| // SPDX-License-Identifier: MIT |
| /* |
| * Copyright © 2021 Intel Corporation |
| */ |
| |
| #include "xe_bo.h" |
| |
| #include <linux/dma-buf.h> |
| |
| #include <drm/drm_drv.h> |
| #include <drm/drm_gem_ttm_helper.h> |
| #include <drm/drm_managed.h> |
| #include <drm/ttm/ttm_device.h> |
| #include <drm/ttm/ttm_placement.h> |
| #include <drm/ttm/ttm_tt.h> |
| #include <uapi/drm/xe_drm.h> |
| |
| #include "xe_device.h" |
| #include "xe_dma_buf.h" |
| #include "xe_drm_client.h" |
| #include "xe_ggtt.h" |
| #include "xe_gt.h" |
| #include "xe_map.h" |
| #include "xe_migrate.h" |
| #include "xe_pm.h" |
| #include "xe_preempt_fence.h" |
| #include "xe_res_cursor.h" |
| #include "xe_trace_bo.h" |
| #include "xe_ttm_stolen_mgr.h" |
| #include "xe_vm.h" |
| |
| const char *const xe_mem_type_to_name[TTM_NUM_MEM_TYPES] = { |
| [XE_PL_SYSTEM] = "system", |
| [XE_PL_TT] = "gtt", |
| [XE_PL_VRAM0] = "vram0", |
| [XE_PL_VRAM1] = "vram1", |
| [XE_PL_STOLEN] = "stolen" |
| }; |
| |
| static const struct ttm_place sys_placement_flags = { |
| .fpfn = 0, |
| .lpfn = 0, |
| .mem_type = XE_PL_SYSTEM, |
| .flags = 0, |
| }; |
| |
| static struct ttm_placement sys_placement = { |
| .num_placement = 1, |
| .placement = &sys_placement_flags, |
| }; |
| |
| static const struct ttm_place tt_placement_flags[] = { |
| { |
| .fpfn = 0, |
| .lpfn = 0, |
| .mem_type = XE_PL_TT, |
| .flags = TTM_PL_FLAG_DESIRED, |
| }, |
| { |
| .fpfn = 0, |
| .lpfn = 0, |
| .mem_type = XE_PL_SYSTEM, |
| .flags = TTM_PL_FLAG_FALLBACK, |
| } |
| }; |
| |
| static struct ttm_placement tt_placement = { |
| .num_placement = 2, |
| .placement = tt_placement_flags, |
| }; |
| |
| bool mem_type_is_vram(u32 mem_type) |
| { |
| return mem_type >= XE_PL_VRAM0 && mem_type != XE_PL_STOLEN; |
| } |
| |
| static bool resource_is_stolen_vram(struct xe_device *xe, struct ttm_resource *res) |
| { |
| return res->mem_type == XE_PL_STOLEN && IS_DGFX(xe); |
| } |
| |
| static bool resource_is_vram(struct ttm_resource *res) |
| { |
| return mem_type_is_vram(res->mem_type); |
| } |
| |
| bool xe_bo_is_vram(struct xe_bo *bo) |
| { |
| return resource_is_vram(bo->ttm.resource) || |
| resource_is_stolen_vram(xe_bo_device(bo), bo->ttm.resource); |
| } |
| |
| bool xe_bo_is_stolen(struct xe_bo *bo) |
| { |
| return bo->ttm.resource->mem_type == XE_PL_STOLEN; |
| } |
| |
| /** |
| * xe_bo_has_single_placement - check if BO is placed only in one memory location |
| * @bo: The BO |
| * |
| * This function checks whether a given BO is placed in only one memory location. |
| * |
| * Returns: true if the BO is placed in a single memory location, false otherwise. |
| * |
| */ |
| bool xe_bo_has_single_placement(struct xe_bo *bo) |
| { |
| return bo->placement.num_placement == 1; |
| } |
| |
| /** |
| * xe_bo_is_stolen_devmem - check if BO is of stolen type accessed via PCI BAR |
| * @bo: The BO |
| * |
| * The stolen memory is accessed through the PCI BAR for both DGFX and some |
| * integrated platforms that have a dedicated bit in the PTE for devmem (DM). |
| * |
| * Returns: true if it's stolen memory accessed via PCI BAR, false otherwise. |
| */ |
| bool xe_bo_is_stolen_devmem(struct xe_bo *bo) |
| { |
| return xe_bo_is_stolen(bo) && |
| GRAPHICS_VERx100(xe_bo_device(bo)) >= 1270; |
| } |
| |
| static bool xe_bo_is_user(struct xe_bo *bo) |
| { |
| return bo->flags & XE_BO_FLAG_USER; |
| } |
| |
| static struct xe_migrate * |
| mem_type_to_migrate(struct xe_device *xe, u32 mem_type) |
| { |
| struct xe_tile *tile; |
| |
| xe_assert(xe, mem_type == XE_PL_STOLEN || mem_type_is_vram(mem_type)); |
| tile = &xe->tiles[mem_type == XE_PL_STOLEN ? 0 : (mem_type - XE_PL_VRAM0)]; |
| return tile->migrate; |
| } |
| |
| static struct xe_mem_region *res_to_mem_region(struct ttm_resource *res) |
| { |
| struct xe_device *xe = ttm_to_xe_device(res->bo->bdev); |
| struct ttm_resource_manager *mgr; |
| |
| xe_assert(xe, resource_is_vram(res)); |
| mgr = ttm_manager_type(&xe->ttm, res->mem_type); |
| return to_xe_ttm_vram_mgr(mgr)->vram; |
| } |
| |
| static void try_add_system(struct xe_device *xe, struct xe_bo *bo, |
| u32 bo_flags, u32 *c) |
| { |
| if (bo_flags & XE_BO_FLAG_SYSTEM) { |
| xe_assert(xe, *c < ARRAY_SIZE(bo->placements)); |
| |
| bo->placements[*c] = (struct ttm_place) { |
| .mem_type = XE_PL_TT, |
| }; |
| *c += 1; |
| } |
| } |
| |
| static void add_vram(struct xe_device *xe, struct xe_bo *bo, |
| struct ttm_place *places, u32 bo_flags, u32 mem_type, u32 *c) |
| { |
| struct ttm_place place = { .mem_type = mem_type }; |
| struct xe_mem_region *vram; |
| u64 io_size; |
| |
| xe_assert(xe, *c < ARRAY_SIZE(bo->placements)); |
| |
| vram = to_xe_ttm_vram_mgr(ttm_manager_type(&xe->ttm, mem_type))->vram; |
| xe_assert(xe, vram && vram->usable_size); |
| io_size = vram->io_size; |
| |
| /* |
| * For eviction / restore on suspend / resume objects |
| * pinned in VRAM must be contiguous |
| */ |
| if (bo_flags & (XE_BO_FLAG_PINNED | |
| XE_BO_FLAG_GGTT)) |
| place.flags |= TTM_PL_FLAG_CONTIGUOUS; |
| |
| if (io_size < vram->usable_size) { |
| if (bo_flags & XE_BO_FLAG_NEEDS_CPU_ACCESS) { |
| place.fpfn = 0; |
| place.lpfn = io_size >> PAGE_SHIFT; |
| } else { |
| place.flags |= TTM_PL_FLAG_TOPDOWN; |
| } |
| } |
| places[*c] = place; |
| *c += 1; |
| } |
| |
| static void try_add_vram(struct xe_device *xe, struct xe_bo *bo, |
| u32 bo_flags, u32 *c) |
| { |
| if (bo_flags & XE_BO_FLAG_VRAM0) |
| add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM0, c); |
| if (bo_flags & XE_BO_FLAG_VRAM1) |
| add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM1, c); |
| } |
| |
| static void try_add_stolen(struct xe_device *xe, struct xe_bo *bo, |
| u32 bo_flags, u32 *c) |
| { |
| if (bo_flags & XE_BO_FLAG_STOLEN) { |
| xe_assert(xe, *c < ARRAY_SIZE(bo->placements)); |
| |
| bo->placements[*c] = (struct ttm_place) { |
| .mem_type = XE_PL_STOLEN, |
| .flags = bo_flags & (XE_BO_FLAG_PINNED | |
| XE_BO_FLAG_GGTT) ? |
| TTM_PL_FLAG_CONTIGUOUS : 0, |
| }; |
| *c += 1; |
| } |
| } |
| |
| static int __xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo, |
| u32 bo_flags) |
| { |
| u32 c = 0; |
| |
| try_add_vram(xe, bo, bo_flags, &c); |
| try_add_system(xe, bo, bo_flags, &c); |
| try_add_stolen(xe, bo, bo_flags, &c); |
| |
| if (!c) |
| return -EINVAL; |
| |
| bo->placement = (struct ttm_placement) { |
| .num_placement = c, |
| .placement = bo->placements, |
| }; |
| |
| return 0; |
| } |
| |
| int xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo, |
| u32 bo_flags) |
| { |
| xe_bo_assert_held(bo); |
| return __xe_bo_placement_for_flags(xe, bo, bo_flags); |
| } |
| |
| static void xe_evict_flags(struct ttm_buffer_object *tbo, |
| struct ttm_placement *placement) |
| { |
| if (!xe_bo_is_xe_bo(tbo)) { |
| /* Don't handle scatter gather BOs */ |
| if (tbo->type == ttm_bo_type_sg) { |
| placement->num_placement = 0; |
| return; |
| } |
| |
| *placement = sys_placement; |
| return; |
| } |
| |
| /* |
| * For xe, sg bos that are evicted to system just triggers a |
| * rebind of the sg list upon subsequent validation to XE_PL_TT. |
| */ |
| switch (tbo->resource->mem_type) { |
| case XE_PL_VRAM0: |
| case XE_PL_VRAM1: |
| case XE_PL_STOLEN: |
| *placement = tt_placement; |
| break; |
| case XE_PL_TT: |
| default: |
| *placement = sys_placement; |
| break; |
| } |
| } |
| |
| struct xe_ttm_tt { |
| struct ttm_tt ttm; |
| struct device *dev; |
| struct sg_table sgt; |
| struct sg_table *sg; |
| }; |
| |
| static int xe_tt_map_sg(struct ttm_tt *tt) |
| { |
| struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); |
| unsigned long num_pages = tt->num_pages; |
| int ret; |
| |
| XE_WARN_ON(tt->page_flags & TTM_TT_FLAG_EXTERNAL); |
| |
| if (xe_tt->sg) |
| return 0; |
| |
| ret = sg_alloc_table_from_pages_segment(&xe_tt->sgt, tt->pages, |
| num_pages, 0, |
| (u64)num_pages << PAGE_SHIFT, |
| xe_sg_segment_size(xe_tt->dev), |
| GFP_KERNEL); |
| if (ret) |
| return ret; |
| |
| xe_tt->sg = &xe_tt->sgt; |
| ret = dma_map_sgtable(xe_tt->dev, xe_tt->sg, DMA_BIDIRECTIONAL, |
| DMA_ATTR_SKIP_CPU_SYNC); |
| if (ret) { |
| sg_free_table(xe_tt->sg); |
| xe_tt->sg = NULL; |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static void xe_tt_unmap_sg(struct ttm_tt *tt) |
| { |
| struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); |
| |
| if (xe_tt->sg) { |
| dma_unmap_sgtable(xe_tt->dev, xe_tt->sg, |
| DMA_BIDIRECTIONAL, 0); |
| sg_free_table(xe_tt->sg); |
