustment(tk, offset, negative, adj_scale); | 
 | } | 
 |  | 
 | /* | 
 |  * Adjust the timekeeper's multiplier to the correct frequency | 
 |  * and also to reduce the accumulated error value. | 
 |  */ | 
 | static void timekeeping_adjust(struct timekeeper *tk, s64 offset) | 
 | { | 
 | 	/* Correct for the current frequency error */ | 
 | 	timekeeping_freqadjust(tk, offset); | 
 |  | 
 | 	/* Next make a small adjustment to fix any cumulative error */ | 
 | 	if (!tk->ntp_err_mult && (tk->ntp_error > 0)) { | 
 | 		tk->ntp_err_mult = 1; | 
 | 		timekeeping_apply_adjustment(tk, offset, 0, 0); | 
 | 	} else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) { | 
 | 		/* Undo any existing error adjustment */ | 
 | 		timekeeping_apply_adjustment(tk, offset, 1, 0); | 
 | 		tk->ntp_err_mult = 0; | 
 | 	} | 
 |  | 
 | 	if (unlikely(tk->tkr_mono.clock->maxadj && | 
 | 		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult) | 
 | 			> tk->tkr_mono.clock->maxadj))) { | 
 | 		printk_once(KERN_WARNING | 
 | 			"Adjusting %s more than 11%% (%ld vs %ld)\n", | 
 | 			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult, | 
 | 			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * It may be possible that when we entered this function, xtime_nsec | 
 | 	 * was very small.  Further, if we're slightly speeding the clocksource | 
 | 	 * in the code above, its possible the required corrective factor to | 
 | 	 * xtime_nsec could cause it to underflow. | 
 | 	 * | 
 | 	 * Now, since we already accumulated the second, cannot simply roll | 
 | 	 * the accumulated second back, since the NTP subsystem has been | 
 | 	 * notified via second_overflow. So instead we push xtime_nsec forward | 
 | 	 * by the amount we underflowed, and add that amount into the error. | 
 | 	 * | 
 | 	 * We'll correct this error next time through this function, when | 
 | 	 * xtime_nsec is not as small. | 
 | 	 */ | 
 | 	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) { | 
 | 		s64 neg = -(s64)tk->tkr_mono.xtime_nsec; | 
 | 		tk->tkr_mono.xtime_nsec = 0; | 
 | 		tk->ntp_error += neg << tk->ntp_error_shift; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * accumulate_nsecs_to_secs - Accumulates nsecs into secs | 
 |  * | 
 |  * Helper function that accumulates the nsecs greater than a second | 
 |  * from the xtime_nsec field to the xtime_secs field. | 
 |  * It also calls into the NTP code to handle leapsecond processing. | 
 |  * | 
 |  */ | 
 | static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk) | 
 | { | 
 | 	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift; | 
 | 	unsigned int clock_set = 0; | 
 |  | 
 | 	while (tk->tkr_mono.xtime_nsec >= nsecps) { | 
 | 		int leap; | 
 |  | 
 | 		tk->tkr_mono.xtime_nsec -= nsecps; | 
 | 		tk->xtime_sec++; | 
 |  | 
 | 		/* Figure out if its a leap sec and apply if needed */ | 
 | 		leap = second_overflow(tk->xtime_sec); | 
 | 		if (unlikely(leap)) { | 
 | 			struct timespec64 ts; | 
 |  | 
 | 			tk->xtime_sec += leap; | 
 |  | 
 | 			ts.tv_sec = leap; | 
 | 			ts.tv_nsec = 0; | 
 | 			tk_set_wall_to_mono(tk, | 
 | 				timespec64_sub(tk->wall_to_monotonic, ts)); | 
 |  | 
 | 			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap); | 
 |  | 
 | 			clock_set = TK_CLOCK_WAS_SET; | 
 | 		} | 
 | 	} | 
 | 	return clock_set; | 
 | } | 
 |  | 
 | /** | 
 |  * logarithmic_accumulation - shifted accumulation of cycles | 
 |  * | 
 |  * This functions accumulates a shifted interval of cycles into | 
 |  * into a shifted interval nanoseconds. Allows for O(log) accumulation | 
