| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2017 - Columbia University and Linaro Ltd. |
| * Author: Jintack Lim <jintack.lim@linaro.org> |
| */ |
| |
| #include <linux/bitfield.h> |
| #include <linux/kvm.h> |
| #include <linux/kvm_host.h> |
| |
| #include <asm/kvm_arm.h> |
| #include <asm/kvm_emulate.h> |
| #include <asm/kvm_mmu.h> |
| #include <asm/kvm_nested.h> |
| #include <asm/sysreg.h> |
| |
| #include "sys_regs.h" |
| |
| /* Protection against the sysreg repainting madness... */ |
| #define NV_FTR(r, f) ID_AA64##r##_EL1_##f |
| |
| /* |
| * Ratio of live shadow S2 MMU per vcpu. This is a trade-off between |
| * memory usage and potential number of different sets of S2 PTs in |
| * the guests. Running out of S2 MMUs only affects performance (we |
| * will invalidate them more often). |
| */ |
| #define S2_MMU_PER_VCPU 2 |
| |
| void kvm_init_nested(struct kvm *kvm) |
| { |
| kvm->arch.nested_mmus = NULL; |
| kvm->arch.nested_mmus_size = 0; |
| } |
| |
| static int init_nested_s2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu) |
| { |
| /* |
| * We only initialise the IPA range on the canonical MMU, which |
| * defines the contract between KVM and userspace on where the |
| * "hardware" is in the IPA space. This affects the validity of MMIO |
| * exits forwarded to userspace, for example. |
| * |
| * For nested S2s, we use the PARange as exposed to the guest, as it |
| * is allowed to use it at will to expose whatever memory map it |
| * wants to its own guests as it would be on real HW. |
| */ |
| return kvm_init_stage2_mmu(kvm, mmu, kvm_get_pa_bits(kvm)); |
| } |
| |
| int kvm_vcpu_init_nested(struct kvm_vcpu *vcpu) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| struct kvm_s2_mmu *tmp; |
| int num_mmus, ret = 0; |
| |
| /* |
| * Let's treat memory allocation failures as benign: If we fail to |
| * allocate anything, return an error and keep the allocated array |
| * alive. Userspace may try to recover by intializing the vcpu |
| * again, and there is no reason to affect the whole VM for this. |
| */ |
| num_mmus = atomic_read(&kvm->online_vcpus) * S2_MMU_PER_VCPU; |
| tmp = kvrealloc(kvm->arch.nested_mmus, |
| size_mul(sizeof(*kvm->arch.nested_mmus), num_mmus), |
| GFP_KERNEL_ACCOUNT | __GFP_ZERO); |
| if (!tmp) |
| return -ENOMEM; |
| |
| /* |
| * If we went through a realocation, adjust the MMU back-pointers in |
| * the previously initialised kvm_pgtable structures. |
| */ |
| if (kvm->arch.nested_mmus != tmp) |
| for (int i = 0; i < kvm->arch.nested_mmus_size; i++) |
| tmp[i].pgt->mmu = &tmp[i]; |
| |
| for (int i = kvm->arch.nested_mmus_size; !ret && i < num_mmus; i++) |
| ret = init_nested_s2_mmu(kvm, &tmp[i]); |
| |
| if (ret) { |
| for (int i = kvm->arch.nested_mmus_size; i < num_mmus; i++) |
| kvm_free_stage2_pgd(&tmp[i]); |
| |
| return ret; |
| } |
| |
| kvm->arch.nested_mmus_size = num_mmus; |
| kvm->arch.nested_mmus = tmp; |
| |
| return 0; |
| } |
| |
| struct s2_walk_info { |
| int (*read_desc)(phys_addr_t pa, u64 *desc, void *data); |
| void *data; |
| u64 baddr; |
| unsigned int max_oa_bits; |
| unsigned int pgshift; |
| unsigned int sl; |
| unsigned int t0sz; |
| bool be; |
| }; |
| |
| static u32 compute_fsc(int level, u32 fsc) |
| { |
| return fsc | (level & 0x3); |
| } |
| |
| static int esr_s2_fault(struct kvm_vcpu *vcpu, int level, u32 fsc) |
| { |
| u32 esr; |
| |
| esr = kvm_vcpu_get_esr(vcpu) & ~ESR_ELx_FSC; |
| esr |= compute_fsc(level, fsc); |
| return esr; |
| } |
| |
| static int get_ia_size(struct s2_walk_info *wi) |
| { |
| return 64 - wi->t0sz; |
| } |
| |
| static int check_base_s2_limits(struct s2_walk_info *wi, |
| int level, int input_size, int stride) |
| { |
| int start_size, ia_size; |
| |
| ia_size = get_ia_size(wi); |
| |
| /* Check translation limits */ |
| switch (BIT(wi->pgshift)) { |
| case SZ_64K: |
| if (level == 0 || (level == 1 && ia_size <= 42)) |
| return -EFAULT; |
| break; |
| case SZ_16K: |
| if (level == 0 || (level == 1 && ia_size <= 40)) |
| return -EFAULT; |
| break; |
| case SZ_4K: |
| if (level < 0 || (level == 0 && ia_size <= 42)) |
| return -EFAULT; |
| break; |
| } |
| |
| /* Check input size limits */ |
| if (input_size > ia_size) |
| return -EFAULT; |
| |
| /* Check number of entries in starting level table */ |
| start_size = input_size - ((3 - level) * stride + wi->pgshift); |
| if (start_size < 1 || start_size > stride + 4) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| /* Check if output is within boundaries */ |
| static int check_output_size(struct s2_walk_info *wi, phys_addr_t output) |
| { |
| unsigned int output_size = wi->max_oa_bits; |
| |
| if (output_size != 48 && (output & GENMASK_ULL(47, output_size))) |
| return -1; |
| |
| return 0; |
| } |
| |
| /* |
| * This is essentially a C-version of the pseudo code from the ARM ARM |
| * AArch64.TranslationTableWalk function. I strongly recommend looking at |