| xe_tt->sg = NULL; |
| } |
| } |
| |
| struct sg_table *xe_bo_sg(struct xe_bo *bo) |
| { |
| struct ttm_tt *tt = bo->ttm.ttm; |
| struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); |
| |
| return xe_tt->sg; |
| } |
| |
| static struct ttm_tt *xe_ttm_tt_create(struct ttm_buffer_object *ttm_bo, |
| u32 page_flags) |
| { |
| struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); |
| struct xe_device *xe = xe_bo_device(bo); |
| struct xe_ttm_tt *tt; |
| unsigned long extra_pages; |
| enum ttm_caching caching = ttm_cached; |
| int err; |
| |
| tt = kzalloc(sizeof(*tt), GFP_KERNEL); |
| if (!tt) |
| return NULL; |
| |
| tt->dev = xe->drm.dev; |
| |
| extra_pages = 0; |
| if (xe_bo_needs_ccs_pages(bo)) |
| extra_pages = DIV_ROUND_UP(xe_device_ccs_bytes(xe, bo->size), |
| PAGE_SIZE); |
| |
| /* |
| * DGFX system memory is always WB / ttm_cached, since |
| * other caching modes are only supported on x86. DGFX |
| * GPU system memory accesses are always coherent with the |
| * CPU. |
| */ |
| if (!IS_DGFX(xe)) { |
| switch (bo->cpu_caching) { |
| case DRM_XE_GEM_CPU_CACHING_WC: |
| caching = ttm_write_combined; |
| break; |
| default: |
| caching = ttm_cached; |
| break; |
| } |
| |
| WARN_ON((bo->flags & XE_BO_FLAG_USER) && !bo->cpu_caching); |
| |
| /* |
| * Display scanout is always non-coherent with the CPU cache. |
| * |
| * For Xe_LPG and beyond, PPGTT PTE lookups are also |
| * non-coherent and require a CPU:WC mapping. |
| */ |
| if ((!bo->cpu_caching && bo->flags & XE_BO_FLAG_SCANOUT) || |
| (xe->info.graphics_verx100 >= 1270 && |
| bo->flags & XE_BO_FLAG_PAGETABLE)) |
| caching = ttm_write_combined; |
| } |
| |
| if (bo->flags & XE_BO_FLAG_NEEDS_UC) { |
| /* |
| * Valid only for internally-created buffers only, for |
| * which cpu_caching is never initialized. |
| */ |
| xe_assert(xe, bo->cpu_caching == 0); |
| caching = ttm_uncached; |
| } |
| |
| err = ttm_tt_init(&tt->ttm, &bo->ttm, page_flags, caching, extra_pages); |
| if (err) { |
| kfree(tt); |
| return NULL; |
| } |
| |
| return &tt->ttm; |
| } |
| |
| static int xe_ttm_tt_populate(struct ttm_device *ttm_dev, struct ttm_tt *tt, |
| struct ttm_operation_ctx *ctx) |
| { |
| int err; |
| |
| /* |
| * dma-bufs are not populated with pages, and the dma- |
| * addresses are set up when moved to XE_PL_TT. |
| */ |
| if (tt->page_flags & TTM_TT_FLAG_EXTERNAL) |
| return 0; |
| |
| err = ttm_pool_alloc(&ttm_dev->pool, tt, ctx); |
| if (err) |
| return err; |
| |
| return err; |
| } |
| |
| static void xe_ttm_tt_unpopulate(struct ttm_device *ttm_dev, struct ttm_tt *tt) |
| { |
| if (tt->page_flags & TTM_TT_FLAG_EXTERNAL) |
| return; |
| |
| xe_tt_unmap_sg(tt); |
| |
| return ttm_pool_free(&ttm_dev->pool, tt); |
| } |
| |
| static void xe_ttm_tt_destroy(struct ttm_device *ttm_dev, struct ttm_tt *tt) |
| { |
| ttm_tt_fini(tt); |
| kfree(tt); |
| } |
| |
| static int xe_ttm_io_mem_reserve(struct ttm_device *bdev, |
| struct ttm_resource *mem) |
| { |
| struct xe_device *xe = ttm_to_xe_device(bdev); |
| |
| switch (mem->mem_type) { |
| case XE_PL_SYSTEM: |
| case XE_PL_TT: |
| return 0; |
| case XE_PL_VRAM0: |
| case XE_PL_VRAM1: { |
| struct xe_ttm_vram_mgr_resource *vres = |
| to_xe_ttm_vram_mgr_resource(mem); |
| struct xe_mem_region *vram = res_to_mem_region(mem); |
| |
| if (vres->used_visible_size < mem->size) |
| return -EINVAL; |
| |
| mem->bus.offset = mem->start << PAGE_SHIFT; |
| |
| if (vram->mapping && |
| mem->placement & TTM_PL_FLAG_CONTIGUOUS) |
| mem->bus.addr = (u8 __force *)vram->mapping + |
| mem->bus.offset; |
| |
| mem->bus.offset += vram->io_start; |
| mem->bus.is_iomem = true; |
| |
| #if !defined(CONFIG_X86) |
| mem->bus.caching = ttm_write_combined; |
| #endif |
| return 0; |
| } case XE_PL_STOLEN: |
| return xe_ttm_stolen_io_mem_reserve(xe, mem); |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| static int xe_bo_trigger_rebind(struct xe_device *xe, struct xe_bo *bo, |
| const struct ttm_operation_ctx *ctx) |
| { |
| struct dma_resv_iter cursor; |
| struct dma_fence *fence; |
| struct drm_gem_object *obj = &bo->ttm.base; |
| struct drm_gpuvm_bo *vm_bo; |
| bool idle = false; |
| int ret = 0; |
| |
| dma_resv_assert_held(bo->ttm.base.resv); |
| |
| if (!list_empty(&bo->ttm.base.gpuva.list)) { |
| dma_resv_iter_begin(&cursor, bo->ttm.base.resv, |
| DMA_RESV_USAGE_BOOKKEEP); |
| dma_resv_for_each_fence_unlocked(&cursor, fence) |
| dma_fence_enable_sw_signaling(fence); |
| dma_resv_iter_end(&cursor); |
| } |
| |
| drm_gem_for_each_gpuvm_bo(vm_bo, obj) { |
| struct xe_vm *vm = gpuvm_to_vm(vm_bo->vm); |
| struct drm_gpuva *gpuva; |
| |
| if (!xe_vm_in_fault_mode(vm)) { |
| drm_gpuvm_bo_evict(vm_bo, true); |
| continue; |
| } |
| |
| if (!idle) { |
| long timeout; |
| |
| if (ctx->no_wait_gpu && |
| !dma_resv_test_signaled(bo->ttm.base.resv, |
| DMA_RESV_USAGE_BOOKKEEP)) |
| return -EBUSY; |
| |
| timeout = dma_resv_wait_timeout(bo->ttm.base.resv, |
| DMA_RESV_USAGE_BOOKKEEP, |
| ctx->interruptible, |
| MAX_SCHEDULE_TIMEOUT); |
| if (!timeout) |
| return -ETIME; |
| if (timeout < 0) |
| return timeout; |
| |
| idle = true; |
| } |
| |
| drm_gpuvm_bo_for_each_va(gpuva, vm_bo) { |
| struct xe_vma *vma = gpuva_to_vma(gpuva); |
| |
| trace_xe_vma_evict(vma); |
| ret = xe_vm_invalidate_vma(vma); |
| if (XE_WARN_ON(ret)) |
| return ret; |
| } |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * The dma-buf map_attachment() / unmap_attachment() is hooked up here. |
| * Note that unmapping the attachment is deferred to the next |
| * map_attachment time, or to bo destroy (after idling) whichever comes first. |
| * This is to avoid syncing before unmap_attachment(), assuming that the |
| * caller relies on idling the reservation object before moving the |
| * backing store out. Should that assumption not hold, then we will be able |
| * to unconditionally call unmap_attachment() when moving out to system. |
| */ |
| static int xe_bo_move_dmabuf(struct ttm_buffer_object *ttm_bo, |
| struct ttm_resource *new_res) |
| { |
| struct dma_buf_attachment *attach = ttm_bo->base.import_attach; |
| struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm, struct xe_ttm_tt, |
| ttm); |
| struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); |
| struct sg_table *sg; |
| |
| xe_assert(xe, attach); |
| xe_assert(xe, ttm_bo->ttm); |
| |
| if (new_res->mem_type == XE_PL_SYSTEM) |
| goto out; |
| |
| if (ttm_bo->sg) { |
| dma_buf_unmap_attachment(attach, ttm_bo->sg, DMA_BIDIRECTIONAL); |
| ttm_bo->sg = NULL; |
| } |
| |
| sg = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); |
| if (IS_ERR(sg)) |
| return PTR_ERR(sg); |
| |
| ttm_bo->sg = sg; |
| xe_tt->sg = sg; |
| |
| out: |
| ttm_bo_move_null(ttm_bo, new_res); |
| |
| return 0; |
| } |
| |
| /** |
| * xe_bo_move_notify - Notify subsystems of a pending move |
| * @bo: The buffer object |
| * @ctx: The struct ttm_operation_ctx controlling locking and waits. |
| * |
| * This function notifies subsystems of an upcoming buffer move. |
| * Upon receiving such a notification, subsystems should schedule |
| * halting access to the underlying pages and optionally add a fence |
| * to the buffer object's dma_resv object, that signals when access is |
| * stopped. The caller will wait on all dma_resv fences before |
| * starting the move. |
| * |
| * A subsystem may commence access to the object after obtaining |
| * bindings to the new backing memory under the object lock. |
| * |
| * Return: 0 on success, -EINTR or -ERESTARTSYS if interrupted in fault mode, |
| * negative error code on error. |
| */ |
| static int xe_bo_move_notify(struct xe_bo *bo, |
| const struct ttm_operation_ctx *ctx) |
| { |
| struct ttm_buffer_object *ttm_bo = &bo->ttm; |
| struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); |
| struct ttm_resource *old_mem = ttm_bo->resource; |
| u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM; |
| int ret; |
| |
| /* |
| * If this starts to call into many components, consider |
| * using a notification chain here. |
| */ |
| |
| if (xe_bo_is_pinned(bo)) |
| return -EINVAL; |
| |
| xe_bo_vunmap(bo); |
| ret = xe_bo_trigger_rebind(xe, bo, ctx); |
| if (ret) |
| return ret; |
| |
| /* Don't call move_notify() for imported dma-bufs. */ |
| if (ttm_bo->base.dma_buf && !ttm_bo->base.import_attach) |
| dma_buf_move_notify(ttm_bo->base.dma_buf); |
| |
| /* |
| * TTM has already nuked the mmap for us (see ttm_bo_unmap_virtual), |
