blob: 8d1c79aaca07d7c2ef5abcff55677b9c29d51bf0 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2021 Aspeed Technology Inc.
*/
#include <crypto/engine.h>
#include <crypto/internal/akcipher.h>
#include <crypto/internal/rsa.h>
#include <crypto/scatterwalk.h>
#include <linux/clk.h>
#include <linux/count_zeros.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <linux/string.h>
#ifdef CONFIG_CRYPTO_DEV_ASPEED_DEBUG
#define ACRY_DBG(d, fmt, ...) \
dev_info((d)->dev, "%s() " fmt, __func__, ##__VA_ARGS__)
#else
#define ACRY_DBG(d, fmt, ...) \
dev_dbg((d)->dev, "%s() " fmt, __func__, ##__VA_ARGS__)
#endif
/*****************************
* *
* ACRY register definitions *
* *
* ***************************/
#define ASPEED_ACRY_TRIGGER 0x000 /* ACRY Engine Control: trigger */
#define ASPEED_ACRY_DMA_CMD 0x048 /* ACRY Engine Control: Command */
#define ASPEED_ACRY_DMA_SRC_BASE 0x04C /* ACRY DRAM base address for DMA */
#define ASPEED_ACRY_DMA_LEN 0x050 /* ACRY Data Length of DMA */
#define ASPEED_ACRY_RSA_KEY_LEN 0x058 /* ACRY RSA Exp/Mod Key Length (Bits) */
#define ASPEED_ACRY_INT_MASK 0x3F8 /* ACRY Interrupt Mask */
#define ASPEED_ACRY_STATUS 0x3FC /* ACRY Interrupt Status */
/* rsa trigger */
#define ACRY_CMD_RSA_TRIGGER BIT(0)
#define ACRY_CMD_DMA_RSA_TRIGGER BIT(1)
/* rsa dma cmd */
#define ACRY_CMD_DMA_SRAM_MODE_RSA (0x3 << 4)
#define ACRY_CMD_DMEM_AHB BIT(8)
#define ACRY_CMD_DMA_SRAM_AHB_ENGINE 0
/* rsa key len */
#define RSA_E_BITS_LEN(x) ((x) << 16)
#define RSA_M_BITS_LEN(x) (x)
/* acry isr */
#define ACRY_RSA_ISR BIT(1)
#define ASPEED_ACRY_BUFF_SIZE 0x1800 /* DMA buffer size */
#define ASPEED_ACRY_SRAM_MAX_LEN 2048 /* ACRY SRAM maximum length (Bytes) */
#define ASPEED_ACRY_RSA_MAX_KEY_LEN 512 /* ACRY RSA maximum key length (Bytes) */
#define CRYPTO_FLAGS_BUSY BIT(1)
#define BYTES_PER_DWORD 4
/*****************************
* *
* AHBC register definitions *
* *
* ***************************/
#define AHBC_REGION_PROT 0x240
#define REGION_ACRYM BIT(23)
#define ast_acry_write(acry, val, offset) \
writel((val), (acry)->regs + (offset))
#define ast_acry_read(acry, offset) \
readl((acry)->regs + (offset))
struct aspeed_acry_dev;
typedef int (*aspeed_acry_fn_t)(struct aspeed_acry_dev *);
struct aspeed_acry_dev {
void __iomem *regs;
struct device *dev;
int irq;
struct clk *clk;
struct regmap *ahbc;
struct akcipher_request *req;
struct tasklet_struct done_task;
aspeed_acry_fn_t resume;
unsigned long flags;
/* ACRY output SRAM buffer */
void __iomem *acry_sram;
/* ACRY input DMA buffer */
void *buf_addr;
dma_addr_t buf_dma_addr;
struct crypto_engine *crypt_engine_rsa;
/* ACRY SRAM memory mapped */
int exp_dw_mapping[ASPEED_ACRY_RSA_MAX_KEY_LEN];
int mod_dw_mapping[ASPEED_ACRY_RSA_MAX_KEY_LEN];
int data_byte_mapping[ASPEED_ACRY_SRAM_MAX_LEN];
