blob: 2ed2279388f02eff63c9ef977571eb048d42ad81 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* System Control and Management Interface (SCMI) Clock Protocol
*
* Copyright (C) 2018-2022 ARM Ltd.
*/
#include <linux/module.h>
#include <linux/limits.h>
#include <linux/sort.h>
#include "protocols.h"
#include "notify.h"
/* Updated only after ALL the mandatory features for that version are merged */
#define SCMI_PROTOCOL_SUPPORTED_VERSION 0x30000
enum scmi_clock_protocol_cmd {
CLOCK_ATTRIBUTES = 0x3,
CLOCK_DESCRIBE_RATES = 0x4,
CLOCK_RATE_SET = 0x5,
CLOCK_RATE_GET = 0x6,
CLOCK_CONFIG_SET = 0x7,
CLOCK_NAME_GET = 0x8,
CLOCK_RATE_NOTIFY = 0x9,
CLOCK_RATE_CHANGE_REQUESTED_NOTIFY = 0xA,
CLOCK_CONFIG_GET = 0xB,
CLOCK_POSSIBLE_PARENTS_GET = 0xC,
CLOCK_PARENT_SET = 0xD,
CLOCK_PARENT_GET = 0xE,
CLOCK_GET_PERMISSIONS = 0xF,
};
#define CLOCK_STATE_CONTROL_ALLOWED BIT(31)
#define CLOCK_PARENT_CONTROL_ALLOWED BIT(30)
#define CLOCK_RATE_CONTROL_ALLOWED BIT(29)
enum clk_state {
CLK_STATE_DISABLE,
CLK_STATE_ENABLE,
CLK_STATE_RESERVED,
CLK_STATE_UNCHANGED,
};
struct scmi_msg_resp_clock_protocol_attributes {
__le16 num_clocks;
u8 max_async_req;
u8 reserved;
};
struct scmi_msg_resp_clock_attributes {
__le32 attributes;
#define SUPPORTS_RATE_CHANGED_NOTIF(x) ((x) & BIT(31))
#define SUPPORTS_RATE_CHANGE_REQUESTED_NOTIF(x) ((x) & BIT(30))
#define SUPPORTS_EXTENDED_NAMES(x) ((x) & BIT(29))
#define SUPPORTS_PARENT_CLOCK(x) ((x) & BIT(28))
#define SUPPORTS_EXTENDED_CONFIG(x) ((x) & BIT(27))
#define SUPPORTS_GET_PERMISSIONS(x) ((x) & BIT(1))
u8 name[SCMI_SHORT_NAME_MAX_SIZE];
__le32 clock_enable_latency;
};
struct scmi_msg_clock_possible_parents {
__le32 id;
__le32 skip_parents;
};
struct scmi_msg_resp_clock_possible_parents {
__le32 num_parent_flags;
#define NUM_PARENTS_RETURNED(x) ((x) & 0xff)
#define NUM_PARENTS_REMAINING(x) ((x) >> 24)
__le32 possible_parents[];
};
struct scmi_msg_clock_set_parent {
__le32 id;
__le32 parent_id;
};
struct scmi_msg_clock_config_set {
__le32 id;
__le32 attributes;
};
/* Valid only from SCMI clock v2.1 */
struct scmi_msg_clock_config_set_v2 {
__le32 id;
__le32 attributes;
#define NULL_OEM_TYPE 0
#define REGMASK_OEM_TYPE_SET GENMASK(23, 16)
#define REGMASK_CLK_STATE GENMASK(1, 0)
__le32 oem_config_val;
};
struct scmi_msg_clock_config_get {
__le32 id;
__le32 flags;
#define REGMASK_OEM_TYPE_GET GENMASK(7, 0)
};
struct scmi_msg_resp_clock_config_get {
__le32 attributes;
__le32 config;
#define IS_CLK_ENABLED(x) le32_get_bits((x), BIT(0))
__le32 oem_config_val;
};
struct scmi_msg_clock_describe_rates {
__le32 id;
__le32 rate_index;
};
struct scmi_msg_resp_clock_describe_rates {
__le32 num_rates_flags;
#define NUM_RETURNED(x) ((x) & 0xfff)
#define RATE_DISCRETE(x) !((x) & BIT(12))
#define NUM_REMAINING(x) ((x) >> 16)
struct {
__le32 value_low;
__le32 value_high;
} rate[];
#define RATE_TO_U64(X) \
({ \
typeof(X) x = (X); \
le32_to_cpu((x).value_low) | (u64)le32_to_cpu((x).value_high) << 32; \
})
};
struct scmi_clock_set_rate {