| * so if we moved from VRAM make sure to unlink this from the userfault |
| * tracking. |
| */ |
| if (mem_type_is_vram(old_mem_type)) { |
| mutex_lock(&xe->mem_access.vram_userfault.lock); |
| if (!list_empty(&bo->vram_userfault_link)) |
| list_del_init(&bo->vram_userfault_link); |
| mutex_unlock(&xe->mem_access.vram_userfault.lock); |
| } |
| |
| return 0; |
| } |
| |
| static int xe_bo_move(struct ttm_buffer_object *ttm_bo, bool evict, |
| struct ttm_operation_ctx *ctx, |
| struct ttm_resource *new_mem, |
| struct ttm_place *hop) |
| { |
| struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); |
| struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); |
| struct ttm_resource *old_mem = ttm_bo->resource; |
| u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM; |
| struct ttm_tt *ttm = ttm_bo->ttm; |
| struct xe_migrate *migrate = NULL; |
| struct dma_fence *fence; |
| bool move_lacks_source; |
| bool tt_has_data; |
| bool needs_clear; |
| bool handle_system_ccs = (!IS_DGFX(xe) && xe_bo_needs_ccs_pages(bo) && |
| ttm && ttm_tt_is_populated(ttm)) ? true : false; |
| int ret = 0; |
| |
| /* Bo creation path, moving to system or TT. */ |
| if ((!old_mem && ttm) && !handle_system_ccs) { |
| if (new_mem->mem_type == XE_PL_TT) |
| ret = xe_tt_map_sg(ttm); |
| if (!ret) |
| ttm_bo_move_null(ttm_bo, new_mem); |
| goto out; |
| } |
| |
| if (ttm_bo->type == ttm_bo_type_sg) { |
| ret = xe_bo_move_notify(bo, ctx); |
| if (!ret) |
| ret = xe_bo_move_dmabuf(ttm_bo, new_mem); |
| return ret; |
| } |
| |
| tt_has_data = ttm && (ttm_tt_is_populated(ttm) || |
| (ttm->page_flags & TTM_TT_FLAG_SWAPPED)); |
| |
| move_lacks_source = !old_mem || (handle_system_ccs ? (!bo->ccs_cleared) : |
| (!mem_type_is_vram(old_mem_type) && !tt_has_data)); |
| |
| needs_clear = (ttm && ttm->page_flags & TTM_TT_FLAG_ZERO_ALLOC) || |
| (!ttm && ttm_bo->type == ttm_bo_type_device); |
| |
| if (new_mem->mem_type == XE_PL_TT) { |
| ret = xe_tt_map_sg(ttm); |
| if (ret) |
| goto out; |
| } |
| |
| if ((move_lacks_source && !needs_clear)) { |
| ttm_bo_move_null(ttm_bo, new_mem); |
| goto out; |
| } |
| |
| if (old_mem_type == XE_PL_SYSTEM && new_mem->mem_type == XE_PL_TT && !handle_system_ccs) { |
| ttm_bo_move_null(ttm_bo, new_mem); |
| goto out; |
| } |
| |
| /* |
| * Failed multi-hop where the old_mem is still marked as |
| * TTM_PL_FLAG_TEMPORARY, should just be a dummy move. |
| */ |
| if (old_mem_type == XE_PL_TT && |
| new_mem->mem_type == XE_PL_TT) { |
| ttm_bo_move_null(ttm_bo, new_mem); |
| goto out; |
| } |
| |
| if (!move_lacks_source && !xe_bo_is_pinned(bo)) { |
| ret = xe_bo_move_notify(bo, ctx); |
| if (ret) |
| goto out; |
| } |
| |
| if (old_mem_type == XE_PL_TT && |
| new_mem->mem_type == XE_PL_SYSTEM) { |
| long timeout = dma_resv_wait_timeout(ttm_bo->base.resv, |
| DMA_RESV_USAGE_BOOKKEEP, |
| true, |
| MAX_SCHEDULE_TIMEOUT); |
| if (timeout < 0) { |
| ret = timeout; |
| goto out; |
| } |
| |
| if (!handle_system_ccs) { |
| ttm_bo_move_null(ttm_bo, new_mem); |
| goto out; |
| } |
| } |
| |
| if (!move_lacks_source && |
| ((old_mem_type == XE_PL_SYSTEM && resource_is_vram(new_mem)) || |
| (mem_type_is_vram(old_mem_type) && |
| new_mem->mem_type == XE_PL_SYSTEM))) { |
| hop->fpfn = 0; |
| hop->lpfn = 0; |
| hop->mem_type = XE_PL_TT; |
| hop->flags = TTM_PL_FLAG_TEMPORARY; |
| ret = -EMULTIHOP; |
| goto out; |
| } |
| |
| if (bo->tile) |
| migrate = bo->tile->migrate; |
| else if (resource_is_vram(new_mem)) |
| migrate = mem_type_to_migrate(xe, new_mem->mem_type); |
| else if (mem_type_is_vram(old_mem_type)) |
| migrate = mem_type_to_migrate(xe, old_mem_type); |
| else |
| migrate = xe->tiles[0].migrate; |
| |
| xe_assert(xe, migrate); |
| trace_xe_bo_move(bo, new_mem->mem_type, old_mem_type, move_lacks_source); |
| if (xe_rpm_reclaim_safe(xe)) { |
| /* |
| * We might be called through swapout in the validation path of |
| * another TTM device, so unconditionally acquire rpm here. |
| */ |
| xe_pm_runtime_get(xe); |
| } else { |
| drm_WARN_ON(&xe->drm, handle_system_ccs); |
| xe_pm_runtime_get_noresume(xe); |
| } |
| |
| if (xe_bo_is_pinned(bo) && !xe_bo_is_user(bo)) { |
| /* |
| * Kernel memory that is pinned should only be moved on suspend |
| * / resume, some of the pinned memory is required for the |
| * device to resume / use the GPU to move other evicted memory |
| * (user memory) around. This likely could be optimized a bit |
| * futher where we find the minimum set of pinned memory |
| * required for resume but for simplity doing a memcpy for all |
| * pinned memory. |
| */ |
| ret = xe_bo_vmap(bo); |
| if (!ret) { |
| ret = ttm_bo_move_memcpy(ttm_bo, ctx, new_mem); |
| |
| /* Create a new VMAP once kernel BO back in VRAM */ |
| if (!ret && resource_is_vram(new_mem)) { |
| struct xe_mem_region *vram = res_to_mem_region(new_mem); |
| void __iomem *new_addr = vram->mapping + |
| (new_mem->start << PAGE_SHIFT); |
| |
| if (XE_WARN_ON(new_mem->start == XE_BO_INVALID_OFFSET)) { |
| ret = -EINVAL; |
| xe_pm_runtime_put(xe); |
| goto out; |
| } |
| |
| xe_assert(xe, new_mem->start == |
| bo->placements->fpfn); |
| |
| iosys_map_set_vaddr_iomem(&bo->vmap, new_addr); |
| } |
| } |
| } else { |
| if (move_lacks_source) { |
| u32 flags = 0; |
| |
| if (mem_type_is_vram(new_mem->mem_type)) |
| flags |= XE_MIGRATE_CLEAR_FLAG_FULL; |
| else if (handle_system_ccs) |
| flags |= XE_MIGRATE_CLEAR_FLAG_CCS_DATA; |
| |
| fence = xe_migrate_clear(migrate, bo, new_mem, flags); |
| } |
| else |
| fence = xe_migrate_copy(migrate, bo, bo, old_mem, |
| new_mem, handle_system_ccs); |
| if (IS_ERR(fence)) { |
| ret = PTR_ERR(fence); |
| xe_pm_runtime_put(xe); |
| goto out; |
| } |
| if (!move_lacks_source) { |
| ret = ttm_bo_move_accel_cleanup(ttm_bo, fence, evict, |
| true, new_mem); |
| if (ret) { |
| dma_fence_wait(fence, false); |
| ttm_bo_move_null(ttm_bo, new_mem); |
| ret = 0; |
| } |
| } else { |
| /* |
| * ttm_bo_move_accel_cleanup() may blow up if |
| * bo->resource == NULL, so just attach the |
| * fence and set the new resource. |
| */ |
| dma_resv_add_fence(ttm_bo->base.resv, fence, |
| DMA_RESV_USAGE_KERNEL); |
| ttm_bo_move_null(ttm_bo, new_mem); |
| } |
| |
| dma_fence_put(fence); |
| } |
| |
| xe_pm_runtime_put(xe); |
| |
| out: |
| if ((!ttm_bo->resource || ttm_bo->resource->mem_type == XE_PL_SYSTEM) && |
| ttm_bo->ttm) |
| xe_tt_unmap_sg(ttm_bo->ttm); |
| |
| return ret; |
| } |
| |
| /** |
| * xe_bo_evict_pinned() - Evict a pinned VRAM object to system memory |
| * @bo: The buffer object to move. |
| * |
| * On successful completion, the object memory will be moved to sytem memory. |
| * |
| * This is needed to for special handling of pinned VRAM object during |
| * suspend-resume. |
| * |
| * Return: 0 on success. Negative error code on failure. |
| */ |
| int xe_bo_evict_pinned(struct xe_bo *bo) |
| { |
| struct ttm_place place = { |
| .mem_type = XE_PL_TT, |
| }; |
| struct ttm_placement placement = { |
| .placement = &place, |
| .num_placement = 1, |
| }; |
| struct ttm_operation_ctx ctx = { |
| .interruptible = false, |
| }; |
| struct ttm_resource *new_mem; |
| int ret; |
| |
| xe_bo_assert_held(bo); |
| |
| if (WARN_ON(!bo->ttm.resource)) |
| return -EINVAL; |
| |
| if (WARN_ON(!xe_bo_is_pinned(bo))) |
| return -EINVAL; |
| |
| if (!xe_bo_is_vram(bo)) |
| return 0; |
| |
| ret = ttm_bo_mem_space(&bo->ttm, &placement, &new_mem, &ctx); |
| if (ret) |
| return ret; |
| |
| if (!bo->ttm.ttm) { |
| bo->ttm.ttm = xe_ttm_tt_create(&bo->ttm, 0); |
| if (!bo->ttm.ttm) { |
| ret = -ENOMEM; |
| goto err_res_free; |
| } |
| } |
| |
| ret = ttm_tt_populate(bo->ttm.bdev, bo->ttm.ttm, &ctx); |
| if (ret) |
| goto err_res_free; |
| |
| ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1); |
| if (ret) |
| goto err_res_free; |
| |
| ret = xe_bo_move(&bo->ttm, false, &ctx, new_mem, NULL); |
| if (ret) |
| goto err_res_free; |
| |
| return 0; |
| |
| err_res_free: |
| ttm_resource_free(&bo->ttm, &new_mem); |
| return ret; |
| } |
| |
| /** |
| * xe_bo_restore_pinned() - Restore a pinned VRAM object |
| * @bo: The buffer object to move. |
| * |
| * On successful completion, the object memory will be moved back to VRAM. |
| * |
| * This is needed to for special handling of pinned VRAM object during |
| * suspend-resume. |
| * |
| * Return: 0 on success. Negative error code on failure. |
| */ |
| int xe_bo_restore_pinned(struct xe_bo *bo) |
| { |
| struct ttm_operation_ctx ctx = { |