};
struct aspeed_acry_ctx {
struct aspeed_acry_dev *acry_dev;
struct rsa_key key;
int enc;
u8 *n;
u8 *e;
u8 *d;
size_t n_sz;
size_t e_sz;
size_t d_sz;
aspeed_acry_fn_t trigger;
struct crypto_akcipher *fallback_tfm;
};
struct aspeed_acry_alg {
struct aspeed_acry_dev *acry_dev;
struct akcipher_engine_alg akcipher;
};
enum aspeed_rsa_key_mode {
ASPEED_RSA_EXP_MODE = 0,
ASPEED_RSA_MOD_MODE,
ASPEED_RSA_DATA_MODE,
};
static inline struct akcipher_request *
akcipher_request_cast(struct crypto_async_request *req)
{
return container_of(req, struct akcipher_request, base);
}
static int aspeed_acry_do_fallback(struct akcipher_request *req)
{
struct crypto_akcipher *cipher = crypto_akcipher_reqtfm(req);
struct aspeed_acry_ctx *ctx = akcipher_tfm_ctx(cipher);
int err;
akcipher_request_set_tfm(req, ctx->fallback_tfm);
if (ctx->enc)
err = crypto_akcipher_encrypt(req);
else
err = crypto_akcipher_decrypt(req);
akcipher_request_set_tfm(req, cipher);
return err;
}
static bool aspeed_acry_need_fallback(struct akcipher_request *req)
{
struct crypto_akcipher *cipher = crypto_akcipher_reqtfm(req);
struct aspeed_acry_ctx *ctx = akcipher_tfm_ctx(cipher);
return ctx->key.n_sz > ASPEED_ACRY_RSA_MAX_KEY_LEN;
}
static int aspeed_acry_handle_queue(struct aspeed_acry_dev *acry_dev,
struct akcipher_request *req)
{
if (aspeed_acry_need_fallback(req)) {
ACRY_DBG(acry_dev, "SW fallback\n");
return aspeed_acry_do_fallback(req);
}
return crypto_transfer_akcipher_request_to_engine(acry_dev->crypt_engine_rsa, req);
}
static int aspeed_acry_do_request(struct crypto_engine *engine, void *areq)
{
struct akcipher_request *req = akcipher_request_cast(areq);
struct crypto_akcipher *cipher = crypto_akcipher_reqtfm(req);
struct aspeed_acry_ctx *ctx = akcipher_tfm_ctx(cipher);
struct aspeed_acry_dev *acry_dev = ctx->acry_dev;
acry_dev->req = req;
acry_dev->flags |= CRYPTO_FLAGS_BUSY;
return ctx->trigger(acry_dev);
}
static int aspeed_acry_complete(struct aspeed_acry_dev *acry_dev, int err)
{
struct akcipher_request *req = acry_dev->req;
acry_dev->flags &= ~CRYPTO_FLAGS_BUSY;
crypto_finalize_akcipher_request(acry_dev->crypt_engine_rsa, req, err);
return err;
}
/*
* Copy Data to DMA buffer for engine used.
*/
static void aspeed_acry_rsa_sg_copy_to_buffer(struct aspeed_acry_dev *acry_dev,
u8 *buf, struct scatterlist *src,
size_t nbytes)
{
static u8 dram_buffer[ASPEED_ACRY_SRAM_MAX_LEN];
int i = 0, j;
int data_idx;
ACRY_DBG(acry_dev, "\n");
scatterwalk_map_and_copy(dram_buffer, src, 0, nbytes, 0);
for (j = nbytes - 1; j >= 0; j--) {
data_idx = acry_dev->data_byte_mapping[i];
buf[data_idx] = dram_buffer[j];
i++;
}
for (; i < ASPEED_ACRY_SRAM_MAX_LEN; i++) {
data_idx = acry_dev->data_byte_mapping[i];
buf[data_idx] = 0;
}
}
/*
* Copy Exp/Mod to DMA buffer for engine used.