__le32 flags;
#define CLOCK_SET_ASYNC BIT(0)
#define CLOCK_SET_IGNORE_RESP BIT(1)
#define CLOCK_SET_ROUND_UP BIT(2)
#define CLOCK_SET_ROUND_AUTO BIT(3)
__le32 id;
__le32 value_low;
__le32 value_high;
};
struct scmi_msg_resp_set_rate_complete {
__le32 id;
__le32 rate_low;
__le32 rate_high;
};
struct scmi_msg_clock_rate_notify {
__le32 clk_id;
__le32 notify_enable;
};
struct scmi_clock_rate_notify_payld {
__le32 agent_id;
__le32 clock_id;
__le32 rate_low;
__le32 rate_high;
};
struct clock_info {
u32 version;
int num_clocks;
int max_async_req;
bool notify_rate_changed_cmd;
bool notify_rate_change_requested_cmd;
atomic_t cur_async_req;
struct scmi_clock_info *clk;
int (*clock_config_set)(const struct scmi_protocol_handle *ph,
u32 clk_id, enum clk_state state,
enum scmi_clock_oem_config oem_type,
u32 oem_val, bool atomic);
int (*clock_config_get)(const struct scmi_protocol_handle *ph,
u32 clk_id, enum scmi_clock_oem_config oem_type,
u32 *attributes, bool *enabled, u32 *oem_val,
bool atomic);
};
static enum scmi_clock_protocol_cmd evt_2_cmd[] = {
CLOCK_RATE_NOTIFY,
CLOCK_RATE_CHANGE_REQUESTED_NOTIFY,
};
static inline struct scmi_clock_info *
scmi_clock_domain_lookup(struct clock_info *ci, u32 clk_id)
{
if (clk_id >= ci->num_clocks)
return ERR_PTR(-EINVAL);
return ci->clk + clk_id;
}
static int
scmi_clock_protocol_attributes_get(const struct scmi_protocol_handle *ph,
struct clock_info *ci)
{
int ret;
struct scmi_xfer *t;
struct scmi_msg_resp_clock_protocol_attributes *attr;
ret = ph->xops->xfer_get_init(ph, PROTOCOL_ATTRIBUTES,
0, sizeof(*attr), &t);
if (ret)
return ret;
attr = t->rx.buf;
ret = ph->xops->do_xfer(ph, t);
if (!ret) {
ci->num_clocks = le16_to_cpu(attr->num_clocks);
ci->max_async_req = attr->max_async_req;
}
ph->xops->xfer_put(ph, t);
if (!ret) {
if (!ph->hops->protocol_msg_check(ph, CLOCK_RATE_NOTIFY, NULL))
ci->notify_rate_changed_cmd = true;
if (!ph->hops->protocol_msg_check(ph,
CLOCK_RATE_CHANGE_REQUESTED_NOTIFY,
NULL))
ci->notify_rate_change_requested_cmd = true;
}
return ret;
}
struct scmi_clk_ipriv {
struct device *dev;
u32 clk_id;
struct scmi_clock_info *clk;
};
static void iter_clk_possible_parents_prepare_message(void *message, unsigned int desc_index,
const void *priv)
{
struct scmi_msg_clock_possible_parents *msg = message;
const struct scmi_clk_ipriv *p = priv;
msg->id = cpu_to_le32(p->clk_id);
/* Set the number of OPPs to be skipped/already read */
msg->skip_parents = cpu_to_le32(desc_index);
}
static int iter_clk_possible_parents_update_state(struct scmi_iterator_state *st,
const void *response, void *priv)
{
const struct scmi_msg_resp_clock_possible_parents *r = response;
struct scmi_clk_ipriv *p = priv;
struct device *dev = ((struct scmi_clk_ipriv *)p)->dev;
u32 flags;
flags = le32_to_cpu(r->num_parent_flags);
st->num_returned = NUM_PARENTS_RETURNED(flags);
st->num_remaining = NUM_PARENTS_REMAINING(flags);
/*
* num parents is not declared previously anywhere so we
* assume it's returned+remaining on first call.
