blob: b681c2e07dbf8464fa11779b4ae954f0adb8287e [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Resource Director Technology(RDT)
* - Cache Allocation code.
*
* Copyright (C) 2016 Intel Corporation
*
* Authors:
* Fenghua Yu <fenghua.yu@intel.com>
* Tony Luck <tony.luck@intel.com>
* Vikas Shivappa <vikas.shivappa@intel.com>
*
* More information about RDT be found in the Intel (R) x86 Architecture
* Software Developer Manual June 2016, volume 3, section 17.17.
*/
#define pr_fmt(fmt) "resctrl: " fmt
#include <linux/cpu.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/cpuhotplug.h>
#include <asm/cpu_device_id.h>
#include <asm/resctrl.h>
#include "internal.h"
/*
* rdt_domain structures are kfree()d when their last CPU goes offline,
* and allocated when the first CPU in a new domain comes online.
* The rdt_resource's domain list is updated when this happens. Readers of
* the domain list must either take cpus_read_lock(), or rely on an RCU
* read-side critical section, to avoid observing concurrent modification.
* All writers take this mutex:
*/
static DEFINE_MUTEX(domain_list_lock);
/*
* The cached resctrl_pqr_state is strictly per CPU and can never be
* updated from a remote CPU. Functions which modify the state
* are called with interrupts disabled and no preemption, which
* is sufficient for the protection.
*/
DEFINE_PER_CPU(struct resctrl_pqr_state, pqr_state);
/*
* Used to store the max resource name width and max resource data width
* to display the schemata in a tabular format
*/
int max_name_width, max_data_width;
/*
* Global boolean for rdt_alloc which is true if any
* resource allocation is enabled.
*/
bool rdt_alloc_capable;
static void mba_wrmsr_intel(struct msr_param *m);
static void cat_wrmsr(struct msr_param *m);
static void mba_wrmsr_amd(struct msr_param *m);
#define ctrl_domain_init(id) LIST_HEAD_INIT(rdt_resources_all[id].r_resctrl.ctrl_domains)
#define mon_domain_init(id) LIST_HEAD_INIT(rdt_resources_all[id].r_resctrl.mon_domains)
struct rdt_hw_resource rdt_resources_all[] = {
[RDT_RESOURCE_L3] =
{
.r_resctrl = {
.rid = RDT_RESOURCE_L3,
.name = "L3",
.ctrl_scope = RESCTRL_L3_CACHE,
.mon_scope = RESCTRL_L3_CACHE,
.ctrl_domains = ctrl_domain_init(RDT_RESOURCE_L3),
.mon_domains = mon_domain_init(RDT_RESOURCE_L3),
.parse_ctrlval = parse_cbm,
.format_str = "%d=%0*x",
.fflags = RFTYPE_RES_CACHE,
},
.msr_base = MSR_IA32_L3_CBM_BASE,
.msr_update = cat_wrmsr,
},
[RDT_RESOURCE_L2] =
{
.r_resctrl = {
.rid = RDT_RESOURCE_L2,
.name = "L2",
.ctrl_scope = RESCTRL_L2_CACHE,
.ctrl_domains = ctrl_domain_init(RDT_RESOURCE_L2),
.parse_ctrlval = parse_cbm,
.format_str = "%d=%0*x",
.fflags = RFTYPE_RES_CACHE,
},
.msr_base = MSR_IA32_L2_CBM_BASE,
.msr_update = cat_wrmsr,
},
[RDT_RESOURCE_MBA] =
{
.r_resctrl = {
.rid = RDT_RESOURCE_MBA,
.name = "MB",
.ctrl_scope = RESCTRL_L3_CACHE,
.ctrl_domains = ctrl_domain_init(RDT_RESOURCE_MBA),
.parse_ctrlval = parse_bw,
.format_str = "%d=%*u",
.fflags = RFTYPE_RES_MB,
},
},
[RDT_RESOURCE_SMBA] =
{
.r_resctrl = {
.rid = RDT_RESOURCE_SMBA,
.name = "SMBA",
.ctrl_scope = RESCTRL_L3_CACHE,
.ctrl_domains = ctrl_domain_init(RDT_RESOURCE_SMBA),
.parse_ctrlval = parse_bw,
.format_str = "%d=%*u",
.fflags = RFTYPE_RES_MB,
},
},
};
u32 resctrl_arch_system_num_rmid_idx(void)
{
struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
/* RMID are independent numbers for x86. num_rmid_idx == num_rmid */
return r->num_rmid;
}
/*
* cache_alloc_hsw_probe() - Have to probe for Intel haswell server CPUs
* as they do not have CPUID enumeration support for Cache allocation.