*
* Params:
* - mode 0 : Exponential
* - mode 1 : Modulus
*
* Example:
* - DRAM memory layout:
* D[0], D[4], D[8], D[12]
* - ACRY SRAM memory layout should reverse the order of source data:
* D[12], D[8], D[4], D[0]
*/
static int aspeed_acry_rsa_ctx_copy(struct aspeed_acry_dev *acry_dev, void *buf,
const void *xbuf, size_t nbytes,
enum aspeed_rsa_key_mode mode)
{
const u8 *src = xbuf;
__le32 *dw_buf = buf;
int nbits, ndw;
int i, j, idx;
u32 data = 0;
ACRY_DBG(acry_dev, "nbytes:%zu, mode:%d\n", nbytes, mode);
if (nbytes > ASPEED_ACRY_RSA_MAX_KEY_LEN)
return -ENOMEM;
/* Remove the leading zeros */
while (nbytes > 0 && src[0] == 0) {
src++;
nbytes--;
}
nbits = nbytes * 8;
if (nbytes > 0)
nbits -= count_leading_zeros(src[0]) - (BITS_PER_LONG - 8);
/* double-world alignment */
ndw = DIV_ROUND_UP(nbytes, BYTES_PER_DWORD);
if (nbytes > 0) {
i = BYTES_PER_DWORD - nbytes % BYTES_PER_DWORD;
i %= BYTES_PER_DWORD;
for (j = ndw; j > 0; j--) {
for (; i < BYTES_PER_DWORD; i++) {
data <<= 8;
data |= *src++;
}
i = 0;
if (mode == ASPEED_RSA_EXP_MODE)
idx = acry_dev->exp_dw_mapping[j - 1];
else /* mode == ASPEED_RSA_MOD_MODE */
idx = acry_dev->mod_dw_mapping[j - 1];
dw_buf[idx] = cpu_to_le32(data);
}
}
return nbits;
}
static int aspeed_acry_rsa_transfer(struct aspeed_acry_dev *acry_dev)
{
struct akcipher_request *req = acry_dev->req;
u8 __iomem *sram_buffer = acry_dev->acry_sram;
struct scatterlist *out_sg = req->dst;
static u8 dram_buffer[ASPEED_ACRY_SRAM_MAX_LEN];
int leading_zero = 1;
int result_nbytes;
int i = 0, j;
int data_idx;
/* Set Data Memory to AHB(CPU) Access Mode */
ast_acry_write(acry_dev, ACRY_CMD_DMEM_AHB, ASPEED_ACRY_DMA_CMD);
/* Disable ACRY SRAM protection */
regmap_update_bits(acry_dev->ahbc, AHBC_REGION_PROT,
REGION_ACRYM, 0);
result_nbytes = ASPEED_ACRY_SRAM_MAX_LEN;
for (j = ASPEED_ACRY_SRAM_MAX_LEN - 1; j >= 0; j--) {
data_idx = acry_dev->data_byte_mapping[j];
if (readb(sram_buffer + data_idx) == 0 && leading_zero) {
result_nbytes--;
} else {
leading_zero = 0;
dram_buffer[i] = readb(sram_buffer + data_idx);
i++;
}
}
ACRY_DBG(acry_dev, "result_nbytes:%d, req->dst_len:%d\n",
result_nbytes, req->dst_len);
if (result_nbytes <= req->dst_len) {
scatterwalk_map_and_copy(dram_buffer, out_sg, 0, result_nbytes,
1);
req->dst_len = result_nbytes;
} else {
dev_err(acry_dev->dev, "RSA engine error!\n");
}
memzero_explicit(acry_dev->buf_addr, ASPEED_ACRY_BUFF_SIZE);
return aspeed_acry_complete(acry_dev, 0);
}
static int aspeed_acry_rsa_trigger(struct aspeed_acry_dev *acry_dev)
{
struct akcipher_request *req = acry_dev->req;
