blob: 136a0d6ca970724464f6296b4c79270c93f6be2b [file] [log] [blame]
/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <drm/drm_atomic_helper.h>
#include <drm/drm_damage_helper.h>
#include <drm/drm_debugfs.h>
#include "i915_drv.h"
#include "i915_reg.h"
#include "intel_alpm.h"
#include "intel_atomic.h"
#include "intel_crtc.h"
#include "intel_cursor_regs.h"
#include "intel_ddi.h"
#include "intel_de.h"
#include "intel_display_types.h"
#include "intel_dp.h"
#include "intel_dp_aux.h"
#include "intel_frontbuffer.h"
#include "intel_hdmi.h"
#include "intel_psr.h"
#include "intel_psr_regs.h"
#include "intel_snps_phy.h"
#include "skl_universal_plane.h"
/**
* DOC: Panel Self Refresh (PSR/SRD)
*
* Since Haswell Display controller supports Panel Self-Refresh on display
* panels witch have a remote frame buffer (RFB) implemented according to PSR
* spec in eDP1.3. PSR feature allows the display to go to lower standby states
* when system is idle but display is on as it eliminates display refresh
* request to DDR memory completely as long as the frame buffer for that
* display is unchanged.
*
* Panel Self Refresh must be supported by both Hardware (source) and
* Panel (sink).
*
* PSR saves power by caching the framebuffer in the panel RFB, which allows us
* to power down the link and memory controller. For DSI panels the same idea
* is called "manual mode".
*
* The implementation uses the hardware-based PSR support which automatically
* enters/exits self-refresh mode. The hardware takes care of sending the
* required DP aux message and could even retrain the link (that part isn't
* enabled yet though). The hardware also keeps track of any frontbuffer
* changes to know when to exit self-refresh mode again. Unfortunately that
* part doesn't work too well, hence why the i915 PSR support uses the
* software frontbuffer tracking to make sure it doesn't miss a screen
* update. For this integration intel_psr_invalidate() and intel_psr_flush()
* get called by the frontbuffer tracking code. Note that because of locking
* issues the self-refresh re-enable code is done from a work queue, which
* must be correctly synchronized/cancelled when shutting down the pipe."
*
* DC3CO (DC3 clock off)
*
* On top of PSR2, GEN12 adds a intermediate power savings state that turns
* clock off automatically during PSR2 idle state.
* The smaller overhead of DC3co entry/exit vs. the overhead of PSR2 deep sleep
* entry/exit allows the HW to enter a low-power state even when page flipping
* periodically (for instance a 30fps video playback scenario).
*
* Every time a flips occurs PSR2 will get out of deep sleep state(if it was),
* so DC3CO is enabled and tgl_dc3co_disable_work is schedule to run after 6
* frames, if no other flip occurs and the function above is executed, DC3CO is
* disabled and PSR2 is configured to enter deep sleep, resetting again in case
* of another flip.
* Front buffer modifications do not trigger DC3CO activation on purpose as it
* would bring a lot of complexity and most of the moderns systems will only
* use page flips.
*/
/*
* Description of PSR mask bits:
*
* EDP_PSR_DEBUG[16]/EDP_PSR_DEBUG_MASK_DISP_REG_WRITE (hsw-skl):
*
* When unmasked (nearly) all display register writes (eg. even
* SWF) trigger a PSR exit. Some registers are excluded from this
* and they have a more specific mask (described below). On icl+
* this bit no longer exists and is effectively always set.
*
* PIPE_MISC[21]/PIPE_MISC_PSR_MASK_PIPE_REG_WRITE (skl+):
*
* When unmasked (nearly) all pipe/plane register writes
* trigger a PSR exit. Some plane registers are excluded from this
* and they have a more specific mask (described below).
*
* CHICKEN_PIPESL_1[11]/SKL_PSR_MASK_PLANE_FLIP (skl+):
* PIPE_MISC[23]/PIPE_MISC_PSR_MASK_PRIMARY_FLIP (bdw):
* EDP_PSR_DEBUG[23]/EDP_PSR_DEBUG_MASK_PRIMARY_FLIP (hsw):
*
* When unmasked PRI_SURF/PLANE_SURF writes trigger a PSR exit.
* SPR_SURF/CURBASE are not included in this and instead are
* controlled by PIPE_MISC_PSR_MASK_PIPE_REG_WRITE (skl+) or
* EDP_PSR_DEBUG_MASK_DISP_REG_WRITE (hsw/bdw).
*
* PIPE_MISC[22]/PIPE_MISC_PSR_MASK_SPRITE_ENABLE (bdw):
* EDP_PSR_DEBUG[21]/EDP_PSR_DEBUG_MASK_SPRITE_ENABLE (hsw):
*
* When unmasked PSR is blocked as long as the sprite
* plane is enabled. skl+ with their universal planes no
* longer have a mask bit like this, and no plane being
* enabledb blocks PSR.
*
* PIPE_MISC[21]/PIPE_MISC_PSR_MASK_CURSOR_MOVE (bdw):
* EDP_PSR_DEBUG[20]/EDP_PSR_DEBUG_MASK_CURSOR_MOVE (hsw):
*
* When umasked CURPOS writes trigger a PSR exit. On skl+
* this doesn't exit but CURPOS is included in the
* PIPE_MISC_PSR_MASK_PIPE_REG_WRITE mask.
*
* PIPE_MISC[20]/PIPE_MISC_PSR_MASK_VBLANK_VSYNC_INT (bdw+):
* EDP_PSR_DEBUG[19]/EDP_PSR_DEBUG_MASK_VBLANK_VSYNC_INT (hsw):
*
* When unmasked PSR is blocked as long as vblank and/or vsync
* interrupt is unmasked in IMR *and* enabled in IER.
*
* CHICKEN_TRANS[30]/SKL_UNMASK_VBL_TO_PIPE_IN_SRD (skl+):
* CHICKEN_PAR1_1[15]/HSW_MASK_VBL_TO_PIPE_IN_SRD (hsw/bdw):
*
* Selectcs whether PSR exit generates an extra vblank before
* the first frame is transmitted. Also note the opposite polarity
* if the bit on hsw/bdw vs. skl+ (masked==generate the extra vblank,
* unmasked==do not generate the extra vblank).
*
* With DC states enabled the extra vblank happens after link training,
* with DC states disabled it happens immediately upuon PSR exit trigger.
* No idea as of now why there is a difference. HSW/BDW (which don't
* even have DMC) always generate it after link training. Go figure.
*
* Unfortunately CHICKEN_TRANS itself seems to be double buffered
* and thus won't latch until the first vblank. So with DC states
* enabled the register effctively uses the reset value during DC5
* exit+PSR exit sequence, and thus the bit does nothing until
* latched by the vblank that it was trying to prevent from being
* generated in the first place. So we should probably call this
* one a chicken/egg bit instead on skl+.
*
* In standby mode (as opposed to link-off) this makes no difference
* as the timing generator keeps running the whole time generating
* normal periodic vblanks.
*
* WaPsrDPAMaskVBlankInSRD asks us to set the bit on hsw/bdw,
* and doing so makes the behaviour match the skl+ reset value.
*
* CHICKEN_PIPESL_1[0]/BDW_UNMASK_VBL_TO_REGS_IN_SRD (bdw):
* CHICKEN_PIPESL_1[15]/HSW_UNMASK_VBL_TO_REGS_IN_SRD (hsw):
*
* On BDW without this bit is no vblanks whatsoever are
* generated after PSR exit. On HSW this has no apparant effect.
* WaPsrDPRSUnmaskVBlankInSRD says to set this.
*
* The rest of the bits are more self-explanatory and/or
* irrelevant for normal operation.
*
* Description of intel_crtc_state variables. has_psr, has_panel_replay and
* has_sel_update:
*
* has_psr (alone): PSR1
* has_psr + has_sel_update: PSR2
* has_psr + has_panel_replay: Panel Replay
* has_psr + has_panel_replay + has_sel_update: Panel Replay Selective Update
*
* Description of some intel_psr varibles. enabled, panel_replay_enabled,
* sel_update_enabled
*
* enabled (alone): PSR1
* enabled + sel_update_enabled: PSR2
* enabled + panel_replay_enabled: Panel Replay
* enabled + panel_replay_enabled + sel_update_enabled: Panel Replay SU
*/
#define CAN_PSR(intel_dp) ((intel_dp)->psr.sink_support && \
(intel_dp)->psr.source_support)
bool intel_encoder_can_psr(struct intel_encoder *encoder)
{
if (intel_encoder_is_dp(encoder) || encoder->type == INTEL_OUTPUT_DP_MST)
return CAN_PSR(enc_to_intel_dp(encoder)) ||
CAN_PANEL_REPLAY(enc_to_intel_dp(encoder));
else
return false;
}
bool intel_psr_needs_aux_io_power(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
/*
* For PSR/PR modes only eDP requires the AUX IO power to be enabled whenever
* the output is enabled. For non-eDP outputs the main link is always
* on, hence it doesn't require the HW initiated AUX wake-up signaling used
* for eDP.
*
* TODO:
* - Consider leaving AUX IO disabled for eDP / PR as well, in case
* the ALPM with main-link off mode is not enabled.
* - Leave AUX IO enabled for DP / PR, once support for ALPM with
* main-link off mode is added for it and this mode gets enabled.
*/
return intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP) &&
intel_encoder_can_psr(encoder);
}
static bool psr_global_enabled(struct intel_dp *intel_dp)
{
struct intel_display *display = to_intel_display(intel_dp);
struct intel_connector *connector = intel_dp->attached_connector;
switch (intel_dp->psr.debug & I915_PSR_DEBUG_MODE_MASK) {
case I915_PSR_DEBUG_DEFAULT:
if (display->params.enable_psr == -1)
return connector->panel.vbt.psr.enable;
return display->params.enable_psr;
case I915_PSR_DEBUG_DISABLE:
return false;
default:
return true;
}
}
static bool psr2_global_enabled(struct intel_dp *intel_dp)
{
struct intel_display *display = to_intel_display(intel_dp);
switch (intel_dp->psr.debug & I915_PSR_DEBUG_MODE_MASK) {
case I915_PSR_DEBUG_DISABLE:
case I915_PSR_DEBUG_FORCE_PSR1:
return false;
default:
if (display->params.enable_psr == 1)
return false;
return true;
}
}
static bool psr2_su_region_et_global_enabled(struct intel_dp *intel_dp)
{
struct intel_display *display = to_intel_display(intel_dp);
if (display->params.enable_psr != -1)
return false;
return true;
}
static bool panel_replay_global_enabled(struct intel_dp *intel_dp)
{
struct intel_display *display = to_intel_display(intel_dp);
if ((display->params.enable_psr != -1) ||
(intel_dp->psr.debug & I915_PSR_DEBUG_PANEL_REPLAY_DISABLE))
return false;
return true;
}
static u32 psr_irq_psr_error_bit_get(struct intel_dp *intel_dp)
{
struct intel_display *display = to_intel_display(intel_dp);
return DISPLAY_VER(display) >= 12 ? TGL_PSR_ERROR :
EDP_PSR_ERROR(intel_dp->psr.transcoder);
}
static u32 psr_irq_post_exit_bit_get(struct intel_dp *intel_dp)
{
struct intel_display *display = to_intel_display(intel_dp);
return DISPLAY_VER(display) >= 12 ? TGL_PSR_POST_EXIT :
EDP_PSR_POST_EXIT(intel_dp->psr.transcoder);
}
static u32 psr_irq_pre_entry_bit_get(struct intel_dp *intel_dp)
{
struct intel_display *display = to_intel_display(intel_dp);
return DISPLAY_VER(display) >= 12 ? TGL_PSR_PRE_ENTRY :
EDP_PSR_PRE_ENTRY(intel_dp->psr.transcoder);
}
static u32 psr_irq_mask_get(struct intel_dp *intel_dp)
{
struct intel_display *display = to_intel_display(intel_dp);
return DISPLAY_VER(display) >= 12 ? TGL_PSR_MASK :
EDP_PSR_MASK(intel_dp->psr.transcoder);
}
static i915_reg_t psr_ctl_reg(struct intel_display *display,
enum transcoder cpu_transcoder)
{
if (DISPLAY_VER(display) >= 8)
return EDP_PSR_CTL(display, cpu_transcoder);
else
return HSW_SRD_CTL;
}
static i915_reg_t psr_debug_reg(struct intel_display *display,
enum transcoder cpu_transcoder)
{
if (DISPLAY_VER(display) >= 8)
return EDP_PSR_DEBUG(display, cpu_transcoder);
else
return HSW_SRD_DEBUG;
}
static i915_reg_t psr_perf_cnt_reg(struct intel_display *display,
enum transcoder cpu_transcoder)
{
if (DISPLAY_VER(display) >= 8)
return EDP_PSR_PERF_CNT(display, cpu_transcoder);
else
return HSW_SRD_PERF_CNT;
}
static i915_reg_t psr_status_reg(struct intel_display *display,
enum transcoder cpu_transcoder)
{
if (DISPLAY_VER(display) >= 8)
return EDP_PSR_STATUS(display, cpu_transcoder);
else
return HSW_SRD_STATUS;
}
static i915_reg_t psr_imr_reg(struct intel_display *display,
enum transcoder cpu_transcoder)
{
if (DISPLAY_VER(display) >= 12)
return TRANS_PSR_IMR(display, cpu_transcoder);
else
return EDP_PSR_IMR;
}
static i915_reg_t psr_iir_reg(struct intel_display *display,
enum transcoder cpu_transcoder)
{
if (DISPLAY_VER(display) >= 12)
return TRANS_PSR_IIR(display, cpu_transcoder);
else
return EDP_PSR_IIR;
}
static i915_reg_t psr_aux_ctl_reg(struct intel_display *display,
enum transcoder cpu_transcoder)
{
if (DISPLAY_VER(display) >= 8)
return EDP_PSR_AUX_CTL(display, cpu_transcoder);
else
return HSW_SRD_AUX_CTL;
}
static i915_reg_t psr_aux_data_reg(struct intel_display *display,
enum transcoder cpu_transcoder, int i)
{
if (DISPLAY_VER(display) >= 8)
return EDP_PSR_AUX_DATA(display, cpu_transcoder, i);
else
return HSW_SRD_AUX_DATA(i);
}
static void psr_irq_control(struct intel_dp *intel_dp)
{
struct intel_display *display = to_intel_display(intel_dp);
enum transcoder cpu_transcoder = intel_dp->psr.transcoder;
u32 mask;
if (intel_dp->psr.panel_replay_enabled)
return;
mask = psr_irq_psr_error_bit_get(intel_dp);
if (intel_dp->psr.debug & I915_PSR_DEBUG_IRQ)
mask |= psr_irq_post_exit_bit_get(intel_dp) |
psr_irq_pre_entry_bit_get(intel_dp);
intel_de_rmw(display, psr_imr_reg(display, cpu_transcoder),
psr_irq_mask_get(intel_dp), ~mask);
}
static void psr_event_print(struct intel_display *display,
u32 val, bool sel_update_enabled)
{
drm_dbg_kms(display->drm, "PSR exit events: 0x%x\n", val);
if (val & PSR_EVENT_PSR2_WD_TIMER_EXPIRE)
drm_dbg_kms(display->drm, "\tPSR2 watchdog timer expired\n");
if ((val & PSR_EVENT_PSR2_DISABLED) && sel_update_enabled)
drm_dbg_kms(display->drm, "\tPSR2 disabled\n");
if (val & PSR_EVENT_SU_DIRTY_FIFO_UNDERRUN)
drm_dbg_kms(display->drm, "\tSU dirty FIFO underrun\n");
if (val & PSR_EVENT_SU_CRC_FIFO_UNDERRUN)
drm_dbg_kms(display->drm, "\tSU CRC FIFO underrun\n");
if (val & PSR_EVENT_GRAPHICS_RESET)
drm_dbg_kms(display->drm, "\tGraphics reset\n");
if (val & PSR_EVENT_PCH_INTERRUPT)
drm_dbg_kms(display->drm, "\tPCH interrupt\n");
if (val & PSR_EVENT_MEMORY_UP)
drm_dbg_kms(display->drm, "\tMemory up\n");
if (val & PSR_EVENT_FRONT_BUFFER_MODIFY)
drm_dbg_kms(display->drm, "\tFront buffer modification\n");
if (val & PSR_EVENT_WD_TIMER_EXPIRE)
drm_dbg_kms(display->drm, "\tPSR watchdog timer expired\n");
if (val & PSR_EVENT_PIPE_REGISTERS_UPDATE)
drm_dbg_kms(display->drm, "\tPIPE registers updated\n");
if (val & PSR_EVENT_REGISTER_UPDATE)
drm_dbg_kms(display->drm, "\tRegister updated\n");
if (val & PSR_EVENT_HDCP_ENABLE)
drm_dbg_kms(display->drm, "\tHDCP enabled\n");
if (val & PSR_EVENT_KVMR_SESSION_ENABLE)
drm_dbg_kms(display->drm, "\tKVMR session enabled\n");
if (val & PSR_EVENT_VBI_ENABLE)
drm_dbg_kms(display->drm, "\tVBI enabled\n");
if (val & PSR_EVENT_LPSP_MODE_EXIT)
drm_dbg_kms(display->drm, "\tLPSP mode exited\n");
if ((val & PSR_EVENT_PSR_DISABLE) && !sel_update_enabled)
drm_dbg_kms(display->drm, "\tPSR disabled\n");
}
void intel_psr_irq_handler(struct intel_dp *intel_dp, u32 psr_iir)
{
struct intel_display *display = to_intel_display(intel_dp);
struct drm_i915_private *dev_priv = to_i915(display->drm);
enum transcoder cpu_transcoder = intel_dp->psr.transcoder;
ktime_t time_ns = ktime_get();
if (psr_iir & psr_irq_pre_entry_bit_get(intel_dp)) {
intel_dp->psr.last_entry_attempt = time_ns;
drm_dbg_kms(display->drm,
"[transcoder %s] PSR entry attempt in 2 vblanks\n",
transcoder_name(cpu_transcoder));
}
if (psr_iir & psr_irq_post_exit_bit_get(intel_dp)) {
intel_dp->psr.last_exit = time_ns;
drm_dbg_kms(display->drm,
"[transcoder %s] PSR exit completed\n",
transcoder_name(cpu_transcoder));
if (DISPLAY_VER(display) >= 9) {
u32 val;
val = intel_de_rmw(dev_priv,
PSR_EVENT(dev_priv, cpu_transcoder),
0, 0);
psr_event_print(display, val, intel_dp->psr.sel_update_enabled);
}
}
if (psr_iir & psr_irq_psr_error_bit_get(intel_dp)) {
drm_warn(display->drm, "[transcoder %s] PSR aux error\n",
transcoder_name(cpu_transcoder));
intel_dp->psr.irq_aux_error = true;
/*
* If this interruption is not masked it will keep
* interrupting so fast that it prevents the scheduled
* work to run.
