blob: 2e50049f2f85094a23882deaf4761886cde35d5c [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved.
* Copyright (c) 2022 Qualcomm Innovation Center, Inc. All rights reserved.
*/
#include <linux/delay.h>
#include <drm/drm_managed.h>
#include "dpu_hwio.h"
#include "dpu_hw_ctl.h"
#include "dpu_kms.h"
#include "dpu_trace.h"
#define CTL_LAYER(lm) \
(((lm) == LM_5) ? (0x024) : (((lm) - LM_0) * 0x004))
#define CTL_LAYER_EXT(lm) \
(0x40 + (((lm) - LM_0) * 0x004))
#define CTL_LAYER_EXT2(lm) \
(0x70 + (((lm) - LM_0) * 0x004))
#define CTL_LAYER_EXT3(lm) \
(0xA0 + (((lm) - LM_0) * 0x004))
#define CTL_LAYER_EXT4(lm) \
(0xB8 + (((lm) - LM_0) * 0x004))
#define CTL_TOP 0x014
#define CTL_FLUSH 0x018
#define CTL_START 0x01C
#define CTL_PREPARE 0x0d0
#define CTL_SW_RESET 0x030
#define CTL_LAYER_EXTN_OFFSET 0x40
#define CTL_MERGE_3D_ACTIVE 0x0E4
#define CTL_DSC_ACTIVE 0x0E8
#define CTL_WB_ACTIVE 0x0EC
#define CTL_INTF_ACTIVE 0x0F4
#define CTL_CDM_ACTIVE 0x0F8
#define CTL_FETCH_PIPE_ACTIVE 0x0FC
#define CTL_MERGE_3D_FLUSH 0x100
#define CTL_DSC_FLUSH 0x104
#define CTL_WB_FLUSH 0x108
#define CTL_INTF_FLUSH 0x110
#define CTL_CDM_FLUSH 0x114
#define CTL_PERIPH_FLUSH 0x128
#define CTL_INTF_MASTER 0x134
#define CTL_DSPP_n_FLUSH(n) ((0x13C) + ((n) * 4))
#define CTL_MIXER_BORDER_OUT BIT(24)
#define CTL_FLUSH_MASK_CTL BIT(17)
#define DPU_REG_RESET_TIMEOUT_US 2000
#define MERGE_3D_IDX 23
#define DSC_IDX 22
#define CDM_IDX 26
#define PERIPH_IDX 30
#define INTF_IDX 31
#define WB_IDX 16
#define DSPP_IDX 29 /* From DPU hw rev 7.x.x */
#define CTL_INVALID_BIT 0xffff
#define CTL_DEFAULT_GROUP_ID 0xf
static const u32 fetch_tbl[SSPP_MAX] = {CTL_INVALID_BIT, 16, 17, 18, 19,
CTL_INVALID_BIT, CTL_INVALID_BIT, CTL_INVALID_BIT, CTL_INVALID_BIT, 0,
1, 2, 3, 4, 5};
static int _mixer_stages(const struct dpu_lm_cfg *mixer, int count,
enum dpu_lm lm)
{
int i;
int stages = -EINVAL;
for (i = 0; i < count; i++) {
if (lm == mixer[i].id) {
stages = mixer[i].sblk->maxblendstages;
break;
}
}
return stages;
}
static inline u32 dpu_hw_ctl_get_flush_register(struct dpu_hw_ctl *ctx)
{
struct dpu_hw_blk_reg_map *c = &ctx->hw;
return DPU_REG_READ(c, CTL_FLUSH);
}
static inline void dpu_hw_ctl_trigger_start(struct dpu_hw_ctl *ctx)
{
trace_dpu_hw_ctl_trigger_start(ctx->pending_flush_mask,
dpu_hw_ctl_get_flush_register(ctx));
DPU_REG_WRITE(&ctx->hw, CTL_START, 0x1);
}
static inline bool dpu_hw_ctl_is_started(struct dpu_hw_ctl *ctx)
{
return !!(DPU_REG_READ(&ctx->hw, CTL_START) & BIT(0));
}
static inline void dpu_hw_ctl_trigger_pending(struct dpu_hw_ctl *ctx)
{
trace_dpu_hw_ctl_trigger_prepare(ctx->pending_flush_mask,
dpu_hw_ctl_get_flush_register(ctx));
DPU_REG_WRITE(&ctx->hw, CTL_PREPARE, 0x1);