| .interruptible = false, |
| }; |
| struct ttm_resource *new_mem; |
| struct ttm_place *place = &bo->placements[0]; |
| int ret; |
| |
| xe_bo_assert_held(bo); |
| |
| if (WARN_ON(!bo->ttm.resource)) |
| return -EINVAL; |
| |
| if (WARN_ON(!xe_bo_is_pinned(bo))) |
| return -EINVAL; |
| |
| if (WARN_ON(xe_bo_is_vram(bo))) |
| return -EINVAL; |
| |
| if (WARN_ON(!bo->ttm.ttm && !xe_bo_is_stolen(bo))) |
| return -EINVAL; |
| |
| if (!mem_type_is_vram(place->mem_type)) |
| return 0; |
| |
| ret = ttm_bo_mem_space(&bo->ttm, &bo->placement, &new_mem, &ctx); |
| if (ret) |
| return ret; |
| |
| ret = ttm_tt_populate(bo->ttm.bdev, bo->ttm.ttm, &ctx); |
| if (ret) |
| goto err_res_free; |
| |
| ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1); |
| if (ret) |
| goto err_res_free; |
| |
| ret = xe_bo_move(&bo->ttm, false, &ctx, new_mem, NULL); |
| if (ret) |
| goto err_res_free; |
| |
| return 0; |
| |
| err_res_free: |
| ttm_resource_free(&bo->ttm, &new_mem); |
| return ret; |
| } |
| |
| static unsigned long xe_ttm_io_mem_pfn(struct ttm_buffer_object *ttm_bo, |
| unsigned long page_offset) |
| { |
| struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); |
| struct xe_res_cursor cursor; |
| struct xe_mem_region *vram; |
| |
| if (ttm_bo->resource->mem_type == XE_PL_STOLEN) |
| return xe_ttm_stolen_io_offset(bo, page_offset << PAGE_SHIFT) >> PAGE_SHIFT; |
| |
| vram = res_to_mem_region(ttm_bo->resource); |
| xe_res_first(ttm_bo->resource, (u64)page_offset << PAGE_SHIFT, 0, &cursor); |
| return (vram->io_start + cursor.start) >> PAGE_SHIFT; |
| } |
| |
| static void __xe_bo_vunmap(struct xe_bo *bo); |
| |
| /* |
| * TODO: Move this function to TTM so we don't rely on how TTM does its |
| * locking, thereby abusing TTM internals. |
| */ |
| static bool xe_ttm_bo_lock_in_destructor(struct ttm_buffer_object *ttm_bo) |
| { |
| struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); |
| bool locked; |
| |
| xe_assert(xe, !kref_read(&ttm_bo->kref)); |
| |
| /* |
| * We can typically only race with TTM trylocking under the |
| * lru_lock, which will immediately be unlocked again since |
| * the ttm_bo refcount is zero at this point. So trylocking *should* |
| * always succeed here, as long as we hold the lru lock. |
| */ |
| spin_lock(&ttm_bo->bdev->lru_lock); |
| locked = dma_resv_trylock(ttm_bo->base.resv); |
| spin_unlock(&ttm_bo->bdev->lru_lock); |
| xe_assert(xe, locked); |
| |
| return locked; |
| } |
| |
| static void xe_ttm_bo_release_notify(struct ttm_buffer_object *ttm_bo) |
| { |
| struct dma_resv_iter cursor; |
| struct dma_fence *fence; |
| struct dma_fence *replacement = NULL; |
| struct xe_bo *bo; |
| |
| if (!xe_bo_is_xe_bo(ttm_bo)) |
| return; |
| |
| bo = ttm_to_xe_bo(ttm_bo); |
| xe_assert(xe_bo_device(bo), !(bo->created && kref_read(&ttm_bo->base.refcount))); |
| |
| /* |
| * Corner case where TTM fails to allocate memory and this BOs resv |
| * still points the VMs resv |
| */ |
| if (ttm_bo->base.resv != &ttm_bo->base._resv) |
| return; |
| |
| if (!xe_ttm_bo_lock_in_destructor(ttm_bo)) |
| return; |
| |
| /* |
| * Scrub the preempt fences if any. The unbind fence is already |
| * attached to the resv. |
| * TODO: Don't do this for external bos once we scrub them after |
| * unbind. |
| */ |
| dma_resv_for_each_fence(&cursor, ttm_bo->base.resv, |
| DMA_RESV_USAGE_BOOKKEEP, fence) { |
| if (xe_fence_is_xe_preempt(fence) && |
| !dma_fence_is_signaled(fence)) { |
| if (!replacement) |
| replacement = dma_fence_get_stub(); |
| |
| dma_resv_replace_fences(ttm_bo->base.resv, |
| fence->context, |
| replacement, |
| DMA_RESV_USAGE_BOOKKEEP); |
| } |
| } |
| dma_fence_put(replacement); |
| |
| dma_resv_unlock(ttm_bo->base.resv); |
| } |
| |
| static void xe_ttm_bo_delete_mem_notify(struct ttm_buffer_object *ttm_bo) |
| { |
| if (!xe_bo_is_xe_bo(ttm_bo)) |
| return; |
| |
| /* |
| * Object is idle and about to be destroyed. Release the |
| * dma-buf attachment. |
| */ |
| if (ttm_bo->type == ttm_bo_type_sg && ttm_bo->sg) { |
| struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm, |
| struct xe_ttm_tt, ttm); |
| |
| dma_buf_unmap_attachment(ttm_bo->base.import_attach, ttm_bo->sg, |
| DMA_BIDIRECTIONAL); |
| ttm_bo->sg = NULL; |
| xe_tt->sg = NULL; |
| } |
| } |
| |
| const struct ttm_device_funcs xe_ttm_funcs = { |
| .ttm_tt_create = xe_ttm_tt_create, |
| .ttm_tt_populate = xe_ttm_tt_populate, |
| .ttm_tt_unpopulate = xe_ttm_tt_unpopulate, |
| .ttm_tt_destroy = xe_ttm_tt_destroy, |
| .evict_flags = xe_evict_flags, |
| .move = xe_bo_move, |
| .io_mem_reserve = xe_ttm_io_mem_reserve, |
| .io_mem_pfn = xe_ttm_io_mem_pfn, |
| .release_notify = xe_ttm_bo_release_notify, |
| .eviction_valuable = ttm_bo_eviction_valuable, |
| .delete_mem_notify = xe_ttm_bo_delete_mem_notify, |
| }; |
| |
| static void xe_ttm_bo_destroy(struct ttm_buffer_object *ttm_bo) |
| { |
| struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); |
| struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); |
| |
| if (bo->ttm.base.import_attach) |
| drm_prime_gem_destroy(&bo->ttm.base, NULL); |
| drm_gem_object_release(&bo->ttm.base); |
| |
| xe_assert(xe, list_empty(&ttm_bo->base.gpuva.list)); |
| |
| if (bo->ggtt_node && bo->ggtt_node->base.size) |
| xe_ggtt_remove_bo(bo->tile->mem.ggtt, bo); |
| |
| #ifdef CONFIG_PROC_FS |
| if (bo->client) |
| xe_drm_client_remove_bo(bo); |
| #endif |
| |
| if (bo->vm && xe_bo_is_user(bo)) |
| xe_vm_put(bo->vm); |
| |
| mutex_lock(&xe->mem_access.vram_userfault.lock); |
| if (!list_empty(&bo->vram_userfault_link)) |
| list_del(&bo->vram_userfault_link); |
| mutex_unlock(&xe->mem_access.vram_userfault.lock); |
| |
| kfree(bo); |
| } |
| |
| static void xe_gem_object_free(struct drm_gem_object *obj) |
| { |
| /* Our BO reference counting scheme works as follows: |
| * |
| * The gem object kref is typically used throughout the driver, |
| * and the gem object holds a ttm_buffer_object refcount, so |
| * that when the last gem object reference is put, which is when |
| * we end up in this function, we put also that ttm_buffer_object |
| * refcount. Anything using gem interfaces is then no longer |
| * allowed to access the object in a way that requires a gem |
| * refcount, including locking the object. |
| * |
| * driver ttm callbacks is allowed to use the ttm_buffer_object |
| * refcount directly if needed. |
| */ |
| __xe_bo_vunmap(gem_to_xe_bo(obj)); |
| ttm_bo_put(container_of(obj, struct ttm_buffer_object, base)); |
| } |
| |
| static void xe_gem_object_close(struct drm_gem_object *obj, |
| struct drm_file *file_priv) |
| { |
| struct xe_bo *bo = gem_to_xe_bo(obj); |
| |
| if (bo->vm && !xe_vm_in_fault_mode(bo->vm)) { |
| xe_assert(xe_bo_device(bo), xe_bo_is_user(bo)); |
| |
| xe_bo_lock(bo, false); |
| ttm_bo_set_bulk_move(&bo->ttm, NULL); |
| xe_bo_unlock(bo); |
| } |
| } |
| |
| static vm_fault_t xe_gem_fault(struct vm_fault *vmf) |
| { |
| struct ttm_buffer_object *tbo = vmf->vma->vm_private_data; |
| struct drm_device *ddev = tbo->base.dev; |
| struct xe_device *xe = to_xe_device(ddev); |
| struct xe_bo *bo = ttm_to_xe_bo(tbo); |
| bool needs_rpm = bo->flags & XE_BO_FLAG_VRAM_MASK; |
| vm_fault_t ret; |
| int idx; |
| |
| if (needs_rpm) |
| xe_pm_runtime_get(xe); |
| |
| ret = ttm_bo_vm_reserve(tbo, vmf); |
| if (ret) |
| goto out; |
| |
| if (drm_dev_enter(ddev, &idx)) { |
| trace_xe_bo_cpu_fault(bo); |
| |
| ret = ttm_bo_vm_fault_reserved(vmf, vmf->vma->vm_page_prot, |
| TTM_BO_VM_NUM_PREFAULT); |
| drm_dev_exit(idx); |
| } else { |
| ret = ttm_bo_vm_dummy_page(vmf, vmf->vma->vm_page_prot); |
| } |
| |
| if (ret == VM_FAULT_RETRY && !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) |
| goto out; |
| /* |
| * ttm_bo_vm_reserve() already has dma_resv_lock. |
| */ |
| if (ret == VM_FAULT_NOPAGE && mem_type_is_vram(tbo->resource->mem_type)) { |
| mutex_lock(&xe->mem_access.vram_userfault.lock); |
| if (list_empty(&bo->vram_userfault_link)) |
| list_add(&bo->vram_userfault_link, &xe->mem_access.vram_userfault.list); |
| mutex_unlock(&xe->mem_access.vram_userfault.lock); |
| } |
| |
| dma_resv_unlock(tbo->base.resv); |
| out: |
| if (needs_rpm) |
| xe_pm_runtime_put(xe); |
| |
| return ret; |
| } |
| |
| static const struct vm_operations_struct xe_gem_vm_ops = { |
| .fault = xe_gem_fault, |
| .open = ttm_bo_vm_open, |
| .close = ttm_bo_vm_close, |
| .access = ttm_bo_vm_access |
| }; |
| |
| static const struct drm_gem_object_funcs xe_gem_object_funcs = { |