*/
if (!st->max_resources) {
p->clk->num_parents = st->num_returned + st->num_remaining;
p->clk->parents = devm_kcalloc(dev, p->clk->num_parents,
sizeof(*p->clk->parents),
GFP_KERNEL);
if (!p->clk->parents) {
p->clk->num_parents = 0;
return -ENOMEM;
}
st->max_resources = st->num_returned + st->num_remaining;
}
return 0;
}
static int iter_clk_possible_parents_process_response(const struct scmi_protocol_handle *ph,
const void *response,
struct scmi_iterator_state *st,
void *priv)
{
const struct scmi_msg_resp_clock_possible_parents *r = response;
struct scmi_clk_ipriv *p = priv;
u32 *parent = &p->clk->parents[st->desc_index + st->loop_idx];
*parent = le32_to_cpu(r->possible_parents[st->loop_idx]);
return 0;
}
static int scmi_clock_possible_parents(const struct scmi_protocol_handle *ph, u32 clk_id,
struct scmi_clock_info *clk)
{
struct scmi_iterator_ops ops = {
.prepare_message = iter_clk_possible_parents_prepare_message,
.update_state = iter_clk_possible_parents_update_state,
.process_response = iter_clk_possible_parents_process_response,
};
struct scmi_clk_ipriv ppriv = {
.clk_id = clk_id,
.clk = clk,
.dev = ph->dev,
};
void *iter;
int ret;
iter = ph->hops->iter_response_init(ph, &ops, 0,
CLOCK_POSSIBLE_PARENTS_GET,
sizeof(struct scmi_msg_clock_possible_parents),
&ppriv);
if (IS_ERR(iter))
return PTR_ERR(iter);
ret = ph->hops->iter_response_run(iter);
return ret;
}
static int
scmi_clock_get_permissions(const struct scmi_protocol_handle *ph, u32 clk_id,
struct scmi_clock_info *clk)
{
struct scmi_xfer *t;
u32 perm;
int ret;
ret = ph->xops->xfer_get_init(ph, CLOCK_GET_PERMISSIONS,
sizeof(clk_id), sizeof(perm), &t);
if (ret)
return ret;
put_unaligned_le32(clk_id, t->tx.buf);
ret = ph->xops->do_xfer(ph, t);
if (!ret) {
perm = get_unaligned_le32(t->rx.buf);
clk->state_ctrl_forbidden = !(perm & CLOCK_STATE_CONTROL_ALLOWED);
clk->rate_ctrl_forbidden = !(perm & CLOCK_RATE_CONTROL_ALLOWED);
clk->parent_ctrl_forbidden = !(perm & CLOCK_PARENT_CONTROL_ALLOWED);
}
ph->xops->xfer_put(ph, t);
return ret;
}
static int scmi_clock_attributes_get(const struct scmi_protocol_handle *ph,
u32 clk_id, struct clock_info *cinfo,
u32 version)
{
int ret;
u32 attributes;
struct scmi_xfer *t;
struct scmi_msg_resp_clock_attributes *attr;
struct scmi_clock_info *clk = cinfo->clk + clk_id;
ret = ph->xops->xfer_get_init(ph, CLOCK_ATTRIBUTES,
sizeof(clk_id), sizeof(*attr), &t);
if (ret)
return ret;
put_unaligned_le32(clk_id, t->tx.buf);
attr = t->rx.buf;
ret = ph->xops->do_xfer(ph, t);
if (!ret) {
u32 latency = 0;
attributes = le32_to_cpu(attr->attributes);
strscpy(clk->name, attr->name, SCMI_SHORT_NAME_MAX_SIZE);
/* clock_enable_latency field is present only since SCMI v3.1 */
if (PROTOCOL_REV_MAJOR(version) >= 0x2)
latency = le32_to_cpu(attr->clock_enable_latency);
clk->enable_latency = latency ? : U32_MAX;
}
ph->xops->xfer_put(ph, t);
/*
* If supported overwrite short name with the extended one;
* on error just carry on and use already provided short name.