| * that pseudocode in trying to understand this. |
| * |
| * Must be called with the kvm->srcu read lock held |
| */ |
| static int walk_nested_s2_pgd(phys_addr_t ipa, |
| struct s2_walk_info *wi, struct kvm_s2_trans *out) |
| { |
| int first_block_level, level, stride, input_size, base_lower_bound; |
| phys_addr_t base_addr; |
| unsigned int addr_top, addr_bottom; |
| u64 desc; /* page table entry */ |
| int ret; |
| phys_addr_t paddr; |
| |
| switch (BIT(wi->pgshift)) { |
| default: |
| case SZ_64K: |
| case SZ_16K: |
| level = 3 - wi->sl; |
| first_block_level = 2; |
| break; |
| case SZ_4K: |
| level = 2 - wi->sl; |
| first_block_level = 1; |
| break; |
| } |
| |
| stride = wi->pgshift - 3; |
| input_size = get_ia_size(wi); |
| if (input_size > 48 || input_size < 25) |
| return -EFAULT; |
| |
| ret = check_base_s2_limits(wi, level, input_size, stride); |
| if (WARN_ON(ret)) |
| return ret; |
| |
| base_lower_bound = 3 + input_size - ((3 - level) * stride + |
| wi->pgshift); |
| base_addr = wi->baddr & GENMASK_ULL(47, base_lower_bound); |
| |
| if (check_output_size(wi, base_addr)) { |
| out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ); |
| return 1; |
| } |
| |
| addr_top = input_size - 1; |
| |
| while (1) { |
| phys_addr_t index; |
| |
| addr_bottom = (3 - level) * stride + wi->pgshift; |
| index = (ipa & GENMASK_ULL(addr_top, addr_bottom)) |
| >> (addr_bottom - 3); |
| |
| paddr = base_addr | index; |
| ret = wi->read_desc(paddr, &desc, wi->data); |
| if (ret < 0) |
| return ret; |
| |
| /* |
| * Handle reversedescriptors if endianness differs between the |
| * host and the guest hypervisor. |
| */ |
| if (wi->be) |
| desc = be64_to_cpu((__force __be64)desc); |
| else |
| desc = le64_to_cpu((__force __le64)desc); |
| |
| /* Check for valid descriptor at this point */ |
| if (!(desc & 1) || ((desc & 3) == 1 && level == 3)) { |
| out->esr = compute_fsc(level, ESR_ELx_FSC_FAULT); |
| out->desc = desc; |
| return 1; |
| } |
| |
| /* We're at the final level or block translation level */ |
| if ((desc & 3) == 1 || level == 3) |
| break; |
| |
| if (check_output_size(wi, desc)) { |
| out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ); |
| out->desc = desc; |
| return 1; |
| } |
| |
| base_addr = desc & GENMASK_ULL(47, wi->pgshift); |
| |
| level += 1; |
| addr_top = addr_bottom - 1; |
| } |
| |
| if (level < first_block_level) { |
| out->esr = compute_fsc(level, ESR_ELx_FSC_FAULT); |
| out->desc = desc; |
| return 1; |
| } |
| |
| if (check_output_size(wi, desc)) { |
| out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ); |
| out->desc = desc; |
| return 1; |
| } |
| |
| if (!(desc & BIT(10))) { |
| out->esr = compute_fsc(level, ESR_ELx_FSC_ACCESS); |
| out->desc = desc; |
| return 1; |
| } |
| |
| addr_bottom += contiguous_bit_shift(desc, wi, level); |
| |
| /* Calculate and return the result */ |
| paddr = (desc & GENMASK_ULL(47, addr_bottom)) | |
| (ipa & GENMASK_ULL(addr_bottom - 1, 0)); |
| out->output = paddr; |
| out->block_size = 1UL << ((3 - level) * stride + wi->pgshift); |
| out->readable = desc & (0b01 << 6); |
| out->writable = desc & (0b10 << 6); |
| out->level = level; |
| out->desc = desc; |
| return 0; |
| } |
| |
| static int read_guest_s2_desc(phys_addr_t pa, u64 *desc, void *data) |
| { |
| struct kvm_vcpu *vcpu = data; |
| |
| return kvm_read_guest(vcpu->kvm, pa, desc, sizeof(*desc)); |
| } |
| |
| static void vtcr_to_walk_info(u64 vtcr, struct s2_walk_info *wi) |
| { |
| wi->t0sz = vtcr & TCR_EL2_T0SZ_MASK; |
| |
| switch (vtcr & VTCR_EL2_TG0_MASK) { |
| case VTCR_EL2_TG0_4K: |
| wi->pgshift = 12; break; |
| case VTCR_EL2_TG0_16K: |
| wi->pgshift = 14; break; |
| case VTCR_EL2_TG0_64K: |
| default: /* IMPDEF: treat any other value as 64k */ |
| wi->pgshift = 16; break; |
| } |
| |
| wi->sl = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr); |
| /* Global limit for now, should eventually be per-VM */ |
| wi->max_oa_bits = min(get_kvm_ipa_limit(), |
| ps_to_output_size(FIELD_GET(VTCR_EL2_PS_MASK, vtcr))); |
| } |
| |
| int kvm_walk_nested_s2(struct kvm_vcpu *vcpu, phys_addr_t gipa, |
| struct kvm_s2_trans *result) |
| { |
| u64 vtcr = vcpu_read_sys_reg(vcpu, VTCR_EL2); |
| struct s2_walk_info wi; |
| int ret; |
| |
| result->esr = 0; |
| |
| if (!vcpu_has_nv(vcpu)) |
| return 0; |
| |
| wi.read_desc = read_guest_s2_desc; |
| wi.data = vcpu; |
| wi.baddr = vcpu_read_sys_reg(vcpu, VTTBR_EL2); |
| |
| vtcr_to_walk_info(vtcr, &wi); |
| |
| wi.be = vcpu_read_sys_reg(vcpu, SCTLR_EL2) & SCTLR_ELx_EE; |
| |
| ret = walk_nested_s2_pgd(gipa, &wi, result); |
| if (ret) |
| result->esr |= (kvm_vcpu_get_esr(vcpu) & ~ESR_ELx_FSC); |
| |
| return ret; |
| } |
| |
| static unsigned int ttl_to_size(u8 ttl) |
| { |
| int level = ttl & 3; |
| int gran = (ttl >> 2) & 3; |
| unsigned int max_size = 0; |
| |
| switch (gran) { |
| case TLBI_TTL_TG_4K: |
| switch (level) { |
| case 0: |