| .free = xe_gem_object_free, |
| .close = xe_gem_object_close, |
| .mmap = drm_gem_ttm_mmap, |
| .export = xe_gem_prime_export, |
| .vm_ops = &xe_gem_vm_ops, |
| }; |
| |
| /** |
| * xe_bo_alloc - Allocate storage for a struct xe_bo |
| * |
| * This funcition is intended to allocate storage to be used for input |
| * to __xe_bo_create_locked(), in the case a pointer to the bo to be |
| * created is needed before the call to __xe_bo_create_locked(). |
| * If __xe_bo_create_locked ends up never to be called, then the |
| * storage allocated with this function needs to be freed using |
| * xe_bo_free(). |
| * |
| * Return: A pointer to an uninitialized struct xe_bo on success, |
| * ERR_PTR(-ENOMEM) on error. |
| */ |
| struct xe_bo *xe_bo_alloc(void) |
| { |
| struct xe_bo *bo = kzalloc(sizeof(*bo), GFP_KERNEL); |
| |
| if (!bo) |
| return ERR_PTR(-ENOMEM); |
| |
| return bo; |
| } |
| |
| /** |
| * xe_bo_free - Free storage allocated using xe_bo_alloc() |
| * @bo: The buffer object storage. |
| * |
| * Refer to xe_bo_alloc() documentation for valid use-cases. |
| */ |
| void xe_bo_free(struct xe_bo *bo) |
| { |
| kfree(bo); |
| } |
| |
| struct xe_bo *___xe_bo_create_locked(struct xe_device *xe, struct xe_bo *bo, |
| struct xe_tile *tile, struct dma_resv *resv, |
| struct ttm_lru_bulk_move *bulk, size_t size, |
| u16 cpu_caching, enum ttm_bo_type type, |
| u32 flags) |
| { |
| struct ttm_operation_ctx ctx = { |
| .interruptible = true, |
| .no_wait_gpu = false, |
| }; |
| struct ttm_placement *placement; |
| uint32_t alignment; |
| size_t aligned_size; |
| int err; |
| |
| /* Only kernel objects should set GT */ |
| xe_assert(xe, !tile || type == ttm_bo_type_kernel); |
| |
| if (XE_WARN_ON(!size)) { |
| xe_bo_free(bo); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| if (flags & (XE_BO_FLAG_VRAM_MASK | XE_BO_FLAG_STOLEN) && |
| !(flags & XE_BO_FLAG_IGNORE_MIN_PAGE_SIZE) && |
| ((xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) || |
| (flags & (XE_BO_FLAG_NEEDS_64K | XE_BO_FLAG_NEEDS_2M)))) { |
| size_t align = flags & XE_BO_FLAG_NEEDS_2M ? SZ_2M : SZ_64K; |
| |
| aligned_size = ALIGN(size, align); |
| if (type != ttm_bo_type_device) |
| size = ALIGN(size, align); |
| flags |= XE_BO_FLAG_INTERNAL_64K; |
| alignment = align >> PAGE_SHIFT; |
| } else { |
| aligned_size = ALIGN(size, SZ_4K); |
| flags &= ~XE_BO_FLAG_INTERNAL_64K; |
| alignment = SZ_4K >> PAGE_SHIFT; |
| } |
| |
| if (type == ttm_bo_type_device && aligned_size != size) |
| return ERR_PTR(-EINVAL); |
| |
| if (!bo) { |
| bo = xe_bo_alloc(); |
| if (IS_ERR(bo)) |
| return bo; |
| } |
| |
| bo->ccs_cleared = false; |
| bo->tile = tile; |
| bo->size = size; |
| bo->flags = flags; |
| bo->cpu_caching = cpu_caching; |
| bo->ttm.base.funcs = &xe_gem_object_funcs; |
| bo->ttm.priority = XE_BO_PRIORITY_NORMAL; |
| INIT_LIST_HEAD(&bo->pinned_link); |
| #ifdef CONFIG_PROC_FS |
| INIT_LIST_HEAD(&bo->client_link); |
| #endif |
| INIT_LIST_HEAD(&bo->vram_userfault_link); |
| |
| drm_gem_private_object_init(&xe->drm, &bo->ttm.base, size); |
| |
| if (resv) { |
| ctx.allow_res_evict = !(flags & XE_BO_FLAG_NO_RESV_EVICT); |
| ctx.resv = resv; |
| } |
| |
| if (!(flags & XE_BO_FLAG_FIXED_PLACEMENT)) { |
| err = __xe_bo_placement_for_flags(xe, bo, bo->flags); |
| if (WARN_ON(err)) { |
| xe_ttm_bo_destroy(&bo->ttm); |
| return ERR_PTR(err); |
| } |
| } |
| |
| /* Defer populating type_sg bos */ |
| placement = (type == ttm_bo_type_sg || |
| bo->flags & XE_BO_FLAG_DEFER_BACKING) ? &sys_placement : |
| &bo->placement; |
| err = ttm_bo_init_reserved(&xe->ttm, &bo->ttm, type, |
| placement, alignment, |
| &ctx, NULL, resv, xe_ttm_bo_destroy); |
| if (err) |
| return ERR_PTR(err); |
| |
| /* |
| * The VRAM pages underneath are potentially still being accessed by the |
| * GPU, as per async GPU clearing and async evictions. However TTM makes |
| * sure to add any corresponding move/clear fences into the objects |
| * dma-resv using the DMA_RESV_USAGE_KERNEL slot. |
| * |
| * For KMD internal buffers we don't care about GPU clearing, however we |
| * still need to handle async evictions, where the VRAM is still being |
| * accessed by the GPU. Most internal callers are not expecting this, |
| * since they are missing the required synchronisation before accessing |
| * the memory. To keep things simple just sync wait any kernel fences |
| * here, if the buffer is designated KMD internal. |
| * |
| * For normal userspace objects we should already have the required |
| * pipelining or sync waiting elsewhere, since we already have to deal |
| * with things like async GPU clearing. |
| */ |
| if (type == ttm_bo_type_kernel) { |
| long timeout = dma_resv_wait_timeout(bo->ttm.base.resv, |
| DMA_RESV_USAGE_KERNEL, |
| ctx.interruptible, |
| MAX_SCHEDULE_TIMEOUT); |
| |
| if (timeout < 0) { |
| if (!resv) |
| dma_resv_unlock(bo->ttm.base.resv); |
| xe_bo_put(bo); |
| return ERR_PTR(timeout); |
| } |
| } |
| |
| bo->created = true; |
| if (bulk) |
| ttm_bo_set_bulk_move(&bo->ttm, bulk); |
| else |
| ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); |
| |
| return bo; |
| } |
| |
| static int __xe_bo_fixed_placement(struct xe_device *xe, |
| struct xe_bo *bo, |
| u32 flags, |
| u64 start, u64 end, u64 size) |
| { |
| struct ttm_place *place = bo->placements; |
| |
| if (flags & (XE_BO_FLAG_USER | XE_BO_FLAG_SYSTEM)) |
| return -EINVAL; |
| |
| place->flags = TTM_PL_FLAG_CONTIGUOUS; |
| place->fpfn = start >> PAGE_SHIFT; |
| place->lpfn = end >> PAGE_SHIFT; |
| |
| switch (flags & (XE_BO_FLAG_STOLEN | XE_BO_FLAG_VRAM_MASK)) { |
| case XE_BO_FLAG_VRAM0: |
| place->mem_type = XE_PL_VRAM0; |
| break; |
| case XE_BO_FLAG_VRAM1: |
| place->mem_type = XE_PL_VRAM1; |
| break; |
| case XE_BO_FLAG_STOLEN: |
| place->mem_type = XE_PL_STOLEN; |
| break; |
| |
| default: |
| /* 0 or multiple of the above set */ |
| return -EINVAL; |
| } |
| |
| bo->placement = (struct ttm_placement) { |
| .num_placement = 1, |
| .placement = place, |
| }; |
| |
| return 0; |
| } |
| |
| static struct xe_bo * |
| __xe_bo_create_locked(struct xe_device *xe, |
| struct xe_tile *tile, struct xe_vm *vm, |
| size_t size, u64 start, u64 end, |
| u16 cpu_caching, enum ttm_bo_type type, u32 flags) |
| { |
| struct xe_bo *bo = NULL; |
| int err; |
| |
| if (vm) |
| xe_vm_assert_held(vm); |
| |
| if (start || end != ~0ULL) { |
| bo = xe_bo_alloc(); |
| if (IS_ERR(bo)) |
| return bo; |
| |
| flags |= XE_BO_FLAG_FIXED_PLACEMENT; |
| err = __xe_bo_fixed_placement(xe, bo, flags, start, end, size); |
| if (err) { |
| xe_bo_free(bo); |
| return ERR_PTR(err); |
| } |
| } |
| |
| bo = ___xe_bo_create_locked(xe, bo, tile, vm ? xe_vm_resv(vm) : NULL, |
| vm && !xe_vm_in_fault_mode(vm) && |
| flags & XE_BO_FLAG_USER ? |
| &vm->lru_bulk_move : NULL, size, |
| cpu_caching, type, flags); |
| if (IS_ERR(bo)) |
| return bo; |
| |
| /* |
| * Note that instead of taking a reference no the drm_gpuvm_resv_bo(), |
| * to ensure the shared resv doesn't disappear under the bo, the bo |
| * will keep a reference to the vm, and avoid circular references |
| * by having all the vm's bo refereferences released at vm close |
| * time. |
| */ |
| if (vm && xe_bo_is_user(bo)) |
| xe_vm_get(vm); |
| bo->vm = vm; |
| |
| if (bo->flags & XE_BO_FLAG_GGTT) { |
| if (!tile && flags & XE_BO_FLAG_STOLEN) |
| tile = xe_device_get_root_tile(xe); |
| |
| xe_assert(xe, tile); |
| |
| if (flags & XE_BO_FLAG_FIXED_PLACEMENT) { |
| err = xe_ggtt_insert_bo_at(tile->mem.ggtt, bo, |
| start + bo->size, U64_MAX); |
| } else { |
| err = xe_ggtt_insert_bo(tile->mem.ggtt, bo); |
| } |
| if (err) |
| goto err_unlock_put_bo; |
| } |
| |
| return bo; |
| |
| err_unlock_put_bo: |
| __xe_bo_unset_bulk_move(bo); |
| xe_bo_unlock_vm_held(bo); |
| xe_bo_put(bo); |
| return ERR_PTR(err); |
| } |
| |
| struct xe_bo * |
| xe_bo_create_locked_range(struct xe_device *xe, |
| struct xe_tile *tile, struct xe_vm *vm, |
| size_t size, u64 start, u64 end, |
| enum ttm_bo_type type, u32 flags) |
| { |
| return __xe_bo_create_locked(xe, tile, vm, size, start, end, 0, type, flags); |
| } |
| |
| struct xe_bo *xe_bo_create_locked(struct xe_device *xe, struct xe_tile *tile, |
| struct xe_vm *vm, size_t size, |
| enum ttm_bo_type type, u32 flags) |
| { |
| return __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL, 0, type, flags); |
| } |
| |
| struct xe_bo *xe_bo_create_user(struct xe_device *xe, struct xe_tile *tile, |