*/
if (!ret && PROTOCOL_REV_MAJOR(version) >= 0x2) {
if (SUPPORTS_EXTENDED_NAMES(attributes))
ph->hops->extended_name_get(ph, CLOCK_NAME_GET, clk_id,
NULL, clk->name,
SCMI_MAX_STR_SIZE);
if (cinfo->notify_rate_changed_cmd &&
SUPPORTS_RATE_CHANGED_NOTIF(attributes))
clk->rate_changed_notifications = true;
if (cinfo->notify_rate_change_requested_cmd &&
SUPPORTS_RATE_CHANGE_REQUESTED_NOTIF(attributes))
clk->rate_change_requested_notifications = true;
if (PROTOCOL_REV_MAJOR(version) >= 0x3) {
if (SUPPORTS_PARENT_CLOCK(attributes))
scmi_clock_possible_parents(ph, clk_id, clk);
if (SUPPORTS_GET_PERMISSIONS(attributes))
scmi_clock_get_permissions(ph, clk_id, clk);
if (SUPPORTS_EXTENDED_CONFIG(attributes))
clk->extended_config = true;
}
}
return ret;
}
static int rate_cmp_func(const void *_r1, const void *_r2)
{
const u64 *r1 = _r1, *r2 = _r2;
if (*r1 < *r2)
return -1;
else if (*r1 == *r2)
return 0;
else
return 1;
}
static void iter_clk_describe_prepare_message(void *message,
const unsigned int desc_index,
const void *priv)
{
struct scmi_msg_clock_describe_rates *msg = message;
const struct scmi_clk_ipriv *p = priv;
msg->id = cpu_to_le32(p->clk_id);
/* Set the number of rates to be skipped/already read */
msg->rate_index = cpu_to_le32(desc_index);
}
static int
iter_clk_describe_update_state(struct scmi_iterator_state *st,
const void *response, void *priv)
{
u32 flags;
struct scmi_clk_ipriv *p = priv;
const struct scmi_msg_resp_clock_describe_rates *r = response;
flags = le32_to_cpu(r->num_rates_flags);
st->num_remaining = NUM_REMAINING(flags);
st->num_returned = NUM_RETURNED(flags);
p->clk->rate_discrete = RATE_DISCRETE(flags);
/* Warn about out of spec replies ... */
if (!p->clk->rate_discrete &&
(st->num_returned != 3 || st->num_remaining != 0)) {
dev_warn(p->dev,
"Out-of-spec CLOCK_DESCRIBE_RATES reply for %s - returned:%d remaining:%d rx_len:%zd\n",
p->clk->name, st->num_returned, st->num_remaining,
st->rx_len);
/*
* A known quirk: a triplet is returned but num_returned != 3
* Check for a safe payload size and fix.
*/
if (st->num_returned != 3 && st->num_remaining == 0 &&
st->rx_len == sizeof(*r) + sizeof(__le32) * 2 * 3) {
st->num_returned = 3;
st->num_remaining = 0;
} else {
dev_err(p->dev,
"Cannot fix out-of-spec reply !\n");
return -EPROTO;
}
}
return 0;
}
static int
iter_clk_describe_process_response(const struct scmi_protocol_handle *ph,
const void *response,
struct scmi_iterator_state *st, void *priv)
{
int ret = 0;
struct scmi_clk_ipriv *p = priv;
const struct scmi_msg_resp_clock_describe_rates *r = response;
if (!p->clk->rate_discrete) {
switch (st->desc_index + st->loop_idx) {
case 0:
p->clk->range.min_rate = RATE_TO_U64(r->rate[0]);
break;
case 1:
p->clk->range.max_rate = RATE_TO_U64(r->rate[1]);
break;
case 2:
p->clk->range.step_size = RATE_TO_U64(r->rate[2]);
break;
default:
ret = -EINVAL;
break;
}
} else {
u64 *rate = &p->clk->list.rates[st->desc_index + st->loop_idx];
*rate = RATE_TO_U64(r->rate[st->loop_idx]);
p->clk->list.num_rates++;
}
return ret;
}
static int
scmi_clock_describe_rates_get(const struct scmi_protocol_handle *ph, u32 clk_id,
struct scmi_clock_info *clk)
{
int ret;
void *iter;
struct scmi_iterator_ops ops = {
.prepare_message = iter_clk_describe_prepare_message,
.update_state = iter_clk_describe_update_state,
.process_response = iter_clk_describe_process_response,
};