struct crypto_akcipher *cipher = crypto_akcipher_reqtfm(req);
struct aspeed_acry_ctx *ctx = akcipher_tfm_ctx(cipher);
int ne, nm;
if (!ctx->n || !ctx->n_sz) {
dev_err(acry_dev->dev, "%s: key n is not set\n", __func__);
return -EINVAL;
}
memzero_explicit(acry_dev->buf_addr, ASPEED_ACRY_BUFF_SIZE);
/* Copy source data to DMA buffer */
aspeed_acry_rsa_sg_copy_to_buffer(acry_dev, acry_dev->buf_addr,
req->src, req->src_len);
nm = aspeed_acry_rsa_ctx_copy(acry_dev, acry_dev->buf_addr, ctx->n,
ctx->n_sz, ASPEED_RSA_MOD_MODE);
if (ctx->enc) {
if (!ctx->e || !ctx->e_sz) {
dev_err(acry_dev->dev, "%s: key e is not set\n",
__func__);
return -EINVAL;
}
/* Copy key e to DMA buffer */
ne = aspeed_acry_rsa_ctx_copy(acry_dev, acry_dev->buf_addr,
ctx->e, ctx->e_sz,
ASPEED_RSA_EXP_MODE);
} else {
if (!ctx->d || !ctx->d_sz) {
dev_err(acry_dev->dev, "%s: key d is not set\n",
__func__);
return -EINVAL;
}
/* Copy key d to DMA buffer */
ne = aspeed_acry_rsa_ctx_copy(acry_dev, acry_dev->buf_addr,
ctx->key.d, ctx->key.d_sz,
ASPEED_RSA_EXP_MODE);
}
ast_acry_write(acry_dev, acry_dev->buf_dma_addr,
ASPEED_ACRY_DMA_SRC_BASE);
ast_acry_write(acry_dev, (ne << 16) + nm,
ASPEED_ACRY_RSA_KEY_LEN);
ast_acry_write(acry_dev, ASPEED_ACRY_BUFF_SIZE,
ASPEED_ACRY_DMA_LEN);
acry_dev->resume = aspeed_acry_rsa_transfer;
/* Enable ACRY SRAM protection */
regmap_update_bits(acry_dev->ahbc, AHBC_REGION_PROT,
REGION_ACRYM, REGION_ACRYM);
ast_acry_write(acry_dev, ACRY_RSA_ISR, ASPEED_ACRY_INT_MASK);
ast_acry_write(acry_dev, ACRY_CMD_DMA_SRAM_MODE_RSA |
ACRY_CMD_DMA_SRAM_AHB_ENGINE, ASPEED_ACRY_DMA_CMD);
/* Trigger RSA engines */
ast_acry_write(acry_dev, ACRY_CMD_RSA_TRIGGER |
ACRY_CMD_DMA_RSA_TRIGGER, ASPEED_ACRY_TRIGGER);
return 0;
}
static int aspeed_acry_rsa_enc(struct akcipher_request *req)
{
struct crypto_akcipher *cipher = crypto_akcipher_reqtfm(req);
struct aspeed_acry_ctx *ctx = akcipher_tfm_ctx(cipher);
struct aspeed_acry_dev *acry_dev = ctx->acry_dev;
ctx->trigger = aspeed_acry_rsa_trigger;
ctx->enc = 1;
return aspeed_acry_handle_queue(acry_dev, req);
}
static int aspeed_acry_rsa_dec(struct akcipher_request *req)
{
struct crypto_akcipher *cipher = crypto_akcipher_reqtfm(req);
struct aspeed_acry_ctx *ctx = akcipher_tfm_ctx(cipher);
struct aspeed_acry_dev *acry_dev = ctx->acry_dev;
ctx->trigger = aspeed_acry_rsa_trigger;
ctx->enc = 0;
return aspeed_acry_handle_queue(acry_dev, req);
}
static u8 *aspeed_rsa_key_copy(u8 *src, size_t len)
{
return kmemdup(src, len, GFP_KERNEL);
}
static int aspeed_rsa_set_n(struct aspeed_acry_ctx *ctx, u8 *value,
size_t len)
{
ctx->n_sz = len;
ctx->n = aspeed_rsa_key_copy(value, len);