* The check for Vendor/Family/Model is not enough to guarantee that
* the MSRs won't #GP fault because only the following SKUs support
* CAT:
* Intel(R) Xeon(R) CPU E5-2658 v3 @ 2.20GHz
* Intel(R) Xeon(R) CPU E5-2648L v3 @ 1.80GHz
* Intel(R) Xeon(R) CPU E5-2628L v3 @ 2.00GHz
* Intel(R) Xeon(R) CPU E5-2618L v3 @ 2.30GHz
* Intel(R) Xeon(R) CPU E5-2608L v3 @ 2.00GHz
* Intel(R) Xeon(R) CPU E5-2658A v3 @ 2.20GHz
*
* Probe by trying to write the first of the L3 cache mask registers
* and checking that the bits stick. Max CLOSids is always 4 and max cbm length
* is always 20 on hsw server parts. The minimum cache bitmask length
* allowed for HSW server is always 2 bits. Hardcode all of them.
*/
static inline void cache_alloc_hsw_probe(void)
{
struct rdt_hw_resource *hw_res = &rdt_resources_all[RDT_RESOURCE_L3];
struct rdt_resource *r = &hw_res->r_resctrl;
u64 max_cbm = BIT_ULL_MASK(20) - 1, l3_cbm_0;
if (wrmsrl_safe(MSR_IA32_L3_CBM_BASE, max_cbm))
return;
rdmsrl(MSR_IA32_L3_CBM_BASE, l3_cbm_0);
/* If all the bits were set in MSR, return success */
if (l3_cbm_0 != max_cbm)
return;
hw_res->num_closid = 4;
r->default_ctrl = max_cbm;
r->cache.cbm_len = 20;
r->cache.shareable_bits = 0xc0000;
r->cache.min_cbm_bits = 2;
r->cache.arch_has_sparse_bitmasks = false;
r->alloc_capable = true;
rdt_alloc_capable = true;
}
bool is_mba_sc(struct rdt_resource *r)
{
if (!r)
return rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl.membw.mba_sc;
/*
* The software controller support is only applicable to MBA resource.
* Make sure to check for resource type.
*/
if (r->rid != RDT_RESOURCE_MBA)
return false;
return r->membw.mba_sc;
}
/*
* rdt_get_mb_table() - get a mapping of bandwidth(b/w) percentage values
* exposed to user interface and the h/w understandable delay values.
*
* The non-linear delay values have the granularity of power of two
* and also the h/w does not guarantee a curve for configured delay
* values vs. actual b/w enforced.
* Hence we need a mapping that is pre calibrated so the user can
* express the memory b/w as a percentage value.
*/
static inline bool rdt_get_mb_table(struct rdt_resource *r)
{
/*
* There are no Intel SKUs as of now to support non-linear delay.
*/
pr_info("MBA b/w map not implemented for cpu:%d, model:%d",
boot_cpu_data.x86, boot_cpu_data.x86_model);
return false;
}
static __init bool __get_mem_config_intel(struct rdt_resource *r)
{
struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
union cpuid_0x10_3_eax eax;
union cpuid_0x10_x_edx edx;
u32 ebx, ecx, max_delay;
cpuid_count(0x00000010, 3, &eax.full, &ebx, &ecx, &edx.full);
hw_res->num_closid = edx.split.cos_max + 1;
max_delay = eax.split.max_delay + 1;
r->default_ctrl = MAX_MBA_BW;
r->membw.arch_needs_linear = true;
if (ecx & MBA_IS_LINEAR) {
r->membw.delay_linear = true;
r->membw.min_bw = MAX_MBA_BW - max_delay;
r->membw.bw_gran = MAX_MBA_BW - max_delay;
} else {
if (!rdt_get_mb_table(r))
return false;
r->membw.arch_needs_linear = false;
}
r->data_width = 3;
if (boot_cpu_has(X86_FEATURE_PER_THREAD_MBA))
r->membw.throttle_mode = THREAD_THROTTLE_PER_THREAD;
else
r->membw.throttle_mode = THREAD_THROTTLE_MAX;
thread_throttle_mode_init();
r->alloc_capable = true;
return true;
}
static __init bool __rdt_get_mem_config_amd(struct rdt_resource *r)
{
struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
u32 eax, ebx, ecx, edx, subleaf;
/*
* Query CPUID_Fn80000020_EDX_x01 for MBA and
* CPUID_Fn80000020_EDX_x02 for SMBA
*/
subleaf = (r->rid == RDT_RESOURCE_SMBA) ? 2 : 1;
cpuid_count(0x80000020, subleaf, &eax, &ebx, &ecx, &edx);
hw_res->num_closid = edx + 1;
r->default_ctrl = 1 << eax;
/* AMD does not use delay */
r->membw.delay_linear = false;
r->membw.arch_needs_linear = false;
/*
* AMD does not use memory delay throttle model to control
* the allocation like Intel does.