| break; |
| case 1: |
| max_size = SZ_1G; |
| break; |
| case 2: |
| max_size = SZ_2M; |
| break; |
| case 3: |
| max_size = SZ_4K; |
| break; |
| } |
| break; |
| case TLBI_TTL_TG_16K: |
| switch (level) { |
| case 0: |
| case 1: |
| break; |
| case 2: |
| max_size = SZ_32M; |
| break; |
| case 3: |
| max_size = SZ_16K; |
| break; |
| } |
| break; |
| case TLBI_TTL_TG_64K: |
| switch (level) { |
| case 0: |
| case 1: |
| /* No 52bit IPA support */ |
| break; |
| case 2: |
| max_size = SZ_512M; |
| break; |
| case 3: |
| max_size = SZ_64K; |
| break; |
| } |
| break; |
| default: /* No size information */ |
| break; |
| } |
| |
| return max_size; |
| } |
| |
| /* |
| * Compute the equivalent of the TTL field by parsing the shadow PT. The |
| * granule size is extracted from the cached VTCR_EL2.TG0 while the level is |
| * retrieved from first entry carrying the level as a tag. |
| */ |
| static u8 get_guest_mapping_ttl(struct kvm_s2_mmu *mmu, u64 addr) |
| { |
| u64 tmp, sz = 0, vtcr = mmu->tlb_vtcr; |
| kvm_pte_t pte; |
| u8 ttl, level; |
| |
| lockdep_assert_held_write(&kvm_s2_mmu_to_kvm(mmu)->mmu_lock); |
| |
| switch (vtcr & VTCR_EL2_TG0_MASK) { |
| case VTCR_EL2_TG0_4K: |
| ttl = (TLBI_TTL_TG_4K << 2); |
| break; |
| case VTCR_EL2_TG0_16K: |
| ttl = (TLBI_TTL_TG_16K << 2); |
| break; |
| case VTCR_EL2_TG0_64K: |
| default: /* IMPDEF: treat any other value as 64k */ |
| ttl = (TLBI_TTL_TG_64K << 2); |
| break; |
| } |
| |
| tmp = addr; |
| |
| again: |
| /* Iteratively compute the block sizes for a particular granule size */ |
| switch (vtcr & VTCR_EL2_TG0_MASK) { |
| case VTCR_EL2_TG0_4K: |
| if (sz < SZ_4K) sz = SZ_4K; |
| else if (sz < SZ_2M) sz = SZ_2M; |
| else if (sz < SZ_1G) sz = SZ_1G; |
| else sz = 0; |
| break; |
| case VTCR_EL2_TG0_16K: |
| if (sz < SZ_16K) sz = SZ_16K; |
| else if (sz < SZ_32M) sz = SZ_32M; |
| else sz = 0; |
| break; |
| case VTCR_EL2_TG0_64K: |
| default: /* IMPDEF: treat any other value as 64k */ |
| if (sz < SZ_64K) sz = SZ_64K; |
| else if (sz < SZ_512M) sz = SZ_512M; |
| else sz = 0; |
| break; |
| } |
| |
| if (sz == 0) |
| return 0; |
| |
| tmp &= ~(sz - 1); |
| if (kvm_pgtable_get_leaf(mmu->pgt, tmp, &pte, NULL)) |
| goto again; |
| if (!(pte & PTE_VALID)) |
| goto again; |
| level = FIELD_GET(KVM_NV_GUEST_MAP_SZ, pte); |
| if (!level) |
| goto again; |
| |
| ttl |= level; |
| |
| /* |
| * We now have found some level information in the shadow S2. Check |
| * that the resulting range is actually including the original IPA. |
| */ |
| sz = ttl_to_size(ttl); |
| if (addr < (tmp + sz)) |
| return ttl; |
| |
| return 0; |
| } |
| |
| unsigned long compute_tlb_inval_range(struct kvm_s2_mmu *mmu, u64 val) |
| { |
| struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu); |
| unsigned long max_size; |
| u8 ttl; |
| |
| ttl = FIELD_GET(TLBI_TTL_MASK, val); |
| |
| if (!ttl || !kvm_has_feat(kvm, ID_AA64MMFR2_EL1, TTL, IMP)) { |
| /* No TTL, check the shadow S2 for a hint */ |
| u64 addr = (val & GENMASK_ULL(35, 0)) << 12; |
| ttl = get_guest_mapping_ttl(mmu, addr); |
| } |
| |
| max_size = ttl_to_size(ttl); |
| |
| if (!max_size) { |
| /* Compute the maximum extent of the invalidation */ |
| switch (mmu->tlb_vtcr & VTCR_EL2_TG0_MASK) { |
| case VTCR_EL2_TG0_4K: |
| max_size = SZ_1G; |
| break; |
| case VTCR_EL2_TG0_16K: |
| max_size = SZ_32M; |
| break; |
| case VTCR_EL2_TG0_64K: |
| default: /* IMPDEF: treat any other value as 64k */ |
| /* |
| * No, we do not support 52bit IPA in nested yet. Once |
| * we do, this should be 4TB. |
| */ |
| max_size = SZ_512M; |
| break; |
| } |
| } |
| |
| WARN_ON(!max_size); |
| return max_size; |
| } |
| |
| /* |
| * We can have multiple *different* MMU contexts with the same VMID: |
| * |
| * - S2 being enabled or not, hence differing by the HCR_EL2.VM bit |
| * |
| * - Multiple vcpus using private S2s (huh huh...), hence differing by the |
| * VBBTR_EL2.BADDR address |
| * |
| * - A combination of the above... |
| * |
| * We can always identify which MMU context to pick at run-time. However, |
| * TLB invalidation involving a VMID must take action on all the TLBs using |
| * this particular VMID. This translates into applying the same invalidation |
| * operation to all the contexts that are using this VMID. Moar phun! |
| */ |
| void kvm_s2_mmu_iterate_by_vmid(struct kvm *kvm, u16 vmid, |
| const union tlbi_info *info, |
| void (*tlbi_callback)(struct kvm_s2_mmu *, |
| const union tlbi_info *)) |
| { |
| write_lock(&kvm->mmu_lock); |
| |
| for (int i = 0; i < kvm->arch.nested_mmus_size; i++) { |
| struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i]; |
| |
| if (!kvm_s2_mmu_valid(mmu)) |
| continue; |
| |
| if (vmid == get_vmid(mmu->tlb_vttbr)) |
| tlbi_callback(mmu, info); |
| } |
| |
| write_unlock(&kvm->mmu_lock); |
| } |
| |
| struct kvm_s2_mmu *lookup_s2_mmu(struct kvm_vcpu *vcpu) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| bool nested_stage2_enabled; |