 |  * loop. | 
 |  * | 
 |  * Returns the unconsumed cycles. | 
 |  */ | 
 | static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset, | 
 | 						u32 shift, | 
 | 						unsigned int *clock_set) | 
 | { | 
 | 	cycle_t interval = tk->cycle_interval << shift; | 
 | 	u64 raw_nsecs; | 
 |  | 
 | 	/* If the offset is smaller than a shifted interval, do nothing */ | 
 | 	if (offset < interval) | 
 | 		return offset; | 
 |  | 
 | 	/* Accumulate one shifted interval */ | 
 | 	offset -= interval; | 
 | 	tk->tkr_mono.cycle_last += interval; | 
 | 	tk->tkr_raw.cycle_last  += interval; | 
 |  | 
 | 	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift; | 
 | 	*clock_set |= accumulate_nsecs_to_secs(tk); | 
 |  | 
 | 	/* Accumulate raw time */ | 
 | 	raw_nsecs = (u64)tk->raw_interval << shift; | 
 | 	raw_nsecs += tk->raw_time.tv_nsec; | 
 | 	if (raw_nsecs >= NSEC_PER_SEC) { | 
 | 		u64 raw_secs = raw_nsecs; | 
 | 		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC); | 
 | 		tk->raw_time.tv_sec += raw_secs; | 
 | 	} | 
 | 	tk->raw_time.tv_nsec = raw_nsecs; | 
 |  | 
 | 	/* Accumulate error between NTP and clock interval */ | 
 | 	tk->ntp_error += tk->ntp_tick << shift; | 
 | 	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << | 
 | 						(tk->ntp_error_shift + shift); | 
 |  | 
 | 	return offset; | 
 | } | 
 |  | 
 | /** | 
 |  * update_wall_time - Uses the current clocksource to increment the wall time | 
 |  * | 
 |  */ | 
 | void update_wall_time(void) | 
 | { | 
 | 	struct timekeeper *real_tk = &tk_core.timekeeper; | 
 | 	struct timekeeper *tk = &shadow_timekeeper; | 
 | 	cycle_t offset; | 
 | 	int shift = 0, maxshift; | 
 | 	unsigned int clock_set = 0; | 
 | 	unsigned long flags; | 
 |  | 
 | 	raw_spin_lock_irqsave(&timekeeper_lock, flags); | 
 |  | 
 | 	/* Make sure we're fully resumed: */ | 
 | 	if (unlikely(timekeeping_suspended)) | 
 | 		goto out; | 
 |  | 
 | #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET | 
 | 	offset = real_tk->cycle_interval; | 
 | #else | 
 | 	offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock), | 
 | 				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask); | 
 | #endif | 
 |  | 
 | 	/* Check if there's really nothing to do */ | 
 | 	if (offset < real_tk->cycle_interval) | 
 | 		goto out; | 
 |  | 
 | 	/* Do some additional sanity checking */ | 
 | 	timekeeping_check_update(real_tk, offset); | 
 |  | 
 | 	/* | 
 | 	 * With NO_HZ we may have to accumulate many cycle_intervals | 
 | 	 * (think "ticks") worth of time at once. To do this efficiently, | 
 | 	 * we calculate the largest doubling multiple of cycle_intervals | 
 | 	 * that is smaller than the offset.  We then accumulate that | 
 | 	 * chunk in one go, and then try to consume the next smaller | 
 | 	 * doubled multiple. | 
 | 	 */ | 
 | 	shift = ilog2(offset) - ilog2(tk->cycle_interval); | 
 | 	shift = max(0, shift); | 
 | 	/* Bound shift to one less than what overflows tick_length */ | 
 | 	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; | 
 | 	shift = min(shift, maxshift); | 
 | 	while (offset >= tk->cycle_interval) { | 
 | 		offset = logarithmic_accumulation(tk, offset, shift, | 
 | 							&clock_set); | 
 | 		if (offset < tk->cycle_interval<<shift) | 
 | 			shift--; | 
 | 	} | 
 |  | 
 | 	/* correct the clock when NTP error is too big */ | 
 | 	timekeeping_adjust(tk, offset); | 
 |  | 
 | 	/* | 
 | 	 * XXX This can be killed once everyone converts | 
 | 	 * to the new update_vsyscall. | 
 | 	 */ | 
 | 	old_vsyscall_fixup(tk); | 
 |  | 
 | 	/* | 
