blob: d8a2edebfe8c3c6fb97255f196263f83b0427d94 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (c) 2015-2018, 2020-2021 The Linux Foundation. All rights reserved.
*/
#define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__
#include "dpu_encoder_phys.h"
#include "dpu_hw_interrupts.h"
#include "dpu_hw_merge3d.h"
#include "dpu_core_irq.h"
#include "dpu_formats.h"
#include "dpu_trace.h"
#include "disp/msm_disp_snapshot.h"
#include <drm/display/drm_dsc_helper.h>
#include <drm/drm_managed.h>
#define DPU_DEBUG_VIDENC(e, fmt, ...) DPU_DEBUG("enc%d intf%d " fmt, \
(e) && (e)->parent ? \
(e)->parent->base.id : -1, \
(e) && (e)->hw_intf ? \
(e)->hw_intf->idx - INTF_0 : -1, ##__VA_ARGS__)
#define DPU_ERROR_VIDENC(e, fmt, ...) DPU_ERROR("enc%d intf%d " fmt, \
(e) && (e)->parent ? \
(e)->parent->base.id : -1, \
(e) && (e)->hw_intf ? \
(e)->hw_intf->idx - INTF_0 : -1, ##__VA_ARGS__)
#define to_dpu_encoder_phys_vid(x) \
container_of(x, struct dpu_encoder_phys_vid, base)
static bool dpu_encoder_phys_vid_is_master(
struct dpu_encoder_phys *phys_enc)
{
bool ret = false;
if (phys_enc->split_role != ENC_ROLE_SLAVE)
ret = true;
return ret;
}
static void drm_mode_to_intf_timing_params(
const struct dpu_encoder_phys *phys_enc,
const struct drm_display_mode *mode,
struct dpu_hw_intf_timing_params *timing)
{
memset(timing, 0, sizeof(*timing));
if ((mode->htotal < mode->hsync_end)
|| (mode->hsync_start < mode->hdisplay)
|| (mode->vtotal < mode->vsync_end)
|| (mode->vsync_start < mode->vdisplay)
|| (mode->hsync_end < mode->hsync_start)
|| (mode->vsync_end < mode->vsync_start)) {
DPU_ERROR(
"invalid params - hstart:%d,hend:%d,htot:%d,hdisplay:%d\n",
mode->hsync_start, mode->hsync_end,
mode->htotal, mode->hdisplay);
DPU_ERROR("vstart:%d,vend:%d,vtot:%d,vdisplay:%d\n",
mode->vsync_start, mode->vsync_end,
mode->vtotal, mode->vdisplay);
return;
}
/*
* https://www.kernel.org/doc/htmldocs/drm/ch02s05.html
* Active Region Front Porch Sync Back Porch
* <-----------------><------------><-----><----------->
* <- [hv]display --->
* <--------- [hv]sync_start ------>
* <----------------- [hv]sync_end ------->
* <---------------------------- [hv]total ------------->
*/
timing->width = mode->hdisplay; /* active width */
timing->height = mode->vdisplay; /* active height */
timing->xres = timing->width;
timing->yres = timing->height;
timing->h_back_porch = mode->htotal - mode->hsync_end;
timing->h_front_porch = mode->hsync_start - mode->hdisplay;
timing->v_back_porch = mode->vtotal - mode->vsync_end;
timing->v_front_porch = mode->vsync_start - mode->vdisplay;
timing->hsync_pulse_width = mode->hsync_end - mode->hsync_start;
timing->vsync_pulse_width = mode->vsync_end - mode->vsync_start;
timing->hsync_polarity = (mode->flags & DRM_MODE_FLAG_NHSYNC) ? 1 : 0;
timing->vsync_polarity = (mode->flags & DRM_MODE_FLAG_NVSYNC) ? 1 : 0;
timing->border_clr = 0;
timing->underflow_clr = 0xff;
timing->hsync_skew = mode->hskew;
/* DSI controller cannot handle active-low sync signals. */
if (phys_enc->hw_intf->cap->type == INTF_DSI) {
timing->hsync_polarity = 0;
timing->vsync_polarity = 0;
}
/* for DP/EDP, Shift timings to align it to bottom right */
if (phys_enc->hw_intf->cap->type == INTF_DP) {
timing->h_back_porch += timing->h_front_porch;
timing->h_front_porch = 0;
timing->v_back_porch += timing->v_front_porch;
timing->v_front_porch = 0;
}
timing->wide_bus_en = dpu_encoder_is_widebus_enabled(phys_enc->parent);
timing->compression_en = dpu_encoder_is_dsc_enabled(phys_enc->parent);
/*
* for DP, divide the horizonal parameters by 2 when