* Also after a PSR error, we don't want to arm PSR
* again so we don't care about unmask the interruption
* or unset irq_aux_error.
*/
intel_de_rmw(display, psr_imr_reg(display, cpu_transcoder),
0, psr_irq_psr_error_bit_get(intel_dp));
queue_work(dev_priv->unordered_wq, &intel_dp->psr.work);
}
}
static u8 intel_dp_get_sink_sync_latency(struct intel_dp *intel_dp)
{
struct intel_display *display = to_intel_display(intel_dp);
u8 val = 8; /* assume the worst if we can't read the value */
if (drm_dp_dpcd_readb(&intel_dp->aux,
DP_SYNCHRONIZATION_LATENCY_IN_SINK, &val) == 1)
val &= DP_MAX_RESYNC_FRAME_COUNT_MASK;
else
drm_dbg_kms(display->drm,
"Unable to get sink synchronization latency, assuming 8 frames\n");
return val;
}
static u8 intel_dp_get_su_capability(struct intel_dp *intel_dp)
{
u8 su_capability = 0;
if (intel_dp->psr.sink_panel_replay_su_support)
drm_dp_dpcd_readb(&intel_dp->aux,
DP_PANEL_PANEL_REPLAY_CAPABILITY,
&su_capability);
else
su_capability = intel_dp->psr_dpcd[1];
return su_capability;
}
static unsigned int
intel_dp_get_su_x_granularity_offset(struct intel_dp *intel_dp)
{
return intel_dp->psr.sink_panel_replay_su_support ?
DP_PANEL_PANEL_REPLAY_X_GRANULARITY :
DP_PSR2_SU_X_GRANULARITY;
}
static unsigned int
intel_dp_get_su_y_granularity_offset(struct intel_dp *intel_dp)
{
return intel_dp->psr.sink_panel_replay_su_support ?
DP_PANEL_PANEL_REPLAY_Y_GRANULARITY :
DP_PSR2_SU_Y_GRANULARITY;
}
/*
* Note: Bits related to granularity are same in panel replay and psr
* registers. Rely on PSR definitions on these "common" bits.
*/
static void intel_dp_get_su_granularity(struct intel_dp *intel_dp)
{
struct intel_display *display = to_intel_display(intel_dp);
ssize_t r;
u16 w;
u8 y;
/*
* TODO: Do we need to take into account panel supporting both PSR and
* Panel replay?
*/
/*
* If sink don't have specific granularity requirements set legacy
* ones.
*/
if (!(intel_dp_get_su_capability(intel_dp) &
DP_PSR2_SU_GRANULARITY_REQUIRED)) {
/* As PSR2 HW sends full lines, we do not care about x granularity */
w = 4;
y = 4;
goto exit;
}
r = drm_dp_dpcd_read(&intel_dp->aux,
intel_dp_get_su_x_granularity_offset(intel_dp),
&w, 2);
if (r != 2)
drm_dbg_kms(display->drm,
"Unable to read selective update x granularity\n");
/*
* Spec says that if the value read is 0 the default granularity should
* be used instead.
*/
if (r != 2 || w == 0)
w = 4;
r = drm_dp_dpcd_read(&intel_dp->aux,
intel_dp_get_su_y_granularity_offset(intel_dp),
&y, 1);
if (r != 1) {
drm_dbg_kms(display->drm,
"Unable to read selective update y granularity\n");
y = 4;
}
if (y == 0)
y = 1;
exit:
intel_dp->psr.su_w_granularity = w;
intel_dp->psr.su_y_granularity = y;
}
static void _panel_replay_init_dpcd(struct intel_dp *intel_dp)
{
struct intel_display *display = to_intel_display(intel_dp);
if (intel_dp_is_edp(intel_dp)) {
if (!intel_alpm_aux_less_wake_supported(intel_dp)) {
drm_dbg_kms(display->drm,
"Panel doesn't support AUX-less ALPM, eDP Panel Replay not possible\n");
return;
}
if (!(intel_dp->pr_dpcd & DP_PANEL_REPLAY_EARLY_TRANSPORT_SUPPORT)) {
drm_dbg_kms(display->drm,
"Panel doesn't support early transport, eDP Panel Replay not possible\n");
return;
}
}
intel_dp->psr.sink_panel_replay_support = true;
if (intel_dp->pr_dpcd & DP_PANEL_REPLAY_SU_SUPPORT)
intel_dp->psr.sink_panel_replay_su_support = true;
drm_dbg_kms(display->drm,
"Panel replay %sis supported by panel\n",
intel_dp->psr.sink_panel_replay_su_support ?
"selective_update " : "");
}
static void _psr_init_dpcd(struct intel_dp *intel_dp)
{
struct intel_display *display = to_intel_display(intel_dp);
drm_dbg_kms(display->drm, "eDP panel supports PSR version %x\n",
intel_dp->psr_dpcd[0]);
if (drm_dp_has_quirk(&intel_dp->desc, DP_DPCD_QUIRK_NO_PSR)) {
drm_dbg_kms(display->drm,
"PSR support not currently available for this panel\n");
return;
}
if (!(intel_dp->edp_dpcd[1] & DP_EDP_SET_POWER_CAP)) {
drm_dbg_kms(display->drm,
"Panel lacks power state control, PSR cannot be enabled\n");
return;
}
intel_dp->psr.sink_support = true;
intel_dp->psr.sink_sync_latency =
intel_dp_get_sink_sync_latency(intel_dp);
if (DISPLAY_VER(display) >= 9 &&
intel_dp->psr_dpcd[0] >= DP_PSR2_WITH_Y_COORD_IS_SUPPORTED) {
bool y_req = intel_dp->psr_dpcd[1] &
DP_PSR2_SU_Y_COORDINATE_REQUIRED;
/*
* All panels that supports PSR version 03h (PSR2 +
* Y-coordinate) can handle Y-coordinates in VSC but we are
* only sure that it is going to be used when required by the
* panel. This way panel is capable to do selective update
* without a aux frame sync.
*
* To support PSR version 02h and PSR version 03h without
* Y-coordinate requirement panels we would need to enable
* GTC first.
*/
intel_dp->psr.sink_psr2_support = y_req &&
intel_alpm_aux_wake_supported(intel_dp);
drm_dbg_kms(display->drm, "PSR2 %ssupported\n",
intel_dp->psr.sink_psr2_support ? "" : "not ");
}
}
void intel_psr_init_dpcd(struct intel_dp *intel_dp)
{
drm_dp_dpcd_read(&intel_dp->aux, DP_PSR_SUPPORT, intel_dp->psr_dpcd,
sizeof(intel_dp->psr_dpcd));
drm_dp_dpcd_readb(&intel_dp->aux, DP_PANEL_REPLAY_CAP,
&intel_dp->pr_dpcd);
if (intel_dp->pr_dpcd & DP_PANEL_REPLAY_SUPPORT)
_panel_replay_init_dpcd(intel_dp);
if (intel_dp->psr_dpcd[0])
_psr_init_dpcd(intel_dp);
if (intel_dp->psr.sink_psr2_support ||
intel_dp->psr.sink_panel_replay_su_support)
intel_dp_get_su_granularity(intel_dp);
}
static void hsw_psr_setup_aux(struct intel_dp *intel_dp)
{
struct intel_display *display = to_intel_display(intel_dp);
struct drm_i915_private *dev_priv = to_i915(display->drm);
enum transcoder cpu_transcoder = intel_dp->psr.transcoder;
u32 aux_clock_divider, aux_ctl;
/* write DP_SET_POWER=D0 */
static const u8 aux_msg[] = {
[0] = (DP_AUX_NATIVE_WRITE << 4) | ((DP_SET_POWER >> 16) & 0xf),
[1] = (DP_SET_POWER >> 8) & 0xff,
[2] = DP_SET_POWER & 0xff,
[3] = 1 - 1,
[4] = DP_SET_POWER_D0,
};
int i;
BUILD_BUG_ON(sizeof(aux_msg) > 20);
for (i = 0; i < sizeof(aux_msg); i += 4)
intel_de_write(dev_priv,
psr_aux_data_reg(display, cpu_transcoder, i >> 2),
intel_dp_aux_pack(&aux_msg[i], sizeof(aux_msg) - i));
aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
/* Start with bits set for DDI_AUX_CTL register */
aux_ctl = intel_dp->get_aux_send_ctl(intel_dp, sizeof(aux_msg),
aux_clock_divider);
/* Select only valid bits for SRD_AUX_CTL */
aux_ctl &= EDP_PSR_AUX_CTL_TIME_OUT_MASK |
EDP_PSR_AUX_CTL_MESSAGE_SIZE_MASK |
EDP_PSR_AUX_CTL_PRECHARGE_2US_MASK |
EDP_PSR_AUX_CTL_BIT_CLOCK_2X_MASK;
intel_de_write(display, psr_aux_ctl_reg(display, cpu_transcoder),
aux_ctl);
}
static bool psr2_su_region_et_valid(struct intel_dp *intel_dp, bool panel_replay)
{
struct intel_display *display = to_intel_display(intel_dp);
if (DISPLAY_VER(display) < 20 || !intel_dp_is_edp(intel_dp) ||
intel_dp->psr.debug & I915_PSR_DEBUG_SU_REGION_ET_DISABLE)
return false;
return panel_replay ?
intel_dp->pr_dpcd & DP_PANEL_REPLAY_EARLY_TRANSPORT_SUPPORT :
intel_dp->psr_dpcd[0] == DP_PSR2_WITH_Y_COORD_ET_SUPPORTED &&
psr2_su_region_et_global_enabled(intel_dp);
}
static void _panel_replay_enable_sink(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
u8 val = DP_PANEL_REPLAY_ENABLE |
DP_PANEL_REPLAY_VSC_SDP_CRC_EN |
DP_PANEL_REPLAY_UNRECOVERABLE_ERROR_EN |
DP_PANEL_REPLAY_RFB_STORAGE_ERROR_EN |
DP_PANEL_REPLAY_ACTIVE_FRAME_CRC_ERROR_EN;
u8 panel_replay_config2 = DP_PANEL_REPLAY_CRC_VERIFICATION;
if (crtc_state->has_sel_update)
val |= DP_PANEL_REPLAY_SU_ENABLE;
if (crtc_state->enable_psr2_su_region_et)
val |= DP_PANEL_REPLAY_ENABLE_SU_REGION_ET;
if (crtc_state->req_psr2_sdp_prior_scanline)
panel_replay_config2 |=
DP_PANEL_REPLAY_SU_REGION_SCANLINE_CAPTURE;
drm_dp_dpcd_writeb(&intel_dp->aux, PANEL_REPLAY_CONFIG, val);
drm_dp_dpcd_writeb(&intel_dp->aux, PANEL_REPLAY_CONFIG2,
panel_replay_config2);
}
static void _psr_enable_sink(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(intel_dp);
u8 val = DP_PSR_ENABLE;
if (crtc_state->has_sel_update) {
val |= DP_PSR_ENABLE_PSR2 | DP_PSR_IRQ_HPD_WITH_CRC_ERRORS;
} else {
if (intel_dp->psr.link_standby)
val |= DP_PSR_MAIN_LINK_ACTIVE;
if (DISPLAY_VER(display) >= 8)
val |= DP_PSR_CRC_VERIFICATION;
}
if (crtc_state->req_psr2_sdp_prior_scanline)
val |= DP_PSR_SU_REGION_SCANLINE_CAPTURE;
if (crtc_state->enable_psr2_su_region_et)
val |= DP_PANEL_REPLAY_ENABLE_SU_REGION_ET;
if (intel_dp->psr.entry_setup_frames > 0)
val |= DP_PSR_FRAME_CAPTURE;
drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, val);
}
static void intel_psr_enable_sink_alpm(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
u8 val;
/*
* eDP Panel Replay uses always ALPM
* PSR2 uses ALPM but PSR1 doesn't
*/
if (!intel_dp_is_edp(intel_dp) || (!crtc_state->has_panel_replay &&
!crtc_state->has_sel_update))
return;
val = DP_ALPM_ENABLE | DP_ALPM_LOCK_ERROR_IRQ_HPD_ENABLE;
if (crtc_state->has_panel_replay)
val |= DP_ALPM_MODE_AUX_LESS;
drm_dp_dpcd_writeb(&intel_dp->aux, DP_RECEIVER_ALPM_CONFIG, val);
}
void intel_psr_enable_sink(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
intel_psr_enable_sink_alpm(intel_dp, crtc_state);
crtc_state->has_panel_replay ?
_panel_replay_enable_sink(intel_dp, crtc_state) :
_psr_enable_sink(intel_dp, crtc_state);
if (intel_dp_is_edp(intel_dp))
drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, DP_SET_POWER_D0);
}
static u32 intel_psr1_get_tp_time(struct intel_dp *intel_dp)
{
struct intel_display *display = to_intel_display(intel_dp);
struct intel_connector *connector = intel_dp->attached_connector;
struct drm_i915_private *dev_priv = to_i915(display->drm);
u32 val = 0;
if (DISPLAY_VER(display) >= 11)
val |= EDP_PSR_TP4_TIME_0us;
if (display->params.psr_safest_params) {
val |= EDP_PSR_TP1_TIME_2500us;
val |= EDP_PSR_TP2_TP3_TIME_2500us;
goto check_tp3_sel;
}
if (connector->panel.vbt.psr.tp1_wakeup_time_us == 0)
val |= EDP_PSR_TP1_TIME_0us;
else if (connector->panel.vbt.psr.tp1_wakeup_time_us <= 100)
val |= EDP_PSR_TP1_TIME_100us;
else if (connector->panel.vbt.psr.tp1_wakeup_time_us <= 500)
val |= EDP_PSR_TP1_TIME_500us;
else
val |= EDP_PSR_TP1_TIME_2500us;
if (connector->panel.vbt.psr.tp2_tp3_wakeup_time_us == 0)
val |= EDP_PSR_TP2_TP3_TIME_0us;
else if (connector->panel.vbt.psr.tp2_tp3_wakeup_time_us <= 100)
val |= EDP_PSR_TP2_TP3_TIME_100us;
else if (connector->panel.vbt.psr.tp2_tp3_wakeup_time_us <= 500)
val |= EDP_PSR_TP2_TP3_TIME_500us;
else
val |= EDP_PSR_TP2_TP3_TIME_2500us;
/*
* WA 0479: hsw,bdw
* "Do not skip both TP1 and TP2/TP3"
*/
if (DISPLAY_VER(dev_priv) < 9 &&
connector->panel.vbt.psr.tp1_wakeup_time_us == 0 &&
connector->panel.vbt.psr.tp2_tp3_wakeup_time_us == 0)
val |= EDP_PSR_TP2_TP3_TIME_100us;
check_tp3_sel:
if (intel_dp_source_supports_tps3(dev_priv) &&
drm_dp_tps3_supported(intel_dp->dpcd))
val |= EDP_PSR_TP_TP1_TP3;
else
val |= EDP_PSR_TP_TP1_TP2;
return val;
}
static u8 psr_compute_idle_frames(struct intel_dp *intel_dp)
{
struct intel_display *display = to_intel_display(intel_dp);
struct intel_connector *connector = intel_dp->attached_connector;
int idle_frames;
/* Let's use 6 as the minimum to cover all known cases including the
* off-by-one issue that HW has in some cases.