if (!ctx->n)
return -ENOMEM;
return 0;
}
static int aspeed_rsa_set_e(struct aspeed_acry_ctx *ctx, u8 *value,
size_t len)
{
ctx->e_sz = len;
ctx->e = aspeed_rsa_key_copy(value, len);
if (!ctx->e)
return -ENOMEM;
return 0;
}
static int aspeed_rsa_set_d(struct aspeed_acry_ctx *ctx, u8 *value,
size_t len)
{
ctx->d_sz = len;
ctx->d = aspeed_rsa_key_copy(value, len);
if (!ctx->d)
return -ENOMEM;
return 0;
}
static void aspeed_rsa_key_free(struct aspeed_acry_ctx *ctx)
{
kfree_sensitive(ctx->n);
kfree_sensitive(ctx->e);
kfree_sensitive(ctx->d);
ctx->n_sz = 0;
ctx->e_sz = 0;
ctx->d_sz = 0;
}
static int aspeed_acry_rsa_setkey(struct crypto_akcipher *tfm, const void *key,
unsigned int keylen, int priv)
{
struct aspeed_acry_ctx *ctx = akcipher_tfm_ctx(tfm);
struct aspeed_acry_dev *acry_dev = ctx->acry_dev;
int ret;
if (priv)
ret = rsa_parse_priv_key(&ctx->key, key, keylen);
else
ret = rsa_parse_pub_key(&ctx->key, key, keylen);
if (ret) {
dev_err(acry_dev->dev, "rsa parse key failed, ret:0x%x\n",
ret);
return ret;
}
/* Aspeed engine supports up to 4096 bits,
* Use software fallback instead.
*/
if (ctx->key.n_sz > ASPEED_ACRY_RSA_MAX_KEY_LEN)
return 0;
ret = aspeed_rsa_set_n(ctx, (u8 *)ctx->key.n, ctx->key.n_sz);
if (ret)
goto err;
ret = aspeed_rsa_set_e(ctx, (u8 *)ctx->key.e, ctx->key.e_sz);
if (ret)
goto err;
if (priv) {
ret = aspeed_rsa_set_d(ctx, (u8 *)ctx->key.d, ctx->key.d_sz);
if (ret)
goto err;
}
return 0;
err:
dev_err(acry_dev->dev, "rsa set key failed\n");
aspeed_rsa_key_free(ctx);
return ret;
}
static int aspeed_acry_rsa_set_pub_key(struct crypto_akcipher *tfm,
const void *key,
unsigned int keylen)
{
struct aspeed_acry_ctx *ctx = akcipher_tfm_ctx(tfm);
int ret;
ret = crypto_akcipher_set_pub_key(ctx->fallback_tfm, key, keylen);
if (ret)
return ret;
return aspeed_acry_rsa_setkey(tfm, key, keylen, 0);
}
static int aspeed_acry_rsa_set_priv_key(struct crypto_akcipher *tfm,
const void *key,
unsigned int keylen)
{
struct aspeed_acry_ctx *ctx = akcipher_tfm_ctx(tfm);
int ret;
ret = crypto_akcipher_set_priv_key(ctx->fallback_tfm, key, keylen);
if (ret)
return ret;
return aspeed_acry_rsa_setkey(tfm, key, keylen, 1);
}
static unsigned int aspeed_acry_rsa_max_size(struct crypto_akcipher *tfm)
{
struct aspeed_acry_ctx *ctx = akcipher_tfm_ctx(tfm);
if (ctx->key.n_sz > ASPEED_ACRY_RSA_MAX_KEY_LEN)
return crypto_akcipher_maxsize(ctx->fallback_tfm);
return ctx->n_sz;
}
static int aspeed_acry_rsa_init_tfm(struct crypto_akcipher *tfm)
{
struct aspeed_acry_ctx *ctx = akcipher_tfm_ctx(tfm);
struct akcipher_alg *alg = crypto_akcipher_alg(tfm);