*/
r->membw.throttle_mode = THREAD_THROTTLE_UNDEFINED;
r->membw.min_bw = 0;
r->membw.bw_gran = 1;
/* Max value is 2048, Data width should be 4 in decimal */
r->data_width = 4;
r->alloc_capable = true;
return true;
}
static void rdt_get_cache_alloc_cfg(int idx, struct rdt_resource *r)
{
struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
union cpuid_0x10_1_eax eax;
union cpuid_0x10_x_ecx ecx;
union cpuid_0x10_x_edx edx;
u32 ebx;
cpuid_count(0x00000010, idx, &eax.full, &ebx, &ecx.full, &edx.full);
hw_res->num_closid = edx.split.cos_max + 1;
r->cache.cbm_len = eax.split.cbm_len + 1;
r->default_ctrl = BIT_MASK(eax.split.cbm_len + 1) - 1;
r->cache.shareable_bits = ebx & r->default_ctrl;
r->data_width = (r->cache.cbm_len + 3) / 4;
if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
r->cache.arch_has_sparse_bitmasks = ecx.split.noncont;
r->alloc_capable = true;
}
static void rdt_get_cdp_config(int level)
{
/*
* By default, CDP is disabled. CDP can be enabled by mount parameter
* "cdp" during resctrl file system mount time.
*/
rdt_resources_all[level].cdp_enabled = false;
rdt_resources_all[level].r_resctrl.cdp_capable = true;
}
static void rdt_get_cdp_l3_config(void)
{
rdt_get_cdp_config(RDT_RESOURCE_L3);
}
static void rdt_get_cdp_l2_config(void)
{
rdt_get_cdp_config(RDT_RESOURCE_L2);
}
static void mba_wrmsr_amd(struct msr_param *m)
{
struct rdt_hw_ctrl_domain *hw_dom = resctrl_to_arch_ctrl_dom(m->dom);
struct rdt_hw_resource *hw_res = resctrl_to_arch_res(m->res);
unsigned int i;
for (i = m->low; i < m->high; i++)
wrmsrl(hw_res->msr_base + i, hw_dom->ctrl_val[i]);
}
/*
* Map the memory b/w percentage value to delay values
* that can be written to QOS_MSRs.
* There are currently no SKUs which support non linear delay values.
*/
static u32 delay_bw_map(unsigned long bw, struct rdt_resource *r)
{
if (r->membw.delay_linear)
return MAX_MBA_BW - bw;
pr_warn_once("Non Linear delay-bw map not supported but queried\n");
return r->default_ctrl;
}
static void mba_wrmsr_intel(struct msr_param *m)
{
struct rdt_hw_ctrl_domain *hw_dom = resctrl_to_arch_ctrl_dom(m->dom);
struct rdt_hw_resource *hw_res = resctrl_to_arch_res(m->res);
unsigned int i;
/* Write the delay values for mba. */
for (i = m->low; i < m->high; i++)
wrmsrl(hw_res->msr_base + i, delay_bw_map(hw_dom->ctrl_val[i], m->res));
}
static void cat_wrmsr(struct msr_param *m)
{
struct rdt_hw_ctrl_domain *hw_dom = resctrl_to_arch_ctrl_dom(m->dom);
struct rdt_hw_resource *hw_res = resctrl_to_arch_res(m->res);
unsigned int i;
for (i = m->low; i < m->high; i++)
wrmsrl(hw_res->msr_base + i, hw_dom->ctrl_val[i]);
}
struct rdt_ctrl_domain *get_ctrl_domain_from_cpu(int cpu, struct rdt_resource *r)
{
struct rdt_ctrl_domain *d;
lockdep_assert_cpus_held();
list_for_each_entry(d, &r->ctrl_domains, hdr.list) {
/* Find the domain that contains this CPU */
if (cpumask_test_cpu(cpu, &d->hdr.cpu_mask))
return d;
}
return NULL;
}
struct rdt_mon_domain *get_mon_domain_from_cpu(int cpu, struct rdt_resource *r)
{
struct rdt_mon_domain *d;
lockdep_assert_cpus_held();
list_for_each_entry(d, &r->mon_domains, hdr.list) {
/* Find the domain that contains this CPU */
if (cpumask_test_cpu(cpu, &d->hdr.cpu_mask))
return d;
}
return NULL;
}
u32 resctrl_arch_get_num_closid(struct rdt_resource *r)
{
return resctrl_to_arch_res(r)->num_closid;
}
void rdt_ctrl_update(void *arg)
{
struct rdt_hw_resource *hw_res;
struct msr_param *m = arg;
hw_res = resctrl_to_arch_res(m->res);
hw_res->msr_update(m);
}
/*
* rdt_find_domain - Search for a domain id in a resource domain list.