*/
idle_frames = max(6, connector->panel.vbt.psr.idle_frames);
idle_frames = max(idle_frames, intel_dp->psr.sink_sync_latency + 1);
if (drm_WARN_ON(display->drm, idle_frames > 0xf))
idle_frames = 0xf;
return idle_frames;
}
static void hsw_activate_psr1(struct intel_dp *intel_dp)
{
struct intel_display *display = to_intel_display(intel_dp);
struct drm_i915_private *dev_priv = to_i915(display->drm);
enum transcoder cpu_transcoder = intel_dp->psr.transcoder;
u32 max_sleep_time = 0x1f;
u32 val = EDP_PSR_ENABLE;
val |= EDP_PSR_IDLE_FRAMES(psr_compute_idle_frames(intel_dp));
if (DISPLAY_VER(display) < 20)
val |= EDP_PSR_MAX_SLEEP_TIME(max_sleep_time);
if (IS_HASWELL(dev_priv))
val |= EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
if (intel_dp->psr.link_standby)
val |= EDP_PSR_LINK_STANDBY;
val |= intel_psr1_get_tp_time(intel_dp);
if (DISPLAY_VER(display) >= 8)
val |= EDP_PSR_CRC_ENABLE;
if (DISPLAY_VER(display) >= 20)
val |= LNL_EDP_PSR_ENTRY_SETUP_FRAMES(intel_dp->psr.entry_setup_frames);
intel_de_rmw(display, psr_ctl_reg(display, cpu_transcoder),
~EDP_PSR_RESTORE_PSR_ACTIVE_CTX_MASK, val);
}
static u32 intel_psr2_get_tp_time(struct intel_dp *intel_dp)
{
struct intel_display *display = to_intel_display(intel_dp);
struct intel_connector *connector = intel_dp->attached_connector;
u32 val = 0;
if (display->params.psr_safest_params)
return EDP_PSR2_TP2_TIME_2500us;
if (connector->panel.vbt.psr.psr2_tp2_tp3_wakeup_time_us >= 0 &&
connector->panel.vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 50)
val |= EDP_PSR2_TP2_TIME_50us;
else if (connector->panel.vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 100)
val |= EDP_PSR2_TP2_TIME_100us;
else if (connector->panel.vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 500)
val |= EDP_PSR2_TP2_TIME_500us;
else
val |= EDP_PSR2_TP2_TIME_2500us;
return val;
}
static int psr2_block_count_lines(struct intel_dp *intel_dp)
{
return intel_dp->alpm_parameters.io_wake_lines < 9 &&
intel_dp->alpm_parameters.fast_wake_lines < 9 ? 8 : 12;
}
static int psr2_block_count(struct intel_dp *intel_dp)
{
return psr2_block_count_lines(intel_dp) / 4;
}
static u8 frames_before_su_entry(struct intel_dp *intel_dp)
{
u8 frames_before_su_entry;
frames_before_su_entry = max_t(u8,
intel_dp->psr.sink_sync_latency + 1,
2);
/* Entry setup frames must be at least 1 less than frames before SU entry */
if (intel_dp->psr.entry_setup_frames >= frames_before_su_entry)
frames_before_su_entry = intel_dp->psr.entry_setup_frames + 1;
return frames_before_su_entry;
}
static void dg2_activate_panel_replay(struct intel_dp *intel_dp)
{
struct intel_display *display = to_intel_display(intel_dp);
struct intel_psr *psr = &intel_dp->psr;
enum transcoder cpu_transcoder = intel_dp->psr.transcoder;
if (intel_dp_is_edp(intel_dp) && psr->sel_update_enabled) {
u32 val = psr->su_region_et_enabled ?
LNL_EDP_PSR2_SU_REGION_ET_ENABLE : 0;
if (intel_dp->psr.req_psr2_sdp_prior_scanline)
val |= EDP_PSR2_SU_SDP_SCANLINE;
intel_de_write(display, EDP_PSR2_CTL(display, cpu_transcoder),
val);
}
intel_de_rmw(display,
PSR2_MAN_TRK_CTL(display, intel_dp->psr.transcoder),
0, ADLP_PSR2_MAN_TRK_CTL_SF_CONTINUOS_FULL_FRAME);
intel_de_rmw(display, TRANS_DP2_CTL(intel_dp->psr.transcoder), 0,
TRANS_DP2_PANEL_REPLAY_ENABLE);
}
static void hsw_activate_psr2(struct intel_dp *intel_dp)
{
struct intel_display *display = to_intel_display(intel_dp);
struct drm_i915_private *dev_priv = to_i915(display->drm);
enum transcoder cpu_transcoder = intel_dp->psr.transcoder;
u32 val = EDP_PSR2_ENABLE;
u32 psr_val = 0;
val |= EDP_PSR2_IDLE_FRAMES(psr_compute_idle_frames(intel_dp));
if (DISPLAY_VER(display) < 14 && !IS_ALDERLAKE_P(dev_priv))
val |= EDP_SU_TRACK_ENABLE;
if (DISPLAY_VER(display) >= 10 && DISPLAY_VER(display) < 13)
val |= EDP_Y_COORDINATE_ENABLE;
val |= EDP_PSR2_FRAME_BEFORE_SU(frames_before_su_entry(intel_dp));
val |= intel_psr2_get_tp_time(intel_dp);
if (DISPLAY_VER(display) >= 12 && DISPLAY_VER(display) < 20) {
if (psr2_block_count(intel_dp) > 2)
val |= TGL_EDP_PSR2_BLOCK_COUNT_NUM_3;
else
val |= TGL_EDP_PSR2_BLOCK_COUNT_NUM_2;
}
/* Wa_22012278275:adl-p */
if (IS_ALDERLAKE_P(dev_priv) && IS_DISPLAY_STEP(display, STEP_A0, STEP_E0)) {
static const u8 map[] = {
2, /* 5 lines */
1, /* 6 lines */
0, /* 7 lines */
3, /* 8 lines */
6, /* 9 lines */
5, /* 10 lines */
4, /* 11 lines */
7, /* 12 lines */
};
/*
* Still using the default IO_BUFFER_WAKE and FAST_WAKE, see
* comments bellow for more information
*/
int tmp;
tmp = map[intel_dp->alpm_parameters.io_wake_lines -
TGL_EDP_PSR2_IO_BUFFER_WAKE_MIN_LINES];
val |= TGL_EDP_PSR2_IO_BUFFER_WAKE(tmp + TGL_EDP_PSR2_IO_BUFFER_WAKE_MIN_LINES);
tmp = map[intel_dp->alpm_parameters.fast_wake_lines - TGL_EDP_PSR2_FAST_WAKE_MIN_LINES];
val |= TGL_EDP_PSR2_FAST_WAKE(tmp + TGL_EDP_PSR2_FAST_WAKE_MIN_LINES);
} else if (DISPLAY_VER(display) >= 20) {
val |= LNL_EDP_PSR2_IO_BUFFER_WAKE(intel_dp->alpm_parameters.io_wake_lines);
} else if (DISPLAY_VER(display) >= 12) {
val |= TGL_EDP_PSR2_IO_BUFFER_WAKE(intel_dp->alpm_parameters.io_wake_lines);
val |= TGL_EDP_PSR2_FAST_WAKE(intel_dp->alpm_parameters.fast_wake_lines);
} else if (DISPLAY_VER(display) >= 9) {
val |= EDP_PSR2_IO_BUFFER_WAKE(intel_dp->alpm_parameters.io_wake_lines);
val |= EDP_PSR2_FAST_WAKE(intel_dp->alpm_parameters.fast_wake_lines);
}
if (intel_dp->psr.req_psr2_sdp_prior_scanline)
val |= EDP_PSR2_SU_SDP_SCANLINE;
if (DISPLAY_VER(display) >= 20)
psr_val |= LNL_EDP_PSR_ENTRY_SETUP_FRAMES(intel_dp->psr.entry_setup_frames);
if (intel_dp->psr.psr2_sel_fetch_enabled) {
u32 tmp;
tmp = intel_de_read(display,
PSR2_MAN_TRK_CTL(display, cpu_transcoder));
drm_WARN_ON(display->drm, !(tmp & PSR2_MAN_TRK_CTL_ENABLE));
} else if (HAS_PSR2_SEL_FETCH(display)) {
intel_de_write(display,
PSR2_MAN_TRK_CTL(display, cpu_transcoder), 0);
}
if (intel_dp->psr.su_region_et_enabled)
val |= LNL_EDP_PSR2_SU_REGION_ET_ENABLE;
/*
* PSR2 HW is incorrectly using EDP_PSR_TP1_TP3_SEL and BSpec is
* recommending keep this bit unset while PSR2 is enabled.
*/
intel_de_write(display, psr_ctl_reg(display, cpu_transcoder), psr_val);
intel_de_write(display, EDP_PSR2_CTL(display, cpu_transcoder), val);
}
static bool
transcoder_has_psr2(struct intel_display *display, enum transcoder cpu_transcoder)
{
struct drm_i915_private *dev_priv = to_i915(display->drm);
if (IS_ALDERLAKE_P(dev_priv) || DISPLAY_VER(display) >= 14)
return cpu_transcoder == TRANSCODER_A || cpu_transcoder == TRANSCODER_B;
else if (DISPLAY_VER(display) >= 12)
return cpu_transcoder == TRANSCODER_A;
else if (DISPLAY_VER(display) >= 9)
return cpu_transcoder == TRANSCODER_EDP;
else
return false;
}
static u32 intel_get_frame_time_us(const struct intel_crtc_state *crtc_state)
{
if (!crtc_state->hw.active)
return 0;
return DIV_ROUND_UP(1000 * 1000,
drm_mode_vrefresh(&crtc_state->hw.adjusted_mode));
}
static void psr2_program_idle_frames(struct intel_dp *intel_dp,
u32 idle_frames)
{
struct intel_display *display = to_intel_display(intel_dp);
enum transcoder cpu_transcoder = intel_dp->psr.transcoder;
intel_de_rmw(display, EDP_PSR2_CTL(display, cpu_transcoder),
EDP_PSR2_IDLE_FRAMES_MASK,
EDP_PSR2_IDLE_FRAMES(idle_frames));
}
static void tgl_psr2_enable_dc3co(struct intel_dp *intel_dp)
{
struct intel_display *display = to_intel_display(intel_dp);
struct drm_i915_private *dev_priv = to_i915(display->drm);
psr2_program_idle_frames(intel_dp, 0);
intel_display_power_set_target_dc_state(dev_priv, DC_STATE_EN_DC3CO);
}
static void tgl_psr2_disable_dc3co(struct intel_dp *intel_dp)
{
struct intel_display *display = to_intel_display(intel_dp);
struct drm_i915_private *dev_priv = to_i915(display->drm);
intel_display_power_set_target_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
psr2_program_idle_frames(intel_dp, psr_compute_idle_frames(intel_dp));
}
static void tgl_dc3co_disable_work(struct work_struct *work)
{
struct intel_dp *intel_dp =
container_of(work, typeof(*intel_dp), psr.dc3co_work.work);
mutex_lock(&intel_dp->psr.lock);
/* If delayed work is pending, it is not idle */
if (delayed_work_pending(&intel_dp->psr.dc3co_work))
goto unlock;
tgl_psr2_disable_dc3co(intel_dp);
unlock:
mutex_unlock(&intel_dp->psr.lock);
}
static void tgl_disallow_dc3co_on_psr2_exit(struct intel_dp *intel_dp)
{
if (!intel_dp->psr.dc3co_exitline)
return;
cancel_delayed_work(&intel_dp->psr.dc3co_work);
/* Before PSR2 exit disallow dc3co*/
tgl_psr2_disable_dc3co(intel_dp);
}
static bool
dc3co_is_pipe_port_compatible(struct intel_dp *intel_dp,
struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(intel_dp);
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
enum pipe pipe = to_intel_crtc(crtc_state->uapi.crtc)->pipe;
struct drm_i915_private *dev_priv = to_i915(display->drm);
enum port port = dig_port->base.port;
if (IS_ALDERLAKE_P(dev_priv) || DISPLAY_VER(display) >= 14)
return pipe <= PIPE_B && port <= PORT_B;
else
return pipe == PIPE_A && port == PORT_A;
}
static void
tgl_dc3co_exitline_compute_config(struct intel_dp *intel_dp,
struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(intel_dp);
struct drm_i915_private *dev_priv = to_i915(display->drm);
const u32 crtc_vdisplay = crtc_state->uapi.adjusted_mode.crtc_vdisplay;
struct i915_power_domains *power_domains = &display->power.domains;
u32 exit_scanlines;
/*
* FIXME: Due to the changed sequence of activating/deactivating DC3CO,
* disable DC3CO until the changed dc3co activating/deactivating sequence
* is applied. B.Specs:49196
*/
return;
/*
* DMC's DC3CO exit mechanism has an issue with Selective Fecth
* TODO: when the issue is addressed, this restriction should be removed.
*/
if (crtc_state->enable_psr2_sel_fetch)
return;
if (!(power_domains->allowed_dc_mask & DC_STATE_EN_DC3CO))
return;
if (!dc3co_is_pipe_port_compatible(intel_dp, crtc_state))
return;
/* Wa_16011303918:adl-p */
if (IS_ALDERLAKE_P(dev_priv) && IS_DISPLAY_STEP(display, STEP_A0, STEP_B0))
return;
/*
* DC3CO Exit time 200us B.Spec 49196
* PSR2 transcoder Early Exit scanlines = ROUNDUP(200 / line time) + 1
*/
exit_scanlines =
intel_usecs_to_scanlines(&crtc_state->uapi.adjusted_mode, 200) + 1;
if (drm_WARN_ON(display->drm, exit_scanlines > crtc_vdisplay))
return;
crtc_state->dc3co_exitline = crtc_vdisplay - exit_scanlines;
}
static bool intel_psr2_sel_fetch_config_valid(struct intel_dp *intel_dp,
struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(intel_dp);
if (!display->params.enable_psr2_sel_fetch &&
intel_dp->psr.debug != I915_PSR_DEBUG_ENABLE_SEL_FETCH) {
drm_dbg_kms(display->drm,
"PSR2 sel fetch not enabled, disabled by parameter\n");
return false;
}
if (crtc_state->uapi.async_flip) {
drm_dbg_kms(display->drm,
"PSR2 sel fetch not enabled, async flip enabled\n");
return false;
}
return crtc_state->enable_psr2_sel_fetch = true;
}
static bool psr2_granularity_check(struct intel_dp *intel_dp,
struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(intel_dp);
struct drm_i915_private *dev_priv = to_i915(display->drm);
const struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
const int crtc_hdisplay = crtc_state->hw.adjusted_mode.crtc_hdisplay;
const int crtc_vdisplay = crtc_state->hw.adjusted_mode.crtc_vdisplay;
u16 y_granularity = 0;
/* PSR2 HW only send full lines so we only need to validate the width */
if (crtc_hdisplay % intel_dp->psr.su_w_granularity)
return false;
if (crtc_vdisplay % intel_dp->psr.su_y_granularity)
return false;
/* HW tracking is only aligned to 4 lines */
if (!crtc_state->enable_psr2_sel_fetch)
return intel_dp->psr.su_y_granularity == 4;
/*
* adl_p and mtl platforms have 1 line granularity.
* For other platforms with SW tracking we can adjust the y coordinates
* to match sink requirement if multiple of 4.