* widebus is enabled
*/
if (phys_enc->hw_intf->cap->type == INTF_DP && timing->wide_bus_en) {
timing->width = timing->width >> 1;
timing->xres = timing->xres >> 1;
timing->h_back_porch = timing->h_back_porch >> 1;
timing->h_front_porch = timing->h_front_porch >> 1;
timing->hsync_pulse_width = timing->hsync_pulse_width >> 1;
}
/*
* for DSI, if compression is enabled, then divide the horizonal active
* timing parameters by compression ratio. bits of 3 components(R/G/B)
* is compressed into bits of 1 pixel.
*/
if (phys_enc->hw_intf->cap->type != INTF_DP && timing->compression_en) {
struct drm_dsc_config *dsc =
dpu_encoder_get_dsc_config(phys_enc->parent);
/*
* TODO: replace drm_dsc_get_bpp_int with logic to handle
* fractional part if there is fraction
*/
timing->width = timing->width * drm_dsc_get_bpp_int(dsc) /
(dsc->bits_per_component * 3);
timing->xres = timing->width;
}
}
static u32 get_horizontal_total(const struct dpu_hw_intf_timing_params *timing)
{
u32 active = timing->xres;
u32 inactive =
timing->h_back_porch + timing->h_front_porch +
timing->hsync_pulse_width;
return active + inactive;
}
static u32 get_vertical_total(const struct dpu_hw_intf_timing_params *timing)
{
u32 active = timing->yres;
u32 inactive =
timing->v_back_porch + timing->v_front_porch +
timing->vsync_pulse_width;
return active + inactive;
}
/*
* programmable_fetch_get_num_lines:
* Number of fetch lines in vertical front porch
* @timing: Pointer to the intf timing information for the requested mode
*
* Returns the number of fetch lines in vertical front porch at which mdp
* can start fetching the next frame.
*
* Number of needed prefetch lines is anything that cannot be absorbed in the
* start of frame time (back porch + vsync pulse width).
*
* Some panels have very large VFP, however we only need a total number of
* lines based on the chip worst case latencies.
*/
static u32 programmable_fetch_get_num_lines(
struct dpu_encoder_phys *phys_enc,
const struct dpu_hw_intf_timing_params *timing)
{
u32 worst_case_needed_lines =
phys_enc->hw_intf->cap->prog_fetch_lines_worst_case;
u32 start_of_frame_lines =
timing->v_back_porch + timing->vsync_pulse_width;
u32 needed_vfp_lines = worst_case_needed_lines - start_of_frame_lines;
u32 actual_vfp_lines = 0;
/* Fetch must be outside active lines, otherwise undefined. */
if (start_of_frame_lines >= worst_case_needed_lines) {
DPU_DEBUG_VIDENC(phys_enc,
"prog fetch is not needed, large vbp+vsw\n");
actual_vfp_lines = 0;
} else if (timing->v_front_porch < needed_vfp_lines) {
/* Warn fetch needed, but not enough porch in panel config */
pr_warn_once
("low vbp+vfp may lead to perf issues in some cases\n");
DPU_DEBUG_VIDENC(phys_enc,
"less vfp than fetch req, using entire vfp\n");
actual_vfp_lines = timing->v_front_porch;
} else {
DPU_DEBUG_VIDENC(phys_enc, "room in vfp for needed prefetch\n");
actual_vfp_lines = needed_vfp_lines;
}
DPU_DEBUG_VIDENC(phys_enc,
"v_front_porch %u v_back_porch %u vsync_pulse_width %u\n",
timing->v_front_porch, timing->v_back_porch,
timing->vsync_pulse_width);
DPU_DEBUG_VIDENC(phys_enc,
"wc_lines %u needed_vfp_lines %u actual_vfp_lines %u\n",
worst_case_needed_lines, needed_vfp_lines, actual_vfp_lines);
return actual_vfp_lines;
}
/*
* programmable_fetch_config: Programs HW to prefetch lines by offsetting
* the start of fetch into the vertical front porch for cases where the
* vsync pulse width and vertical back porch time is insufficient
*
* Gets # of lines to pre-fetch, then calculate VSYNC counter value.