struct scmi_clk_ipriv cpriv = {
.clk_id = clk_id,
.clk = clk,
.dev = ph->dev,
};
iter = ph->hops->iter_response_init(ph, &ops, SCMI_MAX_NUM_RATES,
CLOCK_DESCRIBE_RATES,
sizeof(struct scmi_msg_clock_describe_rates),
&cpriv);
if (IS_ERR(iter))
return PTR_ERR(iter);
ret = ph->hops->iter_response_run(iter);
if (ret)
return ret;
if (!clk->rate_discrete) {
dev_dbg(ph->dev, "Min %llu Max %llu Step %llu Hz\n",
clk->range.min_rate, clk->range.max_rate,
clk->range.step_size);
} else if (clk->list.num_rates) {
sort(clk->list.rates, clk->list.num_rates,
sizeof(clk->list.rates[0]), rate_cmp_func, NULL);
}
return ret;
}
static int
scmi_clock_rate_get(const struct scmi_protocol_handle *ph,
u32 clk_id, u64 *value)
{
int ret;
struct scmi_xfer *t;
ret = ph->xops->xfer_get_init(ph, CLOCK_RATE_GET,
sizeof(__le32), sizeof(u64), &t);
if (ret)
return ret;
put_unaligned_le32(clk_id, t->tx.buf);
ret = ph->xops->do_xfer(ph, t);
if (!ret)
*value = get_unaligned_le64(t->rx.buf);
ph->xops->xfer_put(ph, t);
return ret;
}
static int scmi_clock_rate_set(const struct scmi_protocol_handle *ph,
u32 clk_id, u64 rate)
{
int ret;
u32 flags = 0;
struct scmi_xfer *t;
struct scmi_clock_set_rate *cfg;
struct clock_info *ci = ph->get_priv(ph);
struct scmi_clock_info *clk;
clk = scmi_clock_domain_lookup(ci, clk_id);
if (IS_ERR(clk))
return PTR_ERR(clk);
if (clk->rate_ctrl_forbidden)
return -EACCES;
ret = ph->xops->xfer_get_init(ph, CLOCK_RATE_SET, sizeof(*cfg), 0, &t);
if (ret)
return ret;
if (ci->max_async_req &&
atomic_inc_return(&ci->cur_async_req) < ci->max_async_req)
flags |= CLOCK_SET_ASYNC;
cfg = t->tx.buf;
cfg->flags = cpu_to_le32(flags);
cfg->id = cpu_to_le32(clk_id);
cfg->value_low = cpu_to_le32(rate & 0xffffffff);
cfg->value_high = cpu_to_le32(rate >> 32);
if (flags & CLOCK_SET_ASYNC) {
ret = ph->xops->do_xfer_with_response(ph, t);
if (!ret) {
struct scmi_msg_resp_set_rate_complete *resp;
resp = t->rx.buf;
if (le32_to_cpu(resp->id) == clk_id)
dev_dbg(ph->dev,
"Clk ID %d set async to %llu\n", clk_id,
get_unaligned_le64(&resp->rate_low));
else
ret = -EPROTO;
}
} else {
ret = ph->xops->do_xfer(ph, t);
}
if (ci->max_async_req)
atomic_dec(&ci->cur_async_req);
ph->xops->xfer_put(ph, t);
return ret;
}
static int
scmi_clock_config_set(const struct scmi_protocol_handle *ph, u32 clk_id,
enum clk_state state,
enum scmi_clock_oem_config __unused0, u32 __unused1,
bool atomic)
{
int ret;
struct scmi_xfer *t;
struct scmi_msg_clock_config_set *cfg;
if (state >= CLK_STATE_RESERVED)
return -EINVAL;
ret = ph->xops->xfer_get_init(ph, CLOCK_CONFIG_SET,
sizeof(*cfg), 0, &t);
if (ret)
return ret;
t->hdr.poll_completion = atomic;
cfg = t->tx.buf;
cfg->id = cpu_to_le32(clk_id);
cfg->attributes = cpu_to_le32(state);
ret = ph->xops->do_xfer(ph, t);
ph->xops->xfer_put(ph, t);
return ret;
}
static int
scmi_clock_set_parent(const struct scmi_protocol_handle *ph, u32 clk_id,
u32 parent_id)
{
int ret;
struct scmi_xfer *t;
struct scmi_msg_clock_set_parent *cfg;
struct clock_info *ci = ph->get_priv(ph);
struct scmi_clock_info *clk;
clk = scmi_clock_domain_lookup(ci, clk_id);
if (IS_ERR(clk))
return PTR_ERR(clk);
if (parent_id >= clk->num_parents)
return -EINVAL;
if (clk->parent_ctrl_forbidden)
return -EACCES;
ret = ph->xops->xfer_get_init(ph, CLOCK_PARENT_SET,
sizeof(*cfg), 0, &t);
if (ret)
return ret;
t->hdr.poll_completion = false;
cfg = t->tx.buf;
cfg->id = cpu_to_le32(clk_id);