| u64 vttbr, vtcr, hcr; |
| |
| lockdep_assert_held_write(&kvm->mmu_lock); |
| |
| vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2); |
| vtcr = vcpu_read_sys_reg(vcpu, VTCR_EL2); |
| hcr = vcpu_read_sys_reg(vcpu, HCR_EL2); |
| |
| nested_stage2_enabled = hcr & HCR_VM; |
| |
| /* Don't consider the CnP bit for the vttbr match */ |
| vttbr &= ~VTTBR_CNP_BIT; |
| |
| /* |
| * Two possibilities when looking up a S2 MMU context: |
| * |
| * - either S2 is enabled in the guest, and we need a context that is |
| * S2-enabled and matches the full VTTBR (VMID+BADDR) and VTCR, |
| * which makes it safe from a TLB conflict perspective (a broken |
| * guest won't be able to generate them), |
| * |
| * - or S2 is disabled, and we need a context that is S2-disabled |
| * and matches the VMID only, as all TLBs are tagged by VMID even |
| * if S2 translation is disabled. |
| */ |
| for (int i = 0; i < kvm->arch.nested_mmus_size; i++) { |
| struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i]; |
| |
| if (!kvm_s2_mmu_valid(mmu)) |
| continue; |
| |
| if (nested_stage2_enabled && |
| mmu->nested_stage2_enabled && |
| vttbr == mmu->tlb_vttbr && |
| vtcr == mmu->tlb_vtcr) |
| return mmu; |
| |
| if (!nested_stage2_enabled && |
| !mmu->nested_stage2_enabled && |
| get_vmid(vttbr) == get_vmid(mmu->tlb_vttbr)) |
| return mmu; |
| } |
| return NULL; |
| } |
| |
| static struct kvm_s2_mmu *get_s2_mmu_nested(struct kvm_vcpu *vcpu) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| struct kvm_s2_mmu *s2_mmu; |
| int i; |
| |
| lockdep_assert_held_write(&vcpu->kvm->mmu_lock); |
| |
| s2_mmu = lookup_s2_mmu(vcpu); |
| if (s2_mmu) |
| goto out; |
| |
| /* |
| * Make sure we don't always search from the same point, or we |
| * will always reuse a potentially active context, leaving |
| * free contexts unused. |
| */ |
| for (i = kvm->arch.nested_mmus_next; |
| i < (kvm->arch.nested_mmus_size + kvm->arch.nested_mmus_next); |
| i++) { |
| s2_mmu = &kvm->arch.nested_mmus[i % kvm->arch.nested_mmus_size]; |
| |
| if (atomic_read(&s2_mmu->refcnt) == 0) |
| break; |
| } |
| BUG_ON(atomic_read(&s2_mmu->refcnt)); /* We have struct MMUs to spare */ |
| |
| /* Set the scene for the next search */ |
| kvm->arch.nested_mmus_next = (i + 1) % kvm->arch.nested_mmus_size; |
| |
| /* Make sure we don't forget to do the laundry */ |
| if (kvm_s2_mmu_valid(s2_mmu)) |
| s2_mmu->pending_unmap = true; |
| |
| /* |
| * The virtual VMID (modulo CnP) will be used as a key when matching |
| * an existing kvm_s2_mmu. |
| * |
| * We cache VTCR at allocation time, once and for all. It'd be great |
| * if the guest didn't screw that one up, as this is not very |
| * forgiving... |
| */ |
| s2_mmu->tlb_vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2) & ~VTTBR_CNP_BIT; |
| s2_mmu->tlb_vtcr = vcpu_read_sys_reg(vcpu, VTCR_EL2); |
| s2_mmu->nested_stage2_enabled = vcpu_read_sys_reg(vcpu, HCR_EL2) & HCR_VM; |
| |
| out: |
| atomic_inc(&s2_mmu->refcnt); |
| |
| /* |
| * Set the vCPU request to perform an unmap, even if the pending unmap |
| * originates from another vCPU. This guarantees that the MMU has been |
| * completely unmapped before any vCPU actually uses it, and allows |
| * multiple vCPUs to lend a hand with completing the unmap. |
| */ |
| if (s2_mmu->pending_unmap) |
| kvm_make_request(KVM_REQ_NESTED_S2_UNMAP, vcpu); |
| |
| return s2_mmu; |
| } |
| |
| void kvm_init_nested_s2_mmu(struct kvm_s2_mmu *mmu) |
| { |
| /* CnP being set denotes an invalid entry */ |
| mmu->tlb_vttbr = VTTBR_CNP_BIT; |
| mmu->nested_stage2_enabled = false; |
| atomic_set(&mmu->refcnt, 0); |
| } |
| |
| void kvm_vcpu_load_hw_mmu(struct kvm_vcpu *vcpu) |
| { |
| /* |
| * The vCPU kept its reference on the MMU after the last put, keep |
| * rolling with it. |
| */ |
| if (vcpu->arch.hw_mmu) |
| return; |
| |
| if (is_hyp_ctxt(vcpu)) { |
| vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu; |
| } else { |
| write_lock(&vcpu->kvm->mmu_lock); |
| vcpu->arch.hw_mmu = get_s2_mmu_nested(vcpu); |
| write_unlock(&vcpu->kvm->mmu_lock); |
| } |
| } |
| |
| void kvm_vcpu_put_hw_mmu(struct kvm_vcpu *vcpu) |
| { |
| /* |
| * Keep a reference on the associated stage-2 MMU if the vCPU is |
| * scheduling out and not in WFI emulation, suggesting it is likely to |
| * reuse the MMU sometime soon. |
| */ |
| if (vcpu->scheduled_out && !vcpu_get_flag(vcpu, IN_WFI)) |
| return; |
| |
| if (kvm_is_nested_s2_mmu(vcpu->kvm, vcpu->arch.hw_mmu)) |
| atomic_dec(&vcpu->arch.hw_mmu->refcnt); |
| |
| vcpu->arch.hw_mmu = NULL; |
| } |
| |
| /* |
| * Returns non-zero if permission fault is handled by injecting it to the next |
| * level hypervisor. |
| */ |
| int kvm_s2_handle_perm_fault(struct kvm_vcpu *vcpu, struct kvm_s2_trans *trans) |
| { |
| bool forward_fault = false; |
| |
| trans->esr = 0; |
| |
| if (!kvm_vcpu_trap_is_permission_fault(vcpu)) |