* HW layer requires VSYNC counter of first pixel of tgt VFP line.
*
* @timing: Pointer to the intf timing information for the requested mode
*/
static void programmable_fetch_config(struct dpu_encoder_phys *phys_enc,
const struct dpu_hw_intf_timing_params *timing)
{
struct dpu_hw_intf_prog_fetch f = { 0 };
u32 vfp_fetch_lines = 0;
u32 horiz_total = 0;
u32 vert_total = 0;
u32 vfp_fetch_start_vsync_counter = 0;
unsigned long lock_flags;
if (WARN_ON_ONCE(!phys_enc->hw_intf->ops.setup_prg_fetch))
return;
vfp_fetch_lines = programmable_fetch_get_num_lines(phys_enc, timing);
if (vfp_fetch_lines) {
vert_total = get_vertical_total(timing);
horiz_total = get_horizontal_total(timing);
vfp_fetch_start_vsync_counter =
(vert_total - vfp_fetch_lines) * horiz_total + 1;
f.enable = 1;
f.fetch_start = vfp_fetch_start_vsync_counter;
}
DPU_DEBUG_VIDENC(phys_enc,
"vfp_fetch_lines %u vfp_fetch_start_vsync_counter %u\n",
vfp_fetch_lines, vfp_fetch_start_vsync_counter);
spin_lock_irqsave(phys_enc->enc_spinlock, lock_flags);
phys_enc->hw_intf->ops.setup_prg_fetch(phys_enc->hw_intf, &f);
spin_unlock_irqrestore(phys_enc->enc_spinlock, lock_flags);
}
static void dpu_encoder_phys_vid_setup_timing_engine(
struct dpu_encoder_phys *phys_enc)
{
struct drm_display_mode mode;
struct dpu_hw_intf_timing_params timing_params = { 0 };
const struct msm_format *fmt = NULL;
u32 fmt_fourcc;
unsigned long lock_flags;
struct dpu_hw_intf_cfg intf_cfg = { 0 };
drm_mode_init(&mode, &phys_enc->cached_mode);
if (!phys_enc->hw_ctl->ops.setup_intf_cfg) {
DPU_ERROR("invalid encoder %d\n", phys_enc != NULL);
return;
}
if (!phys_enc->hw_intf->ops.setup_timing_gen) {
DPU_ERROR("timing engine setup is not supported\n");
return;
}
DPU_DEBUG_VIDENC(phys_enc, "enabling mode:\n");
drm_mode_debug_printmodeline(&mode);
fmt_fourcc = dpu_encoder_get_drm_fmt(phys_enc);
if (phys_enc->split_role != ENC_ROLE_SOLO || fmt_fourcc == DRM_FORMAT_YUV420) {
mode.hdisplay >>= 1;
mode.htotal >>= 1;
mode.hsync_start >>= 1;
mode.hsync_end >>= 1;
mode.hskew >>= 1;
DPU_DEBUG_VIDENC(phys_enc,
"split_role %d, halve horizontal %d %d %d %d %d\n",
phys_enc->split_role,
mode.hdisplay, mode.htotal,
mode.hsync_start, mode.hsync_end,
mode.hskew);
}
drm_mode_to_intf_timing_params(phys_enc, &mode, &timing_params);
fmt = mdp_get_format(&phys_enc->dpu_kms->base, fmt_fourcc, 0);
DPU_DEBUG_VIDENC(phys_enc, "fmt_fourcc 0x%X\n", fmt_fourcc);
if (phys_enc->hw_cdm)
intf_cfg.cdm = phys_enc->hw_cdm->idx;
intf_cfg.intf = phys_enc->hw_intf->idx;
intf_cfg.intf_mode_sel = DPU_CTL_MODE_SEL_VID;