 | 	 * Finally, make sure that after the rounding | 
 | 	 * xtime_nsec isn't larger than NSEC_PER_SEC | 
 | 	 */ | 
 | 	clock_set |= accumulate_nsecs_to_secs(tk); | 
 |  | 
 | 	write_seqcount_begin(&tk_core.seq); | 
 | 	/* | 
 | 	 * Update the real timekeeper. | 
 | 	 * | 
 | 	 * We could avoid this memcpy by switching pointers, but that | 
 | 	 * requires changes to all other timekeeper usage sites as | 
 | 	 * well, i.e. move the timekeeper pointer getter into the | 
 | 	 * spinlocked/seqcount protected sections. And we trade this | 
 | 	 * memcpy under the tk_core.seq against one before we start | 
 | 	 * updating. | 
 | 	 */ | 
 | 	timekeeping_update(tk, clock_set); | 
 | 	memcpy(real_tk, tk, sizeof(*tk)); | 
 | 	/* The memcpy must come last. Do not put anything here! */ | 
 | 	write_seqcount_end(&tk_core.seq); | 
 | out: | 
 | 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags); | 
 | 	if (clock_set) | 
 | 		/* Have to call _delayed version, since in irq context*/ | 
 | 		clock_was_set_delayed(); | 
 | } | 
 |  | 
 | /** | 
 |  * getboottime64 - Return the real time of system boot. | 
 |  * @ts:		pointer to the timespec64 to be set | 
 |  * | 
 |  * Returns the wall-time of boot in a timespec64. | 
 |  * | 
 |  * This is based on the wall_to_monotonic offset and the total suspend | 
 |  * time. Calls to settimeofday will affect the value returned (which | 
 |  * basically means that however wrong your real time clock is at boot time, | 
 |  * you get the right time here). | 
 |  */ | 
 | void getboottime64(struct timespec64 *ts) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 | 	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot); | 
 |  | 
 | 	*ts = ktime_to_timespec64(t); | 
 | } | 
 | EXPORT_SYMBOL_GPL(getboottime64); | 
 |  | 
 | unsigned long get_seconds(void) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 |  | 
 | 	return tk->xtime_sec; | 
 | } | 
 | EXPORT_SYMBOL(get_seconds); | 
 |  | 
 | struct timespec __current_kernel_time(void) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 |  | 
 | 	return timespec64_to_timespec(tk_xtime(tk)); | 
 | } | 
 |  | 
 | struct timespec64 current_kernel_time64(void) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 | 	struct timespec64 now; | 
 | 	unsigned long seq; | 
 |  | 
 | 	do { | 
 | 		seq = read_seqcount_begin(&tk_core.seq); | 
 |  | 
 | 		now = tk_xtime(tk); | 
 | 	} while (read_seqcount_retry(&tk_core.seq, seq)); | 
 |  | 
 | 	return now; | 
 | } | 
 | EXPORT_SYMBOL(current_kernel_time64); | 
 |  | 
 | struct timespec64 get_monotonic_coarse64(void) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 | 	struct timespec64 now, mono; | 
 | 	unsigned long seq; | 
 |  | 
 | 	do { | 
 | 		seq = read_seqcount_begin(&tk_core.seq); | 
 |  | 
 | 		now = tk_xtime(tk); | 
 | 		mono = tk->wall_to_monotonic; | 
 | 	} while (read_seqcount_retry(&tk_core.seq, seq)); | 
 |  | 
 | 	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec, | 
 | 				now.tv_nsec + mono.tv_nsec); | 
 |  | 
 | 	return now; | 
 | } | 
 |  | 
 | /* | 
 |  * Must hold jiffies_lock | 
 |  */ | 
 | void do_timer(unsigned long ticks) | 
 | { | 
 | 	jiffies_64 += ticks; | 
 | 	calc_global_load(ticks); | 
 | } | 
 |  | 
 | /** | 
 |  * ktime_get_update_offsets_now - hrtimer helper | 
 |  * @cwsseq:	pointer to check and store the clock was set sequence number | 
 |  * @offs_real:	pointer to storage for monotonic -> realtime offset | 
 |  * @offs_boot:	pointer to storage for monotonic -> boottime offset | 
 |  * @offs_tai:	pointer to storage for monotonic -> clock tai offset | 