*
* Search the domain list to find the domain id. If the domain id is
* found, return the domain. NULL otherwise. If the domain id is not
* found (and NULL returned) then the first domain with id bigger than
* the input id can be returned to the caller via @pos.
*/
struct rdt_domain_hdr *rdt_find_domain(struct list_head *h, int id,
struct list_head **pos)
{
struct rdt_domain_hdr *d;
struct list_head *l;
list_for_each(l, h) {
d = list_entry(l, struct rdt_domain_hdr, list);
/* When id is found, return its domain. */
if (id == d->id)
return d;
/* Stop searching when finding id's position in sorted list. */
if (id < d->id)
break;
}
if (pos)
*pos = l;
return NULL;
}
static void setup_default_ctrlval(struct rdt_resource *r, u32 *dc)
{
struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
int i;
/*
* Initialize the Control MSRs to having no control.
* For Cache Allocation: Set all bits in cbm
* For Memory Allocation: Set b/w requested to 100%
*/
for (i = 0; i < hw_res->num_closid; i++, dc++)
*dc = r->default_ctrl;
}
static void ctrl_domain_free(struct rdt_hw_ctrl_domain *hw_dom)
{
kfree(hw_dom->ctrl_val);
kfree(hw_dom);
}
static void mon_domain_free(struct rdt_hw_mon_domain *hw_dom)
{
kfree(hw_dom->arch_mbm_total);
kfree(hw_dom->arch_mbm_local);
kfree(hw_dom);
}
static int domain_setup_ctrlval(struct rdt_resource *r, struct rdt_ctrl_domain *d)
{
struct rdt_hw_ctrl_domain *hw_dom = resctrl_to_arch_ctrl_dom(d);
struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
struct msr_param m;
u32 *dc;
dc = kmalloc_array(hw_res->num_closid, sizeof(*hw_dom->ctrl_val),
GFP_KERNEL);
if (!dc)
return -ENOMEM;
hw_dom->ctrl_val = dc;
setup_default_ctrlval(r, dc);
m.res = r;
m.dom = d;
m.low = 0;
m.high = hw_res->num_closid;
hw_res->msr_update(&m);
return 0;
}
/**
* arch_domain_mbm_alloc() - Allocate arch private storage for the MBM counters
* @num_rmid: The size of the MBM counter array
* @hw_dom: The domain that owns the allocated arrays
*/
static int arch_domain_mbm_alloc(u32 num_rmid, struct rdt_hw_mon_domain *hw_dom)
{
size_t tsize;
if (is_mbm_total_enabled()) {
tsize = sizeof(*hw_dom->arch_mbm_total);
hw_dom->arch_mbm_total = kcalloc(num_rmid, tsize, GFP_KERNEL);
if (!hw_dom->arch_mbm_total)
return -ENOMEM;
}
if (is_mbm_local_enabled()) {
tsize = sizeof(*hw_dom->arch_mbm_local);
hw_dom->arch_mbm_local = kcalloc(num_rmid, tsize, GFP_KERNEL);
if (!hw_dom->arch_mbm_local) {
kfree(hw_dom->arch_mbm_total);
hw_dom->arch_mbm_total = NULL;
return -ENOMEM;
}
}
return 0;
}
static int get_domain_id_from_scope(int cpu, enum resctrl_scope scope)
{
switch (scope) {
case RESCTRL_L2_CACHE:
case RESCTRL_L3_CACHE:
return get_cpu_cacheinfo_id(cpu, scope);
case RESCTRL_L3_NODE:
return cpu_to_node(cpu);
default:
break;
}
return -EINVAL;
}
static void domain_add_cpu_ctrl(int cpu, struct rdt_resource *r)
{
int id = get_domain_id_from_scope(cpu, r->ctrl_scope);
struct rdt_hw_ctrl_domain *hw_dom;
struct list_head *add_pos = NULL;
struct rdt_domain_hdr *hdr;
struct rdt_ctrl_domain *d;
int err;
lockdep_assert_held(&domain_list_lock);
if (id < 0) {
pr_warn_once("Can't find control domain id for CPU:%d scope:%d for resource %s\n",
cpu, r->ctrl_scope, r->name);
return;
}