}
static inline void dpu_hw_ctl_clear_pending_flush(struct dpu_hw_ctl *ctx)
{
trace_dpu_hw_ctl_clear_pending_flush(ctx->pending_flush_mask,
dpu_hw_ctl_get_flush_register(ctx));
ctx->pending_flush_mask = 0x0;
ctx->pending_intf_flush_mask = 0;
ctx->pending_wb_flush_mask = 0;
ctx->pending_merge_3d_flush_mask = 0;
ctx->pending_dsc_flush_mask = 0;
ctx->pending_cdm_flush_mask = 0;
memset(ctx->pending_dspp_flush_mask, 0,
sizeof(ctx->pending_dspp_flush_mask));
}
static inline void dpu_hw_ctl_update_pending_flush(struct dpu_hw_ctl *ctx,
u32 flushbits)
{
trace_dpu_hw_ctl_update_pending_flush(flushbits,
ctx->pending_flush_mask);
ctx->pending_flush_mask |= flushbits;
}
static u32 dpu_hw_ctl_get_pending_flush(struct dpu_hw_ctl *ctx)
{
return ctx->pending_flush_mask;
}
static inline void dpu_hw_ctl_trigger_flush_v1(struct dpu_hw_ctl *ctx)
{
int dspp;
if (ctx->pending_flush_mask & BIT(MERGE_3D_IDX))
DPU_REG_WRITE(&ctx->hw, CTL_MERGE_3D_FLUSH,
ctx->pending_merge_3d_flush_mask);
if (ctx->pending_flush_mask & BIT(INTF_IDX))
DPU_REG_WRITE(&ctx->hw, CTL_INTF_FLUSH,
ctx->pending_intf_flush_mask);
if (ctx->pending_flush_mask & BIT(WB_IDX))
DPU_REG_WRITE(&ctx->hw, CTL_WB_FLUSH,
ctx->pending_wb_flush_mask);
if (ctx->pending_flush_mask & BIT(DSPP_IDX))
for (dspp = DSPP_0; dspp < DSPP_MAX; dspp++) {
if (ctx->pending_dspp_flush_mask[dspp - DSPP_0])
DPU_REG_WRITE(&ctx->hw,
CTL_DSPP_n_FLUSH(dspp - DSPP_0),
ctx->pending_dspp_flush_mask[dspp - DSPP_0]);
}
if (ctx->pending_flush_mask & BIT(PERIPH_IDX))
DPU_REG_WRITE(&ctx->hw, CTL_PERIPH_FLUSH,
ctx->pending_periph_flush_mask);
if (ctx->pending_flush_mask & BIT(DSC_IDX))
DPU_REG_WRITE(&ctx->hw, CTL_DSC_FLUSH,
ctx->pending_dsc_flush_mask);
if (ctx->pending_flush_mask & BIT(CDM_IDX))
DPU_REG_WRITE(&ctx->hw, CTL_CDM_FLUSH,
ctx->pending_cdm_flush_mask);
DPU_REG_WRITE(&ctx->hw, CTL_FLUSH, ctx->pending_flush_mask);
}
static inline void dpu_hw_ctl_trigger_flush(struct dpu_hw_ctl *ctx)
{
trace_dpu_hw_ctl_trigger_pending_flush(ctx->pending_flush_mask,
dpu_hw_ctl_get_flush_register(ctx));
DPU_REG_WRITE(&ctx->hw, CTL_FLUSH, ctx->pending_flush_mask);
}
static void dpu_hw_ctl_update_pending_flush_sspp(struct dpu_hw_ctl *ctx,
enum dpu_sspp sspp)
{
switch (sspp) {
case SSPP_VIG0:
ctx->pending_flush_mask |= BIT(0);
break;
case SSPP_VIG1:
ctx->pending_flush_mask |= BIT(1);
break;
case SSPP_VIG2:
ctx->pending_flush_mask |= BIT(2);
break;
case SSPP_VIG3:
ctx->pending_flush_mask |= BIT(18);
break;
case SSPP_RGB0:
ctx->pending_flush_mask |= BIT(3);
break;
case SSPP_RGB1:
ctx->pending_flush_mask |= BIT(4);
break;
case SSPP_RGB2:
ctx->pending_flush_mask |= BIT(5);
break;
case SSPP_RGB3:
ctx->pending_flush_mask |= BIT(19);
break;
case SSPP_DMA0:
ctx->pending_flush_mask |= BIT(11);
break;
case SSPP_DMA1:
ctx->pending_flush_mask |= BIT(12);
break;
case SSPP_DMA2:
ctx->pending_flush_mask |= BIT(24);
break;
case SSPP_DMA3:
ctx->pending_flush_mask |= BIT(25);
break;
case SSPP_DMA4:
ctx->pending_flush_mask |= BIT(13);
break;
case SSPP_DMA5:
ctx->pending_flush_mask |= BIT(14);
break;
case SSPP_CURSOR0:
ctx->pending_flush_mask |= BIT(22);
break;
case SSPP_CURSOR1:
ctx->pending_flush_mask |= BIT(23);
break;
default:
break;
}
}
static void dpu_hw_ctl_update_pending_flush_mixer(struct dpu_hw_ctl *ctx,
enum dpu_lm lm)
{
switch (lm) {
case LM_0:
ctx->pending_flush_mask |= BIT(6);
break;
case LM_1:
ctx->pending_flush_mask |= BIT(7);
break;
case LM_2:
ctx->pending_flush_mask |= BIT(8);
break;
case LM_3:
ctx->pending_flush_mask |= BIT(9);
break;
case LM_4:
ctx->pending_flush_mask |= BIT(10);
break;
case LM_5:
ctx->pending_flush_mask |= BIT(20);
break;
default:
break;
}
ctx->pending_flush_mask |= CTL_FLUSH_MASK_CTL;
}
static void dpu_hw_ctl_update_pending_flush_intf(struct dpu_hw_ctl *ctx,
enum dpu_intf intf)
{
switch (intf) {
case INTF_0:
ctx->pending_flush_mask |= BIT(31);
break;
case INTF_1:
ctx->pending_flush_mask |= BIT(30);
break;
case INTF_2:
ctx->pending_flush_mask |= BIT(29);
break;
case INTF_3:
ctx->pending_flush_mask |= BIT(28);
break;
default:
break;
}
}
static void dpu_hw_ctl_update_pending_flush_wb(struct dpu_hw_ctl *ctx,
enum dpu_wb wb)
{
switch (wb) {
case WB_0:
case WB_1:
case WB_2:
ctx->pending_flush_mask |= BIT(WB_IDX);
break;
default:
break;
}
}
static void dpu_hw_ctl_update_pending_flush_cdm(struct dpu_hw_ctl *ctx, enum dpu_cdm cdm_num)
{
/* update pending flush only if CDM_0 is flushed */
if (cdm_num == CDM_0)
ctx->pending_flush_mask |= BIT(CDM_IDX);
}
static void dpu_hw_ctl_update_pending_flush_wb_v1(struct dpu_hw_ctl *ctx,
enum dpu_wb wb)
{
ctx->pending_wb_flush_mask |= BIT(wb - WB_0);
ctx->pending_flush_mask |= BIT(WB_IDX);
}
static void dpu_hw_ctl_update_pending_flush_intf_v1(struct dpu_hw_ctl *ctx,
enum dpu_intf intf)
{
ctx->pending_intf_flush_mask |= BIT(intf - INTF_0);
ctx->pending_flush_mask |= BIT(INTF_IDX);
}
static void dpu_hw_ctl_update_pending_flush_periph_v1(struct dpu_hw_ctl *ctx,
enum dpu_intf intf)
{
ctx->pending_periph_flush_mask |= BIT(intf - INTF_0);
ctx->pending_flush_mask |= BIT(PERIPH_IDX);
}
static void dpu_hw_ctl_update_pending_flush_merge_3d_v1(struct dpu_hw_ctl *ctx,
enum dpu_merge_3d merge_3d)
{
ctx->pending_merge_3d_flush_mask |= BIT(merge_3d - MERGE_3D_0);
ctx->pending_flush_mask |= BIT(MERGE_3D_IDX);
}
static void dpu_hw_ctl_update_pending_flush_dsc_v1(struct dpu_hw_ctl *ctx,
enum dpu_dsc dsc_num)
{
ctx->pending_dsc_flush_mask |= BIT(dsc_num - DSC_0);