cfg->parent_id = cpu_to_le32(clk->parents[parent_id]);
ret = ph->xops->do_xfer(ph, t);
ph->xops->xfer_put(ph, t);
return ret;
}
static int
scmi_clock_get_parent(const struct scmi_protocol_handle *ph, u32 clk_id,
u32 *parent_id)
{
int ret;
struct scmi_xfer *t;
ret = ph->xops->xfer_get_init(ph, CLOCK_PARENT_GET,
sizeof(__le32), sizeof(u32), &t);
if (ret)
return ret;
put_unaligned_le32(clk_id, t->tx.buf);
ret = ph->xops->do_xfer(ph, t);
if (!ret)
*parent_id = get_unaligned_le32(t->rx.buf);
ph->xops->xfer_put(ph, t);
return ret;
}
/* For SCMI clock v3.0 and onwards */
static int
scmi_clock_config_set_v2(const struct scmi_protocol_handle *ph, u32 clk_id,
enum clk_state state,
enum scmi_clock_oem_config oem_type, u32 oem_val,
bool atomic)
{
int ret;
u32 attrs;
struct scmi_xfer *t;
struct scmi_msg_clock_config_set_v2 *cfg;
if (state == CLK_STATE_RESERVED ||
(!oem_type && state == CLK_STATE_UNCHANGED))
return -EINVAL;
ret = ph->xops->xfer_get_init(ph, CLOCK_CONFIG_SET,
sizeof(*cfg), 0, &t);
if (ret)
return ret;
t->hdr.poll_completion = atomic;
attrs = FIELD_PREP(REGMASK_OEM_TYPE_SET, oem_type) |
FIELD_PREP(REGMASK_CLK_STATE, state);
cfg = t->tx.buf;
cfg->id = cpu_to_le32(clk_id);
cfg->attributes = cpu_to_le32(attrs);
/* Clear in any case */
cfg->oem_config_val = cpu_to_le32(0);
if (oem_type)
cfg->oem_config_val = cpu_to_le32(oem_val);
ret = ph->xops->do_xfer(ph, t);
ph->xops->xfer_put(ph, t);
return ret;
}
static int scmi_clock_enable(const struct scmi_protocol_handle *ph, u32 clk_id,
bool atomic)
{
struct clock_info *ci = ph->get_priv(ph);
struct scmi_clock_info *clk;
clk = scmi_clock_domain_lookup(ci, clk_id);
if (IS_ERR(clk))
return PTR_ERR(clk);
if (clk->state_ctrl_forbidden)
return -EACCES;
return ci->clock_config_set(ph, clk_id, CLK_STATE_ENABLE,
NULL_OEM_TYPE, 0, atomic);
}
static int scmi_clock_disable(const struct scmi_protocol_handle *ph, u32 clk_id,
bool atomic)
{
struct clock_info *ci = ph->get_priv(ph);
struct scmi_clock_info *clk;
clk = scmi_clock_domain_lookup(ci, clk_id);
if (IS_ERR(clk))
return PTR_ERR(clk);
if (clk->state_ctrl_forbidden)
return -EACCES;
return ci->clock_config_set(ph, clk_id, CLK_STATE_DISABLE,
NULL_OEM_TYPE, 0, atomic);
}
/* For SCMI clock v3.0 and onwards */
static int
scmi_clock_config_get_v2(const struct scmi_protocol_handle *ph, u32 clk_id,
enum scmi_clock_oem_config oem_type, u32 *attributes,
bool *enabled, u32 *oem_val, bool atomic)
{
int ret;
u32 flags;
struct scmi_xfer *t;
struct scmi_msg_clock_config_get *cfg;
ret = ph->xops->xfer_get_init(ph, CLOCK_CONFIG_GET,
sizeof(*cfg), 0, &t);
if (ret)
return ret;
t->hdr.poll_completion = atomic;
flags = FIELD_PREP(REGMASK_OEM_TYPE_GET, oem_type);
cfg = t->tx.buf;
cfg->id = cpu_to_le32(clk_id);
cfg->flags = cpu_to_le32(flags);
ret = ph->xops->do_xfer(ph, t);
if (!ret) {
struct scmi_msg_resp_clock_config_get *resp = t->rx.buf;
if (attributes)
*attributes = le32_to_cpu(resp->attributes);
if (enabled)
*enabled = IS_CLK_ENABLED(resp->config);
if (oem_val && oem_type)
*oem_val = le32_to_cpu(resp->oem_config_val);
}
ph->xops->xfer_put(ph, t);
return ret;
}
static int
scmi_clock_config_get(const struct scmi_protocol_handle *ph, u32 clk_id,
enum scmi_clock_oem_config oem_type, u32 *attributes,
bool *enabled, u32 *oem_val, bool atomic)
{
int ret;
struct scmi_xfer *t;
struct scmi_msg_resp_clock_attributes *resp;
if (!enabled)
return -EINVAL;