hdr = rdt_find_domain(&r->ctrl_domains, id, &add_pos);
if (hdr) {
if (WARN_ON_ONCE(hdr->type != RESCTRL_CTRL_DOMAIN))
return;
d = container_of(hdr, struct rdt_ctrl_domain, hdr);
cpumask_set_cpu(cpu, &d->hdr.cpu_mask);
if (r->cache.arch_has_per_cpu_cfg)
rdt_domain_reconfigure_cdp(r);
return;
}
hw_dom = kzalloc_node(sizeof(*hw_dom), GFP_KERNEL, cpu_to_node(cpu));
if (!hw_dom)
return;
d = &hw_dom->d_resctrl;
d->hdr.id = id;
d->hdr.type = RESCTRL_CTRL_DOMAIN;
cpumask_set_cpu(cpu, &d->hdr.cpu_mask);
rdt_domain_reconfigure_cdp(r);
if (domain_setup_ctrlval(r, d)) {
ctrl_domain_free(hw_dom);
return;
}
list_add_tail_rcu(&d->hdr.list, add_pos);
err = resctrl_online_ctrl_domain(r, d);
if (err) {
list_del_rcu(&d->hdr.list);
synchronize_rcu();
ctrl_domain_free(hw_dom);
}
}
static void domain_add_cpu_mon(int cpu, struct rdt_resource *r)
{
int id = get_domain_id_from_scope(cpu, r->mon_scope);
struct list_head *add_pos = NULL;
struct rdt_hw_mon_domain *hw_dom;
struct rdt_domain_hdr *hdr;
struct rdt_mon_domain *d;
int err;
lockdep_assert_held(&domain_list_lock);
if (id < 0) {
pr_warn_once("Can't find monitor domain id for CPU:%d scope:%d for resource %s\n",
cpu, r->mon_scope, r->name);
return;
}
hdr = rdt_find_domain(&r->mon_domains, id, &add_pos);
if (hdr) {
if (WARN_ON_ONCE(hdr->type != RESCTRL_MON_DOMAIN))
return;
d = container_of(hdr, struct rdt_mon_domain, hdr);
cpumask_set_cpu(cpu, &d->hdr.cpu_mask);
return;
}
hw_dom = kzalloc_node(sizeof(*hw_dom), GFP_KERNEL, cpu_to_node(cpu));
if (!hw_dom)
return;
d = &hw_dom->d_resctrl;
d->hdr.id = id;
d->hdr.type = RESCTRL_MON_DOMAIN;
d->ci = get_cpu_cacheinfo_level(cpu, RESCTRL_L3_CACHE);
if (!d->ci) {
pr_warn_once("Can't find L3 cache for CPU:%d resource %s\n", cpu, r->name);
mon_domain_free(hw_dom);
return;
}
cpumask_set_cpu(cpu, &d->hdr.cpu_mask);
arch_mon_domain_online(r, d);
if (arch_domain_mbm_alloc(r->num_rmid, hw_dom)) {
mon_domain_free(hw_dom);
return;
}
list_add_tail_rcu(&d->hdr.list, add_pos);
err = resctrl_online_mon_domain(r, d);
if (err) {
list_del_rcu(&d->hdr.list);
synchronize_rcu();
mon_domain_free(hw_dom);
}
}
static void domain_add_cpu(int cpu, struct rdt_resource *r)
{
if (r->alloc_capable)
domain_add_cpu_ctrl(cpu, r);
if (r->mon_capable)
domain_add_cpu_mon(cpu, r);
}
static void domain_remove_cpu_ctrl(int cpu, struct rdt_resource *r)
{
int id = get_domain_id_from_scope(cpu, r->ctrl_scope);
struct rdt_hw_ctrl_domain *hw_dom;
struct rdt_domain_hdr *hdr;
struct rdt_ctrl_domain *d;
lockdep_assert_held(&domain_list_lock);
if (id < 0) {
pr_warn_once("Can't find control domain id for CPU:%d scope:%d for resource %s\n",
cpu, r->ctrl_scope, r->name);
return;
}
hdr = rdt_find_domain(&r->ctrl_domains, id, NULL);
if (!hdr) {
pr_warn("Can't find control domain for id=%d for CPU %d for resource %s\n",
id, cpu, r->name);
return;
}
if (WARN_ON_ONCE(hdr->type != RESCTRL_CTRL_DOMAIN))
return;
d = container_of(hdr, struct rdt_ctrl_domain, hdr);
hw_dom = resctrl_to_arch_ctrl_dom(d);
cpumask_clear_cpu(cpu, &d->hdr.cpu_mask);
if (cpumask_empty(&d->hdr.cpu_mask)) {
resctrl_offline_ctrl_domain(r, d);
list_del_rcu(&d->hdr.list);
synchronize_rcu();
/*
* rdt_ctrl_domain "d" is going to be freed below, so clear
* its pointer from pseudo_lock_region struct.