*/
if (IS_ALDERLAKE_P(dev_priv) || DISPLAY_VER(display) >= 14)
y_granularity = intel_dp->psr.su_y_granularity;
else if (intel_dp->psr.su_y_granularity <= 2)
y_granularity = 4;
else if ((intel_dp->psr.su_y_granularity % 4) == 0)
y_granularity = intel_dp->psr.su_y_granularity;
if (y_granularity == 0 || crtc_vdisplay % y_granularity)
return false;
if (crtc_state->dsc.compression_enable &&
vdsc_cfg->slice_height % y_granularity)
return false;
crtc_state->su_y_granularity = y_granularity;
return true;
}
static bool _compute_psr2_sdp_prior_scanline_indication(struct intel_dp *intel_dp,
struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(intel_dp);
const struct drm_display_mode *adjusted_mode = &crtc_state->uapi.adjusted_mode;
u32 hblank_total, hblank_ns, req_ns;
hblank_total = adjusted_mode->crtc_hblank_end - adjusted_mode->crtc_hblank_start;
hblank_ns = div_u64(1000000ULL * hblank_total, adjusted_mode->crtc_clock);
/* From spec: ((60 / number of lanes) + 11) * 1000 / symbol clock frequency MHz */
req_ns = ((60 / crtc_state->lane_count) + 11) * 1000 / (crtc_state->port_clock / 1000);
if ((hblank_ns - req_ns) > 100)
return true;
/* Not supported <13 / Wa_22012279113:adl-p */
if (DISPLAY_VER(display) < 14 || intel_dp->edp_dpcd[0] < DP_EDP_14b)
return false;
crtc_state->req_psr2_sdp_prior_scanline = true;
return true;
}
static int intel_psr_entry_setup_frames(struct intel_dp *intel_dp,
const struct drm_display_mode *adjusted_mode)
{
struct intel_display *display = to_intel_display(intel_dp);
int psr_setup_time = drm_dp_psr_setup_time(intel_dp->psr_dpcd);
int entry_setup_frames = 0;
if (psr_setup_time < 0) {
drm_dbg_kms(display->drm,
"PSR condition failed: Invalid PSR setup time (0x%02x)\n",
intel_dp->psr_dpcd[1]);
return -ETIME;
}
if (intel_usecs_to_scanlines(adjusted_mode, psr_setup_time) >
adjusted_mode->crtc_vtotal - adjusted_mode->crtc_vdisplay - 1) {
if (DISPLAY_VER(display) >= 20) {
/* setup entry frames can be up to 3 frames */
entry_setup_frames = 1;
drm_dbg_kms(display->drm,
"PSR setup entry frames %d\n",
entry_setup_frames);
} else {
drm_dbg_kms(display->drm,
"PSR condition failed: PSR setup time (%d us) too long\n",
psr_setup_time);
return -ETIME;
}
}
return entry_setup_frames;
}
static bool wake_lines_fit_into_vblank(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
bool aux_less)
{
struct intel_display *display = to_intel_display(intel_dp);
int vblank = crtc_state->hw.adjusted_mode.crtc_vblank_end -
crtc_state->hw.adjusted_mode.crtc_vblank_start;
int wake_lines;
if (aux_less)
wake_lines = intel_dp->alpm_parameters.aux_less_wake_lines;
else
wake_lines = DISPLAY_VER(display) < 20 ?
psr2_block_count_lines(intel_dp) :
intel_dp->alpm_parameters.io_wake_lines;
if (crtc_state->req_psr2_sdp_prior_scanline)
vblank -= 1;
/* Vblank >= PSR2_CTL Block Count Number maximum line count */
if (vblank < wake_lines)
return false;
return true;
}
static bool alpm_config_valid(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
bool aux_less)
{
struct intel_display *display = to_intel_display(intel_dp);
if (!intel_alpm_compute_params(intel_dp, crtc_state)) {
drm_dbg_kms(display->drm,
"PSR2/Panel Replay not enabled, Unable to use long enough wake times\n");
return false;
}
if (!wake_lines_fit_into_vblank(intel_dp, crtc_state, aux_less)) {
drm_dbg_kms(display->drm,
"PSR2/Panel Replay not enabled, too short vblank time\n");
return false;
}
return true;
}
static bool intel_psr2_config_valid(struct intel_dp *intel_dp,
struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(intel_dp);
struct drm_i915_private *dev_priv = to_i915(display->drm);
int crtc_hdisplay = crtc_state->hw.adjusted_mode.crtc_hdisplay;
int crtc_vdisplay = crtc_state->hw.adjusted_mode.crtc_vdisplay;
int psr_max_h = 0, psr_max_v = 0, max_bpp = 0;
if (!intel_dp->psr.sink_psr2_support)
return false;
/* JSL and EHL only supports eDP 1.3 */
if (IS_JASPERLAKE(dev_priv) || IS_ELKHARTLAKE(dev_priv)) {
drm_dbg_kms(display->drm, "PSR2 not supported by phy\n");
return false;
}
/* Wa_16011181250 */
if (IS_ROCKETLAKE(dev_priv) || IS_ALDERLAKE_S(dev_priv) ||
IS_DG2(dev_priv)) {
drm_dbg_kms(display->drm,
"PSR2 is defeatured for this platform\n");
return false;
}
if (IS_ALDERLAKE_P(dev_priv) && IS_DISPLAY_STEP(display, STEP_A0, STEP_B0)) {
drm_dbg_kms(display->drm,
"PSR2 not completely functional in this stepping\n");
return false;
}
if (!transcoder_has_psr2(display, crtc_state->cpu_transcoder)) {
drm_dbg_kms(display->drm,
"PSR2 not supported in transcoder %s\n",
transcoder_name(crtc_state->cpu_transcoder));
return false;
}
/*
* DSC and PSR2 cannot be enabled simultaneously. If a requested
* resolution requires DSC to be enabled, priority is given to DSC
* over PSR2.
*/
if (crtc_state->dsc.compression_enable &&
(DISPLAY_VER(display) < 14 && !IS_ALDERLAKE_P(dev_priv))) {
drm_dbg_kms(display->drm,
"PSR2 cannot be enabled since DSC is enabled\n");
return false;
}
if (DISPLAY_VER(display) >= 12) {
psr_max_h = 5120;
psr_max_v = 3200;
max_bpp = 30;
} else if (DISPLAY_VER(display) >= 10) {
psr_max_h = 4096;
psr_max_v = 2304;
max_bpp = 24;
} else if (DISPLAY_VER(display) == 9) {
psr_max_h = 3640;
psr_max_v = 2304;
max_bpp = 24;
}
if (crtc_state->pipe_bpp > max_bpp) {
drm_dbg_kms(display->drm,
"PSR2 not enabled, pipe bpp %d > max supported %d\n",
crtc_state->pipe_bpp, max_bpp);
return false;
}
/* Wa_16011303918:adl-p */
if (crtc_state->vrr.enable &&
IS_ALDERLAKE_P(dev_priv) && IS_DISPLAY_STEP(display, STEP_A0, STEP_B0)) {
drm_dbg_kms(display->drm,
"PSR2 not enabled, not compatible with HW stepping + VRR\n");
return false;
}
if (!alpm_config_valid(intel_dp, crtc_state, false))
return false;
if (!crtc_state->enable_psr2_sel_fetch &&
(crtc_hdisplay > psr_max_h || crtc_vdisplay > psr_max_v)) {
drm_dbg_kms(display->drm,
"PSR2 not enabled, resolution %dx%d > max supported %dx%d\n",
crtc_hdisplay, crtc_vdisplay,
psr_max_h, psr_max_v);
return false;
}
tgl_dc3co_exitline_compute_config(intel_dp, crtc_state);
return true;
}
static bool intel_sel_update_config_valid(struct intel_dp *intel_dp,
struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(intel_dp);
if (HAS_PSR2_SEL_FETCH(display) &&
!intel_psr2_sel_fetch_config_valid(intel_dp, crtc_state) &&
!HAS_PSR_HW_TRACKING(display)) {
drm_dbg_kms(display->drm,
"Selective update not enabled, selective fetch not valid and no HW tracking available\n");
goto unsupported;
}
if (!psr2_global_enabled(intel_dp)) {
drm_dbg_kms(display->drm,
"Selective update disabled by flag\n");
goto unsupported;
}
if (!crtc_state->has_panel_replay && !intel_psr2_config_valid(intel_dp, crtc_state))
goto unsupported;
if (!_compute_psr2_sdp_prior_scanline_indication(intel_dp, crtc_state)) {
drm_dbg_kms(display->drm,
"Selective update not enabled, SDP indication do not fit in hblank\n");
goto unsupported;
}
if (crtc_state->has_panel_replay && (DISPLAY_VER(display) < 14 ||
!intel_dp->psr.sink_panel_replay_su_support))
goto unsupported;
if (crtc_state->crc_enabled) {
drm_dbg_kms(display->drm,
"Selective update not enabled because it would inhibit pipe CRC calculation\n");
goto unsupported;
}
if (!psr2_granularity_check(intel_dp, crtc_state)) {
drm_dbg_kms(display->drm,
"Selective update not enabled, SU granularity not compatible\n");
goto unsupported;
}
crtc_state->enable_psr2_su_region_et =
psr2_su_region_et_valid(intel_dp, crtc_state->has_panel_replay);
return true;
unsupported:
crtc_state->enable_psr2_sel_fetch = false;
return false;
}
static bool _psr_compute_config(struct intel_dp *intel_dp,
struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(intel_dp);
const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
int entry_setup_frames;
/*
* Current PSR panels don't work reliably with VRR enabled
* So if VRR is enabled, do not enable PSR.
*/
if (crtc_state->vrr.enable)
return false;
if (!CAN_PSR(intel_dp))
return false;
entry_setup_frames = intel_psr_entry_setup_frames(intel_dp, adjusted_mode);
if (entry_setup_frames >= 0) {
intel_dp->psr.entry_setup_frames = entry_setup_frames;
} else {
drm_dbg_kms(display->drm,
"PSR condition failed: PSR setup timing not met\n");
return false;
}
return true;
}
static bool
_panel_replay_compute_config(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state)
{
struct intel_display *display = to_intel_display(intel_dp);
struct intel_connector *connector =
to_intel_connector(conn_state->connector);
struct intel_hdcp *hdcp = &connector->hdcp;
if (!CAN_PANEL_REPLAY(intel_dp))
return false;
if (!panel_replay_global_enabled(intel_dp)) {
drm_dbg_kms(display->drm, "Panel Replay disabled by flag\n");
return false;
}
if (!intel_dp_is_edp(intel_dp))
return true;
/* Remaining checks are for eDP only */
/* 128b/132b Panel Replay is not supported on eDP */
if (intel_dp_is_uhbr(crtc_state)) {
drm_dbg_kms(display->drm,
"Panel Replay is not supported with 128b/132b\n");
return false;
}
/* HW will not allow Panel Replay on eDP when HDCP enabled */
if (conn_state->content_protection ==
DRM_MODE_CONTENT_PROTECTION_DESIRED ||
(conn_state->content_protection ==
DRM_MODE_CONTENT_PROTECTION_ENABLED && hdcp->value ==
DRM_MODE_CONTENT_PROTECTION_UNDESIRED)) {
drm_dbg_kms(display->drm,
"Panel Replay is not supported with HDCP\n");
return false;
}
if (!alpm_config_valid(intel_dp, crtc_state, true))
return false;
if (crtc_state->crc_enabled) {
drm_dbg_kms(display->drm,
"Panel Replay not enabled because it would inhibit pipe CRC calculation\n");
return false;
}
return true;
}
void intel_psr_compute_config(struct intel_dp *intel_dp,
struct intel_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
struct intel_display *display = to_intel_display(intel_dp);
const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
if (!psr_global_enabled(intel_dp)) {
drm_dbg_kms(display->drm, "PSR disabled by flag\n");
return;
}
if (intel_dp->psr.sink_not_reliable) {
drm_dbg_kms(display->drm,
"PSR sink implementation is not reliable\n");
return;
}
if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
drm_dbg_kms(display->drm,
"PSR condition failed: Interlaced mode enabled\n");
return;
}
/*
* FIXME figure out what is wrong with PSR+joiner and
* fix it. Presumably something related to the fact that
* PSR is a transcoder level feature.
*/
if (crtc_state->joiner_pipes) {
drm_dbg_kms(display->drm,
"PSR disabled due to joiner\n");
return;
}
crtc_state->has_panel_replay = _panel_replay_compute_config(intel_dp,
crtc_state,
conn_state);
crtc_state->has_psr = crtc_state->has_panel_replay ? true :
_psr_compute_config(intel_dp, crtc_state);
if (!crtc_state->has_psr)
return;
crtc_state->has_sel_update = intel_sel_update_config_valid(intel_dp, crtc_state);
}
void intel_psr_get_config(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config)
{
struct intel_display *display = to_intel_display(encoder);
struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
struct intel_dp *intel_dp;
u32 val;
if (!dig_port)
return;
intel_dp = &dig_port->dp;
if (!(CAN_PSR(intel_dp) || CAN_PANEL_REPLAY(intel_dp)))
return;
mutex_lock(&intel_dp->psr.lock);
if (!intel_dp->psr.enabled)
goto unlock;
if (intel_dp->psr.panel_replay_enabled) {
pipe_config->has_psr = pipe_config->has_panel_replay = true;
} else {
/*
* Not possible to read EDP_PSR/PSR2_CTL registers as it is
* enabled/disabled because of frontbuffer tracking and others.
*/
pipe_config->has_psr = true;
}
pipe_config->has_sel_update = intel_dp->psr.sel_update_enabled;
pipe_config->infoframes.enable |= intel_hdmi_infoframe_enable(DP_SDP_VSC);
if (!intel_dp->psr.sel_update_enabled)
goto unlock;
if (HAS_PSR2_SEL_FETCH(display)) {
val = intel_de_read(display,
PSR2_MAN_TRK_CTL(display, cpu_transcoder));
if (val & PSR2_MAN_TRK_CTL_ENABLE)
pipe_config->enable_psr2_sel_fetch = true;
}
pipe_config->enable_psr2_su_region_et = intel_dp->psr.su_region_et_enabled;
if (DISPLAY_VER(display) >= 12) {
val = intel_de_read(display,
TRANS_EXITLINE(display, cpu_transcoder));
pipe_config->dc3co_exitline = REG_FIELD_GET(EXITLINE_MASK, val);
}
unlock:
mutex_unlock(&intel_dp->psr.lock);
}
static void intel_psr_activate(struct intel_dp *intel_dp)
{
struct intel_display *display = to_intel_display(intel_dp);
enum transcoder cpu_transcoder = intel_dp->psr.transcoder;
drm_WARN_ON(display->drm,
transcoder_has_psr2(display, cpu_transcoder) &&
intel_de_read(display, EDP_PSR2_CTL(display, cpu_transcoder)) & EDP_PSR2_ENABLE);
drm_WARN_ON(display->drm,
intel_de_read(display, psr_ctl_reg(display, cpu_transcoder)) & EDP_PSR_ENABLE);
drm_WARN_ON(display->drm, intel_dp->psr.active);
lockdep_assert_held(&intel_dp->psr.lock);
/* psr1, psr2 and panel-replay are mutually exclusive.*/
if (intel_dp->psr.panel_replay_enabled)
dg2_activate_panel_replay(intel_dp);
else if (intel_dp->psr.sel_update_enabled)
hsw_activate_psr2(intel_dp);
else
hsw_activate_psr1(intel_dp);
intel_dp->psr.active = true;
}
static u32 wa_16013835468_bit_get(struct intel_dp *intel_dp)
{
switch (intel_dp->psr.pipe) {
case PIPE_A:
return LATENCY_REPORTING_REMOVED_PIPE_A;
case PIPE_B:
return LATENCY_REPORTING_REMOVED_PIPE_B;
case PIPE_C:
return LATENCY_REPORTING_REMOVED_PIPE_C;
case PIPE_D:
return LATENCY_REPORTING_REMOVED_PIPE_D;
default:
MISSING_CASE(intel_dp->psr.pipe);
return 0;
}
}
/*
* Wa_16013835468
* Wa_14015648006
*/
static void wm_optimization_wa(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(intel_dp);
bool set_wa_bit = false;
/* Wa_14015648006 */
if (IS_DISPLAY_VER(display, 11, 14))
set_wa_bit |= crtc_state->wm_level_disabled;
/* Wa_16013835468 */
if (DISPLAY_VER(display) == 12)
set_wa_bit |= crtc_state->hw.adjusted_mode.crtc_vblank_start !=
crtc_state->hw.adjusted_mode.crtc_vdisplay;
if (set_wa_bit)
intel_de_rmw(display, GEN8_CHICKEN_DCPR_1,
0, wa_16013835468_bit_get(intel_dp));
else
intel_de_rmw(display, GEN8_CHICKEN_DCPR_1,
wa_16013835468_bit_get(intel_dp), 0);
}
static void intel_psr_enable_source(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(intel_dp);
struct drm_i915_private *dev_priv = to_i915(display->drm);
enum transcoder cpu_transcoder = intel_dp->psr.transcoder;
u32 mask = 0;
/*
* Only HSW and BDW have PSR AUX registers that need to be setup.
* SKL+ use hardcoded values PSR AUX transactions
*/
if (DISPLAY_VER(display) < 9)
hsw_psr_setup_aux(intel_dp);
/*
* Per Spec: Avoid continuous PSR exit by masking MEMUP and HPD also
* mask LPSP to avoid dependency on other drivers that might block
* runtime_pm besides preventing other hw tracking issues now we
* can rely on frontbuffer tracking.
*
* From bspec prior LunarLake:
* Only PSR_MASK[Mask FBC modify] and PSR_MASK[Mask Hotplug] are used in
* panel replay mode.
*
* From bspec beyod LunarLake:
* Panel Replay on DP: No bits are applicable
* Panel Replay on eDP: All bits are applicable
*/
if (DISPLAY_VER(display) < 20 || intel_dp_is_edp(intel_dp))
mask = EDP_PSR_DEBUG_MASK_HPD;
if (intel_dp_is_edp(intel_dp)) {
mask |= EDP_PSR_DEBUG_MASK_MEMUP;
/*
* For some unknown reason on HSW non-ULT (or at least on
* Dell Latitude E6540) external displays start to flicker
* when PSR is enabled on the eDP. SR/PC6 residency is much
* higher than should be possible with an external display.
* As a workaround leave LPSP unmasked to prevent PSR entry
* when external displays are active.