intf_cfg.stream_sel = 0; /* Don't care value for video mode */
intf_cfg.mode_3d = dpu_encoder_helper_get_3d_blend_mode(phys_enc);
intf_cfg.dsc = dpu_encoder_helper_get_dsc(phys_enc);
if (intf_cfg.mode_3d && phys_enc->hw_pp->merge_3d)
intf_cfg.merge_3d = phys_enc->hw_pp->merge_3d->idx;
spin_lock_irqsave(phys_enc->enc_spinlock, lock_flags);
phys_enc->hw_intf->ops.setup_timing_gen(phys_enc->hw_intf,
&timing_params, fmt,
phys_enc->dpu_kms->catalog->mdss_ver);
phys_enc->hw_ctl->ops.setup_intf_cfg(phys_enc->hw_ctl, &intf_cfg);
/* setup which pp blk will connect to this intf */
if (phys_enc->hw_intf->ops.bind_pingpong_blk)
phys_enc->hw_intf->ops.bind_pingpong_blk(
phys_enc->hw_intf,
phys_enc->hw_pp->idx);
if (phys_enc->hw_pp->merge_3d)
phys_enc->hw_pp->merge_3d->ops.setup_3d_mode(phys_enc->hw_pp->merge_3d, intf_cfg.mode_3d);
spin_unlock_irqrestore(phys_enc->enc_spinlock, lock_flags);
programmable_fetch_config(phys_enc, &timing_params);
}
static void dpu_encoder_phys_vid_vblank_irq(void *arg)
{
struct dpu_encoder_phys *phys_enc = arg;
struct dpu_hw_ctl *hw_ctl;
unsigned long lock_flags;
u32 flush_register = 0;
hw_ctl = phys_enc->hw_ctl;
DPU_ATRACE_BEGIN("vblank_irq");
dpu_encoder_vblank_callback(phys_enc->parent, phys_enc);
atomic_read(&phys_enc->pending_kickoff_cnt);
/*
* only decrement the pending flush count if we've actually flushed
* hardware. due to sw irq latency, vblank may have already happened
* so we need to double-check with hw that it accepted the flush bits
*/
spin_lock_irqsave(phys_enc->enc_spinlock, lock_flags);
if (hw_ctl->ops.get_flush_register)
flush_register = hw_ctl->ops.get_flush_register(hw_ctl);
if (!(flush_register & hw_ctl->ops.get_pending_flush(hw_ctl)))
atomic_add_unless(&phys_enc->pending_kickoff_cnt, -1, 0);
spin_unlock_irqrestore(phys_enc->enc_spinlock, lock_flags);
/* Signal any waiting atomic commit thread */
wake_up_all(&phys_enc->pending_kickoff_wq);
dpu_encoder_frame_done_callback(phys_enc->parent, phys_enc,
DPU_ENCODER_FRAME_EVENT_DONE);
DPU_ATRACE_END("vblank_irq");
}
static void dpu_encoder_phys_vid_underrun_irq(void *arg)
{
struct dpu_encoder_phys *phys_enc = arg;
dpu_encoder_underrun_callback(phys_enc->parent, phys_enc);
}
static bool dpu_encoder_phys_vid_needs_single_flush(
struct dpu_encoder_phys *phys_enc)
{
return phys_enc->split_role != ENC_ROLE_SOLO;
}
static void dpu_encoder_phys_vid_atomic_mode_set(
struct dpu_encoder_phys *phys_enc,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
phys_enc->irq[INTR_IDX_VSYNC] = phys_enc->hw_intf->cap->intr_vsync;