ctx->pending_flush_mask |= BIT(DSC_IDX);
}
static void dpu_hw_ctl_update_pending_flush_cdm_v1(struct dpu_hw_ctl *ctx, enum dpu_cdm cdm_num)
{
ctx->pending_cdm_flush_mask |= BIT(cdm_num - CDM_0);
ctx->pending_flush_mask |= BIT(CDM_IDX);
}
static void dpu_hw_ctl_update_pending_flush_dspp(struct dpu_hw_ctl *ctx,
enum dpu_dspp dspp, u32 dspp_sub_blk)
{
switch (dspp) {
case DSPP_0:
ctx->pending_flush_mask |= BIT(13);
break;
case DSPP_1:
ctx->pending_flush_mask |= BIT(14);
break;
case DSPP_2:
ctx->pending_flush_mask |= BIT(15);
break;
case DSPP_3:
ctx->pending_flush_mask |= BIT(21);
break;
default:
break;
}
}
static void dpu_hw_ctl_update_pending_flush_dspp_sub_blocks(
struct dpu_hw_ctl *ctx, enum dpu_dspp dspp, u32 dspp_sub_blk)
{
if (dspp >= DSPP_MAX)
return;
switch (dspp_sub_blk) {
case DPU_DSPP_PCC:
ctx->pending_dspp_flush_mask[dspp - DSPP_0] |= BIT(4);
break;
default:
return;
}
ctx->pending_flush_mask |= BIT(DSPP_IDX);
}
static u32 dpu_hw_ctl_poll_reset_status(struct dpu_hw_ctl *ctx, u32 timeout_us)
{
struct dpu_hw_blk_reg_map *c = &ctx->hw;
ktime_t timeout;
u32 status;
timeout = ktime_add_us(ktime_get(), timeout_us);
/*
* it takes around 30us to have mdp finish resetting its ctl path
* poll every 50us so that reset should be completed at 1st poll
*/
do {
status = DPU_REG_READ(c, CTL_SW_RESET);
status &= 0x1;
if (status)
usleep_range(20, 50);
} while (status && ktime_compare_safe(ktime_get(), timeout) < 0);
return status;
}
static int dpu_hw_ctl_reset_control(struct dpu_hw_ctl *ctx)
{
struct dpu_hw_blk_reg_map *c = &ctx->hw;
pr_debug("issuing hw ctl reset for ctl:%d\n", ctx->idx);
DPU_REG_WRITE(c, CTL_SW_RESET, 0x1);
if (dpu_hw_ctl_poll_reset_status(ctx, DPU_REG_RESET_TIMEOUT_US))
return -EINVAL;
return 0;
}
static int dpu_hw_ctl_wait_reset_status(struct dpu_hw_ctl *ctx)
{
struct dpu_hw_blk_reg_map *c = &ctx->hw;
u32 status;
status = DPU_REG_READ(c, CTL_SW_RESET);
status &= 0x01;
if (!status)
return 0;
pr_debug("hw ctl reset is set for ctl:%d\n", ctx->idx);
if (dpu_hw_ctl_poll_reset_status(ctx, DPU_REG_RESET_TIMEOUT_US)) {
pr_err("hw recovery is not complete for ctl:%d\n", ctx->idx);
return -EINVAL;
}
return 0;
}
static void dpu_hw_ctl_clear_all_blendstages(struct dpu_hw_ctl *ctx)
{
struct dpu_hw_blk_reg_map *c = &ctx->hw;
int i;
for (i = 0; i < ctx->mixer_count; i++) {
enum dpu_lm mixer_id = ctx->mixer_hw_caps[i].id;
DPU_REG_WRITE(c, CTL_LAYER(mixer_id), 0);
DPU_REG_WRITE(c, CTL_LAYER_EXT(mixer_id), 0);
DPU_REG_WRITE(c, CTL_LAYER_EXT2(mixer_id), 0);
DPU_REG_WRITE(c, CTL_LAYER_EXT3(mixer_id), 0);
}
DPU_REG_WRITE(c, CTL_FETCH_PIPE_ACTIVE, 0);
}
struct ctl_blend_config {
int idx, shift, ext_shift;
};
static const struct ctl_blend_config ctl_blend_config[][2] = {