ret = ph->xops->xfer_get_init(ph, CLOCK_ATTRIBUTES,
sizeof(clk_id), sizeof(*resp), &t);
if (ret)
return ret;
t->hdr.poll_completion = atomic;
put_unaligned_le32(clk_id, t->tx.buf);
resp = t->rx.buf;
ret = ph->xops->do_xfer(ph, t);
if (!ret)
*enabled = IS_CLK_ENABLED(resp->attributes);
ph->xops->xfer_put(ph, t);
return ret;
}
static int scmi_clock_state_get(const struct scmi_protocol_handle *ph,
u32 clk_id, bool *enabled, bool atomic)
{
struct clock_info *ci = ph->get_priv(ph);
return ci->clock_config_get(ph, clk_id, NULL_OEM_TYPE, NULL,
enabled, NULL, atomic);
}
static int scmi_clock_config_oem_set(const struct scmi_protocol_handle *ph,
u32 clk_id,
enum scmi_clock_oem_config oem_type,
u32 oem_val, bool atomic)
{
struct clock_info *ci = ph->get_priv(ph);
struct scmi_clock_info *clk;
clk = scmi_clock_domain_lookup(ci, clk_id);
if (IS_ERR(clk))
return PTR_ERR(clk);
if (!clk->extended_config)
return -EOPNOTSUPP;
return ci->clock_config_set(ph, clk_id, CLK_STATE_UNCHANGED,
oem_type, oem_val, atomic);
}
static int scmi_clock_config_oem_get(const struct scmi_protocol_handle *ph,
u32 clk_id,
enum scmi_clock_oem_config oem_type,
u32 *oem_val, u32 *attributes, bool atomic)
{
struct clock_info *ci = ph->get_priv(ph);
struct scmi_clock_info *clk;
clk = scmi_clock_domain_lookup(ci, clk_id);
if (IS_ERR(clk))
return PTR_ERR(clk);
if (!clk->extended_config)
return -EOPNOTSUPP;
return ci->clock_config_get(ph, clk_id, oem_type, attributes,
NULL, oem_val, atomic);
}
static int scmi_clock_count_get(const struct scmi_protocol_handle *ph)
{
struct clock_info *ci = ph->get_priv(ph);
return ci->num_clocks;
}
static const struct scmi_clock_info *
scmi_clock_info_get(const struct scmi_protocol_handle *ph, u32 clk_id)
{
struct scmi_clock_info *clk;
struct clock_info *ci = ph->get_priv(ph);
clk = scmi_clock_domain_lookup(ci, clk_id);
if (IS_ERR(clk))
return NULL;
if (!clk->name[0])
return NULL;
return clk;
}
static const struct scmi_clk_proto_ops clk_proto_ops = {
.count_get = scmi_clock_count_get,
.info_get = scmi_clock_info_get,
.rate_get = scmi_clock_rate_get,
.rate_set = scmi_clock_rate_set,
.enable = scmi_clock_enable,
.disable = scmi_clock_disable,
.state_get = scmi_clock_state_get,
.config_oem_get = scmi_clock_config_oem_get,
.config_oem_set = scmi_clock_config_oem_set,
.parent_set = scmi_clock_set_parent,
.parent_get = scmi_clock_get_parent,
};
static bool scmi_clk_notify_supported(const struct scmi_protocol_handle *ph,
u8 evt_id, u32 src_id)
{
bool supported;
struct scmi_clock_info *clk;
struct clock_info *ci = ph->get_priv(ph);
if (evt_id >= ARRAY_SIZE(evt_2_cmd))
return false;
clk = scmi_clock_domain_lookup(ci, src_id);
if (IS_ERR(clk))
return false;
if (evt_id == SCMI_EVENT_CLOCK_RATE_CHANGED)
supported = clk->rate_changed_notifications;
else
supported = clk->rate_change_requested_notifications;
return supported;
}
static int scmi_clk_rate_notify(const struct scmi_protocol_handle *ph,
u32 clk_id, int message_id, bool enable)
{
int ret;
struct scmi_xfer *t;
struct scmi_msg_clock_rate_notify *notify;
ret = ph->xops->xfer_get_init(ph, message_id, sizeof(*notify), 0, &t);
if (ret)
return ret;
notify = t->tx.buf;
notify->clk_id = cpu_to_le32(clk_id);
notify->notify_enable = enable ? cpu_to_le32(BIT(0)) : 0;
ret = ph->xops->do_xfer(ph, t);
ph->xops->xfer_put(ph, t);
return ret;
}