phys_enc->irq[INTR_IDX_UNDERRUN] = phys_enc->hw_intf->cap->intr_underrun;
}
static int dpu_encoder_phys_vid_control_vblank_irq(
struct dpu_encoder_phys *phys_enc,
bool enable)
{
int ret = 0;
int refcount;
mutex_lock(&phys_enc->vblank_ctl_lock);
refcount = phys_enc->vblank_refcount;
/* Slave encoders don't report vblank */
if (!dpu_encoder_phys_vid_is_master(phys_enc))
goto end;
/* protect against negative */
if (!enable && refcount == 0) {
ret = -EINVAL;
goto end;
}
DRM_DEBUG_VBL("id:%u enable=%d/%d\n", DRMID(phys_enc->parent), enable,
refcount);
if (enable) {
if (phys_enc->vblank_refcount == 0)
ret = dpu_core_irq_register_callback(phys_enc->dpu_kms,
phys_enc->irq[INTR_IDX_VSYNC],
dpu_encoder_phys_vid_vblank_irq,
phys_enc);
if (!ret)
phys_enc->vblank_refcount++;
} else if (!enable) {
if (phys_enc->vblank_refcount == 1)
ret = dpu_core_irq_unregister_callback(phys_enc->dpu_kms,
phys_enc->irq[INTR_IDX_VSYNC]);
if (!ret)
phys_enc->vblank_refcount--;
}
end:
mutex_unlock(&phys_enc->vblank_ctl_lock);
if (ret) {
DRM_ERROR("failed: id:%u intf:%d ret:%d enable:%d refcnt:%d\n",
DRMID(phys_enc->parent),
phys_enc->hw_intf->idx - INTF_0, ret, enable,
refcount);
}
return ret;
}
static void dpu_encoder_phys_vid_enable(struct dpu_encoder_phys *phys_enc)
{
struct dpu_hw_ctl *ctl;
const struct msm_format *fmt;
u32 fmt_fourcc;
u32 mode_3d;
ctl = phys_enc->hw_ctl;
fmt_fourcc = dpu_encoder_get_drm_fmt(phys_enc);
fmt = mdp_get_format(&phys_enc->dpu_kms->base, fmt_fourcc, 0);
mode_3d = dpu_encoder_helper_get_3d_blend_mode(phys_enc);
DPU_DEBUG_VIDENC(phys_enc, "\n");
if (WARN_ON(!phys_enc->hw_intf->ops.enable_timing))
return;
dpu_encoder_helper_split_config(phys_enc, phys_enc->hw_intf->idx);
dpu_encoder_helper_phys_setup_cdm(phys_enc, fmt, CDM_CDWN_OUTPUT_HDMI);
dpu_encoder_phys_vid_setup_timing_engine(phys_enc);
/*
* For single flush cases (dual-ctl or pp-split), skip setting the
* flush bit for the slave intf, since both intfs use same ctl
* and HW will only flush the master.
*/
if (dpu_encoder_phys_vid_needs_single_flush(phys_enc) &&
!dpu_encoder_phys_vid_is_master(phys_enc))
goto skip_flush;
ctl->ops.update_pending_flush_intf(ctl, phys_enc->hw_intf->idx);
if (mode_3d && ctl->ops.update_pending_flush_merge_3d &&
phys_enc->hw_pp->merge_3d)
ctl->ops.update_pending_flush_merge_3d(ctl, phys_enc->hw_pp->merge_3d->idx);
if (ctl->ops.update_pending_flush_cdm && phys_enc->hw_cdm)
ctl->ops.update_pending_flush_cdm(ctl, phys_enc->hw_cdm->idx);
/*
* Peripheral flush must be updated whenever flushing SDP packets is needed.