| struct xe_vm *vm, size_t size, |
| u16 cpu_caching, |
| u32 flags) |
| { |
| struct xe_bo *bo = __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL, |
| cpu_caching, ttm_bo_type_device, |
| flags | XE_BO_FLAG_USER); |
| if (!IS_ERR(bo)) |
| xe_bo_unlock_vm_held(bo); |
| |
| return bo; |
| } |
| |
| struct xe_bo *xe_bo_create(struct xe_device *xe, struct xe_tile *tile, |
| struct xe_vm *vm, size_t size, |
| enum ttm_bo_type type, u32 flags) |
| { |
| struct xe_bo *bo = xe_bo_create_locked(xe, tile, vm, size, type, flags); |
| |
| if (!IS_ERR(bo)) |
| xe_bo_unlock_vm_held(bo); |
| |
| return bo; |
| } |
| |
| struct xe_bo *xe_bo_create_pin_map_at(struct xe_device *xe, struct xe_tile *tile, |
| struct xe_vm *vm, |
| size_t size, u64 offset, |
| enum ttm_bo_type type, u32 flags) |
| { |
| struct xe_bo *bo; |
| int err; |
| u64 start = offset == ~0ull ? 0 : offset; |
| u64 end = offset == ~0ull ? offset : start + size; |
| |
| if (flags & XE_BO_FLAG_STOLEN && |
| xe_ttm_stolen_cpu_access_needs_ggtt(xe)) |
| flags |= XE_BO_FLAG_GGTT; |
| |
| bo = xe_bo_create_locked_range(xe, tile, vm, size, start, end, type, |
| flags | XE_BO_FLAG_NEEDS_CPU_ACCESS); |
| if (IS_ERR(bo)) |
| return bo; |
| |
| err = xe_bo_pin(bo); |
| if (err) |
| goto err_put; |
| |
| err = xe_bo_vmap(bo); |
| if (err) |
| goto err_unpin; |
| |
| xe_bo_unlock_vm_held(bo); |
| |
| return bo; |
| |
| err_unpin: |
| xe_bo_unpin(bo); |
| err_put: |
| xe_bo_unlock_vm_held(bo); |
| xe_bo_put(bo); |
| return ERR_PTR(err); |
| } |
| |
| struct xe_bo *xe_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile, |
| struct xe_vm *vm, size_t size, |
| enum ttm_bo_type type, u32 flags) |
| { |
| return xe_bo_create_pin_map_at(xe, tile, vm, size, ~0ull, type, flags); |
| } |
| |
| struct xe_bo *xe_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile, |
| const void *data, size_t size, |
| enum ttm_bo_type type, u32 flags) |
| { |
| struct xe_bo *bo = xe_bo_create_pin_map(xe, tile, NULL, |
| ALIGN(size, PAGE_SIZE), |
| type, flags); |
| if (IS_ERR(bo)) |
| return bo; |
| |
| xe_map_memcpy_to(xe, &bo->vmap, 0, data, size); |
| |
| return bo; |
| } |
| |
| static void __xe_bo_unpin_map_no_vm(void *arg) |
| { |
| xe_bo_unpin_map_no_vm(arg); |
| } |
| |
| struct xe_bo *xe_managed_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile, |
| size_t size, u32 flags) |
| { |
| struct xe_bo *bo; |
| int ret; |
| |
| bo = xe_bo_create_pin_map(xe, tile, NULL, size, ttm_bo_type_kernel, flags); |
| if (IS_ERR(bo)) |
| return bo; |
| |
| ret = devm_add_action_or_reset(xe->drm.dev, __xe_bo_unpin_map_no_vm, bo); |
| if (ret) |
| return ERR_PTR(ret); |
| |
| return bo; |
| } |
| |
| struct xe_bo *xe_managed_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile, |
| const void *data, size_t size, u32 flags) |
| { |
| struct xe_bo *bo = xe_managed_bo_create_pin_map(xe, tile, ALIGN(size, PAGE_SIZE), flags); |
| |
| if (IS_ERR(bo)) |
| return bo; |
| |
| xe_map_memcpy_to(xe, &bo->vmap, 0, data, size); |
| |
| return bo; |
| } |
| |
| /** |
| * xe_managed_bo_reinit_in_vram |
| * @xe: xe device |
| * @tile: Tile where the new buffer will be created |
| * @src: Managed buffer object allocated in system memory |
| * |
| * Replace a managed src buffer object allocated in system memory with a new |
| * one allocated in vram, copying the data between them. |
| * Buffer object in VRAM is not going to have the same GGTT address, the caller |
| * is responsible for making sure that any old references to it are updated. |
| * |
| * Returns 0 for success, negative error code otherwise. |
| */ |
| int xe_managed_bo_reinit_in_vram(struct xe_device *xe, struct xe_tile *tile, struct xe_bo **src) |
| { |
| struct xe_bo *bo; |
| u32 dst_flags = XE_BO_FLAG_VRAM_IF_DGFX(tile) | XE_BO_FLAG_GGTT; |
| |
| dst_flags |= (*src)->flags & XE_BO_FLAG_GGTT_INVALIDATE; |
| |
| xe_assert(xe, IS_DGFX(xe)); |
| xe_assert(xe, !(*src)->vmap.is_iomem); |
| |
| bo = xe_managed_bo_create_from_data(xe, tile, (*src)->vmap.vaddr, |
| (*src)->size, dst_flags); |
| if (IS_ERR(bo)) |
| return PTR_ERR(bo); |
| |
| devm_release_action(xe->drm.dev, __xe_bo_unpin_map_no_vm, *src); |
| *src = bo; |
| |
| return 0; |
| } |
| |
| /* |
| * XXX: This is in the VM bind data path, likely should calculate this once and |
| * store, with a recalculation if the BO is moved. |
| */ |
| uint64_t vram_region_gpu_offset(struct ttm_resource *res) |
| { |
| struct xe_device *xe = ttm_to_xe_device(res->bo->bdev); |
| |
| if (res->mem_type == XE_PL_STOLEN) |
| return xe_ttm_stolen_gpu_offset(xe); |
| |
| return res_to_mem_region(res)->dpa_base; |
| } |
| |
| /** |
| * xe_bo_pin_external - pin an external BO |
| * @bo: buffer object to be pinned |
| * |
| * Pin an external (not tied to a VM, can be exported via dma-buf / prime FD) |
| * BO. Unique call compared to xe_bo_pin as this function has it own set of |
| * asserts and code to ensure evict / restore on suspend / resume. |
| * |
| * Returns 0 for success, negative error code otherwise. |
| */ |
| int xe_bo_pin_external(struct xe_bo *bo) |
| { |
| struct xe_device *xe = xe_bo_device(bo); |
| int err; |
| |
| xe_assert(xe, !bo->vm); |
| xe_assert(xe, xe_bo_is_user(bo)); |
| |
| if (!xe_bo_is_pinned(bo)) { |
| err = xe_bo_validate(bo, NULL, false); |
| if (err) |
| return err; |
| |
| if (xe_bo_is_vram(bo)) { |
| spin_lock(&xe->pinned.lock); |
| list_add_tail(&bo->pinned_link, |
| &xe->pinned.external_vram); |
| spin_unlock(&xe->pinned.lock); |
| } |
| } |
| |
| ttm_bo_pin(&bo->ttm); |
| |
| /* |
| * FIXME: If we always use the reserve / unreserve functions for locking |
| * we do not need this. |
| */ |
| ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); |
| |
| return 0; |
| } |
| |
| int xe_bo_pin(struct xe_bo *bo) |
| { |
| struct ttm_place *place = &bo->placements[0]; |
| struct xe_device *xe = xe_bo_device(bo); |
| int err; |
| |
| /* We currently don't expect user BO to be pinned */ |
| xe_assert(xe, !xe_bo_is_user(bo)); |
| |
| /* Pinned object must be in GGTT or have pinned flag */ |
| xe_assert(xe, bo->flags & (XE_BO_FLAG_PINNED | |
| XE_BO_FLAG_GGTT)); |
| |
| /* |
| * No reason we can't support pinning imported dma-bufs we just don't |
| * expect to pin an imported dma-buf. |
| */ |
| xe_assert(xe, !bo->ttm.base.import_attach); |
| |
| /* We only expect at most 1 pin */ |
| xe_assert(xe, !xe_bo_is_pinned(bo)); |
| |
| err = xe_bo_validate(bo, NULL, false); |
| if (err) |
| return err; |
| |
| /* |
| * For pinned objects in on DGFX, which are also in vram, we expect |
| * these to be in contiguous VRAM memory. Required eviction / restore |
| * during suspend / resume (force restore to same physical address). |
| */ |
| if (IS_DGFX(xe) && !(IS_ENABLED(CONFIG_DRM_XE_DEBUG) && |
| bo->flags & XE_BO_FLAG_INTERNAL_TEST)) { |
| if (mem_type_is_vram(place->mem_type)) { |
| xe_assert(xe, place->flags & TTM_PL_FLAG_CONTIGUOUS); |
| |
| place->fpfn = (xe_bo_addr(bo, 0, PAGE_SIZE) - |
| vram_region_gpu_offset(bo->ttm.resource)) >> PAGE_SHIFT; |
| place->lpfn = place->fpfn + (bo->size >> PAGE_SHIFT); |
| } |
| } |
| |
| if (mem_type_is_vram(place->mem_type) || bo->flags & XE_BO_FLAG_GGTT) { |
| spin_lock(&xe->pinned.lock); |
| list_add_tail(&bo->pinned_link, &xe->pinned.kernel_bo_present); |
| spin_unlock(&xe->pinned.lock); |
| } |
| |
| ttm_bo_pin(&bo->ttm); |
| |
| /* |
| * FIXME: If we always use the reserve / unreserve functions for locking |
| * we do not need this. |
| */ |
| ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); |
| |
| return 0; |
| } |
| |
| /** |
| * xe_bo_unpin_external - unpin an external BO |
| * @bo: buffer object to be unpinned |
| * |
| * Unpin an external (not tied to a VM, can be exported via dma-buf / prime FD) |
| * BO. Unique call compared to xe_bo_unpin as this function has it own set of |
| * asserts and code to ensure evict / restore on suspend / resume. |
| * |
| * Returns 0 for success, negative error code otherwise. |
| */ |
| void xe_bo_unpin_external(struct xe_bo *bo) |
| { |
| struct xe_device *xe = xe_bo_device(bo); |
| |
| xe_assert(xe, !bo->vm); |
| xe_assert(xe, xe_bo_is_pinned(bo)); |
| xe_assert(xe, xe_bo_is_user(bo)); |
| |
| spin_lock(&xe->pinned.lock); |
| if (bo->ttm.pin_count == 1 && !list_empty(&bo->pinned_link)) |
| list_del_init(&bo->pinned_link); |
| spin_unlock(&xe->pinned.lock); |
| |
| ttm_bo_unpin(&bo->ttm); |
| |
| /* |
| * FIXME: If we always use the reserve / unreserve functions for locking |