static int scmi_clk_set_notify_enabled(const struct scmi_protocol_handle *ph,
u8 evt_id, u32 src_id, bool enable)
{
int ret, cmd_id;
if (evt_id >= ARRAY_SIZE(evt_2_cmd))
return -EINVAL;
cmd_id = evt_2_cmd[evt_id];
ret = scmi_clk_rate_notify(ph, src_id, cmd_id, enable);
if (ret)
pr_debug("FAIL_ENABLED - evt[%X] dom[%d] - ret:%d\n",
evt_id, src_id, ret);
return ret;
}
static void *scmi_clk_fill_custom_report(const struct scmi_protocol_handle *ph,
u8 evt_id, ktime_t timestamp,
const void *payld, size_t payld_sz,
void *report, u32 *src_id)
{
const struct scmi_clock_rate_notify_payld *p = payld;
struct scmi_clock_rate_notif_report *r = report;
if (sizeof(*p) != payld_sz ||
(evt_id != SCMI_EVENT_CLOCK_RATE_CHANGED &&
evt_id != SCMI_EVENT_CLOCK_RATE_CHANGE_REQUESTED))
return NULL;
r->timestamp = timestamp;
r->agent_id = le32_to_cpu(p->agent_id);
r->clock_id = le32_to_cpu(p->clock_id);
r->rate = get_unaligned_le64(&p->rate_low);
*src_id = r->clock_id;
return r;
}
static int scmi_clk_get_num_sources(const struct scmi_protocol_handle *ph)
{
struct clock_info *ci = ph->get_priv(ph);
if (!ci)
return -EINVAL;
return ci->num_clocks;
}
static const struct scmi_event clk_events[] = {
{
.id = SCMI_EVENT_CLOCK_RATE_CHANGED,
.max_payld_sz = sizeof(struct scmi_clock_rate_notify_payld),
.max_report_sz = sizeof(struct scmi_clock_rate_notif_report),
},
{
.id = SCMI_EVENT_CLOCK_RATE_CHANGE_REQUESTED,
.max_payld_sz = sizeof(struct scmi_clock_rate_notify_payld),
.max_report_sz = sizeof(struct scmi_clock_rate_notif_report),
},
};
static const struct scmi_event_ops clk_event_ops = {
.is_notify_supported = scmi_clk_notify_supported,
.get_num_sources = scmi_clk_get_num_sources,
.set_notify_enabled = scmi_clk_set_notify_enabled,
.fill_custom_report = scmi_clk_fill_custom_report,
};
static const struct scmi_protocol_events clk_protocol_events = {
.queue_sz = SCMI_PROTO_QUEUE_SZ,
.ops = &clk_event_ops,
.evts = clk_events,
.num_events = ARRAY_SIZE(clk_events),
};
static int scmi_clock_protocol_init(const struct scmi_protocol_handle *ph)
{
u32 version;
int clkid, ret;
struct clock_info *cinfo;
ret = ph->xops->version_get(ph, &version);
if (ret)
return ret;
dev_dbg(ph->dev, "Clock Version %d.%d\n",
PROTOCOL_REV_MAJOR(version), PROTOCOL_REV_MINOR(version));
cinfo = devm_kzalloc(ph->dev, sizeof(*cinfo), GFP_KERNEL);
if (!cinfo)
return -ENOMEM;
ret = scmi_clock_protocol_attributes_get(ph, cinfo);
if (ret)
return ret;
cinfo->clk = devm_kcalloc(ph->dev, cinfo->num_clocks,
sizeof(*cinfo->clk), GFP_KERNEL);
if (!cinfo->clk)
return -ENOMEM;
for (clkid = 0; clkid < cinfo->num_clocks; clkid++) {
struct scmi_clock_info *clk = cinfo->clk + clkid;
ret = scmi_clock_attributes_get(ph, clkid, cinfo, version);
if (!ret)
scmi_clock_describe_rates_get(ph, clkid, clk);
}
if (PROTOCOL_REV_MAJOR(version) >= 0x3) {
cinfo->clock_config_set = scmi_clock_config_set_v2;
cinfo->clock_config_get = scmi_clock_config_get_v2;
} else {
cinfo->clock_config_set = scmi_clock_config_set;
cinfo->clock_config_get = scmi_clock_config_get;
}
cinfo->version = version;
return ph->set_priv(ph, cinfo, version);
}
static const struct scmi_protocol scmi_clock = {
.id = SCMI_PROTOCOL_CLOCK,
.owner = THIS_MODULE,
.instance_init = &scmi_clock_protocol_init,
.ops = &clk_proto_ops,
.events = &clk_protocol_events,
.supported_version = SCMI_PROTOCOL_SUPPORTED_VERSION,
};
DEFINE_SCMI_PROTOCOL_REGISTER_UNREGISTER(clock, scmi_clock)