| return 0; |
| |
| if (kvm_vcpu_trap_is_iabt(vcpu)) { |
| forward_fault = !kvm_s2_trans_executable(trans); |
| } else { |
| bool write_fault = kvm_is_write_fault(vcpu); |
| |
| forward_fault = ((write_fault && !trans->writable) || |
| (!write_fault && !trans->readable)); |
| } |
| |
| if (forward_fault) |
| trans->esr = esr_s2_fault(vcpu, trans->level, ESR_ELx_FSC_PERM); |
| |
| return forward_fault; |
| } |
| |
| int kvm_inject_s2_fault(struct kvm_vcpu *vcpu, u64 esr_el2) |
| { |
| vcpu_write_sys_reg(vcpu, vcpu->arch.fault.far_el2, FAR_EL2); |
| vcpu_write_sys_reg(vcpu, vcpu->arch.fault.hpfar_el2, HPFAR_EL2); |
| |
| return kvm_inject_nested_sync(vcpu, esr_el2); |
| } |
| |
| void kvm_nested_s2_wp(struct kvm *kvm) |
| { |
| int i; |
| |
| lockdep_assert_held_write(&kvm->mmu_lock); |
| |
| for (i = 0; i < kvm->arch.nested_mmus_size; i++) { |
| struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i]; |
| |
| if (kvm_s2_mmu_valid(mmu)) |
| kvm_stage2_wp_range(mmu, 0, kvm_phys_size(mmu)); |
| } |
| } |
| |
| void kvm_nested_s2_unmap(struct kvm *kvm, bool may_block) |
| { |
| int i; |
| |
| lockdep_assert_held_write(&kvm->mmu_lock); |
| |
| for (i = 0; i < kvm->arch.nested_mmus_size; i++) { |
| struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i]; |
| |
| if (kvm_s2_mmu_valid(mmu)) |
| kvm_stage2_unmap_range(mmu, 0, kvm_phys_size(mmu), may_block); |
| } |
| } |
| |
| void kvm_nested_s2_flush(struct kvm *kvm) |
| { |
| int i; |
| |
| lockdep_assert_held_write(&kvm->mmu_lock); |
| |
| for (i = 0; i < kvm->arch.nested_mmus_size; i++) { |
| struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i]; |
| |
| if (kvm_s2_mmu_valid(mmu)) |
| kvm_stage2_flush_range(mmu, 0, kvm_phys_size(mmu)); |
| } |
| } |
| |
| void kvm_arch_flush_shadow_all(struct kvm *kvm) |
| { |
| int i; |
| |
| for (i = 0; i < kvm->arch.nested_mmus_size; i++) { |
| struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i]; |
| |
| if (!WARN_ON(atomic_read(&mmu->refcnt))) |
| kvm_free_stage2_pgd(mmu); |
| } |
| kvfree(kvm->arch.nested_mmus); |
| kvm->arch.nested_mmus = NULL; |
| kvm->arch.nested_mmus_size = 0; |
| kvm_uninit_stage2_mmu(kvm); |
| } |
| |
| /* |
| * Our emulated CPU doesn't support all the possible features. For the |
| * sake of simplicity (and probably mental sanity), wipe out a number |
| * of feature bits we don't intend to support for the time being. |
| * This list should get updated as new features get added to the NV |
| * support, and new extension to the architecture. |
| */ |
| static void limit_nv_id_regs(struct kvm *kvm) |
| { |
| u64 val, tmp; |
| |
| /* Support everything but TME */ |
| val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64ISAR0_EL1); |
| val &= ~NV_FTR(ISAR0, TME); |
| kvm_set_vm_id_reg(kvm, SYS_ID_AA64ISAR0_EL1, val); |
| |
| /* Support everything but Spec Invalidation and LS64 */ |
| val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64ISAR1_EL1); |
| val &= ~(NV_FTR(ISAR1, LS64) | |
| NV_FTR(ISAR1, SPECRES)); |
| kvm_set_vm_id_reg(kvm, SYS_ID_AA64ISAR1_EL1, val); |
| |
| /* No AMU, MPAM, S-EL2, or RAS */ |
| val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64PFR0_EL1); |
| val &= ~(GENMASK_ULL(55, 52) | |
| NV_FTR(PFR0, AMU) | |
| NV_FTR(PFR0, MPAM) | |
| NV_FTR(PFR0, SEL2) | |
| NV_FTR(PFR0, RAS) | |
| NV_FTR(PFR0, EL3) | |
| NV_FTR(PFR0, EL2) | |
| NV_FTR(PFR0, EL1)); |
| /* 64bit EL1/EL2/EL3 only */ |
| val |= FIELD_PREP(NV_FTR(PFR0, EL1), 0b0001); |
| val |= FIELD_PREP(NV_FTR(PFR0, EL2), 0b0001); |
| val |= FIELD_PREP(NV_FTR(PFR0, EL3), 0b0001); |
| kvm_set_vm_id_reg(kvm, SYS_ID_AA64PFR0_EL1, val); |
| |
| /* Only support BTI, SSBS, CSV2_frac */ |
| val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64PFR1_EL1); |
| val &= (NV_FTR(PFR1, BT) | |
| NV_FTR(PFR1, SSBS) | |
| NV_FTR(PFR1, CSV2_frac)); |
| kvm_set_vm_id_reg(kvm, SYS_ID_AA64PFR1_EL1, val); |
| |
| /* Hide ECV, ExS, Secure Memory */ |
| val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64MMFR0_EL1); |
| val &= ~(NV_FTR(MMFR0, ECV) | |
| NV_FTR(MMFR0, EXS) | |
| NV_FTR(MMFR0, TGRAN4_2) | |
| NV_FTR(MMFR0, TGRAN16_2) | |
| NV_FTR(MMFR0, TGRAN64_2) | |
| NV_FTR(MMFR0, SNSMEM)); |
| |
| /* Disallow unsupported S2 page sizes */ |
| switch (PAGE_SIZE) { |
| case SZ_64K: |
| val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN16_2), 0b0001); |
| fallthrough; |
| case SZ_16K: |
| val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN4_2), 0b0001); |
| fallthrough; |
| case SZ_4K: |
| /* Support everything */ |
| break; |
| } |
| /* |
| * Since we can't support a guest S2 page size smaller than |
| * the host's own page size (due to KVM only populating its |
| * own S2 using the kernel's page size), advertise the |
| * limitation using FEAT_GTG. |
| */ |
| switch (PAGE_SIZE) { |
| case SZ_4K: |
| val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN4_2), 0b0010); |
| fallthrough; |
| case SZ_16K: |