*/
if (DISPLAY_VER(display) >= 8 || IS_HASWELL_ULT(dev_priv))
mask |= EDP_PSR_DEBUG_MASK_LPSP;
if (DISPLAY_VER(display) < 20)
mask |= EDP_PSR_DEBUG_MASK_MAX_SLEEP;
/*
* No separate pipe reg write mask on hsw/bdw, so have to unmask all
* registers in order to keep the CURSURFLIVE tricks working :(
*/
if (IS_DISPLAY_VER(display, 9, 10))
mask |= EDP_PSR_DEBUG_MASK_DISP_REG_WRITE;
/* allow PSR with sprite enabled */
if (IS_HASWELL(dev_priv))
mask |= EDP_PSR_DEBUG_MASK_SPRITE_ENABLE;
}
intel_de_write(display, psr_debug_reg(display, cpu_transcoder), mask);
psr_irq_control(intel_dp);
/*
* TODO: if future platforms supports DC3CO in more than one
* transcoder, EXITLINE will need to be unset when disabling PSR
*/
if (intel_dp->psr.dc3co_exitline)
intel_de_rmw(display,
TRANS_EXITLINE(display, cpu_transcoder),
EXITLINE_MASK,
intel_dp->psr.dc3co_exitline << EXITLINE_SHIFT | EXITLINE_ENABLE);
if (HAS_PSR_HW_TRACKING(display) && HAS_PSR2_SEL_FETCH(display))
intel_de_rmw(display, CHICKEN_PAR1_1, IGNORE_PSR2_HW_TRACKING,
intel_dp->psr.psr2_sel_fetch_enabled ?
IGNORE_PSR2_HW_TRACKING : 0);
if (intel_dp_is_edp(intel_dp))
intel_alpm_configure(intel_dp, crtc_state);
/*
* Wa_16013835468
* Wa_14015648006
*/
wm_optimization_wa(intel_dp, crtc_state);
if (intel_dp->psr.sel_update_enabled) {
if (DISPLAY_VER(display) == 9)
intel_de_rmw(display, CHICKEN_TRANS(cpu_transcoder), 0,
PSR2_VSC_ENABLE_PROG_HEADER |
PSR2_ADD_VERTICAL_LINE_COUNT);
/*
* Wa_16014451276:adlp,mtl[a0,b0]
* All supported adlp panels have 1-based X granularity, this may
* cause issues if non-supported panels are used.
*/
if (!intel_dp->psr.panel_replay_enabled &&
(IS_DISPLAY_VER_STEP(display, IP_VER(14, 0), STEP_A0, STEP_B0) ||
IS_ALDERLAKE_P(dev_priv)))
intel_de_rmw(display, hsw_chicken_trans_reg(dev_priv, cpu_transcoder),
0, ADLP_1_BASED_X_GRANULARITY);
/* Wa_16012604467:adlp,mtl[a0,b0] */
if (!intel_dp->psr.panel_replay_enabled &&
IS_DISPLAY_VER_STEP(display, IP_VER(14, 0), STEP_A0, STEP_B0))
intel_de_rmw(display,
MTL_CLKGATE_DIS_TRANS(display, cpu_transcoder),
0,
MTL_CLKGATE_DIS_TRANS_DMASC_GATING_DIS);
else if (IS_ALDERLAKE_P(dev_priv))
intel_de_rmw(display, CLKGATE_DIS_MISC, 0,
CLKGATE_DIS_MISC_DMASC_GATING_DIS);
}
}
static bool psr_interrupt_error_check(struct intel_dp *intel_dp)
{
struct intel_display *display = to_intel_display(intel_dp);
enum transcoder cpu_transcoder = intel_dp->psr.transcoder;
u32 val;
if (intel_dp->psr.panel_replay_enabled)
goto no_err;
/*
* If a PSR error happened and the driver is reloaded, the EDP_PSR_IIR
* will still keep the error set even after the reset done in the
* irq_preinstall and irq_uninstall hooks.
* And enabling in this situation cause the screen to freeze in the
* first time that PSR HW tries to activate so lets keep PSR disabled
* to avoid any rendering problems.
*/
val = intel_de_read(display, psr_iir_reg(display, cpu_transcoder));
val &= psr_irq_psr_error_bit_get(intel_dp);
if (val) {
intel_dp->psr.sink_not_reliable = true;
drm_dbg_kms(display->drm,
"PSR interruption error set, not enabling PSR\n");
return false;
}
no_err:
return true;
}
static void intel_psr_enable_locked(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(intel_dp);
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
u32 val;
drm_WARN_ON(display->drm, intel_dp->psr.enabled);
intel_dp->psr.sel_update_enabled = crtc_state->has_sel_update;
intel_dp->psr.panel_replay_enabled = crtc_state->has_panel_replay;
intel_dp->psr.busy_frontbuffer_bits = 0;
intel_dp->psr.pipe = to_intel_crtc(crtc_state->uapi.crtc)->pipe;
intel_dp->psr.transcoder = crtc_state->cpu_transcoder;
/* DC5/DC6 requires at least 6 idle frames */
val = usecs_to_jiffies(intel_get_frame_time_us(crtc_state) * 6);
intel_dp->psr.dc3co_exit_delay = val;
intel_dp->psr.dc3co_exitline = crtc_state->dc3co_exitline;
intel_dp->psr.psr2_sel_fetch_enabled = crtc_state->enable_psr2_sel_fetch;
intel_dp->psr.su_region_et_enabled = crtc_state->enable_psr2_su_region_et;
intel_dp->psr.psr2_sel_fetch_cff_enabled = false;
intel_dp->psr.req_psr2_sdp_prior_scanline =
crtc_state->req_psr2_sdp_prior_scanline;
if (!psr_interrupt_error_check(intel_dp))
return;
if (intel_dp->psr.panel_replay_enabled) {
drm_dbg_kms(display->drm, "Enabling Panel Replay\n");
} else {
drm_dbg_kms(display->drm, "Enabling PSR%s\n",
intel_dp->psr.sel_update_enabled ? "2" : "1");
/*
* Panel replay has to be enabled before link training: doing it
* only for PSR here.
*/
intel_psr_enable_sink(intel_dp, crtc_state);
}
if (intel_dp_is_edp(intel_dp))
intel_snps_phy_update_psr_power_state(&dig_port->base, true);
intel_psr_enable_source(intel_dp, crtc_state);
intel_dp->psr.enabled = true;
intel_dp->psr.paused = false;
intel_psr_activate(intel_dp);
}
static void intel_psr_exit(struct intel_dp *intel_dp)
{
struct intel_display *display = to_intel_display(intel_dp);
enum transcoder cpu_transcoder = intel_dp->psr.transcoder;
u32 val;
if (!intel_dp->psr.active) {
if (transcoder_has_psr2(display, cpu_transcoder)) {
val = intel_de_read(display,
EDP_PSR2_CTL(display, cpu_transcoder));
drm_WARN_ON(display->drm, val & EDP_PSR2_ENABLE);
}
val = intel_de_read(display,
psr_ctl_reg(display, cpu_transcoder));
drm_WARN_ON(display->drm, val & EDP_PSR_ENABLE);
return;
}
if (intel_dp->psr.panel_replay_enabled) {
intel_de_rmw(display, TRANS_DP2_CTL(intel_dp->psr.transcoder),
TRANS_DP2_PANEL_REPLAY_ENABLE, 0);
} else if (intel_dp->psr.sel_update_enabled) {
tgl_disallow_dc3co_on_psr2_exit(intel_dp);
val = intel_de_rmw(display,
EDP_PSR2_CTL(display, cpu_transcoder),
EDP_PSR2_ENABLE, 0);
drm_WARN_ON(display->drm, !(val & EDP_PSR2_ENABLE));
} else {
val = intel_de_rmw(display,
psr_ctl_reg(display, cpu_transcoder),
EDP_PSR_ENABLE, 0);
drm_WARN_ON(display->drm, !(val & EDP_PSR_ENABLE));
}
intel_dp->psr.active = false;
}
static void intel_psr_wait_exit_locked(struct intel_dp *intel_dp)
{
struct intel_display *display = to_intel_display(intel_dp);
enum transcoder cpu_transcoder = intel_dp->psr.transcoder;
i915_reg_t psr_status;
u32 psr_status_mask;
if (intel_dp_is_edp(intel_dp) && (intel_dp->psr.sel_update_enabled ||
intel_dp->psr.panel_replay_enabled)) {
psr_status = EDP_PSR2_STATUS(display, cpu_transcoder);
psr_status_mask = EDP_PSR2_STATUS_STATE_MASK;
} else {
psr_status = psr_status_reg(display, cpu_transcoder);
psr_status_mask = EDP_PSR_STATUS_STATE_MASK;
}
/* Wait till PSR is idle */
if (intel_de_wait_for_clear(display, psr_status,
psr_status_mask, 2000))
drm_err(display->drm, "Timed out waiting PSR idle state\n");
}
static void intel_psr_disable_locked(struct intel_dp *intel_dp)
{
struct intel_display *display = to_intel_display(intel_dp);
struct drm_i915_private *dev_priv = to_i915(display->drm);
enum transcoder cpu_transcoder = intel_dp->psr.transcoder;
lockdep_assert_held(&intel_dp->psr.lock);
if (!intel_dp->psr.enabled)
return;
if (intel_dp->psr.panel_replay_enabled)
drm_dbg_kms(display->drm, "Disabling Panel Replay\n");
else
drm_dbg_kms(display->drm, "Disabling PSR%s\n",
intel_dp->psr.sel_update_enabled ? "2" : "1");
intel_psr_exit(intel_dp);
intel_psr_wait_exit_locked(intel_dp);
/*
* Wa_16013835468
* Wa_14015648006
*/
if (DISPLAY_VER(display) >= 11)
intel_de_rmw(display, GEN8_CHICKEN_DCPR_1,
wa_16013835468_bit_get(intel_dp), 0);
if (intel_dp->psr.sel_update_enabled) {
/* Wa_16012604467:adlp,mtl[a0,b0] */
if (!intel_dp->psr.panel_replay_enabled &&
IS_DISPLAY_VER_STEP(display, IP_VER(14, 0), STEP_A0, STEP_B0))
intel_de_rmw(display,
MTL_CLKGATE_DIS_TRANS(display, cpu_transcoder),
MTL_CLKGATE_DIS_TRANS_DMASC_GATING_DIS, 0);
else if (IS_ALDERLAKE_P(dev_priv))
intel_de_rmw(display, CLKGATE_DIS_MISC,
CLKGATE_DIS_MISC_DMASC_GATING_DIS, 0);
}
if (intel_dp_is_edp(intel_dp))
intel_snps_phy_update_psr_power_state(&dp_to_dig_port(intel_dp)->base, false);
/* Panel Replay on eDP is always using ALPM aux less. */
if (intel_dp->psr.panel_replay_enabled && intel_dp_is_edp(intel_dp)) {
intel_de_rmw(display, ALPM_CTL(display, cpu_transcoder),
ALPM_CTL_ALPM_ENABLE |
ALPM_CTL_ALPM_AUX_LESS_ENABLE, 0);
intel_de_rmw(display,
PORT_ALPM_CTL(display, cpu_transcoder),
PORT_ALPM_CTL_ALPM_AUX_LESS_ENABLE, 0);
}
/* Disable PSR on Sink */
if (!intel_dp->psr.panel_replay_enabled) {
drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, 0);
if (intel_dp->psr.sel_update_enabled)
drm_dp_dpcd_writeb(&intel_dp->aux,
DP_RECEIVER_ALPM_CONFIG, 0);
}
intel_dp->psr.enabled = false;
intel_dp->psr.panel_replay_enabled = false;
intel_dp->psr.sel_update_enabled = false;
intel_dp->psr.psr2_sel_fetch_enabled = false;
intel_dp->psr.su_region_et_enabled = false;
intel_dp->psr.psr2_sel_fetch_cff_enabled = false;
}
/**
* intel_psr_disable - Disable PSR
* @intel_dp: Intel DP
* @old_crtc_state: old CRTC state
*
* This function needs to be called before disabling pipe.
*/
void intel_psr_disable(struct intel_dp *intel_dp,
const struct intel_crtc_state *old_crtc_state)
{
struct intel_display *display = to_intel_display(intel_dp);
if (!old_crtc_state->has_psr)
return;
if (drm_WARN_ON(display->drm, !CAN_PSR(intel_dp)))
return;
mutex_lock(&intel_dp->psr.lock);
intel_psr_disable_locked(intel_dp);
mutex_unlock(&intel_dp->psr.lock);
cancel_work_sync(&intel_dp->psr.work);
cancel_delayed_work_sync(&intel_dp->psr.dc3co_work);
}
/**
* intel_psr_pause - Pause PSR
* @intel_dp: Intel DP
*
* This function need to be called after enabling psr.
*/
void intel_psr_pause(struct intel_dp *intel_dp)
{
struct intel_display *display = to_intel_display(intel_dp);
struct intel_psr *psr = &intel_dp->psr;
if (!CAN_PSR(intel_dp) && !CAN_PANEL_REPLAY(intel_dp))
return;
mutex_lock(&psr->lock);
if (!psr->enabled) {
mutex_unlock(&psr->lock);
return;
}
/* If we ever hit this, we will need to add refcount to pause/resume */
drm_WARN_ON(display->drm, psr->paused);
intel_psr_exit(intel_dp);
intel_psr_wait_exit_locked(intel_dp);
psr->paused = true;
mutex_unlock(&psr->lock);
cancel_work_sync(&psr->work);
cancel_delayed_work_sync(&psr->dc3co_work);
}
/**
* intel_psr_resume - Resume PSR
* @intel_dp: Intel DP
*
* This function need to be called after pausing psr.
*/
void intel_psr_resume(struct intel_dp *intel_dp)
{
struct intel_psr *psr = &intel_dp->psr;
if (!CAN_PSR(intel_dp) && !CAN_PANEL_REPLAY(intel_dp))
return;
mutex_lock(&psr->lock);
if (!psr->paused)
goto unlock;
psr->paused = false;
intel_psr_activate(intel_dp);
unlock:
mutex_unlock(&psr->lock);
}
static u32 man_trk_ctl_enable_bit_get(struct intel_display *display)
{
struct drm_i915_private *dev_priv = to_i915(display->drm);
return IS_ALDERLAKE_P(dev_priv) || DISPLAY_VER(display) >= 14 ? 0 :
PSR2_MAN_TRK_CTL_ENABLE;
}
static u32 man_trk_ctl_single_full_frame_bit_get(struct intel_display *display)
{
struct drm_i915_private *dev_priv = to_i915(display->drm);
return IS_ALDERLAKE_P(dev_priv) || DISPLAY_VER(display) >= 14 ?
ADLP_PSR2_MAN_TRK_CTL_SF_SINGLE_FULL_FRAME :
PSR2_MAN_TRK_CTL_SF_SINGLE_FULL_FRAME;
}
static u32 man_trk_ctl_partial_frame_bit_get(struct intel_display *display)
{
struct drm_i915_private *dev_priv = to_i915(display->drm);
return IS_ALDERLAKE_P(dev_priv) || DISPLAY_VER(display) >= 14 ?
ADLP_PSR2_MAN_TRK_CTL_SF_PARTIAL_FRAME_UPDATE :
PSR2_MAN_TRK_CTL_SF_PARTIAL_FRAME_UPDATE;
}
static u32 man_trk_ctl_continuos_full_frame(struct intel_display *display)
{
struct drm_i915_private *dev_priv = to_i915(display->drm);
return IS_ALDERLAKE_P(dev_priv) || DISPLAY_VER(display) >= 14 ?
ADLP_PSR2_MAN_TRK_CTL_SF_CONTINUOS_FULL_FRAME :
PSR2_MAN_TRK_CTL_SF_CONTINUOS_FULL_FRAME;
}
static void psr_force_hw_tracking_exit(struct intel_dp *intel_dp)
{
struct intel_display *display = to_intel_display(intel_dp);
enum transcoder cpu_transcoder = intel_dp->psr.transcoder;
if (intel_dp->psr.psr2_sel_fetch_enabled)
intel_de_write(display,
PSR2_MAN_TRK_CTL(display, cpu_transcoder),
man_trk_ctl_enable_bit_get(display) |
man_trk_ctl_partial_frame_bit_get(display) |
man_trk_ctl_single_full_frame_bit_get(display) |
man_trk_ctl_continuos_full_frame(display));
/*
* Display WA #0884: skl+
* This documented WA for bxt can be safely applied
* broadly so we can force HW tracking to exit PSR
* instead of disabling and re-enabling.
* Workaround tells us to write 0 to CUR_SURFLIVE_A,
* but it makes more sense write to the current active
* pipe.
*
* This workaround do not exist for platforms with display 10 or newer
* but testing proved that it works for up display 13, for newer
* than that testing will be needed.