* SDP packets are required for any YUV format (YUV420, YUV422, YUV444).
*/
if (ctl->ops.update_pending_flush_periph && dpu_encoder_needs_periph_flush(phys_enc))
ctl->ops.update_pending_flush_periph(ctl, phys_enc->hw_intf->idx);
skip_flush:
DPU_DEBUG_VIDENC(phys_enc,
"update pending flush ctl %d intf %d\n",
ctl->idx - CTL_0, phys_enc->hw_intf->idx);
atomic_set(&phys_enc->underrun_cnt, 0);
/* ctl_flush & timing engine enable will be triggered by framework */
if (phys_enc->enable_state == DPU_ENC_DISABLED)
phys_enc->enable_state = DPU_ENC_ENABLING;
}
static int dpu_encoder_phys_vid_wait_for_tx_complete(
struct dpu_encoder_phys *phys_enc)
{
struct dpu_encoder_wait_info wait_info;
int ret;
wait_info.wq = &phys_enc->pending_kickoff_wq;
wait_info.atomic_cnt = &phys_enc->pending_kickoff_cnt;
wait_info.timeout_ms = KICKOFF_TIMEOUT_MS;
if (!dpu_encoder_phys_vid_is_master(phys_enc)) {
return 0;
}
/* Wait for kickoff to complete */
ret = dpu_encoder_helper_wait_for_irq(phys_enc,
phys_enc->irq[INTR_IDX_VSYNC],
dpu_encoder_phys_vid_vblank_irq,
&wait_info);
if (ret == -ETIMEDOUT) {
dpu_encoder_helper_report_irq_timeout(phys_enc, INTR_IDX_VSYNC);
}
return ret;
}
static int dpu_encoder_phys_vid_wait_for_commit_done(
struct dpu_encoder_phys *phys_enc)
{
struct dpu_hw_ctl *hw_ctl = phys_enc->hw_ctl;
int ret;
if (!hw_ctl)
return 0;
ret = wait_event_timeout(phys_enc->pending_kickoff_wq,
(hw_ctl->ops.get_flush_register(hw_ctl) == 0),
msecs_to_jiffies(50));
if (ret <= 0) {
DPU_ERROR("vblank timeout: %x\n", hw_ctl->ops.get_flush_register(hw_ctl));
return -ETIMEDOUT;
}
return 0;
}
static void dpu_encoder_phys_vid_prepare_for_kickoff(
struct dpu_encoder_phys *phys_enc)
{
struct dpu_hw_ctl *ctl;
int rc;
struct drm_encoder *drm_enc;
drm_enc = phys_enc->parent;
ctl = phys_enc->hw_ctl;
if (!ctl->ops.wait_reset_status)
return;
/*
* hw supports hardware initiated ctl reset, so before we kickoff a new
* frame, need to check and wait for hw initiated ctl reset completion
*/
rc = ctl->ops.wait_reset_status(ctl);
if (rc) {
DPU_ERROR_VIDENC(phys_enc, "ctl %d reset failure: %d\n",
ctl->idx, rc);
msm_disp_snapshot_state(drm_enc->dev);
dpu_core_irq_unregister_callback(phys_enc->dpu_kms,
phys_enc->irq[INTR_IDX_VSYNC]);
}
}
static void dpu_encoder_phys_vid_disable(struct dpu_encoder_phys *phys_enc)
{
unsigned long lock_flags;
int ret;
struct dpu_hw_intf_status intf_status = {0};
if (!phys_enc->parent || !phys_enc->parent->dev) {
DPU_ERROR("invalid encoder/device\n");
return;
}
if (!phys_enc->hw_intf) {
DPU_ERROR("invalid hw_intf %d hw_ctl %d\n",
phys_enc->hw_intf != NULL, phys_enc->hw_ctl != NULL);
return;
}
if (WARN_ON(!phys_enc->hw_intf->ops.enable_timing))
return;
if (phys_enc->enable_state == DPU_ENC_DISABLED) {
DPU_ERROR("already disabled\n");
return;
}
spin_lock_irqsave(phys_enc->enc_spinlock, lock_flags);
phys_enc->hw_intf->ops.enable_timing(phys_enc->hw_intf, 0);
if (dpu_encoder_phys_vid_is_master(phys_enc))
dpu_encoder_phys_inc_pending(phys_enc);
spin_unlock_irqrestore(phys_enc->enc_spinlock, lock_flags);
/*
* Wait for a vsync so we know the ENABLE=0 latched before
* the (connector) source of the vsync's gets disabled,
* otherwise we end up in a funny state if we re-enable
* before the disable latches, which results that some of
* the settings changes for the new modeset (like new
* scanout buffer) don't latch properly..