| val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN16_2), 0b0010); |
| fallthrough; |
| case SZ_64K: |
| val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN64_2), 0b0010); |
| break; |
| } |
| /* Cap PARange to 48bits */ |
| tmp = FIELD_GET(NV_FTR(MMFR0, PARANGE), val); |
| if (tmp > 0b0101) { |
| val &= ~NV_FTR(MMFR0, PARANGE); |
| val |= FIELD_PREP(NV_FTR(MMFR0, PARANGE), 0b0101); |
| } |
| kvm_set_vm_id_reg(kvm, SYS_ID_AA64MMFR0_EL1, val); |
| |
| val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64MMFR1_EL1); |
| val &= (NV_FTR(MMFR1, HCX) | |
| NV_FTR(MMFR1, PAN) | |
| NV_FTR(MMFR1, LO) | |
| NV_FTR(MMFR1, HPDS) | |
| NV_FTR(MMFR1, VH) | |
| NV_FTR(MMFR1, VMIDBits)); |
| kvm_set_vm_id_reg(kvm, SYS_ID_AA64MMFR1_EL1, val); |
| |
| val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64MMFR2_EL1); |
| val &= ~(NV_FTR(MMFR2, BBM) | |
| NV_FTR(MMFR2, TTL) | |
| GENMASK_ULL(47, 44) | |
| NV_FTR(MMFR2, ST) | |
| NV_FTR(MMFR2, CCIDX) | |
| NV_FTR(MMFR2, VARange)); |
| |
| /* Force TTL support */ |
| val |= FIELD_PREP(NV_FTR(MMFR2, TTL), 0b0001); |
| kvm_set_vm_id_reg(kvm, SYS_ID_AA64MMFR2_EL1, val); |
| |
| val = 0; |
| if (!cpus_have_final_cap(ARM64_HAS_HCR_NV1)) |
| val |= FIELD_PREP(NV_FTR(MMFR4, E2H0), |
| ID_AA64MMFR4_EL1_E2H0_NI_NV1); |
| kvm_set_vm_id_reg(kvm, SYS_ID_AA64MMFR4_EL1, val); |
| |
| /* Only limited support for PMU, Debug, BPs and WPs */ |
| val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64DFR0_EL1); |
| val &= (NV_FTR(DFR0, PMUVer) | |
| NV_FTR(DFR0, WRPs) | |
| NV_FTR(DFR0, BRPs) | |
| NV_FTR(DFR0, DebugVer)); |
| |
| /* Cap Debug to ARMv8.1 */ |
| tmp = FIELD_GET(NV_FTR(DFR0, DebugVer), val); |
| if (tmp > 0b0111) { |
| val &= ~NV_FTR(DFR0, DebugVer); |
| val |= FIELD_PREP(NV_FTR(DFR0, DebugVer), 0b0111); |
| } |
| kvm_set_vm_id_reg(kvm, SYS_ID_AA64DFR0_EL1, val); |
| } |
| |
| u64 kvm_vcpu_sanitise_vncr_reg(const struct kvm_vcpu *vcpu, enum vcpu_sysreg sr) |
| { |
| u64 v = ctxt_sys_reg(&vcpu->arch.ctxt, sr); |
| struct kvm_sysreg_masks *masks; |
| |
| masks = vcpu->kvm->arch.sysreg_masks; |
| |
| if (masks) { |
| sr -= __VNCR_START__; |
| |
| v &= ~masks->mask[sr].res0; |
| v |= masks->mask[sr].res1; |
| } |
| |
| return v; |
| } |
| |
| static void set_sysreg_masks(struct kvm *kvm, int sr, u64 res0, u64 res1) |
| { |
| int i = sr - __VNCR_START__; |
| |
| kvm->arch.sysreg_masks->mask[i].res0 = res0; |
| kvm->arch.sysreg_masks->mask[i].res1 = res1; |
| } |
| |
| int kvm_init_nv_sysregs(struct kvm *kvm) |
| { |
| u64 res0, res1; |
| |
| lockdep_assert_held(&kvm->arch.config_lock); |
| |
| if (kvm->arch.sysreg_masks) |
| return 0; |
| |
| kvm->arch.sysreg_masks = kzalloc(sizeof(*(kvm->arch.sysreg_masks)), |
| GFP_KERNEL_ACCOUNT); |
| if (!kvm->arch.sysreg_masks) |
| return -ENOMEM; |
| |
| limit_nv_id_regs(kvm); |
| |
| /* VTTBR_EL2 */ |
| res0 = res1 = 0; |
| if (!kvm_has_feat_enum(kvm, ID_AA64MMFR1_EL1, VMIDBits, 16)) |
| res0 |= GENMASK(63, 56); |
| if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, CnP, IMP)) |
| res0 |= VTTBR_CNP_BIT; |
| set_sysreg_masks(kvm, VTTBR_EL2, res0, res1); |
| |
| /* VTCR_EL2 */ |
| res0 = GENMASK(63, 32) | GENMASK(30, 20); |
| res1 = BIT(31); |
| set_sysreg_masks(kvm, VTCR_EL2, res0, res1); |
| |
| /* VMPIDR_EL2 */ |
| res0 = GENMASK(63, 40) | GENMASK(30, 24); |
| res1 = BIT(31); |
| set_sysreg_masks(kvm, VMPIDR_EL2, res0, res1); |
| |
| /* HCR_EL2 */ |
| res0 = BIT(48); |
| res1 = HCR_RW; |
| if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, TWED, IMP)) |
| res0 |= GENMASK(63, 59); |
| if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, MTE, MTE2)) |
| res0 |= (HCR_TID5 | HCR_DCT | HCR_ATA); |
| if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, EVT, TTLBxS)) |
| res0 |= (HCR_TTLBIS | HCR_TTLBOS); |
| if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, CSV2, CSV2_2) && |
| !kvm_has_feat(kvm, ID_AA64PFR1_EL1, CSV2_frac, CSV2_1p2)) |
| res0 |= HCR_ENSCXT; |
| if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, EVT, IMP)) |
| res0 |= (HCR_TOCU | HCR_TICAB | HCR_TID4); |
| if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, AMU, V1P1)) |
| res0 |= HCR_AMVOFFEN; |
| if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, RAS, V1P1)) |
| res0 |= HCR_FIEN; |
| if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, FWB, IMP)) |
| res0 |= HCR_FWB; |
| if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, NV, NV2)) |
| res0 |= HCR_NV2; |
| if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, NV, IMP)) |
| res0 |= (HCR_AT | HCR_NV1 | HCR_NV); |
| if (!(__vcpu_has_feature(&kvm->arch, KVM_ARM_VCPU_PTRAUTH_ADDRESS) && |
| __vcpu_has_feature(&kvm->arch, KVM_ARM_VCPU_PTRAUTH_GENERIC))) |
| res0 |= (HCR_API | HCR_APK); |
| if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TME, IMP)) |
| res0 |= BIT(39); |
| if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, RAS, IMP)) |