*/
if (d->plr)
d->plr->d = NULL;
ctrl_domain_free(hw_dom);
return;
}
}
static void domain_remove_cpu_mon(int cpu, struct rdt_resource *r)
{
int id = get_domain_id_from_scope(cpu, r->mon_scope);
struct rdt_hw_mon_domain *hw_dom;
struct rdt_domain_hdr *hdr;
struct rdt_mon_domain *d;
lockdep_assert_held(&domain_list_lock);
if (id < 0) {
pr_warn_once("Can't find monitor domain id for CPU:%d scope:%d for resource %s\n",
cpu, r->mon_scope, r->name);
return;
}
hdr = rdt_find_domain(&r->mon_domains, id, NULL);
if (!hdr) {
pr_warn("Can't find monitor domain for id=%d for CPU %d for resource %s\n",
id, cpu, r->name);
return;
}
if (WARN_ON_ONCE(hdr->type != RESCTRL_MON_DOMAIN))
return;
d = container_of(hdr, struct rdt_mon_domain, hdr);
hw_dom = resctrl_to_arch_mon_dom(d);
cpumask_clear_cpu(cpu, &d->hdr.cpu_mask);
if (cpumask_empty(&d->hdr.cpu_mask)) {
resctrl_offline_mon_domain(r, d);
list_del_rcu(&d->hdr.list);
synchronize_rcu();
mon_domain_free(hw_dom);
return;
}
}
static void domain_remove_cpu(int cpu, struct rdt_resource *r)
{
if (r->alloc_capable)
domain_remove_cpu_ctrl(cpu, r);
if (r->mon_capable)
domain_remove_cpu_mon(cpu, r);
}
static void clear_closid_rmid(int cpu)
{
struct resctrl_pqr_state *state = this_cpu_ptr(&pqr_state);
state->default_closid = RESCTRL_RESERVED_CLOSID;
state->default_rmid = RESCTRL_RESERVED_RMID;
state->cur_closid = RESCTRL_RESERVED_CLOSID;
state->cur_rmid = RESCTRL_RESERVED_RMID;
wrmsr(MSR_IA32_PQR_ASSOC, RESCTRL_RESERVED_RMID,
RESCTRL_RESERVED_CLOSID);
}
static int resctrl_arch_online_cpu(unsigned int cpu)
{
struct rdt_resource *r;
mutex_lock(&domain_list_lock);
for_each_capable_rdt_resource(r)
domain_add_cpu(cpu, r);
mutex_unlock(&domain_list_lock);
clear_closid_rmid(cpu);
resctrl_online_cpu(cpu);
return 0;
}
static int resctrl_arch_offline_cpu(unsigned int cpu)
{
struct rdt_resource *r;
resctrl_offline_cpu(cpu);
mutex_lock(&domain_list_lock);
for_each_capable_rdt_resource(r)
domain_remove_cpu(cpu, r);
mutex_unlock(&domain_list_lock);
clear_closid_rmid(cpu);
return 0;
}
/*
* Choose a width for the resource name and resource data based on the
* resource that has widest name and cbm.