*/
intel_de_write(display, CURSURFLIVE(display, intel_dp->psr.pipe), 0);
}
void intel_psr2_program_trans_man_trk_ctl(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
struct intel_encoder *encoder;
if (!crtc_state->enable_psr2_sel_fetch)
return;
for_each_intel_encoder_mask_with_psr(display->drm, encoder,
crtc_state->uapi.encoder_mask) {
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
lockdep_assert_held(&intel_dp->psr.lock);
if (intel_dp->psr.psr2_sel_fetch_cff_enabled)
return;
break;
}
intel_de_write(display, PSR2_MAN_TRK_CTL(display, cpu_transcoder),
crtc_state->psr2_man_track_ctl);
if (!crtc_state->enable_psr2_su_region_et)
return;
intel_de_write(display, PIPE_SRCSZ_ERLY_TPT(crtc->pipe),
crtc_state->pipe_srcsz_early_tpt);
}
static void psr2_man_trk_ctl_calc(struct intel_crtc_state *crtc_state,
bool full_update)
{
struct intel_display *display = to_intel_display(crtc_state);
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
u32 val = man_trk_ctl_enable_bit_get(display);
/* SF partial frame enable has to be set even on full update */
val |= man_trk_ctl_partial_frame_bit_get(display);
if (full_update) {
val |= man_trk_ctl_single_full_frame_bit_get(display);
val |= man_trk_ctl_continuos_full_frame(display);
goto exit;
}
if (crtc_state->psr2_su_area.y1 == -1)
goto exit;
if (IS_ALDERLAKE_P(dev_priv) || DISPLAY_VER(display) >= 14) {
val |= ADLP_PSR2_MAN_TRK_CTL_SU_REGION_START_ADDR(crtc_state->psr2_su_area.y1);
val |= ADLP_PSR2_MAN_TRK_CTL_SU_REGION_END_ADDR(crtc_state->psr2_su_area.y2 - 1);
} else {
drm_WARN_ON(crtc_state->uapi.crtc->dev,
crtc_state->psr2_su_area.y1 % 4 ||
crtc_state->psr2_su_area.y2 % 4);
val |= PSR2_MAN_TRK_CTL_SU_REGION_START_ADDR(
crtc_state->psr2_su_area.y1 / 4 + 1);
val |= PSR2_MAN_TRK_CTL_SU_REGION_END_ADDR(
crtc_state->psr2_su_area.y2 / 4 + 1);
}
exit:
crtc_state->psr2_man_track_ctl = val;
}
static u32 psr2_pipe_srcsz_early_tpt_calc(struct intel_crtc_state *crtc_state,
bool full_update)
{
int width, height;
if (!crtc_state->enable_psr2_su_region_et || full_update)
return 0;
width = drm_rect_width(&crtc_state->psr2_su_area);
height = drm_rect_height(&crtc_state->psr2_su_area);
return PIPESRC_WIDTH(width - 1) | PIPESRC_HEIGHT(height - 1);
}
static void clip_area_update(struct drm_rect *overlap_damage_area,
struct drm_rect *damage_area,
struct drm_rect *pipe_src)
{
if (!drm_rect_intersect(damage_area, pipe_src))
return;
if (overlap_damage_area->y1 == -1) {
overlap_damage_area->y1 = damage_area->y1;
overlap_damage_area->y2 = damage_area->y2;
return;
}
if (damage_area->y1 < overlap_damage_area->y1)
overlap_damage_area->y1 = damage_area->y1;
if (damage_area->y2 > overlap_damage_area->y2)
overlap_damage_area->y2 = damage_area->y2;
}
static void intel_psr2_sel_fetch_pipe_alignment(struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
const struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
u16 y_alignment;
/* ADLP aligns the SU region to vdsc slice height in case dsc is enabled */
if (crtc_state->dsc.compression_enable &&
(IS_ALDERLAKE_P(dev_priv) || DISPLAY_VER(display) >= 14))
y_alignment = vdsc_cfg->slice_height;
else
y_alignment = crtc_state->su_y_granularity;
crtc_state->psr2_su_area.y1 -= crtc_state->psr2_su_area.y1 % y_alignment;
if (crtc_state->psr2_su_area.y2 % y_alignment)
crtc_state->psr2_su_area.y2 = ((crtc_state->psr2_su_area.y2 /
y_alignment) + 1) * y_alignment;
}
/*
* When early transport is in use we need to extend SU area to cover
* cursor fully when cursor is in SU area.
*/
static void
intel_psr2_sel_fetch_et_alignment(struct intel_atomic_state *state,
struct intel_crtc *crtc,
bool *cursor_in_su_area)
{
struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
struct intel_plane_state *new_plane_state;
struct intel_plane *plane;
int i;
if (!crtc_state->enable_psr2_su_region_et)
return;
for_each_new_intel_plane_in_state(state, plane, new_plane_state, i) {
struct drm_rect inter;
if (new_plane_state->uapi.crtc != crtc_state->uapi.crtc)
continue;
if (plane->id != PLANE_CURSOR)
continue;
if (!new_plane_state->uapi.visible)
continue;
inter = crtc_state->psr2_su_area;
if (!drm_rect_intersect(&inter, &new_plane_state->uapi.dst))
continue;
clip_area_update(&crtc_state->psr2_su_area, &new_plane_state->uapi.dst,
&crtc_state->pipe_src);
*cursor_in_su_area = true;
}
}
/*
* TODO: Not clear how to handle planes with negative position,
* also planes are not updated if they have a negative X
* position so for now doing a full update in this cases
*
* Plane scaling and rotation is not supported by selective fetch and both
* properties can change without a modeset, so need to be check at every
* atomic commit.
*/
static bool psr2_sel_fetch_plane_state_supported(const struct intel_plane_state *plane_state)
{
if (plane_state->uapi.dst.y1 < 0 ||
plane_state->uapi.dst.x1 < 0 ||
plane_state->scaler_id >= 0 ||
plane_state->uapi.rotation != DRM_MODE_ROTATE_0)
return false;
return true;
}
/*
* Check for pipe properties that is not supported by selective fetch.
*
* TODO: pipe scaling causes a modeset but skl_update_scaler_crtc() is executed
* after intel_psr_compute_config(), so for now keeping PSR2 selective fetch
* enabled and going to the full update path.
*/
static bool psr2_sel_fetch_pipe_state_supported(const struct intel_crtc_state *crtc_state)
{
if (crtc_state->scaler_state.scaler_id >= 0)
return false;
return true;
}
int intel_psr2_sel_fetch_update(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_display *display = to_intel_display(state);
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
struct intel_plane_state *new_plane_state, *old_plane_state;
struct intel_plane *plane;
bool full_update = false, cursor_in_su_area = false;
int i, ret;
if (!crtc_state->enable_psr2_sel_fetch)
return 0;
if (!psr2_sel_fetch_pipe_state_supported(crtc_state)) {
full_update = true;
goto skip_sel_fetch_set_loop;
}
crtc_state->psr2_su_area.x1 = 0;
crtc_state->psr2_su_area.y1 = -1;
crtc_state->psr2_su_area.x2 = drm_rect_width(&crtc_state->pipe_src);
crtc_state->psr2_su_area.y2 = -1;
/*
* Calculate minimal selective fetch area of each plane and calculate
* the pipe damaged area.
* In the next loop the plane selective fetch area will actually be set
* using whole pipe damaged area.
*/
for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state,
new_plane_state, i) {
struct drm_rect src, damaged_area = { .x1 = 0, .y1 = -1,
.x2 = INT_MAX };
if (new_plane_state->uapi.crtc != crtc_state->uapi.crtc)
continue;
if (!new_plane_state->uapi.visible &&
!old_plane_state->uapi.visible)
continue;
if (!psr2_sel_fetch_plane_state_supported(new_plane_state)) {
full_update = true;
break;
}
/*
* If visibility or plane moved, mark the whole plane area as
* damaged as it needs to be complete redraw in the new and old
* position.
*/
if (new_plane_state->uapi.visible != old_plane_state->uapi.visible ||
!drm_rect_equals(&new_plane_state->uapi.dst,
&old_plane_state->uapi.dst)) {
if (old_plane_state->uapi.visible) {
damaged_area.y1 = old_plane_state->uapi.dst.y1;
damaged_area.y2 = old_plane_state->uapi.dst.y2;
clip_area_update(&crtc_state->psr2_su_area, &damaged_area,
&crtc_state->pipe_src);
}
if (new_plane_state->uapi.visible) {
damaged_area.y1 = new_plane_state->uapi.dst.y1;
damaged_area.y2 = new_plane_state->uapi.dst.y2;
clip_area_update(&crtc_state->psr2_su_area, &damaged_area,
&crtc_state->pipe_src);
}
continue;
} else if (new_plane_state->uapi.alpha != old_plane_state->uapi.alpha) {
/* If alpha changed mark the whole plane area as damaged */
damaged_area.y1 = new_plane_state->uapi.dst.y1;
damaged_area.y2 = new_plane_state->uapi.dst.y2;
clip_area_update(&crtc_state->psr2_su_area, &damaged_area,
&crtc_state->pipe_src);
continue;
}
src = drm_plane_state_src(&new_plane_state->uapi);
drm_rect_fp_to_int(&src, &src);
if (!drm_atomic_helper_damage_merged(&old_plane_state->uapi,
&new_plane_state->uapi, &damaged_area))
continue;
damaged_area.y1 += new_plane_state->uapi.dst.y1 - src.y1;
damaged_area.y2 += new_plane_state->uapi.dst.y1 - src.y1;
damaged_area.x1 += new_plane_state->uapi.dst.x1 - src.x1;
damaged_area.x2 += new_plane_state->uapi.dst.x1 - src.x1;
clip_area_update(&crtc_state->psr2_su_area, &damaged_area, &crtc_state->pipe_src);
}
/*
* TODO: For now we are just using full update in case
* selective fetch area calculation fails. To optimize this we
* should identify cases where this happens and fix the area
* calculation for those.
*/
if (crtc_state->psr2_su_area.y1 == -1) {
drm_info_once(display->drm,
"Selective fetch area calculation failed in pipe %c\n",
pipe_name(crtc->pipe));
full_update = true;
}
if (full_update)
goto skip_sel_fetch_set_loop;
/* Wa_14014971492 */
if (!crtc_state->has_panel_replay &&
((IS_DISPLAY_VER_STEP(display, IP_VER(14, 0), STEP_A0, STEP_B0) ||
IS_ALDERLAKE_P(dev_priv) || IS_TIGERLAKE(dev_priv))) &&
crtc_state->splitter.enable)
crtc_state->psr2_su_area.y1 = 0;
ret = drm_atomic_add_affected_planes(&state->base, &crtc->base);
if (ret)
return ret;
/*
* Adjust su area to cover cursor fully as necessary (early
* transport). This needs to be done after
* drm_atomic_add_affected_planes to ensure visible cursor is added into
* affected planes even when cursor is not updated by itself.
*/
intel_psr2_sel_fetch_et_alignment(state, crtc, &cursor_in_su_area);
intel_psr2_sel_fetch_pipe_alignment(crtc_state);
/*
* Now that we have the pipe damaged area check if it intersect with
* every plane, if it does set the plane selective fetch area.
*/
for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state,
new_plane_state, i) {
struct drm_rect *sel_fetch_area, inter;
struct intel_plane *linked = new_plane_state->planar_linked_plane;
if (new_plane_state->uapi.crtc != crtc_state->uapi.crtc ||
!new_plane_state->uapi.visible)
continue;
inter = crtc_state->psr2_su_area;
sel_fetch_area = &new_plane_state->psr2_sel_fetch_area;
if (!drm_rect_intersect(&inter, &new_plane_state->uapi.dst)) {
sel_fetch_area->y1 = -1;
sel_fetch_area->y2 = -1;
/*
* if plane sel fetch was previously enabled ->
* disable it
*/
if (drm_rect_height(&old_plane_state->psr2_sel_fetch_area) > 0)
crtc_state->update_planes |= BIT(plane->id);
continue;
}
if (!psr2_sel_fetch_plane_state_supported(new_plane_state)) {
full_update = true;
break;
}
sel_fetch_area = &new_plane_state->psr2_sel_fetch_area;
sel_fetch_area->y1 = inter.y1 - new_plane_state->uapi.dst.y1;
sel_fetch_area->y2 = inter.y2 - new_plane_state->uapi.dst.y1;
crtc_state->update_planes |= BIT(plane->id);
/*
* Sel_fetch_area is calculated for UV plane. Use
* same area for Y plane as well.
*/
if (linked) {
struct intel_plane_state *linked_new_plane_state;
struct drm_rect *linked_sel_fetch_area;
linked_new_plane_state = intel_atomic_get_plane_state(state, linked);
if (IS_ERR(linked_new_plane_state))
return PTR_ERR(linked_new_plane_state);
linked_sel_fetch_area = &linked_new_plane_state->psr2_sel_fetch_area;
linked_sel_fetch_area->y1 = sel_fetch_area->y1;
linked_sel_fetch_area->y2 = sel_fetch_area->y2;
crtc_state->update_planes |= BIT(linked->id);
}
}
skip_sel_fetch_set_loop:
psr2_man_trk_ctl_calc(crtc_state, full_update);
crtc_state->pipe_srcsz_early_tpt =
psr2_pipe_srcsz_early_tpt_calc(crtc_state, full_update);
return 0;
}
void intel_psr_pre_plane_update(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_display *display = to_intel_display(state);
struct drm_i915_private *i915 = to_i915(state->base.dev);
const struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
const struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
struct intel_encoder *encoder;
if (!HAS_PSR(display))
return;
for_each_intel_encoder_mask_with_psr(state->base.dev, encoder,
old_crtc_state->uapi.encoder_mask) {
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
struct intel_psr *psr = &intel_dp->psr;
bool needs_to_disable = false;
mutex_lock(&psr->lock);
/*
* Reasons to disable:
* - PSR disabled in new state
* - All planes will go inactive
* - Changing between PSR versions
* - Region Early Transport changing
* - Display WA #1136: skl, bxt
*/
needs_to_disable |= intel_crtc_needs_modeset(new_crtc_state);
needs_to_disable |= !new_crtc_state->has_psr;
needs_to_disable |= !new_crtc_state->active_planes;
needs_to_disable |= new_crtc_state->has_sel_update != psr->sel_update_enabled;
needs_to_disable |= new_crtc_state->enable_psr2_su_region_et !=
psr->su_region_et_enabled;
needs_to_disable |= DISPLAY_VER(i915) < 11 &&
new_crtc_state->wm_level_disabled;
if (psr->enabled && needs_to_disable)
intel_psr_disable_locked(intel_dp);
else if (psr->enabled && new_crtc_state->wm_level_disabled)
/* Wa_14015648006 */
wm_optimization_wa(intel_dp, new_crtc_state);
mutex_unlock(&psr->lock);
}
}
void intel_psr_post_plane_update(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_display *display = to_intel_display(state);
const struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
struct intel_encoder *encoder;
if (!crtc_state->has_psr)
return;
for_each_intel_encoder_mask_with_psr(state->base.dev, encoder,
crtc_state->uapi.encoder_mask) {
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
struct intel_psr *psr = &intel_dp->psr;
bool keep_disabled = false;
mutex_lock(&psr->lock);
drm_WARN_ON(display->drm,
psr->enabled && !crtc_state->active_planes);
keep_disabled |= psr->sink_not_reliable;
keep_disabled |= !crtc_state->active_planes;
/* Display WA #1136: skl, bxt */
keep_disabled |= DISPLAY_VER(display) < 11 &&
crtc_state->wm_level_disabled;
if (!psr->enabled && !keep_disabled)
intel_psr_enable_locked(intel_dp, crtc_state);
else if (psr->enabled && !crtc_state->wm_level_disabled)
/* Wa_14015648006 */
wm_optimization_wa(intel_dp, crtc_state);
/* Force a PSR exit when enabling CRC to avoid CRC timeouts */
if (crtc_state->crc_enabled && psr->enabled)
psr_force_hw_tracking_exit(intel_dp);
/*
* Clear possible busy bits in case we have
* invalidate -> flip -> flush sequence.
*/
intel_dp->psr.busy_frontbuffer_bits = 0;
mutex_unlock(&psr->lock);
}
}
static int _psr2_ready_for_pipe_update_locked(struct intel_dp *intel_dp)
{
struct intel_display *display = to_intel_display(intel_dp);
enum transcoder cpu_transcoder = intel_dp->psr.transcoder;
/*
* Any state lower than EDP_PSR2_STATUS_STATE_DEEP_SLEEP is enough.
* As all higher states has bit 4 of PSR2 state set we can just wait for
* EDP_PSR2_STATUS_STATE_DEEP_SLEEP to be cleared.
*/
return intel_de_wait_for_clear(display,
EDP_PSR2_STATUS(display, cpu_transcoder),
EDP_PSR2_STATUS_STATE_DEEP_SLEEP, 50);
}
static int _psr1_ready_for_pipe_update_locked(struct intel_dp *intel_dp)
{
struct intel_display *display = to_intel_display(intel_dp);
enum transcoder cpu_transcoder = intel_dp->psr.transcoder;
/*
* From bspec: Panel Self Refresh (BDW+)
* Max. time for PSR to idle = Inverse of the refresh rate + 6 ms of
* exit training time + 1.5 ms of aux channel handshake. 50 ms is
* defensive enough to cover everything.
*/
return intel_de_wait_for_clear(display,
psr_status_reg(display, cpu_transcoder),
EDP_PSR_STATUS_STATE_MASK, 50);
}
/**
* intel_psr_wait_for_idle_locked - wait for PSR be ready for a pipe update
* @new_crtc_state: new CRTC state
*
* This function is expected to be called from pipe_update_start() where it is
* not expected to race with PSR enable or disable.