| res0 |= (HCR_TEA | HCR_TERR); |
| if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, LO, IMP)) |
| res0 |= HCR_TLOR; |
| if (!kvm_has_feat(kvm, ID_AA64MMFR4_EL1, E2H0, IMP)) |
| res1 |= HCR_E2H; |
| set_sysreg_masks(kvm, HCR_EL2, res0, res1); |
| |
| /* HCRX_EL2 */ |
| res0 = HCRX_EL2_RES0; |
| res1 = HCRX_EL2_RES1; |
| if (!kvm_has_feat(kvm, ID_AA64ISAR3_EL1, PACM, TRIVIAL_IMP)) |
| res0 |= HCRX_EL2_PACMEn; |
| if (!kvm_has_feat(kvm, ID_AA64PFR2_EL1, FPMR, IMP)) |
| res0 |= HCRX_EL2_EnFPM; |
| if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, GCS, IMP)) |
| res0 |= HCRX_EL2_GCSEn; |
| if (!kvm_has_feat(kvm, ID_AA64ISAR2_EL1, SYSREG_128, IMP)) |
| res0 |= HCRX_EL2_EnIDCP128; |
| if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, ADERR, DEV_ASYNC)) |
| res0 |= (HCRX_EL2_EnSDERR | HCRX_EL2_EnSNERR); |
| if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, DF2, IMP)) |
| res0 |= HCRX_EL2_TMEA; |
| if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, D128, IMP)) |
| res0 |= HCRX_EL2_D128En; |
| if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, THE, IMP)) |
| res0 |= HCRX_EL2_PTTWI; |
| if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, SCTLRX, IMP)) |
| res0 |= HCRX_EL2_SCTLR2En; |
| if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, TCRX, IMP)) |
| res0 |= HCRX_EL2_TCR2En; |
| if (!kvm_has_feat(kvm, ID_AA64ISAR2_EL1, MOPS, IMP)) |
| res0 |= (HCRX_EL2_MSCEn | HCRX_EL2_MCE2); |
| if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, CMOW, IMP)) |
| res0 |= HCRX_EL2_CMOW; |
| if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, NMI, IMP)) |
| res0 |= (HCRX_EL2_VFNMI | HCRX_EL2_VINMI | HCRX_EL2_TALLINT); |
| if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, SME, IMP) || |
| !(read_sysreg_s(SYS_SMIDR_EL1) & SMIDR_EL1_SMPS)) |
| res0 |= HCRX_EL2_SMPME; |
| if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, XS, IMP)) |
| res0 |= (HCRX_EL2_FGTnXS | HCRX_EL2_FnXS); |
| if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, LS64, LS64_V)) |
| res0 |= HCRX_EL2_EnASR; |
| if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, LS64, LS64)) |
| res0 |= HCRX_EL2_EnALS; |
| if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, LS64, LS64_ACCDATA)) |
| res0 |= HCRX_EL2_EnAS0; |
| set_sysreg_masks(kvm, HCRX_EL2, res0, res1); |
| |
| /* HFG[RW]TR_EL2 */ |
| res0 = res1 = 0; |
| if (!(__vcpu_has_feature(&kvm->arch, KVM_ARM_VCPU_PTRAUTH_ADDRESS) && |
| __vcpu_has_feature(&kvm->arch, KVM_ARM_VCPU_PTRAUTH_GENERIC))) |
| res0 |= (HFGxTR_EL2_APDAKey | HFGxTR_EL2_APDBKey | |
| HFGxTR_EL2_APGAKey | HFGxTR_EL2_APIAKey | |
| HFGxTR_EL2_APIBKey); |
| if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, LO, IMP)) |
| res0 |= (HFGxTR_EL2_LORC_EL1 | HFGxTR_EL2_LOREA_EL1 | |
| HFGxTR_EL2_LORID_EL1 | HFGxTR_EL2_LORN_EL1 | |
| HFGxTR_EL2_LORSA_EL1); |
| if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, CSV2, CSV2_2) && |
| !kvm_has_feat(kvm, ID_AA64PFR1_EL1, CSV2_frac, CSV2_1p2)) |
| res0 |= (HFGxTR_EL2_SCXTNUM_EL1 | HFGxTR_EL2_SCXTNUM_EL0); |
| if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, GIC, IMP)) |
| res0 |= HFGxTR_EL2_ICC_IGRPENn_EL1; |
| if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, RAS, IMP)) |
| res0 |= (HFGxTR_EL2_ERRIDR_EL1 | HFGxTR_EL2_ERRSELR_EL1 | |
| HFGxTR_EL2_ERXFR_EL1 | HFGxTR_EL2_ERXCTLR_EL1 | |
| HFGxTR_EL2_ERXSTATUS_EL1 | HFGxTR_EL2_ERXMISCn_EL1 | |
| HFGxTR_EL2_ERXPFGF_EL1 | HFGxTR_EL2_ERXPFGCTL_EL1 | |
| HFGxTR_EL2_ERXPFGCDN_EL1 | HFGxTR_EL2_ERXADDR_EL1); |
| if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, LS64, LS64_ACCDATA)) |
| res0 |= HFGxTR_EL2_nACCDATA_EL1; |
| if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, GCS, IMP)) |
| res0 |= (HFGxTR_EL2_nGCS_EL0 | HFGxTR_EL2_nGCS_EL1); |
| if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, SME, IMP)) |
| res0 |= (HFGxTR_EL2_nSMPRI_EL1 | HFGxTR_EL2_nTPIDR2_EL0); |
| if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, THE, IMP)) |
| res0 |= HFGxTR_EL2_nRCWMASK_EL1; |
| if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, S1PIE, IMP)) |
| res0 |= (HFGxTR_EL2_nPIRE0_EL1 | HFGxTR_EL2_nPIR_EL1); |
| if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, S1POE, IMP)) |
| res0 |= (HFGxTR_EL2_nPOR_EL0 | HFGxTR_EL2_nPOR_EL1); |
| if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, S2POE, IMP)) |
| res0 |= HFGxTR_EL2_nS2POR_EL1; |
| if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, AIE, IMP)) |
| res0 |= (HFGxTR_EL2_nMAIR2_EL1 | HFGxTR_EL2_nAMAIR2_EL1); |
| set_sysreg_masks(kvm, HFGRTR_EL2, res0 | __HFGRTR_EL2_RES0, res1); |
| set_sysreg_masks(kvm, HFGWTR_EL2, res0 | __HFGWTR_EL2_RES0, res1); |
| |
| /* HDFG[RW]TR_EL2 */ |
| res0 = res1 = 0; |
| if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, DoubleLock, IMP)) |
| res0 |= HDFGRTR_EL2_OSDLR_EL1; |
| if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMUVer, IMP)) |