*/
static __init void rdt_init_padding(void)
{
struct rdt_resource *r;
for_each_alloc_capable_rdt_resource(r) {
if (r->data_width > max_data_width)
max_data_width = r->data_width;
}
}
enum {
RDT_FLAG_CMT,
RDT_FLAG_MBM_TOTAL,
RDT_FLAG_MBM_LOCAL,
RDT_FLAG_L3_CAT,
RDT_FLAG_L3_CDP,
RDT_FLAG_L2_CAT,
RDT_FLAG_L2_CDP,
RDT_FLAG_MBA,
RDT_FLAG_SMBA,
RDT_FLAG_BMEC,
};
#define RDT_OPT(idx, n, f) \
[idx] = { \
.name = n, \
.flag = f \
}
struct rdt_options {
char *name;
int flag;
bool force_off, force_on;
};
static struct rdt_options rdt_options[] __initdata = {
RDT_OPT(RDT_FLAG_CMT, "cmt", X86_FEATURE_CQM_OCCUP_LLC),
RDT_OPT(RDT_FLAG_MBM_TOTAL, "mbmtotal", X86_FEATURE_CQM_MBM_TOTAL),
RDT_OPT(RDT_FLAG_MBM_LOCAL, "mbmlocal", X86_FEATURE_CQM_MBM_LOCAL),
RDT_OPT(RDT_FLAG_L3_CAT, "l3cat", X86_FEATURE_CAT_L3),
RDT_OPT(RDT_FLAG_L3_CDP, "l3cdp", X86_FEATURE_CDP_L3),
RDT_OPT(RDT_FLAG_L2_CAT, "l2cat", X86_FEATURE_CAT_L2),
RDT_OPT(RDT_FLAG_L2_CDP, "l2cdp", X86_FEATURE_CDP_L2),
RDT_OPT(RDT_FLAG_MBA, "mba", X86_FEATURE_MBA),
RDT_OPT(RDT_FLAG_SMBA, "smba", X86_FEATURE_SMBA),
RDT_OPT(RDT_FLAG_BMEC, "bmec", X86_FEATURE_BMEC),
};
#define NUM_RDT_OPTIONS ARRAY_SIZE(rdt_options)
static int __init set_rdt_options(char *str)
{
struct rdt_options *o;
bool force_off;
char *tok;
if (*str == '=')
str++;
while ((tok = strsep(&str, ",")) != NULL) {
force_off = *tok == '!';
if (force_off)
tok++;
for (o = rdt_options; o < &rdt_options[NUM_RDT_OPTIONS]; o++) {
if (strcmp(tok, o->name) == 0) {
if (force_off)
o->force_off = true;
else
o->force_on = true;
break;
}
}
}
return 1;
}
__setup("rdt", set_rdt_options);
bool __init rdt_cpu_has(int flag)
{
bool ret = boot_cpu_has(flag);
struct rdt_options *o;
if (!ret)
return ret;
for (o = rdt_options; o < &rdt_options[NUM_RDT_OPTIONS]; o++) {
if (flag == o->flag) {
if (o->force_off)
ret = false;
if (o->force_on)
ret = true;
break;
}
}
return ret;
}
static __init bool get_mem_config(void)
{
struct rdt_hw_resource *hw_res = &rdt_resources_all[RDT_RESOURCE_MBA];
if (!rdt_cpu_has(X86_FEATURE_MBA))
return false;
if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
return __get_mem_config_intel(&hw_res->r_resctrl);
else if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
return __rdt_get_mem_config_amd(&hw_res->r_resctrl);
return false;
}
static __init bool get_slow_mem_config(void)
{
struct rdt_hw_resource *hw_res = &rdt_resources_all[RDT_RESOURCE_SMBA];
if (!rdt_cpu_has(X86_FEATURE_SMBA))
return false;
if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
return __rdt_get_mem_config_amd(&hw_res->r_resctrl);
return false;
}
static __init bool get_rdt_alloc_resources(void)
{
struct rdt_resource *r;
bool ret = false;
if (rdt_alloc_capable)
return true;
if (!boot_cpu_has(X86_FEATURE_RDT_A))
return false;
if (rdt_cpu_has(X86_FEATURE_CAT_L3)) {
r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
rdt_get_cache_alloc_cfg(1, r);
if (rdt_cpu_has(X86_FEATURE_CDP_L3))
rdt_get_cdp_l3_config();
ret = true;
}
if (rdt_cpu_has(X86_FEATURE_CAT_L2)) {
/* CPUID 0x10.2 fields are same format at 0x10.1 */
r = &rdt_resources_all[RDT_RESOURCE_L2].r_resctrl;
rdt_get_cache_alloc_cfg(2, r);
if (rdt_cpu_has(X86_FEATURE_CDP_L2))
rdt_get_cdp_l2_config();
ret = true;
}
if (get_mem_config())
ret = true;
if (get_slow_mem_config())
ret = true;
return ret;
}
static __init bool get_rdt_mon_resources(void)
{
struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
if (rdt_cpu_has(X86_FEATURE_CQM_OCCUP_LLC))
rdt_mon_features |= (1 << QOS_L3_OCCUP_EVENT_ID);
if (rdt_cpu_has(X86_FEATURE_CQM_MBM_TOTAL))
rdt_mon_features |= (1 << QOS_L3_MBM_TOTAL_EVENT_ID);
if (rdt_cpu_has(X86_FEATURE_CQM_MBM_LOCAL))
rdt_mon_features |= (1 << QOS_L3_MBM_LOCAL_EVENT_ID);
if (!rdt_mon_features)
return false;
return !rdt_get_mon_l3_config(r);
}