| * we do not need this. |
| */ |
| ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); |
| } |
| |
| void xe_bo_unpin(struct xe_bo *bo) |
| { |
| struct ttm_place *place = &bo->placements[0]; |
| struct xe_device *xe = xe_bo_device(bo); |
| |
| xe_assert(xe, !bo->ttm.base.import_attach); |
| xe_assert(xe, xe_bo_is_pinned(bo)); |
| |
| if (mem_type_is_vram(place->mem_type) || bo->flags & XE_BO_FLAG_GGTT) { |
| spin_lock(&xe->pinned.lock); |
| xe_assert(xe, !list_empty(&bo->pinned_link)); |
| list_del_init(&bo->pinned_link); |
| spin_unlock(&xe->pinned.lock); |
| } |
| ttm_bo_unpin(&bo->ttm); |
| } |
| |
| /** |
| * xe_bo_validate() - Make sure the bo is in an allowed placement |
| * @bo: The bo, |
| * @vm: Pointer to a the vm the bo shares a locked dma_resv object with, or |
| * NULL. Used together with @allow_res_evict. |
| * @allow_res_evict: Whether it's allowed to evict bos sharing @vm's |
| * reservation object. |
| * |
| * Make sure the bo is in allowed placement, migrating it if necessary. If |
| * needed, other bos will be evicted. If bos selected for eviction shares |
| * the @vm's reservation object, they can be evicted iff @allow_res_evict is |
| * set to true, otherwise they will be bypassed. |
| * |
| * Return: 0 on success, negative error code on failure. May return |
| * -EINTR or -ERESTARTSYS if internal waits are interrupted by a signal. |
| */ |
| int xe_bo_validate(struct xe_bo *bo, struct xe_vm *vm, bool allow_res_evict) |
| { |
| struct ttm_operation_ctx ctx = { |
| .interruptible = true, |
| .no_wait_gpu = false, |
| }; |
| |
| if (vm) { |
| lockdep_assert_held(&vm->lock); |
| xe_vm_assert_held(vm); |
| |
| ctx.allow_res_evict = allow_res_evict; |
| ctx.resv = xe_vm_resv(vm); |
| } |
| |
| return ttm_bo_validate(&bo->ttm, &bo->placement, &ctx); |
| } |
| |
| bool xe_bo_is_xe_bo(struct ttm_buffer_object *bo) |
| { |
| if (bo->destroy == &xe_ttm_bo_destroy) |
| return true; |
| |
| return false; |
| } |
| |
| /* |
| * Resolve a BO address. There is no assert to check if the proper lock is held |
| * so it should only be used in cases where it is not fatal to get the wrong |
| * address, such as printing debug information, but not in cases where memory is |
| * written based on this result. |
| */ |
| dma_addr_t __xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size) |
| { |
| struct xe_device *xe = xe_bo_device(bo); |
| struct xe_res_cursor cur; |
| u64 page; |
| |
| xe_assert(xe, page_size <= PAGE_SIZE); |
| page = offset >> PAGE_SHIFT; |
| offset &= (PAGE_SIZE - 1); |
| |
| if (!xe_bo_is_vram(bo) && !xe_bo_is_stolen(bo)) { |
| xe_assert(xe, bo->ttm.ttm); |
| |
| xe_res_first_sg(xe_bo_sg(bo), page << PAGE_SHIFT, |
| page_size, &cur); |
| return xe_res_dma(&cur) + offset; |
| } else { |
| struct xe_res_cursor cur; |
| |
| xe_res_first(bo->ttm.resource, page << PAGE_SHIFT, |
| page_size, &cur); |
| return cur.start + offset + vram_region_gpu_offset(bo->ttm.resource); |
| } |
| } |
| |
| dma_addr_t xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size) |
| { |
| if (!READ_ONCE(bo->ttm.pin_count)) |
| xe_bo_assert_held(bo); |
| return __xe_bo_addr(bo, offset, page_size); |
| } |
| |
| int xe_bo_vmap(struct xe_bo *bo) |
| { |
| void *virtual; |
| bool is_iomem; |
| int ret; |
| |
| xe_bo_assert_held(bo); |
| |
| if (!(bo->flags & XE_BO_FLAG_NEEDS_CPU_ACCESS)) |
| return -EINVAL; |
| |
| if (!iosys_map_is_null(&bo->vmap)) |
| return 0; |
| |
| /* |
| * We use this more or less deprecated interface for now since |
| * ttm_bo_vmap() doesn't offer the optimization of kmapping |
| * single page bos, which is done here. |
| * TODO: Fix up ttm_bo_vmap to do that, or fix up ttm_bo_kmap |
| * to use struct iosys_map. |
| */ |
| ret = ttm_bo_kmap(&bo->ttm, 0, bo->size >> PAGE_SHIFT, &bo->kmap); |
| if (ret) |
| return ret; |
| |
| virtual = ttm_kmap_obj_virtual(&bo->kmap, &is_iomem); |
| if (is_iomem) |
| iosys_map_set_vaddr_iomem(&bo->vmap, (void __iomem *)virtual); |
| else |
| iosys_map_set_vaddr(&bo->vmap, virtual); |
| |
| return 0; |
| } |
| |
| static void __xe_bo_vunmap(struct xe_bo *bo) |
| { |
| if (!iosys_map_is_null(&bo->vmap)) { |
| iosys_map_clear(&bo->vmap); |
| ttm_bo_kunmap(&bo->kmap); |
| } |
| } |
| |
| void xe_bo_vunmap(struct xe_bo *bo) |
| { |
| xe_bo_assert_held(bo); |
| __xe_bo_vunmap(bo); |
| } |
| |
| int xe_gem_create_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct xe_device *xe = to_xe_device(dev); |
| struct xe_file *xef = to_xe_file(file); |
| struct drm_xe_gem_create *args = data; |
| struct xe_vm *vm = NULL; |
| struct xe_bo *bo; |
| unsigned int bo_flags; |
| u32 handle; |
| int err; |
| |
| if (XE_IOCTL_DBG(xe, args->extensions) || |
| XE_IOCTL_DBG(xe, args->pad[0] || args->pad[1] || args->pad[2]) || |
| XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1])) |
| return -EINVAL; |
| |
| /* at least one valid memory placement must be specified */ |
| if (XE_IOCTL_DBG(xe, (args->placement & ~xe->info.mem_region_mask) || |
| !args->placement)) |
| return -EINVAL; |
| |
| if (XE_IOCTL_DBG(xe, args->flags & |
| ~(DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING | |
| DRM_XE_GEM_CREATE_FLAG_SCANOUT | |
| DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM))) |
| return -EINVAL; |
| |
| if (XE_IOCTL_DBG(xe, args->handle)) |
| return -EINVAL; |
| |
| if (XE_IOCTL_DBG(xe, !args->size)) |
| return -EINVAL; |
| |
| if (XE_IOCTL_DBG(xe, args->size > SIZE_MAX)) |
| return -EINVAL; |
| |
| if (XE_IOCTL_DBG(xe, args->size & ~PAGE_MASK)) |
| return -EINVAL; |
| |
| bo_flags = 0; |
| if (args->flags & DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING) |
| bo_flags |= XE_BO_FLAG_DEFER_BACKING; |
| |
| if (args->flags & DRM_XE_GEM_CREATE_FLAG_SCANOUT) |
| bo_flags |= XE_BO_FLAG_SCANOUT; |
| |
| bo_flags |= args->placement << (ffs(XE_BO_FLAG_SYSTEM) - 1); |
| |
| /* CCS formats need physical placement at a 64K alignment in VRAM. */ |
| if ((bo_flags & XE_BO_FLAG_VRAM_MASK) && |
| (bo_flags & XE_BO_FLAG_SCANOUT) && |
| !(xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) && |
| IS_ALIGNED(args->size, SZ_64K)) |
| bo_flags |= XE_BO_FLAG_NEEDS_64K; |
| |
| if (args->flags & DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM) { |
| if (XE_IOCTL_DBG(xe, !(bo_flags & XE_BO_FLAG_VRAM_MASK))) |
| return -EINVAL; |
| |
| bo_flags |= XE_BO_FLAG_NEEDS_CPU_ACCESS; |
| } |
| |
| if (XE_IOCTL_DBG(xe, !args->cpu_caching || |
| args->cpu_caching > DRM_XE_GEM_CPU_CACHING_WC)) |
| return -EINVAL; |
| |
| if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_FLAG_VRAM_MASK && |
| args->cpu_caching != DRM_XE_GEM_CPU_CACHING_WC)) |
| return -EINVAL; |
| |
| if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_FLAG_SCANOUT && |
| args->cpu_caching == DRM_XE_GEM_CPU_CACHING_WB)) |
| return -EINVAL; |
| |
| if (args->vm_id) { |
| vm = xe_vm_lookup(xef, args->vm_id); |
| if (XE_IOCTL_DBG(xe, !vm)) |
| return -ENOENT; |
| err = xe_vm_lock(vm, true); |
| if (err) |
| goto out_vm; |
| } |
| |
| bo = xe_bo_create_user(xe, NULL, vm, args->size, args->cpu_caching, |
| bo_flags); |
| |
| if (vm) |
| xe_vm_unlock(vm); |
| |
| if (IS_ERR(bo)) { |
| err = PTR_ERR(bo); |
| goto out_vm; |
| } |
| |
| err = drm_gem_handle_create(file, &bo->ttm.base, &handle); |
| if (err) |
| goto out_bulk; |
| |
| args->handle = handle; |
| goto out_put; |
| |
| out_bulk: |
| if (vm && !xe_vm_in_fault_mode(vm)) { |
| xe_vm_lock(vm, false); |
| __xe_bo_unset_bulk_move(bo); |
| xe_vm_unlock(vm); |
| } |
| out_put: |
| xe_bo_put(bo); |
| out_vm: |
| if (vm) |
| xe_vm_put(vm); |
| |
| return err; |
| } |
| |
| int xe_gem_mmap_offset_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct xe_device *xe = to_xe_device(dev); |
| struct drm_xe_gem_mmap_offset *args = data; |
| struct drm_gem_object *gem_obj; |
| |
| if (XE_IOCTL_DBG(xe, args->extensions) || |
| XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1])) |
| return -EINVAL; |
| |
| if (XE_IOCTL_DBG(xe, args->flags)) |
| return -EINVAL; |
| |
| gem_obj = drm_gem_object_lookup(file, args->handle); |
| if (XE_IOCTL_DBG(xe, !gem_obj)) |
| return -ENOENT; |
| |
| /* The mmap offset was set up at BO allocation time. */ |
| args->offset = drm_vma_node_offset_addr(&gem_obj->vma_node); |
| |
| xe_bo_put(gem_to_xe_bo(gem_obj)); |
| return 0; |
| } |
| |
| /** |
| * xe_bo_lock() - Lock the buffer object's dma_resv object |
| * @bo: The struct xe_bo whose lock is to be taken |