| res0 |= (HDFGRTR_EL2_PMEVCNTRn_EL0 | HDFGRTR_EL2_PMEVTYPERn_EL0 | |
| HDFGRTR_EL2_PMCCFILTR_EL0 | HDFGRTR_EL2_PMCCNTR_EL0 | |
| HDFGRTR_EL2_PMCNTEN | HDFGRTR_EL2_PMINTEN | |
| HDFGRTR_EL2_PMOVS | HDFGRTR_EL2_PMSELR_EL0 | |
| HDFGRTR_EL2_PMMIR_EL1 | HDFGRTR_EL2_PMUSERENR_EL0 | |
| HDFGRTR_EL2_PMCEIDn_EL0); |
| if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMSVer, IMP)) |
| res0 |= (HDFGRTR_EL2_PMBLIMITR_EL1 | HDFGRTR_EL2_PMBPTR_EL1 | |
| HDFGRTR_EL2_PMBSR_EL1 | HDFGRTR_EL2_PMSCR_EL1 | |
| HDFGRTR_EL2_PMSEVFR_EL1 | HDFGRTR_EL2_PMSFCR_EL1 | |
| HDFGRTR_EL2_PMSICR_EL1 | HDFGRTR_EL2_PMSIDR_EL1 | |
| HDFGRTR_EL2_PMSIRR_EL1 | HDFGRTR_EL2_PMSLATFR_EL1 | |
| HDFGRTR_EL2_PMBIDR_EL1); |
| if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, TraceVer, IMP)) |
| res0 |= (HDFGRTR_EL2_TRC | HDFGRTR_EL2_TRCAUTHSTATUS | |
| HDFGRTR_EL2_TRCAUXCTLR | HDFGRTR_EL2_TRCCLAIM | |
| HDFGRTR_EL2_TRCCNTVRn | HDFGRTR_EL2_TRCID | |
| HDFGRTR_EL2_TRCIMSPECn | HDFGRTR_EL2_TRCOSLSR | |
| HDFGRTR_EL2_TRCPRGCTLR | HDFGRTR_EL2_TRCSEQSTR | |
| HDFGRTR_EL2_TRCSSCSRn | HDFGRTR_EL2_TRCSTATR | |
| HDFGRTR_EL2_TRCVICTLR); |
| if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, TraceBuffer, IMP)) |
| res0 |= (HDFGRTR_EL2_TRBBASER_EL1 | HDFGRTR_EL2_TRBIDR_EL1 | |
| HDFGRTR_EL2_TRBLIMITR_EL1 | HDFGRTR_EL2_TRBMAR_EL1 | |
| HDFGRTR_EL2_TRBPTR_EL1 | HDFGRTR_EL2_TRBSR_EL1 | |
| HDFGRTR_EL2_TRBTRG_EL1); |
| if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, BRBE, IMP)) |
| res0 |= (HDFGRTR_EL2_nBRBIDR | HDFGRTR_EL2_nBRBCTL | |
| HDFGRTR_EL2_nBRBDATA); |
| if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMSVer, V1P2)) |
| res0 |= HDFGRTR_EL2_nPMSNEVFR_EL1; |
| set_sysreg_masks(kvm, HDFGRTR_EL2, res0 | HDFGRTR_EL2_RES0, res1); |
| |
| /* Reuse the bits from the read-side and add the write-specific stuff */ |
| if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMUVer, IMP)) |
| res0 |= (HDFGWTR_EL2_PMCR_EL0 | HDFGWTR_EL2_PMSWINC_EL0); |
| if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, TraceVer, IMP)) |
| res0 |= HDFGWTR_EL2_TRCOSLAR; |
| if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, TraceFilt, IMP)) |
| res0 |= HDFGWTR_EL2_TRFCR_EL1; |
| set_sysreg_masks(kvm, HFGWTR_EL2, res0 | HDFGWTR_EL2_RES0, res1); |
| |
| /* HFGITR_EL2 */ |
| res0 = HFGITR_EL2_RES0; |
| res1 = HFGITR_EL2_RES1; |
| if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, DPB, DPB2)) |
| res0 |= HFGITR_EL2_DCCVADP; |
| if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, PAN, PAN2)) |
| res0 |= (HFGITR_EL2_ATS1E1RP | HFGITR_EL2_ATS1E1WP); |
| if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS)) |
| res0 |= (HFGITR_EL2_TLBIRVAALE1OS | HFGITR_EL2_TLBIRVALE1OS | |
| HFGITR_EL2_TLBIRVAAE1OS | HFGITR_EL2_TLBIRVAE1OS | |
| HFGITR_EL2_TLBIVAALE1OS | HFGITR_EL2_TLBIVALE1OS | |
| HFGITR_EL2_TLBIVAAE1OS | HFGITR_EL2_TLBIASIDE1OS | |
| HFGITR_EL2_TLBIVAE1OS | HFGITR_EL2_TLBIVMALLE1OS); |
| if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, RANGE)) |
| res0 |= (HFGITR_EL2_TLBIRVAALE1 | HFGITR_EL2_TLBIRVALE1 | |
| HFGITR_EL2_TLBIRVAAE1 | HFGITR_EL2_TLBIRVAE1 | |
| HFGITR_EL2_TLBIRVAALE1IS | HFGITR_EL2_TLBIRVALE1IS | |
| HFGITR_EL2_TLBIRVAAE1IS | HFGITR_EL2_TLBIRVAE1IS | |
| HFGITR_EL2_TLBIRVAALE1OS | HFGITR_EL2_TLBIRVALE1OS | |
| HFGITR_EL2_TLBIRVAAE1OS | HFGITR_EL2_TLBIRVAE1OS); |
| if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, SPECRES, IMP)) |
| res0 |= (HFGITR_EL2_CFPRCTX | HFGITR_EL2_DVPRCTX | |
| HFGITR_EL2_CPPRCTX); |
| if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, BRBE, IMP)) |
| res0 |= (HFGITR_EL2_nBRBINJ | HFGITR_EL2_nBRBIALL); |
| if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, GCS, IMP)) |
| res0 |= (HFGITR_EL2_nGCSPUSHM_EL1 | HFGITR_EL2_nGCSSTR_EL1 | |
| HFGITR_EL2_nGCSEPP); |
| if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, SPECRES, COSP_RCTX)) |
| res0 |= HFGITR_EL2_COSPRCTX; |
| if (!kvm_has_feat(kvm, ID_AA64ISAR2_EL1, ATS1A, IMP)) |
| res0 |= HFGITR_EL2_ATS1E1A; |
| set_sysreg_masks(kvm, HFGITR_EL2, res0, res1); |
| |
| /* HAFGRTR_EL2 - not a lot to see here */ |
| res0 = HAFGRTR_EL2_RES0; |
| res1 = HAFGRTR_EL2_RES1; |
| if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, AMU, V1P1)) |
| res0 |= ~(res0 | res1); |
| set_sysreg_masks(kvm, HAFGRTR_EL2, res0, res1); |
| |
| /* SCTLR_EL1 */ |
| res0 = SCTLR_EL1_RES0; |
| res1 = SCTLR_EL1_RES1; |
| if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, PAN, PAN3)) |
| res0 |= SCTLR_EL1_EPAN; |
| set_sysreg_masks(kvm, SCTLR_EL1, res0, res1); |
| |
| return 0; |
| } |
| |
| void check_nested_vcpu_requests(struct kvm_vcpu *vcpu) |
| { |
| if (kvm_check_request(KVM_REQ_NESTED_S2_UNMAP, vcpu)) { |
| struct kvm_s2_mmu *mmu = vcpu->arch.hw_mmu; |
| |
| write_lock(&vcpu->kvm->mmu_lock); |
| if (mmu->pending_unmap) { |
| kvm_stage2_unmap_range(mmu, 0, kvm_phys_size(mmu), true); |
| mmu->pending_unmap = false; |
| } |
| write_unlock(&vcpu->kvm->mmu_lock); |
| } |
| } |