const char *name = crypto_tfm_alg_name(&tfm->base);
struct aspeed_acry_alg *acry_alg;
acry_alg = container_of(alg, struct aspeed_acry_alg, akcipher.base);
ctx->acry_dev = acry_alg->acry_dev;
ctx->fallback_tfm = crypto_alloc_akcipher(name, 0, CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(ctx->fallback_tfm)) {
dev_err(ctx->acry_dev->dev, "ERROR: Cannot allocate fallback for %s %ld\n",
name, PTR_ERR(ctx->fallback_tfm));
return PTR_ERR(ctx->fallback_tfm);
}
return 0;
}
static void aspeed_acry_rsa_exit_tfm(struct crypto_akcipher *tfm)
{
struct aspeed_acry_ctx *ctx = akcipher_tfm_ctx(tfm);
crypto_free_akcipher(ctx->fallback_tfm);
}
static struct aspeed_acry_alg aspeed_acry_akcipher_algs[] = {
{
.akcipher.base = {
.encrypt = aspeed_acry_rsa_enc,
.decrypt = aspeed_acry_rsa_dec,
.set_pub_key = aspeed_acry_rsa_set_pub_key,
.set_priv_key = aspeed_acry_rsa_set_priv_key,
.max_size = aspeed_acry_rsa_max_size,
.init = aspeed_acry_rsa_init_tfm,
.exit = aspeed_acry_rsa_exit_tfm,
.base = {
.cra_name = "rsa",
.cra_driver_name = "aspeed-rsa",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_AKCIPHER |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_NEED_FALLBACK,
.cra_module = THIS_MODULE,
.cra_ctxsize = sizeof(struct aspeed_acry_ctx),
},
},
.akcipher.op = {
.do_one_request = aspeed_acry_do_request,
},
},
};
static void aspeed_acry_register(struct aspeed_acry_dev *acry_dev)
{
int i, rc;
for (i = 0; i < ARRAY_SIZE(aspeed_acry_akcipher_algs); i++) {
aspeed_acry_akcipher_algs[i].acry_dev = acry_dev;
rc = crypto_engine_register_akcipher(&aspeed_acry_akcipher_algs[i].akcipher);
if (rc) {
ACRY_DBG(acry_dev, "Failed to register %s\n",
aspeed_acry_akcipher_algs[i].akcipher.base.base.cra_name);
}
}
}
static void aspeed_acry_unregister(struct aspeed_acry_dev *acry_dev)
{
int i;
for (i = 0; i < ARRAY_SIZE(aspeed_acry_akcipher_algs); i++)
crypto_engine_unregister_akcipher(&aspeed_acry_akcipher_algs[i].akcipher);
}
/* ACRY interrupt service routine. */
static irqreturn_t aspeed_acry_irq(int irq, void *dev)
{
struct aspeed_acry_dev *acry_dev = (struct aspeed_acry_dev *)dev;
u32 sts;
sts = ast_acry_read(acry_dev, ASPEED_ACRY_STATUS);
ast_acry_write(acry_dev, sts, ASPEED_ACRY_STATUS);
ACRY_DBG(acry_dev, "irq sts:0x%x\n", sts);
if (sts & ACRY_RSA_ISR) {
/* Stop RSA engine */
ast_acry_write(acry_dev, 0, ASPEED_ACRY_TRIGGER);
if (acry_dev->flags & CRYPTO_FLAGS_BUSY)
tasklet_schedule(&acry_dev->done_task);
else
dev_err(acry_dev->dev, "RSA no active requests.\n");
}
return IRQ_HANDLED;
}
/*
* ACRY SRAM has its own memory layout.
* Set the DRAM to SRAM indexing for future used.