| * @intr: Whether to perform any wait interruptible |
| * |
| * Locks the buffer object's dma_resv object. If the buffer object is |
| * pointing to a shared dma_resv object, that shared lock is locked. |
| * |
| * Return: 0 on success, -EINTR if @intr is true and the wait for a |
| * contended lock was interrupted. If @intr is set to false, the |
| * function always returns 0. |
| */ |
| int xe_bo_lock(struct xe_bo *bo, bool intr) |
| { |
| if (intr) |
| return dma_resv_lock_interruptible(bo->ttm.base.resv, NULL); |
| |
| dma_resv_lock(bo->ttm.base.resv, NULL); |
| |
| return 0; |
| } |
| |
| /** |
| * xe_bo_unlock() - Unlock the buffer object's dma_resv object |
| * @bo: The struct xe_bo whose lock is to be released. |
| * |
| * Unlock a buffer object lock that was locked by xe_bo_lock(). |
| */ |
| void xe_bo_unlock(struct xe_bo *bo) |
| { |
| dma_resv_unlock(bo->ttm.base.resv); |
| } |
| |
| /** |
| * xe_bo_can_migrate - Whether a buffer object likely can be migrated |
| * @bo: The buffer object to migrate |
| * @mem_type: The TTM memory type intended to migrate to |
| * |
| * Check whether the buffer object supports migration to the |
| * given memory type. Note that pinning may affect the ability to migrate as |
| * returned by this function. |
| * |
| * This function is primarily intended as a helper for checking the |
| * possibility to migrate buffer objects and can be called without |
| * the object lock held. |
| * |
| * Return: true if migration is possible, false otherwise. |
| */ |
| bool xe_bo_can_migrate(struct xe_bo *bo, u32 mem_type) |
| { |
| unsigned int cur_place; |
| |
| if (bo->ttm.type == ttm_bo_type_kernel) |
| return true; |
| |
| if (bo->ttm.type == ttm_bo_type_sg) |
| return false; |
| |
| for (cur_place = 0; cur_place < bo->placement.num_placement; |
| cur_place++) { |
| if (bo->placements[cur_place].mem_type == mem_type) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static void xe_place_from_ttm_type(u32 mem_type, struct ttm_place *place) |
| { |
| memset(place, 0, sizeof(*place)); |
| place->mem_type = mem_type; |
| } |
| |
| /** |
| * xe_bo_migrate - Migrate an object to the desired region id |
| * @bo: The buffer object to migrate. |
| * @mem_type: The TTM region type to migrate to. |
| * |
| * Attempt to migrate the buffer object to the desired memory region. The |
| * buffer object may not be pinned, and must be locked. |
| * On successful completion, the object memory type will be updated, |
| * but an async migration task may not have completed yet, and to |
| * accomplish that, the object's kernel fences must be signaled with |
| * the object lock held. |
| * |
| * Return: 0 on success. Negative error code on failure. In particular may |
| * return -EINTR or -ERESTARTSYS if signal pending. |
| */ |
| int xe_bo_migrate(struct xe_bo *bo, u32 mem_type) |
| { |
| struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev); |
| struct ttm_operation_ctx ctx = { |
| .interruptible = true, |
| .no_wait_gpu = false, |
| }; |
| struct ttm_placement placement; |
| struct ttm_place requested; |
| |
| xe_bo_assert_held(bo); |
| |
| if (bo->ttm.resource->mem_type == mem_type) |
| return 0; |
| |
| if (xe_bo_is_pinned(bo)) |
| return -EBUSY; |
| |
| if (!xe_bo_can_migrate(bo, mem_type)) |
| return -EINVAL; |
| |
| xe_place_from_ttm_type(mem_type, &requested); |
| placement.num_placement = 1; |
| placement.placement = &requested; |
| |
| /* |
| * Stolen needs to be handled like below VRAM handling if we ever need |
| * to support it. |
| */ |
| drm_WARN_ON(&xe->drm, mem_type == XE_PL_STOLEN); |
| |
| if (mem_type_is_vram(mem_type)) { |
| u32 c = 0; |
| |
| add_vram(xe, bo, &requested, bo->flags, mem_type, &c); |
| } |
| |
| return ttm_bo_validate(&bo->ttm, &placement, &ctx); |
| } |
| |
| /** |
| * xe_bo_evict - Evict an object to evict placement |
| * @bo: The buffer object to migrate. |
| * @force_alloc: Set force_alloc in ttm_operation_ctx |
| * |
| * On successful completion, the object memory will be moved to evict |
| * placement. Ths function blocks until the object has been fully moved. |
| * |
| * Return: 0 on success. Negative error code on failure. |
| */ |
| int xe_bo_evict(struct xe_bo *bo, bool force_alloc) |
| { |
| struct ttm_operation_ctx ctx = { |
| .interruptible = false, |
| .no_wait_gpu = false, |
| .force_alloc = force_alloc, |
| }; |
| struct ttm_placement placement; |
| int ret; |
| |
| xe_evict_flags(&bo->ttm, &placement); |
| ret = ttm_bo_validate(&bo->ttm, &placement, &ctx); |
| if (ret) |
| return ret; |
| |
| dma_resv_wait_timeout(bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL, |
| false, MAX_SCHEDULE_TIMEOUT); |
| |
| return 0; |
| } |
| |
| /** |
| * xe_bo_needs_ccs_pages - Whether a bo needs to back up CCS pages when |
| * placed in system memory. |
| * @bo: The xe_bo |
| * |
| * Return: true if extra pages need to be allocated, false otherwise. |
| */ |
| bool xe_bo_needs_ccs_pages(struct xe_bo *bo) |
| { |
| struct xe_device *xe = xe_bo_device(bo); |
| |
| if (GRAPHICS_VER(xe) >= 20 && IS_DGFX(xe)) |
| return false; |
| |
| if (!xe_device_has_flat_ccs(xe) || bo->ttm.type != ttm_bo_type_device) |
| return false; |
| |
| /* On discrete GPUs, if the GPU can access this buffer from |
| * system memory (i.e., it allows XE_PL_TT placement), FlatCCS |
| * can't be used since there's no CCS storage associated with |
| * non-VRAM addresses. |
| */ |
| if (IS_DGFX(xe) && (bo->flags & XE_BO_FLAG_SYSTEM)) |
| return false; |
| |
| return true; |
| } |
| |
| /** |
| * __xe_bo_release_dummy() - Dummy kref release function |
| * @kref: The embedded struct kref. |
| * |
| * Dummy release function for xe_bo_put_deferred(). Keep off. |
| */ |
| void __xe_bo_release_dummy(struct kref *kref) |
| { |
| } |
| |
| /** |
| * xe_bo_put_commit() - Put bos whose put was deferred by xe_bo_put_deferred(). |
| * @deferred: The lockless list used for the call to xe_bo_put_deferred(). |
| * |
| * Puts all bos whose put was deferred by xe_bo_put_deferred(). |
| * The @deferred list can be either an onstack local list or a global |
| * shared list used by a workqueue. |
| */ |
| void xe_bo_put_commit(struct llist_head *deferred) |
| { |
| struct llist_node *freed; |
| struct xe_bo *bo, *next; |
| |
| if (!deferred) |
| return; |
| |
| freed = llist_del_all(deferred); |
| if (!freed) |
| return; |
| |
| llist_for_each_entry_safe(bo, next, freed, freed) |
| drm_gem_object_free(&bo->ttm.base.refcount); |
| } |
| |
| void xe_bo_put(struct xe_bo *bo) |
| { |
| might_sleep(); |
| if (bo) { |
| #ifdef CONFIG_PROC_FS |
| if (bo->client) |
| might_lock(&bo->client->bos_lock); |
| #endif |
| if (bo->ggtt_node && bo->ggtt_node->ggtt) |
| might_lock(&bo->ggtt_node->ggtt->lock); |
| drm_gem_object_put(&bo->ttm.base); |
| } |
| } |
| |
| /** |
| * xe_bo_dumb_create - Create a dumb bo as backing for a fb |
| * @file_priv: ... |
| * @dev: ... |
| * @args: ... |
| * |
| * See dumb_create() hook in include/drm/drm_drv.h |
| * |
| * Return: ... |
| */ |
| int xe_bo_dumb_create(struct drm_file *file_priv, |
| struct drm_device *dev, |
| struct drm_mode_create_dumb *args) |
| { |
| struct xe_device *xe = to_xe_device(dev); |
| struct xe_bo *bo; |
| uint32_t handle; |
| int cpp = DIV_ROUND_UP(args->bpp, 8); |
| int err; |
| u32 page_size = max_t(u32, PAGE_SIZE, |
| xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K ? SZ_64K : SZ_4K); |
| |
| args->pitch = ALIGN(args->width * cpp, 64); |
| args->size = ALIGN(mul_u32_u32(args->pitch, args->height), |
| page_size); |
| |
| bo = xe_bo_create_user(xe, NULL, NULL, args->size, |
| DRM_XE_GEM_CPU_CACHING_WC, |
| XE_BO_FLAG_VRAM_IF_DGFX(xe_device_get_root_tile(xe)) | |
| XE_BO_FLAG_SCANOUT | |
| XE_BO_FLAG_NEEDS_CPU_ACCESS); |
| if (IS_ERR(bo)) |
| return PTR_ERR(bo); |
| |
| err = drm_gem_handle_create(file_priv, &bo->ttm.base, &handle); |
| /* drop reference from allocate - handle holds it now */ |
| drm_gem_object_put(&bo->ttm.base); |
| if (!err) |
| args->handle = handle; |
| return err; |
| } |
| |
| void xe_bo_runtime_pm_release_mmap_offset(struct xe_bo *bo) |
| { |
| struct ttm_buffer_object *tbo = &bo->ttm; |
| struct ttm_device *bdev = tbo->bdev; |
| |
| drm_vma_node_unmap(&tbo->base.vma_node, bdev->dev_mapping); |
| |
| list_del_init(&bo->vram_userfault_link); |
| } |
| |
| #if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST) |
| #include "tests/xe_bo.c" |
| #endif |