[SSPP_NONE] = { { -1 }, { -1 } },
[SSPP_MAX] = { { -1 }, { -1 } },
[SSPP_VIG0] = { { 0, 0, 0 }, { 3, 0 } },
[SSPP_VIG1] = { { 0, 3, 2 }, { 3, 4 } },
[SSPP_VIG2] = { { 0, 6, 4 }, { 3, 8 } },
[SSPP_VIG3] = { { 0, 26, 6 }, { 3, 12 } },
[SSPP_RGB0] = { { 0, 9, 8 }, { -1 } },
[SSPP_RGB1] = { { 0, 12, 10 }, { -1 } },
[SSPP_RGB2] = { { 0, 15, 12 }, { -1 } },
[SSPP_RGB3] = { { 0, 29, 14 }, { -1 } },
[SSPP_DMA0] = { { 0, 18, 16 }, { 2, 8 } },
[SSPP_DMA1] = { { 0, 21, 18 }, { 2, 12 } },
[SSPP_DMA2] = { { 2, 0 }, { 2, 16 } },
[SSPP_DMA3] = { { 2, 4 }, { 2, 20 } },
[SSPP_DMA4] = { { 4, 0 }, { 4, 8 } },
[SSPP_DMA5] = { { 4, 4 }, { 4, 12 } },
[SSPP_CURSOR0] = { { 1, 20 }, { -1 } },
[SSPP_CURSOR1] = { { 1, 26 }, { -1 } },
};
static void dpu_hw_ctl_setup_blendstage(struct dpu_hw_ctl *ctx,
enum dpu_lm lm, struct dpu_hw_stage_cfg *stage_cfg)
{
struct dpu_hw_blk_reg_map *c = &ctx->hw;
u32 mix, ext, mix_ext;
u32 mixercfg[5] = { 0 };
int i, j;
int stages;
int pipes_per_stage;
stages = _mixer_stages(ctx->mixer_hw_caps, ctx->mixer_count, lm);
if (stages < 0)
return;
if (test_bit(DPU_MIXER_SOURCESPLIT,
&ctx->mixer_hw_caps->features))
pipes_per_stage = PIPES_PER_STAGE;
else
pipes_per_stage = 1;
mixercfg[0] = CTL_MIXER_BORDER_OUT; /* always set BORDER_OUT */
if (!stage_cfg)
goto exit;
for (i = 0; i <= stages; i++) {
/* overflow to ext register if 'i + 1 > 7' */
mix = (i + 1) & 0x7;
ext = i >= 7;
mix_ext = (i + 1) & 0xf;
for (j = 0 ; j < pipes_per_stage; j++) {
enum dpu_sspp_multirect_index rect_index =
stage_cfg->multirect_index[i][j];
enum dpu_sspp pipe = stage_cfg->stage[i][j];
const struct ctl_blend_config *cfg =
&ctl_blend_config[pipe][rect_index == DPU_SSPP_RECT_1];
/*
* CTL_LAYER has 3-bit field (and extra bits in EXT register),
* all EXT registers has 4-bit fields.
*/
if (cfg->idx == -1) {
continue;
} else if (cfg->idx == 0) {
mixercfg[0] |= mix << cfg->shift;
mixercfg[1] |= ext << cfg->ext_shift;
} else {
mixercfg[cfg->idx] |= mix_ext << cfg->shift;
}
}
}
exit:
DPU_REG_WRITE(c, CTL_LAYER(lm), mixercfg[0]);
DPU_REG_WRITE(c, CTL_LAYER_EXT(lm), mixercfg[1]);
DPU_REG_WRITE(c, CTL_LAYER_EXT2(lm), mixercfg[2]);
DPU_REG_WRITE(c, CTL_LAYER_EXT3(lm), mixercfg[3]);
if ((test_bit(DPU_CTL_HAS_LAYER_EXT4, &ctx->caps->features)))
DPU_REG_WRITE(c, CTL_LAYER_EXT4(lm), mixercfg[4]);
}
static void dpu_hw_ctl_intf_cfg_v1(struct dpu_hw_ctl *ctx,
struct dpu_hw_intf_cfg *cfg)
{
struct dpu_hw_blk_reg_map *c = &ctx->hw;
u32 intf_active = 0;
u32 dsc_active = 0;
u32 wb_active = 0;
u32 mode_sel = 0;
/* CTL_TOP[31:28] carries group_id to collate CTL paths
* per VM. Explicitly disable it until VM support is
* added in SW. Power on reset value is not disable.