*/
void intel_psr_wait_for_idle_locked(const struct intel_crtc_state *new_crtc_state)
{
struct intel_display *display = to_intel_display(new_crtc_state);
struct intel_encoder *encoder;
if (!new_crtc_state->has_psr)
return;
for_each_intel_encoder_mask_with_psr(display->drm, encoder,
new_crtc_state->uapi.encoder_mask) {
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
int ret;
lockdep_assert_held(&intel_dp->psr.lock);
if (!intel_dp->psr.enabled || intel_dp->psr.panel_replay_enabled)
continue;
if (intel_dp->psr.sel_update_enabled)
ret = _psr2_ready_for_pipe_update_locked(intel_dp);
else
ret = _psr1_ready_for_pipe_update_locked(intel_dp);
if (ret)
drm_err(display->drm,
"PSR wait timed out, atomic update may fail\n");
}
}
static bool __psr_wait_for_idle_locked(struct intel_dp *intel_dp)
{
struct intel_display *display = to_intel_display(intel_dp);
enum transcoder cpu_transcoder = intel_dp->psr.transcoder;
i915_reg_t reg;
u32 mask;
int err;
if (!intel_dp->psr.enabled)
return false;
if (intel_dp_is_edp(intel_dp) && (intel_dp->psr.sel_update_enabled ||
intel_dp->psr.panel_replay_enabled)) {
reg = EDP_PSR2_STATUS(display, cpu_transcoder);
mask = EDP_PSR2_STATUS_STATE_MASK;
} else {
reg = psr_status_reg(display, cpu_transcoder);
mask = EDP_PSR_STATUS_STATE_MASK;
}
mutex_unlock(&intel_dp->psr.lock);
err = intel_de_wait_for_clear(display, reg, mask, 50);
if (err)
drm_err(display->drm,
"Timed out waiting for PSR Idle for re-enable\n");
/* After the unlocked wait, verify that PSR is still wanted! */
mutex_lock(&intel_dp->psr.lock);
return err == 0 && intel_dp->psr.enabled;
}
static int intel_psr_fastset_force(struct intel_display *display)
{
struct drm_connector_list_iter conn_iter;
struct drm_modeset_acquire_ctx ctx;
struct drm_atomic_state *state;
struct drm_connector *conn;
int err = 0;
state = drm_atomic_state_alloc(display->drm);
if (!state)
return -ENOMEM;
drm_modeset_acquire_init(&ctx, DRM_MODESET_ACQUIRE_INTERRUPTIBLE);
state->acquire_ctx = &ctx;
to_intel_atomic_state(state)->internal = true;
retry:
drm_connector_list_iter_begin(display->drm, &conn_iter);
drm_for_each_connector_iter(conn, &conn_iter) {
struct drm_connector_state *conn_state;
struct drm_crtc_state *crtc_state;
if (conn->connector_type != DRM_MODE_CONNECTOR_eDP)
continue;
conn_state = drm_atomic_get_connector_state(state, conn);
if (IS_ERR(conn_state)) {
err = PTR_ERR(conn_state);
break;
}
if (!conn_state->crtc)
continue;
crtc_state = drm_atomic_get_crtc_state(state, conn_state->crtc);
if (IS_ERR(crtc_state)) {
err = PTR_ERR(crtc_state);
break;
}
/* Mark mode as changed to trigger a pipe->update() */
crtc_state->mode_changed = true;
}
drm_connector_list_iter_end(&conn_iter);
if (err == 0)
err = drm_atomic_commit(state);
if (err == -EDEADLK) {
drm_atomic_state_clear(state);
err = drm_modeset_backoff(&ctx);
if (!err)
goto retry;
}
drm_modeset_drop_locks(&ctx);
drm_modeset_acquire_fini(&ctx);
drm_atomic_state_put(state);
return err;
}
int intel_psr_debug_set(struct intel_dp *intel_dp, u64 val)
{
struct intel_display *display = to_intel_display(intel_dp);
const u32 mode = val & I915_PSR_DEBUG_MODE_MASK;
const u32 disable_bits = val & (I915_PSR_DEBUG_SU_REGION_ET_DISABLE |
I915_PSR_DEBUG_PANEL_REPLAY_DISABLE);
u32 old_mode, old_disable_bits;
int ret;
if (val & ~(I915_PSR_DEBUG_IRQ | I915_PSR_DEBUG_SU_REGION_ET_DISABLE |
I915_PSR_DEBUG_PANEL_REPLAY_DISABLE |
I915_PSR_DEBUG_MODE_MASK) ||
mode > I915_PSR_DEBUG_ENABLE_SEL_FETCH) {
drm_dbg_kms(display->drm, "Invalid debug mask %llx\n", val);
return -EINVAL;
}
ret = mutex_lock_interruptible(&intel_dp->psr.lock);
if (ret)
return ret;
old_mode = intel_dp->psr.debug & I915_PSR_DEBUG_MODE_MASK;
old_disable_bits = intel_dp->psr.debug &
(I915_PSR_DEBUG_SU_REGION_ET_DISABLE |
I915_PSR_DEBUG_PANEL_REPLAY_DISABLE);
intel_dp->psr.debug = val;
/*
* Do it right away if it's already enabled, otherwise it will be done
* when enabling the source.
*/
if (intel_dp->psr.enabled)
psr_irq_control(intel_dp);
mutex_unlock(&intel_dp->psr.lock);
if (old_mode != mode || old_disable_bits != disable_bits)
ret = intel_psr_fastset_force(display);
return ret;
}
static void intel_psr_handle_irq(struct intel_dp *intel_dp)
{
struct intel_psr *psr = &intel_dp->psr;
intel_psr_disable_locked(intel_dp);
psr->sink_not_reliable = true;
/* let's make sure that sink is awaken */
drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, DP_SET_POWER_D0);
}
static void intel_psr_work(struct work_struct *work)
{
struct intel_dp *intel_dp =
container_of(work, typeof(*intel_dp), psr.work);
mutex_lock(&intel_dp->psr.lock);
if (!intel_dp->psr.enabled)
goto unlock;
if (READ_ONCE(intel_dp->psr.irq_aux_error))
intel_psr_handle_irq(intel_dp);
/*
* We have to make sure PSR is ready for re-enable
* otherwise it keeps disabled until next full enable/disable cycle.
* PSR might take some time to get fully disabled
* and be ready for re-enable.
*/
if (!__psr_wait_for_idle_locked(intel_dp))
goto unlock;
/*
* The delayed work can race with an invalidate hence we need to
* recheck. Since psr_flush first clears this and then reschedules we
* won't ever miss a flush when bailing out here.
*/
if (intel_dp->psr.busy_frontbuffer_bits || intel_dp->psr.active)
goto unlock;
intel_psr_activate(intel_dp);
unlock:
mutex_unlock(&intel_dp->psr.lock);
}
static void _psr_invalidate_handle(struct intel_dp *intel_dp)
{
struct intel_display *display = to_intel_display(intel_dp);
enum transcoder cpu_transcoder = intel_dp->psr.transcoder;
if (intel_dp->psr.psr2_sel_fetch_enabled) {
u32 val;
if (intel_dp->psr.psr2_sel_fetch_cff_enabled) {
/* Send one update otherwise lag is observed in screen */
intel_de_write(display,
CURSURFLIVE(display, intel_dp->psr.pipe),
0);
return;
}
val = man_trk_ctl_enable_bit_get(display) |
man_trk_ctl_partial_frame_bit_get(display) |
man_trk_ctl_continuos_full_frame(display);
intel_de_write(display,
PSR2_MAN_TRK_CTL(display, cpu_transcoder),
val);
intel_de_write(display,
CURSURFLIVE(display, intel_dp->psr.pipe), 0);
intel_dp->psr.psr2_sel_fetch_cff_enabled = true;
} else {
intel_psr_exit(intel_dp);
}
}
/**
* intel_psr_invalidate - Invalidate PSR
* @display: display device
* @frontbuffer_bits: frontbuffer plane tracking bits
* @origin: which operation caused the invalidate
*
* Since the hardware frontbuffer tracking has gaps we need to integrate
* with the software frontbuffer tracking. This function gets called every
* time frontbuffer rendering starts and a buffer gets dirtied. PSR must be
* disabled if the frontbuffer mask contains a buffer relevant to PSR.
*
* Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits."
*/
void intel_psr_invalidate(struct intel_display *display,
unsigned frontbuffer_bits, enum fb_op_origin origin)
{
struct intel_encoder *encoder;
if (origin == ORIGIN_FLIP)
return;
for_each_intel_encoder_with_psr(display->drm, encoder) {
unsigned int pipe_frontbuffer_bits = frontbuffer_bits;
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
mutex_lock(&intel_dp->psr.lock);
if (!intel_dp->psr.enabled) {
mutex_unlock(&intel_dp->psr.lock);
continue;
}
pipe_frontbuffer_bits &=
INTEL_FRONTBUFFER_ALL_MASK(intel_dp->psr.pipe);
intel_dp->psr.busy_frontbuffer_bits |= pipe_frontbuffer_bits;
if (pipe_frontbuffer_bits)
_psr_invalidate_handle(intel_dp);
mutex_unlock(&intel_dp->psr.lock);
}
}
/*
* When we will be completely rely on PSR2 S/W tracking in future,
* intel_psr_flush() will invalidate and flush the PSR for ORIGIN_FLIP
* event also therefore tgl_dc3co_flush_locked() require to be changed
* accordingly in future.
*/
static void
tgl_dc3co_flush_locked(struct intel_dp *intel_dp, unsigned int frontbuffer_bits,
enum fb_op_origin origin)
{
struct intel_display *display = to_intel_display(intel_dp);
struct drm_i915_private *i915 = to_i915(display->drm);
if (!intel_dp->psr.dc3co_exitline || !intel_dp->psr.sel_update_enabled ||
!intel_dp->psr.active)
return;
/*
* At every frontbuffer flush flip event modified delay of delayed work,
* when delayed work schedules that means display has been idle.
*/
if (!(frontbuffer_bits &
INTEL_FRONTBUFFER_ALL_MASK(intel_dp->psr.pipe)))
return;
tgl_psr2_enable_dc3co(intel_dp);
mod_delayed_work(i915->unordered_wq, &intel_dp->psr.dc3co_work,
intel_dp->psr.dc3co_exit_delay);
}
static void _psr_flush_handle(struct intel_dp *intel_dp)
{
struct intel_display *display = to_intel_display(intel_dp);
struct drm_i915_private *dev_priv = to_i915(display->drm);
enum transcoder cpu_transcoder = intel_dp->psr.transcoder;
if (intel_dp->psr.psr2_sel_fetch_enabled) {
if (intel_dp->psr.psr2_sel_fetch_cff_enabled) {
/* can we turn CFF off? */
if (intel_dp->psr.busy_frontbuffer_bits == 0) {
u32 val = man_trk_ctl_enable_bit_get(display) |
man_trk_ctl_partial_frame_bit_get(display) |
man_trk_ctl_single_full_frame_bit_get(display) |
man_trk_ctl_continuos_full_frame(display);
/*
* Set psr2_sel_fetch_cff_enabled as false to allow selective
* updates. Still keep cff bit enabled as we don't have proper
* SU configuration in case update is sent for any reason after
* sff bit gets cleared by the HW on next vblank.
*/
intel_de_write(display,
PSR2_MAN_TRK_CTL(display, cpu_transcoder),
val);
intel_de_write(display,
CURSURFLIVE(display, intel_dp->psr.pipe),
0);
intel_dp->psr.psr2_sel_fetch_cff_enabled = false;
}
} else {
/*
* continuous full frame is disabled, only a single full
* frame is required
*/
psr_force_hw_tracking_exit(intel_dp);
}
} else {
psr_force_hw_tracking_exit(intel_dp);
if (!intel_dp->psr.active && !intel_dp->psr.busy_frontbuffer_bits)
queue_work(dev_priv->unordered_wq, &intel_dp->psr.work);
}
}
/**
* intel_psr_flush - Flush PSR
* @display: display device
* @frontbuffer_bits: frontbuffer plane tracking bits
* @origin: which operation caused the flush
*
* Since the hardware frontbuffer tracking has gaps we need to integrate
* with the software frontbuffer tracking. This function gets called every
* time frontbuffer rendering has completed and flushed out to memory. PSR
* can be enabled again if no other frontbuffer relevant to PSR is dirty.
*
* Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits.
*/
void intel_psr_flush(struct intel_display *display,
unsigned frontbuffer_bits, enum fb_op_origin origin)
{
struct intel_encoder *encoder;
for_each_intel_encoder_with_psr(display->drm, encoder) {
unsigned int pipe_frontbuffer_bits = frontbuffer_bits;
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
mutex_lock(&intel_dp->psr.lock);
if (!intel_dp->psr.enabled) {
mutex_unlock(&intel_dp->psr.lock);
continue;
}
pipe_frontbuffer_bits &=
INTEL_FRONTBUFFER_ALL_MASK(intel_dp->psr.pipe);
intel_dp->psr.busy_frontbuffer_bits &= ~pipe_frontbuffer_bits;
/*
* If the PSR is paused by an explicit intel_psr_paused() call,
* we have to ensure that the PSR is not activated until
* intel_psr_resume() is called.
*/
if (intel_dp->psr.paused)
goto unlock;
if (origin == ORIGIN_FLIP ||
(origin == ORIGIN_CURSOR_UPDATE &&
!intel_dp->psr.psr2_sel_fetch_enabled)) {
tgl_dc3co_flush_locked(intel_dp, frontbuffer_bits, origin);
goto unlock;
}
if (pipe_frontbuffer_bits == 0)
goto unlock;
/* By definition flush = invalidate + flush */
_psr_flush_handle(intel_dp);
unlock:
mutex_unlock(&intel_dp->psr.lock);
}
}
/**
* intel_psr_init - Init basic PSR work and mutex.
* @intel_dp: Intel DP
*
* This function is called after the initializing connector.
* (the initializing of connector treats the handling of connector capabilities)
* And it initializes basic PSR stuff for each DP Encoder.
*/
void intel_psr_init(struct intel_dp *intel_dp)
{
struct intel_display *display = to_intel_display(intel_dp);
struct drm_i915_private *dev_priv = to_i915(display->drm);
struct intel_connector *connector = intel_dp->attached_connector;
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
if (!(HAS_PSR(display) || HAS_DP20(dev_priv)))
return;
/*
* HSW spec explicitly says PSR is tied to port A.
* BDW+ platforms have a instance of PSR registers per transcoder but
* BDW, GEN9 and GEN11 are not validated by HW team in other transcoder
* than eDP one.
* For now it only supports one instance of PSR for BDW, GEN9 and GEN11.
* So lets keep it hardcoded to PORT_A for BDW, GEN9 and GEN11.
* But GEN12 supports a instance of PSR registers per transcoder.
*/
if (DISPLAY_VER(display) < 12 && dig_port->base.port != PORT_A) {
drm_dbg_kms(display->drm,
"PSR condition failed: Port not supported\n");
return;
}
if ((HAS_DP20(dev_priv) && !intel_dp_is_edp(intel_dp)) ||
DISPLAY_VER(display) >= 20)
intel_dp->psr.source_panel_replay_support = true;
if (HAS_PSR(display) && intel_dp_is_edp(intel_dp))
intel_dp->psr.source_support = true;
/* Set link_standby x link_off defaults */
if (DISPLAY_VER(display) < 12)
/* For new platforms up to TGL let's respect VBT back again */
intel_dp->psr.link_standby = connector->panel.vbt.psr.full_link;
INIT_WORK(&intel_dp->psr.work, intel_psr_work);
INIT_DELAYED_WORK(&intel_dp->psr.dc3co_work, tgl_dc3co_disable_work);
mutex_init(&intel_dp->psr.lock);
}
static int psr_get_status_and_error_status(struct intel_dp *intel_dp,
u8 *status, u8 *error_status)
{
struct drm_dp_aux *aux = &intel_dp->aux;
int ret;
unsigned int offset;
offset = intel_dp->psr.panel_replay_enabled ?
DP_SINK_DEVICE_PR_AND_FRAME_LOCK_STATUS : DP_PSR_STATUS;
ret = drm_dp_dpcd_readb(aux, offset, status);
if (ret != 1)
return ret;
offset = intel_dp->psr.panel_replay_enabled ?