 |  * | 
 |  * Returns current monotonic time and updates the offsets if the | 
 |  * sequence number in @cwsseq and timekeeper.clock_was_set_seq are | 
 |  * different. | 
 |  * | 
 |  * Called from hrtimer_interrupt() or retrigger_next_event() | 
 |  */ | 
 | ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real, | 
 | 				     ktime_t *offs_boot, ktime_t *offs_tai) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 | 	unsigned int seq; | 
 | 	ktime_t base; | 
 | 	u64 nsecs; | 
 |  | 
 | 	do { | 
 | 		seq = read_seqcount_begin(&tk_core.seq); | 
 |  | 
 | 		base = tk->tkr_mono.base; | 
 | 		nsecs = timekeeping_get_ns(&tk->tkr_mono); | 
 | 		base = ktime_add_ns(base, nsecs); | 
 |  | 
 | 		if (*cwsseq != tk->clock_was_set_seq) { | 
 | 			*cwsseq = tk->clock_was_set_seq; | 
 | 			*offs_real = tk->offs_real; | 
 | 			*offs_boot = tk->offs_boot; | 
 | 			*offs_tai = tk->offs_tai; | 
 | 		} | 
 |  | 
 | 		/* Handle leapsecond insertion adjustments */ | 
 | 		if (unlikely(base.tv64 >= tk->next_leap_ktime.tv64)) | 
 | 			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0)); | 
 |  | 
 | 	} while (read_seqcount_retry(&tk_core.seq, seq)); | 
 |  | 
 | 	return base; | 
 | } | 
 |  | 
 | /** | 
 |  * do_adjtimex() - Accessor function to NTP __do_adjtimex function | 
 |  */ | 
 | int do_adjtimex(struct timex *txc) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 | 	unsigned long flags; | 
 | 	struct timespec64 ts; | 
 | 	s32 orig_tai, tai; | 
 | 	int ret; | 
 |  | 
 | 	/* Validate the data before disabling interrupts */ | 
 | 	ret = ntp_validate_timex(txc); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	if (txc->modes & ADJ_SETOFFSET) { | 
 | 		struct timespec delta; | 
 | 		delta.tv_sec  = txc->time.tv_sec; | 
 | 		delta.tv_nsec = txc->time.tv_usec; | 
 | 		if (!(txc->modes & ADJ_NANO)) | 
 | 			delta.tv_nsec *= 1000; | 
 | 		ret = timekeeping_inject_offset(&delta); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	getnstimeofday64(&ts); | 
 |  | 
 | 	raw_spin_lock_irqsave(&timekeeper_lock, flags); | 
 | 	write_seqcount_begin(&tk_core.seq); | 
 |  | 
 | 	orig_tai = tai = tk->tai_offset; | 
 | 	ret = __do_adjtimex(txc, &ts, &tai); | 
 |  | 
 | 	if (tai != orig_tai) { | 
 | 		__timekeeping_set_tai_offset(tk, tai); | 
 | 		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); | 
 | 	} | 
 | 	tk_update_leap_state(tk); | 
 |  | 
 | 	write_seqcount_end(&tk_core.seq); | 
 | 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags); | 
 |  | 
 | 	if (tai != orig_tai) | 
 | 		clock_was_set(); | 
 |  | 
 | 	ntp_notify_cmos_timer(); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | #ifdef CONFIG_NTP_PPS | 
 | /** | 
 |  * hardpps() - Accessor function to NTP __hardpps function | 
 |  */ | 
 | void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	raw_spin_lock_irqsave(&timekeeper_lock, flags); | 
 | 	write_seqcount_begin(&tk_core.seq); | 
 |  | 
 | 	__hardpps(phase_ts, raw_ts); | 
 |  | 
 | 	write_seqcount_end(&tk_core.seq); | 
 | 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags); | 
 | } | 
 | EXPORT_SYMBOL(hardpps); | 
 | #endif | 
 |  | 
 | /** | 
 |  * xtime_update() - advances the timekeeping infrastructure | 
 |  * @ticks:	number of ticks, that have elapsed since the last call. | 
 |  * | 
 |  * Must be called with interrupts disabled. | 
 |  */ | 
 | void xtime_update(unsigned long ticks) | 
 | { | 
 | 	write_seqlock(&jiffies_lock); | 
 | 	do_timer(ticks); | 
 | 	write_sequnlock(&jiffies_lock); | 
 | 	update_wall_time(); | 
 | } |