*/
static void aspeed_acry_sram_mapping(struct aspeed_acry_dev *acry_dev)
{
int i, j = 0;
for (i = 0; i < (ASPEED_ACRY_SRAM_MAX_LEN / BYTES_PER_DWORD); i++) {
acry_dev->exp_dw_mapping[i] = j;
acry_dev->mod_dw_mapping[i] = j + 4;
acry_dev->data_byte_mapping[(i * 4)] = (j + 8) * 4;
acry_dev->data_byte_mapping[(i * 4) + 1] = (j + 8) * 4 + 1;
acry_dev->data_byte_mapping[(i * 4) + 2] = (j + 8) * 4 + 2;
acry_dev->data_byte_mapping[(i * 4) + 3] = (j + 8) * 4 + 3;
j++;
j = j % 4 ? j : j + 8;
}
}
static void aspeed_acry_done_task(unsigned long data)
{
struct aspeed_acry_dev *acry_dev = (struct aspeed_acry_dev *)data;
(void)acry_dev->resume(acry_dev);
}
static const struct of_device_id aspeed_acry_of_matches[] = {
{ .compatible = "aspeed,ast2600-acry", },
{},
};
static int aspeed_acry_probe(struct platform_device *pdev)
{
struct aspeed_acry_dev *acry_dev;
struct device *dev = &pdev->dev;
int rc;
acry_dev = devm_kzalloc(dev, sizeof(struct aspeed_acry_dev),
GFP_KERNEL);
if (!acry_dev)
return -ENOMEM;
acry_dev->dev = dev;
platform_set_drvdata(pdev, acry_dev);
acry_dev->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(acry_dev->regs))
return PTR_ERR(acry_dev->regs);
acry_dev->acry_sram = devm_platform_ioremap_resource(pdev, 1);
if (IS_ERR(acry_dev->acry_sram))
return PTR_ERR(acry_dev->acry_sram);
/* Get irq number and register it */
acry_dev->irq = platform_get_irq(pdev, 0);
if (acry_dev->irq < 0)
return -ENXIO;
rc = devm_request_irq(dev, acry_dev->irq, aspeed_acry_irq, 0,
dev_name(dev), acry_dev);
if (rc) {
dev_err(dev, "Failed to request irq.\n");
return rc;
}
acry_dev->clk = devm_clk_get_enabled(dev, NULL);
if (IS_ERR(acry_dev->clk)) {
dev_err(dev, "Failed to get acry clk\n");
return PTR_ERR(acry_dev->clk);
}
acry_dev->ahbc = syscon_regmap_lookup_by_phandle(dev->of_node,
"aspeed,ahbc");
if (IS_ERR(acry_dev->ahbc)) {
dev_err(dev, "Failed to get AHBC regmap\n");
return -ENODEV;
}
/* Initialize crypto hardware engine structure for RSA */
acry_dev->crypt_engine_rsa = crypto_engine_alloc_init(dev, true);
if (!acry_dev->crypt_engine_rsa) {
rc = -ENOMEM;
goto clk_exit;
}
rc = crypto_engine_start(acry_dev->crypt_engine_rsa);
if (rc)
goto err_engine_rsa_start;
tasklet_init(&acry_dev->done_task, aspeed_acry_done_task,
(unsigned long)acry_dev);
/* Set Data Memory to AHB(CPU) Access Mode */
ast_acry_write(acry_dev, ACRY_CMD_DMEM_AHB, ASPEED_ACRY_DMA_CMD);
/* Initialize ACRY SRAM index */
aspeed_acry_sram_mapping(acry_dev);
acry_dev->buf_addr = dmam_alloc_coherent(dev, ASPEED_ACRY_BUFF_SIZE,
&acry_dev->buf_dma_addr,
GFP_KERNEL);
if (!acry_dev->buf_addr) {
rc = -ENOMEM;
goto err_engine_rsa_start;
}
aspeed_acry_register(acry_dev);
dev_info(dev, "Aspeed ACRY Accelerator successfully registered\n");
return 0;
err_engine_rsa_start:
crypto_engine_exit(acry_dev->crypt_engine_rsa);
clk_exit:
clk_disable_unprepare(acry_dev->clk);
return rc;
}
static void aspeed_acry_remove(struct platform_device *pdev)
{
struct aspeed_acry_dev *acry_dev = platform_get_drvdata(pdev);
aspeed_acry_unregister(acry_dev);
crypto_engine_exit(acry_dev->crypt_engine_rsa);
tasklet_kill(&acry_dev->done_task);
clk_disable_unprepare(acry_dev->clk);
}
MODULE_DEVICE_TABLE(of, aspeed_acry_of_matches);
static struct platform_driver aspeed_acry_driver = {
.probe = aspeed_acry_probe,
.remove = aspeed_acry_remove,
.driver = {
.name = KBUILD_MODNAME,
.of_match_table = aspeed_acry_of_matches,
},
};
module_platform_driver(aspeed_acry_driver);
MODULE_AUTHOR("Neal Liu <neal_liu@aspeedtech.com>");
MODULE_DESCRIPTION("ASPEED ACRY driver for hardware RSA Engine");
MODULE_LICENSE("GPL");