*/
if ((test_bit(DPU_CTL_VM_CFG, &ctx->caps->features)))
mode_sel = CTL_DEFAULT_GROUP_ID << 28;
if (cfg->intf_mode_sel == DPU_CTL_MODE_SEL_CMD)
mode_sel |= BIT(17);
intf_active = DPU_REG_READ(c, CTL_INTF_ACTIVE);
wb_active = DPU_REG_READ(c, CTL_WB_ACTIVE);
dsc_active = DPU_REG_READ(c, CTL_DSC_ACTIVE);
if (cfg->intf)
intf_active |= BIT(cfg->intf - INTF_0);
if (cfg->wb)
wb_active |= BIT(cfg->wb - WB_0);
if (cfg->dsc)
dsc_active |= cfg->dsc;
DPU_REG_WRITE(c, CTL_TOP, mode_sel);
DPU_REG_WRITE(c, CTL_INTF_ACTIVE, intf_active);
DPU_REG_WRITE(c, CTL_WB_ACTIVE, wb_active);
DPU_REG_WRITE(c, CTL_DSC_ACTIVE, dsc_active);
if (cfg->merge_3d)
DPU_REG_WRITE(c, CTL_MERGE_3D_ACTIVE,
BIT(cfg->merge_3d - MERGE_3D_0));
if (cfg->cdm)
DPU_REG_WRITE(c, CTL_CDM_ACTIVE, cfg->cdm);
}
static void dpu_hw_ctl_intf_cfg(struct dpu_hw_ctl *ctx,
struct dpu_hw_intf_cfg *cfg)
{
struct dpu_hw_blk_reg_map *c = &ctx->hw;
u32 intf_cfg = 0;
intf_cfg |= (cfg->intf & 0xF) << 4;
if (cfg->mode_3d) {
intf_cfg |= BIT(19);
intf_cfg |= (cfg->mode_3d - 0x1) << 20;
}
if (cfg->wb)
intf_cfg |= (cfg->wb & 0x3) + 2;
switch (cfg->intf_mode_sel) {
case DPU_CTL_MODE_SEL_VID:
intf_cfg &= ~BIT(17);
intf_cfg &= ~(0x3 << 15);
break;
case DPU_CTL_MODE_SEL_CMD:
intf_cfg |= BIT(17);
intf_cfg |= ((cfg->stream_sel & 0x3) << 15);
break;
default:
pr_err("unknown interface type %d\n", cfg->intf_mode_sel);
return;
}
DPU_REG_WRITE(c, CTL_TOP, intf_cfg);
}
static void dpu_hw_ctl_reset_intf_cfg_v1(struct dpu_hw_ctl *ctx,
struct dpu_hw_intf_cfg *cfg)
{
struct dpu_hw_blk_reg_map *c = &ctx->hw;
u32 intf_active = 0;
u32 wb_active = 0;
u32 merge3d_active = 0;
u32 dsc_active;
u32 cdm_active;
/*
* This API resets each portion of the CTL path namely,
* clearing the sspps staged on the lm, merge_3d block,
* interfaces , writeback etc to ensure clean teardown of the pipeline.
* This will be used for writeback to begin with to have a
* proper teardown of the writeback session but upon further
* validation, this can be extended to all interfaces.
*/
if (cfg->merge_3d) {
merge3d_active = DPU_REG_READ(c, CTL_MERGE_3D_ACTIVE);
merge3d_active &= ~BIT(cfg->merge_3d - MERGE_3D_0);
DPU_REG_WRITE(c, CTL_MERGE_3D_ACTIVE,
merge3d_active);
}
dpu_hw_ctl_clear_all_blendstages(ctx);
if (cfg->intf) {
intf_active = DPU_REG_READ(c, CTL_INTF_ACTIVE);
intf_active &= ~BIT(cfg->intf - INTF_0);
DPU_REG_WRITE(c, CTL_INTF_ACTIVE, intf_active);
}
if (cfg->wb) {
wb_active = DPU_REG_READ(c, CTL_WB_ACTIVE);
wb_active &= ~BIT(cfg->wb - WB_0);
DPU_REG_WRITE(c, CTL_WB_ACTIVE, wb_active);
}
if (cfg->dsc) {
dsc_active = DPU_REG_READ(c, CTL_DSC_ACTIVE);
dsc_active &= ~cfg->dsc;
DPU_REG_WRITE(c, CTL_DSC_ACTIVE, dsc_active);
}
if (cfg->cdm) {
cdm_active = DPU_REG_READ(c, CTL_CDM_ACTIVE);
cdm_active &= ~cfg->cdm;
DPU_REG_WRITE(c, CTL_CDM_ACTIVE, cdm_active);
}
}