*/
if (dpu_encoder_phys_vid_is_master(phys_enc)) {
ret = dpu_encoder_phys_vid_wait_for_tx_complete(phys_enc);
if (ret) {
atomic_set(&phys_enc->pending_kickoff_cnt, 0);
DRM_ERROR("wait disable failed: id:%u intf:%d ret:%d\n",
DRMID(phys_enc->parent),
phys_enc->hw_intf->idx - INTF_0, ret);
}
}
if (phys_enc->hw_intf && phys_enc->hw_intf->ops.get_status)
phys_enc->hw_intf->ops.get_status(phys_enc->hw_intf, &intf_status);
/*
* Wait for a vsync if timing en status is on after timing engine
* is disabled.
*/
if (intf_status.is_en && dpu_encoder_phys_vid_is_master(phys_enc)) {
spin_lock_irqsave(phys_enc->enc_spinlock, lock_flags);
dpu_encoder_phys_inc_pending(phys_enc);
spin_unlock_irqrestore(phys_enc->enc_spinlock, lock_flags);
ret = dpu_encoder_phys_vid_wait_for_tx_complete(phys_enc);
if (ret) {
atomic_set(&phys_enc->pending_kickoff_cnt, 0);
DRM_ERROR("wait disable failed: id:%u intf:%d ret:%d\n",
DRMID(phys_enc->parent),
phys_enc->hw_intf->idx - INTF_0, ret);
}
}
dpu_encoder_helper_phys_cleanup(phys_enc);
phys_enc->enable_state = DPU_ENC_DISABLED;
}
static void dpu_encoder_phys_vid_handle_post_kickoff(
struct dpu_encoder_phys *phys_enc)
{
unsigned long lock_flags;
/*
* Video mode must flush CTL before enabling timing engine
* Video encoders need to turn on their interfaces now
*/
if (phys_enc->enable_state == DPU_ENC_ENABLING) {
trace_dpu_enc_phys_vid_post_kickoff(DRMID(phys_enc->parent),
phys_enc->hw_intf->idx - INTF_0);
spin_lock_irqsave(phys_enc->enc_spinlock, lock_flags);
phys_enc->hw_intf->ops.enable_timing(phys_enc->hw_intf, 1);
spin_unlock_irqrestore(phys_enc->enc_spinlock, lock_flags);
phys_enc->enable_state = DPU_ENC_ENABLED;
}
}
static void dpu_encoder_phys_vid_irq_enable(struct dpu_encoder_phys *phys_enc)
{
int ret;
trace_dpu_enc_phys_vid_irq_enable(DRMID(phys_enc->parent),
phys_enc->hw_intf->idx - INTF_0,
phys_enc->vblank_refcount);
ret = dpu_encoder_phys_vid_control_vblank_irq(phys_enc, true);
if (WARN_ON(ret))
return;
dpu_core_irq_register_callback(phys_enc->dpu_kms,
phys_enc->irq[INTR_IDX_UNDERRUN],
dpu_encoder_phys_vid_underrun_irq,
phys_enc);
}
static void dpu_encoder_phys_vid_irq_disable(struct dpu_encoder_phys *phys_enc)
{
trace_dpu_enc_phys_vid_irq_disable(DRMID(phys_enc->parent),
phys_enc->hw_intf->idx - INTF_0,
phys_enc->vblank_refcount);
dpu_encoder_phys_vid_control_vblank_irq(phys_enc, false);
dpu_core_irq_unregister_callback(phys_enc->dpu_kms,
phys_enc->irq[INTR_IDX_UNDERRUN]);
}
static int dpu_encoder_phys_vid_get_line_count(
struct dpu_encoder_phys *phys_enc)