static __init void __check_quirks_intel(void)
{
switch (boot_cpu_data.x86_vfm) {
case INTEL_HASWELL_X:
if (!rdt_options[RDT_FLAG_L3_CAT].force_off)
cache_alloc_hsw_probe();
break;
case INTEL_SKYLAKE_X:
if (boot_cpu_data.x86_stepping <= 4)
set_rdt_options("!cmt,!mbmtotal,!mbmlocal,!l3cat");
else
set_rdt_options("!l3cat");
fallthrough;
case INTEL_BROADWELL_X:
intel_rdt_mbm_apply_quirk();
break;
}
}
static __init void check_quirks(void)
{
if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
__check_quirks_intel();
}
static __init bool get_rdt_resources(void)
{
rdt_alloc_capable = get_rdt_alloc_resources();
rdt_mon_capable = get_rdt_mon_resources();
return (rdt_mon_capable || rdt_alloc_capable);
}
static __init void rdt_init_res_defs_intel(void)
{
struct rdt_hw_resource *hw_res;
struct rdt_resource *r;
for_each_rdt_resource(r) {
hw_res = resctrl_to_arch_res(r);
if (r->rid == RDT_RESOURCE_L3 ||
r->rid == RDT_RESOURCE_L2) {
r->cache.arch_has_per_cpu_cfg = false;
r->cache.min_cbm_bits = 1;
} else if (r->rid == RDT_RESOURCE_MBA) {
hw_res->msr_base = MSR_IA32_MBA_THRTL_BASE;
hw_res->msr_update = mba_wrmsr_intel;
}
}
}
static __init void rdt_init_res_defs_amd(void)
{
struct rdt_hw_resource *hw_res;
struct rdt_resource *r;
for_each_rdt_resource(r) {
hw_res = resctrl_to_arch_res(r);
if (r->rid == RDT_RESOURCE_L3 ||
r->rid == RDT_RESOURCE_L2) {
r->cache.arch_has_sparse_bitmasks = true;
r->cache.arch_has_per_cpu_cfg = true;
r->cache.min_cbm_bits = 0;
} else if (r->rid == RDT_RESOURCE_MBA) {
hw_res->msr_base = MSR_IA32_MBA_BW_BASE;
hw_res->msr_update = mba_wrmsr_amd;
} else if (r->rid == RDT_RESOURCE_SMBA) {
hw_res->msr_base = MSR_IA32_SMBA_BW_BASE;
hw_res->msr_update = mba_wrmsr_amd;
}
}
}
static __init void rdt_init_res_defs(void)
{
if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
rdt_init_res_defs_intel();
else if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
rdt_init_res_defs_amd();
}
static enum cpuhp_state rdt_online;
/* Runs once on the BSP during boot. */
void resctrl_cpu_detect(struct cpuinfo_x86 *c)
{
if (!cpu_has(c, X86_FEATURE_CQM_LLC)) {
c->x86_cache_max_rmid = -1;
c->x86_cache_occ_scale = -1;
c->x86_cache_mbm_width_offset = -1;
return;
}
/* will be overridden if occupancy monitoring exists */
c->x86_cache_max_rmid = cpuid_ebx(0xf);
if (cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC) ||
cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL) ||
cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)) {
u32 eax, ebx, ecx, edx;
/* QoS sub-leaf, EAX=0Fh, ECX=1 */
cpuid_count(0xf, 1, &eax, &ebx, &ecx, &edx);
c->x86_cache_max_rmid = ecx;
c->x86_cache_occ_scale = ebx;
c->x86_cache_mbm_width_offset = eax & 0xff;
if (c->x86_vendor == X86_VENDOR_AMD && !c->x86_cache_mbm_width_offset)
c->x86_cache_mbm_width_offset = MBM_CNTR_WIDTH_OFFSET_AMD;
}
}
static int __init resctrl_late_init(void)
{
struct rdt_resource *r;
int state, ret;
/*
* Initialize functions(or definitions) that are different
* between vendors here.
*/
rdt_init_res_defs();
check_quirks();
if (!get_rdt_resources())
return -ENODEV;
rdt_init_padding();
state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
"x86/resctrl/cat:online:",
resctrl_arch_online_cpu,
resctrl_arch_offline_cpu);
if (state < 0)
return state;
ret = rdtgroup_init();
if (ret) {
cpuhp_remove_state(state);
return ret;
}
rdt_online = state;
for_each_alloc_capable_rdt_resource(r)
pr_info("%s allocation detected\n", r->name);
for_each_mon_capable_rdt_resource(r)
pr_info("%s monitoring detected\n", r->name);
return 0;
}
late_initcall(resctrl_late_init);
static void __exit resctrl_exit(void)
{
struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
cpuhp_remove_state(rdt_online);
rdtgroup_exit();
if (r->mon_capable)
rdt_put_mon_l3_config();
}
__exitcall(resctrl_exit);