DP_PANEL_REPLAY_ERROR_STATUS : DP_PSR_ERROR_STATUS;
ret = drm_dp_dpcd_readb(aux, offset, error_status);
if (ret != 1)
return ret;
*status = *status & DP_PSR_SINK_STATE_MASK;
return 0;
}
static void psr_alpm_check(struct intel_dp *intel_dp)
{
struct intel_display *display = to_intel_display(intel_dp);
struct drm_dp_aux *aux = &intel_dp->aux;
struct intel_psr *psr = &intel_dp->psr;
u8 val;
int r;
if (!psr->sel_update_enabled)
return;
r = drm_dp_dpcd_readb(aux, DP_RECEIVER_ALPM_STATUS, &val);
if (r != 1) {
drm_err(display->drm, "Error reading ALPM status\n");
return;
}
if (val & DP_ALPM_LOCK_TIMEOUT_ERROR) {
intel_psr_disable_locked(intel_dp);
psr->sink_not_reliable = true;
drm_dbg_kms(display->drm,
"ALPM lock timeout error, disabling PSR\n");
/* Clearing error */
drm_dp_dpcd_writeb(aux, DP_RECEIVER_ALPM_STATUS, val);
}
}
static void psr_capability_changed_check(struct intel_dp *intel_dp)
{
struct intel_display *display = to_intel_display(intel_dp);
struct intel_psr *psr = &intel_dp->psr;
u8 val;
int r;
r = drm_dp_dpcd_readb(&intel_dp->aux, DP_PSR_ESI, &val);
if (r != 1) {
drm_err(display->drm, "Error reading DP_PSR_ESI\n");
return;
}
if (val & DP_PSR_CAPS_CHANGE) {
intel_psr_disable_locked(intel_dp);
psr->sink_not_reliable = true;
drm_dbg_kms(display->drm,
"Sink PSR capability changed, disabling PSR\n");
/* Clearing it */
drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_ESI, val);
}
}
/*
* On common bits:
* DP_PSR_RFB_STORAGE_ERROR == DP_PANEL_REPLAY_RFB_STORAGE_ERROR
* DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR == DP_PANEL_REPLAY_VSC_SDP_UNCORRECTABLE_ERROR
* DP_PSR_LINK_CRC_ERROR == DP_PANEL_REPLAY_LINK_CRC_ERROR
* this function is relying on PSR definitions
*/
void intel_psr_short_pulse(struct intel_dp *intel_dp)
{
struct intel_display *display = to_intel_display(intel_dp);
struct intel_psr *psr = &intel_dp->psr;
u8 status, error_status;
const u8 errors = DP_PSR_RFB_STORAGE_ERROR |
DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR |
DP_PSR_LINK_CRC_ERROR;
if (!CAN_PSR(intel_dp) && !CAN_PANEL_REPLAY(intel_dp))
return;
mutex_lock(&psr->lock);
if (!psr->enabled)
goto exit;
if (psr_get_status_and_error_status(intel_dp, &status, &error_status)) {
drm_err(display->drm,
"Error reading PSR status or error status\n");
goto exit;
}
if ((!psr->panel_replay_enabled && status == DP_PSR_SINK_INTERNAL_ERROR) ||
(error_status & errors)) {
intel_psr_disable_locked(intel_dp);
psr->sink_not_reliable = true;
}
if (!psr->panel_replay_enabled && status == DP_PSR_SINK_INTERNAL_ERROR &&
!error_status)
drm_dbg_kms(display->drm,
"PSR sink internal error, disabling PSR\n");
if (error_status & DP_PSR_RFB_STORAGE_ERROR)
drm_dbg_kms(display->drm,
"PSR RFB storage error, disabling PSR\n");
if (error_status & DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR)
drm_dbg_kms(display->drm,
"PSR VSC SDP uncorrectable error, disabling PSR\n");
if (error_status & DP_PSR_LINK_CRC_ERROR)
drm_dbg_kms(display->drm,
"PSR Link CRC error, disabling PSR\n");
if (error_status & ~errors)
drm_err(display->drm,
"PSR_ERROR_STATUS unhandled errors %x\n",
error_status & ~errors);
/* clear status register */
drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_ERROR_STATUS, error_status);
if (!psr->panel_replay_enabled) {
psr_alpm_check(intel_dp);
psr_capability_changed_check(intel_dp);
}
exit:
mutex_unlock(&psr->lock);
}
bool intel_psr_enabled(struct intel_dp *intel_dp)
{
bool ret;
if (!CAN_PSR(intel_dp))
return false;
mutex_lock(&intel_dp->psr.lock);
ret = intel_dp->psr.enabled;
mutex_unlock(&intel_dp->psr.lock);
return ret;
}
/**
* intel_psr_lock - grab PSR lock
* @crtc_state: the crtc state
*
* This is initially meant to be used by around CRTC update, when
* vblank sensitive registers are updated and we need grab the lock
* before it to avoid vblank evasion.
*/
void intel_psr_lock(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
struct intel_encoder *encoder;
if (!crtc_state->has_psr)
return;
for_each_intel_encoder_mask_with_psr(display->drm, encoder,
crtc_state->uapi.encoder_mask) {
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
mutex_lock(&intel_dp->psr.lock);
break;
}
}
/**
* intel_psr_unlock - release PSR lock
* @crtc_state: the crtc state
*
* Release the PSR lock that was held during pipe update.
*/
void intel_psr_unlock(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
struct intel_encoder *encoder;
if (!crtc_state->has_psr)
return;
for_each_intel_encoder_mask_with_psr(display->drm, encoder,
crtc_state->uapi.encoder_mask) {
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
mutex_unlock(&intel_dp->psr.lock);
break;
}
}
static void
psr_source_status(struct intel_dp *intel_dp, struct seq_file *m)
{
struct intel_display *display = to_intel_display(intel_dp);
enum transcoder cpu_transcoder = intel_dp->psr.transcoder;
const char *status = "unknown";
u32 val, status_val;
if (intel_dp_is_edp(intel_dp) && (intel_dp->psr.sel_update_enabled ||
intel_dp->psr.panel_replay_enabled)) {
static const char * const live_status[] = {
"IDLE",
"CAPTURE",
"CAPTURE_FS",
"SLEEP",
"BUFON_FW",
"ML_UP",
"SU_STANDBY",
"FAST_SLEEP",
"DEEP_SLEEP",
"BUF_ON",
"TG_ON"
};
val = intel_de_read(display,
EDP_PSR2_STATUS(display, cpu_transcoder));
status_val = REG_FIELD_GET(EDP_PSR2_STATUS_STATE_MASK, val);
if (status_val < ARRAY_SIZE(live_status))
status = live_status[status_val];
} else {
static const char * const live_status[] = {
"IDLE",
"SRDONACK",
"SRDENT",
"BUFOFF",
"BUFON",
"AUXACK",
"SRDOFFACK",
"SRDENT_ON",
};
val = intel_de_read(display,
psr_status_reg(display, cpu_transcoder));
status_val = REG_FIELD_GET(EDP_PSR_STATUS_STATE_MASK, val);
if (status_val < ARRAY_SIZE(live_status))
status = live_status[status_val];
}
seq_printf(m, "Source PSR/PanelReplay status: %s [0x%08x]\n", status, val);
}
static void intel_psr_sink_capability(struct intel_dp *intel_dp,
struct seq_file *m)
{
struct intel_psr *psr = &intel_dp->psr;
seq_printf(m, "Sink support: PSR = %s",
str_yes_no(psr->sink_support));
if (psr->sink_support)
seq_printf(m, " [0x%02x]", intel_dp->psr_dpcd[0]);
if (intel_dp->psr_dpcd[0] == DP_PSR2_WITH_Y_COORD_ET_SUPPORTED)
seq_printf(m, " (Early Transport)");
seq_printf(m, ", Panel Replay = %s", str_yes_no(psr->sink_panel_replay_support));
seq_printf(m, ", Panel Replay Selective Update = %s",
str_yes_no(psr->sink_panel_replay_su_support));
if (intel_dp->pr_dpcd & DP_PANEL_REPLAY_EARLY_TRANSPORT_SUPPORT)
seq_printf(m, " (Early Transport)");
seq_printf(m, "\n");
}
static void intel_psr_print_mode(struct intel_dp *intel_dp,
struct seq_file *m)
{
struct intel_psr *psr = &intel_dp->psr;
const char *status, *mode, *region_et;
if (psr->enabled)
status = " enabled";
else
status = "disabled";
if (psr->panel_replay_enabled && psr->sel_update_enabled)
mode = "Panel Replay Selective Update";
else if (psr->panel_replay_enabled)
mode = "Panel Replay";
else if (psr->sel_update_enabled)
mode = "PSR2";
else if (psr->enabled)
mode = "PSR1";
else
mode = "";
if (psr->su_region_et_enabled)
region_et = " (Early Transport)";
else
region_et = "";
seq_printf(m, "PSR mode: %s%s%s\n", mode, status, region_et);
}
static int intel_psr_status(struct seq_file *m, struct intel_dp *intel_dp)
{
struct intel_display *display = to_intel_display(intel_dp);
struct drm_i915_private *dev_priv = to_i915(display->drm);
enum transcoder cpu_transcoder = intel_dp->psr.transcoder;
struct intel_psr *psr = &intel_dp->psr;
intel_wakeref_t wakeref;
bool enabled;
u32 val, psr2_ctl;
intel_psr_sink_capability(intel_dp, m);
if (!(psr->sink_support || psr->sink_panel_replay_support))
return 0;
wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
mutex_lock(&psr->lock);
intel_psr_print_mode(intel_dp, m);
if (!psr->enabled) {
seq_printf(m, "PSR sink not reliable: %s\n",
str_yes_no(psr->sink_not_reliable));
goto unlock;
}
if (psr->panel_replay_enabled) {
val = intel_de_read(display, TRANS_DP2_CTL(cpu_transcoder));
if (intel_dp_is_edp(intel_dp))
psr2_ctl = intel_de_read(display,
EDP_PSR2_CTL(display,
cpu_transcoder));
enabled = val & TRANS_DP2_PANEL_REPLAY_ENABLE;
} else if (psr->sel_update_enabled) {
val = intel_de_read(display,
EDP_PSR2_CTL(display, cpu_transcoder));
enabled = val & EDP_PSR2_ENABLE;
} else {
val = intel_de_read(display, psr_ctl_reg(display, cpu_transcoder));
enabled = val & EDP_PSR_ENABLE;
}
seq_printf(m, "Source PSR/PanelReplay ctl: %s [0x%08x]\n",
str_enabled_disabled(enabled), val);
if (psr->panel_replay_enabled && intel_dp_is_edp(intel_dp))
seq_printf(m, "PSR2_CTL: 0x%08x\n",
psr2_ctl);
psr_source_status(intel_dp, m);
seq_printf(m, "Busy frontbuffer bits: 0x%08x\n",
psr->busy_frontbuffer_bits);
/*
* SKL+ Perf counter is reset to 0 everytime DC state is entered
*/
val = intel_de_read(display, psr_perf_cnt_reg(display, cpu_transcoder));
seq_printf(m, "Performance counter: %u\n",
REG_FIELD_GET(EDP_PSR_PERF_CNT_MASK, val));
if (psr->debug & I915_PSR_DEBUG_IRQ) {
seq_printf(m, "Last attempted entry at: %lld\n",
psr->last_entry_attempt);
seq_printf(m, "Last exit at: %lld\n", psr->last_exit);
}
if (psr->sel_update_enabled) {
u32 su_frames_val[3];
int frame;
/*
* Reading all 3 registers before hand to minimize crossing a
* frame boundary between register reads
*/
for (frame = 0; frame < PSR2_SU_STATUS_FRAMES; frame += 3) {
val = intel_de_read(display,
PSR2_SU_STATUS(display, cpu_transcoder, frame));
su_frames_val[frame / 3] = val;
}
seq_puts(m, "Frame:\tPSR2 SU blocks:\n");
for (frame = 0; frame < PSR2_SU_STATUS_FRAMES; frame++) {
u32 su_blocks;
su_blocks = su_frames_val[frame / 3] &
PSR2_SU_STATUS_MASK(frame);
su_blocks = su_blocks >> PSR2_SU_STATUS_SHIFT(frame);
seq_printf(m, "%d\t%d\n", frame, su_blocks);
}
seq_printf(m, "PSR2 selective fetch: %s\n",
str_enabled_disabled(psr->psr2_sel_fetch_enabled));
}
unlock:
mutex_unlock(&psr->lock);
intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
return 0;
}
static int i915_edp_psr_status_show(struct seq_file *m, void *data)
{
struct intel_display *display = m->private;
struct intel_dp *intel_dp = NULL;
struct intel_encoder *encoder;
if (!HAS_PSR(display))
return -ENODEV;
/* Find the first EDP which supports PSR */
for_each_intel_encoder_with_psr(display->drm, encoder) {
intel_dp = enc_to_intel_dp(encoder);
break;
}
if (!intel_dp)
return -ENODEV;
return intel_psr_status(m, intel_dp);
}
DEFINE_SHOW_ATTRIBUTE(i915_edp_psr_status);
static int
i915_edp_psr_debug_set(void *data, u64 val)
{
struct intel_display *display = data;
struct drm_i915_private *dev_priv = to_i915(display->drm);
struct intel_encoder *encoder;
intel_wakeref_t wakeref;
int ret = -ENODEV;
if (!HAS_PSR(display))
return ret;
for_each_intel_encoder_with_psr(display->drm, encoder) {
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
drm_dbg_kms(display->drm, "Setting PSR debug to %llx\n", val);
wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
// TODO: split to each transcoder's PSR debug state
ret = intel_psr_debug_set(intel_dp, val);
intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
}
return ret;
}
static int
i915_edp_psr_debug_get(void *data, u64 *val)
{
struct intel_display *display = data;
struct intel_encoder *encoder;
if (!HAS_PSR(display))
return -ENODEV;
for_each_intel_encoder_with_psr(display->drm, encoder) {
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
// TODO: split to each transcoder's PSR debug state
*val = READ_ONCE(intel_dp->psr.debug);
return 0;
}
return -ENODEV;
}
DEFINE_SIMPLE_ATTRIBUTE(i915_edp_psr_debug_fops,
i915_edp_psr_debug_get, i915_edp_psr_debug_set,
"%llu\n");
void intel_psr_debugfs_register(struct intel_display *display)
{
struct drm_minor *minor = display->drm->primary;
debugfs_create_file("i915_edp_psr_debug", 0644, minor->debugfs_root,
display, &i915_edp_psr_debug_fops);
debugfs_create_file("i915_edp_psr_status", 0444, minor->debugfs_root,
display, &i915_edp_psr_status_fops);
}
static const char *psr_mode_str(struct intel_dp *intel_dp)
{
if (intel_dp->psr.panel_replay_enabled)
return "PANEL-REPLAY";
else if (intel_dp->psr.enabled)
return "PSR";
return "unknown";
}
static int i915_psr_sink_status_show(struct seq_file *m, void *data)
{
struct intel_connector *connector = m->private;
struct intel_dp *intel_dp = intel_attached_dp(connector);
static const char * const sink_status[] = {
"inactive",
"transition to active, capture and display",
"active, display from RFB",
"active, capture and display on sink device timings",
"transition to inactive, capture and display, timing re-sync",
"reserved",
"reserved",
"sink internal error",
};
const char *str;
int ret;
u8 status, error_status;
if (!(CAN_PSR(intel_dp) || CAN_PANEL_REPLAY(intel_dp))) {
seq_puts(m, "PSR/Panel-Replay Unsupported\n");
return -ENODEV;
}
if (connector->base.status != connector_status_connected)
return -ENODEV;
ret = psr_get_status_and_error_status(intel_dp, &status, &error_status);
if (ret)
return ret;
status &= DP_PSR_SINK_STATE_MASK;
if (status < ARRAY_SIZE(sink_status))
str = sink_status[status];
else
str = "unknown";
seq_printf(m, "Sink %s status: 0x%x [%s]\n", psr_mode_str(intel_dp), status, str);
seq_printf(m, "Sink %s error status: 0x%x", psr_mode_str(intel_dp), error_status);
if (error_status & (DP_PSR_RFB_STORAGE_ERROR |
DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR |
DP_PSR_LINK_CRC_ERROR))
seq_puts(m, ":\n");
else
seq_puts(m, "\n");
if (error_status & DP_PSR_RFB_STORAGE_ERROR)
seq_printf(m, "\t%s RFB storage error\n", psr_mode_str(intel_dp));
if (error_status & DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR)
seq_printf(m, "\t%s VSC SDP uncorrectable error\n", psr_mode_str(intel_dp));
if (error_status & DP_PSR_LINK_CRC_ERROR)
seq_printf(m, "\t%s Link CRC error\n", psr_mode_str(intel_dp));
return ret;
}
DEFINE_SHOW_ATTRIBUTE(i915_psr_sink_status);
static int i915_psr_status_show(struct seq_file *m, void *data)
{
struct intel_connector *connector = m->private;
struct intel_dp *intel_dp = intel_attached_dp(connector);
return intel_psr_status(m, intel_dp);
}
DEFINE_SHOW_ATTRIBUTE(i915_psr_status);
void intel_psr_connector_debugfs_add(struct intel_connector *connector)
{
struct intel_display *display = to_intel_display(connector);
struct drm_i915_private *i915 = to_i915(connector->base.dev);
struct dentry *root = connector->base.debugfs_entry;
/* TODO: Add support for MST connectors as well. */
if ((connector->base.connector_type != DRM_MODE_CONNECTOR_eDP &&
connector->base.connector_type != DRM_MODE_CONNECTOR_DisplayPort) ||
connector->mst_port)
return;
debugfs_create_file("i915_psr_sink_status", 0444, root,
connector, &i915_psr_sink_status_fops);
if (HAS_PSR(display) || HAS_DP20(i915))
debugfs_create_file("i915_psr_status", 0444, root,
connector, &i915_psr_status_fops);
}