static void dpu_hw_ctl_set_fetch_pipe_active(struct dpu_hw_ctl *ctx,
unsigned long *fetch_active)
{
int i;
u32 val = 0;
if (fetch_active) {
for (i = 0; i < SSPP_MAX; i++) {
if (test_bit(i, fetch_active) &&
fetch_tbl[i] != CTL_INVALID_BIT)
val |= BIT(fetch_tbl[i]);
}
}
DPU_REG_WRITE(&ctx->hw, CTL_FETCH_PIPE_ACTIVE, val);
}
static void _setup_ctl_ops(struct dpu_hw_ctl_ops *ops,
unsigned long cap)
{
if (cap & BIT(DPU_CTL_ACTIVE_CFG)) {
ops->trigger_flush = dpu_hw_ctl_trigger_flush_v1;
ops->setup_intf_cfg = dpu_hw_ctl_intf_cfg_v1;
ops->reset_intf_cfg = dpu_hw_ctl_reset_intf_cfg_v1;
ops->update_pending_flush_intf =
dpu_hw_ctl_update_pending_flush_intf_v1;
ops->update_pending_flush_periph =
dpu_hw_ctl_update_pending_flush_periph_v1;
ops->update_pending_flush_merge_3d =
dpu_hw_ctl_update_pending_flush_merge_3d_v1;
ops->update_pending_flush_wb = dpu_hw_ctl_update_pending_flush_wb_v1;
ops->update_pending_flush_dsc =
dpu_hw_ctl_update_pending_flush_dsc_v1;
ops->update_pending_flush_cdm = dpu_hw_ctl_update_pending_flush_cdm_v1;
} else {
ops->trigger_flush = dpu_hw_ctl_trigger_flush;
ops->setup_intf_cfg = dpu_hw_ctl_intf_cfg;
ops->update_pending_flush_intf =
dpu_hw_ctl_update_pending_flush_intf;
ops->update_pending_flush_wb = dpu_hw_ctl_update_pending_flush_wb;
ops->update_pending_flush_cdm = dpu_hw_ctl_update_pending_flush_cdm;
}
ops->clear_pending_flush = dpu_hw_ctl_clear_pending_flush;
ops->update_pending_flush = dpu_hw_ctl_update_pending_flush;
ops->get_pending_flush = dpu_hw_ctl_get_pending_flush;
ops->get_flush_register = dpu_hw_ctl_get_flush_register;
ops->trigger_start = dpu_hw_ctl_trigger_start;
ops->is_started = dpu_hw_ctl_is_started;
ops->trigger_pending = dpu_hw_ctl_trigger_pending;
ops->reset = dpu_hw_ctl_reset_control;
ops->wait_reset_status = dpu_hw_ctl_wait_reset_status;
ops->clear_all_blendstages = dpu_hw_ctl_clear_all_blendstages;
ops->setup_blendstage = dpu_hw_ctl_setup_blendstage;
ops->update_pending_flush_sspp = dpu_hw_ctl_update_pending_flush_sspp;
ops->update_pending_flush_mixer = dpu_hw_ctl_update_pending_flush_mixer;
if (cap & BIT(DPU_CTL_DSPP_SUB_BLOCK_FLUSH))
ops->update_pending_flush_dspp = dpu_hw_ctl_update_pending_flush_dspp_sub_blocks;
else
ops->update_pending_flush_dspp = dpu_hw_ctl_update_pending_flush_dspp;
if (cap & BIT(DPU_CTL_FETCH_ACTIVE))
ops->set_active_pipes = dpu_hw_ctl_set_fetch_pipe_active;
};
struct dpu_hw_ctl *dpu_hw_ctl_init(struct drm_device *dev,
const struct dpu_ctl_cfg *cfg,
void __iomem *addr,
u32 mixer_count,
const struct dpu_lm_cfg *mixer)
{
struct dpu_hw_ctl *c;
c = drmm_kzalloc(dev, sizeof(*c), GFP_KERNEL);
if (!c)
return ERR_PTR(-ENOMEM);
c->hw.blk_addr = addr + cfg->base;
c->hw.log_mask = DPU_DBG_MASK_CTL;
c->caps = cfg;
_setup_ctl_ops(&c->ops, c->caps->features);
c->idx = cfg->id;
c->mixer_count = mixer_count;
c->mixer_hw_caps = mixer;
return c;
}