{
if (!dpu_encoder_phys_vid_is_master(phys_enc))
return -EINVAL;
if (!phys_enc->hw_intf || !phys_enc->hw_intf->ops.get_line_count)
return -EINVAL;
return phys_enc->hw_intf->ops.get_line_count(phys_enc->hw_intf);
}
static int dpu_encoder_phys_vid_get_frame_count(
struct dpu_encoder_phys *phys_enc)
{
struct dpu_hw_intf_status s = {0};
u32 fetch_start = 0;
struct drm_display_mode mode;
drm_mode_init(&mode, &phys_enc->cached_mode);
if (!dpu_encoder_phys_vid_is_master(phys_enc))
return -EINVAL;
if (!phys_enc->hw_intf || !phys_enc->hw_intf->ops.get_status)
return -EINVAL;
phys_enc->hw_intf->ops.get_status(phys_enc->hw_intf, &s);
if (s.is_prog_fetch_en && s.is_en) {
fetch_start = mode.vtotal - (mode.vsync_start - mode.vdisplay);
if ((s.line_count > fetch_start) &&
(s.line_count <= mode.vtotal))
return s.frame_count + 1;
}
return s.frame_count;
}
static void dpu_encoder_phys_vid_init_ops(struct dpu_encoder_phys_ops *ops)
{
ops->is_master = dpu_encoder_phys_vid_is_master;
ops->atomic_mode_set = dpu_encoder_phys_vid_atomic_mode_set;
ops->enable = dpu_encoder_phys_vid_enable;
ops->disable = dpu_encoder_phys_vid_disable;
ops->control_vblank_irq = dpu_encoder_phys_vid_control_vblank_irq;
ops->wait_for_commit_done = dpu_encoder_phys_vid_wait_for_commit_done;
ops->wait_for_tx_complete = dpu_encoder_phys_vid_wait_for_tx_complete;
ops->irq_enable = dpu_encoder_phys_vid_irq_enable;
ops->irq_disable = dpu_encoder_phys_vid_irq_disable;
ops->prepare_for_kickoff = dpu_encoder_phys_vid_prepare_for_kickoff;
ops->handle_post_kickoff = dpu_encoder_phys_vid_handle_post_kickoff;
ops->needs_single_flush = dpu_encoder_phys_vid_needs_single_flush;
ops->get_line_count = dpu_encoder_phys_vid_get_line_count;
ops->get_frame_count = dpu_encoder_phys_vid_get_frame_count;
}
struct dpu_encoder_phys *dpu_encoder_phys_vid_init(struct drm_device *dev,
struct dpu_enc_phys_init_params *p)
{
struct dpu_encoder_phys *phys_enc = NULL;
if (!p) {
DPU_ERROR("failed to create encoder due to invalid parameter\n");
return ERR_PTR(-EINVAL);
}
phys_enc = drmm_kzalloc(dev, sizeof(*phys_enc), GFP_KERNEL);
if (!phys_enc) {
DPU_ERROR("failed to create encoder due to memory allocation error\n");
return ERR_PTR(-ENOMEM);
}
DPU_DEBUG_VIDENC(phys_enc, "\n");
dpu_encoder_phys_init(phys_enc, p);
mutex_init(&phys_enc->vblank_ctl_lock);
phys_enc->vblank_refcount = 0;
dpu_encoder_phys_vid_init_ops(&phys_enc->ops);
phys_enc->intf_mode = INTF_MODE_VIDEO;
DPU_DEBUG_VIDENC(phys_enc, "created intf idx:%d\n", p->hw_intf->idx);
return phys_enc;
}