| // SPDX-License-Identifier: BSD-3-Clause |
| /* |
| * Copyright (c) 2020, MIPI Alliance, Inc. |
| * |
| * Author: Nicolas Pitre <npitre@baylibre.com> |
| * |
| * Note: The I3C HCI v2.0 spec is still in flux. The IBI support is based on |
| * v1.x of the spec and v2.0 will likely be split out. |
| */ |
| |
| #include <linux/bitfield.h> |
| #include <linux/device.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/errno.h> |
| #include <linux/i3c/master.h> |
| #include <linux/io.h> |
| |
| #include "hci.h" |
| #include "cmd.h" |
| #include "ibi.h" |
| |
| |
| /* |
| * Software Parameter Values (somewhat arb itrary for now). |
| * Some of them could be determined at run time eventually. |
| */ |
| |
| #define XFER_RINGS 1 /* max: 8 */ |
| #define XFER_RING_ENTRIES 16 /* max: 255 */ |
| |
| #define IBI_RINGS 1 /* max: 8 */ |
| #define IBI_STATUS_RING_ENTRIES 32 /* max: 255 */ |
| #define IBI_CHUNK_CACHELINES 1 /* max: 256 bytes equivalent */ |
| #define IBI_CHUNK_POOL_SIZE 128 /* max: 1023 */ |
| |
| /* |
| * Ring Header Preamble |
| */ |
| |
| #define rhs_reg_read(r) readl(hci->RHS_regs + (RHS_##r)) |
| #define rhs_reg_write(r, v) writel(v, hci->RHS_regs + (RHS_##r)) |
| |
| #define RHS_CONTROL 0x00 |
| #define PREAMBLE_SIZE GENMASK(31, 24) /* Preamble Section Size */ |
| #define HEADER_SIZE GENMASK(23, 16) /* Ring Header Size */ |
| #define MAX_HEADER_COUNT_CAP GENMASK(7, 4) /* HC Max Header Count */ |
| #define MAX_HEADER_COUNT GENMASK(3, 0) /* Driver Max Header Count */ |
| |
| #define RHS_RHn_OFFSET(n) (0x04 + (n)*4) |
| |
| /* |
| * Ring Header (Per-Ring Bundle) |
| */ |
| |
| #define rh_reg_read(r) readl(rh->regs + (RH_##r)) |
| #define rh_reg_write(r, v) writel(v, rh->regs + (RH_##r)) |
| |
| #define RH_CR_SETUP 0x00 /* Command/Response Ring */ |
| #define CR_XFER_STRUCT_SIZE GENMASK(31, 24) |
| #define CR_RESP_STRUCT_SIZE GENMASK(23, 16) |
| #define CR_RING_SIZE GENMASK(8, 0) |
| |
| #define RH_IBI_SETUP 0x04 |
| #define IBI_STATUS_STRUCT_SIZE GENMASK(31, 24) |
| #define IBI_STATUS_RING_SIZE GENMASK(23, 16) |
| #define IBI_DATA_CHUNK_SIZE GENMASK(12, 10) |
| #define IBI_DATA_CHUNK_COUNT GENMASK(9, 0) |
| |
| #define RH_CHUNK_CONTROL 0x08 |
| |
| #define RH_INTR_STATUS 0x10 |
| #define RH_INTR_STATUS_ENABLE 0x14 |
| #define RH_INTR_SIGNAL_ENABLE 0x18 |
| #define RH_INTR_FORCE 0x1c |
| #define INTR_IBI_READY BIT(12) |
| #define INTR_TRANSFER_COMPLETION BIT(11) |
| #define INTR_RING_OP BIT(10) |
| #define INTR_TRANSFER_ERR BIT(9) |
| #define INTR_WARN_INS_STOP_MODE BIT(7) |
| #define INTR_IBI_RING_FULL BIT(6) |
| #define INTR_TRANSFER_ABORT BIT(5) |
| |
| #define RH_RING_STATUS 0x20 |
| #define RING_STATUS_LOCKED BIT(3) |
| #define RING_STATUS_ABORTED BIT(2) |
| #define RING_STATUS_RUNNING BIT(1) |
| #define RING_STATUS_ENABLED BIT(0) |
| |
| #define RH_RING_CONTROL 0x24 |
| #define RING_CTRL_ABORT BIT(2) |
| #define RING_CTRL_RUN_STOP BIT(1) |
| #define RING_CTRL_ENABLE BIT(0) |
| |
| #define RH_RING_OPERATION1 0x28 |
| #define RING_OP1_IBI_DEQ_PTR GENMASK(23, 16) |
| #define RING_OP1_CR_SW_DEQ_PTR GENMASK(15, 8) |
| #define RING_OP1_CR_ENQ_PTR GENMASK(7, 0) |
| |
| #define RH_RING_OPERATION2 0x2c |
| #define RING_OP2_IBI_ENQ_PTR GENMASK(23, 16) |
| #define RING_OP2_CR_DEQ_PTR GENMASK(7, 0) |
| |
| #define RH_CMD_RING_BASE_LO 0x30 |
| #define RH_CMD_RING_BASE_HI 0x34 |
| #define RH_RESP_RING_BASE_LO 0x38 |
| #define RH_RESP_RING_BASE_HI 0x3c |
| #define RH_IBI_STATUS_RING_BASE_LO 0x40 |
| #define RH_IBI_STATUS_RING_BASE_HI 0x44 |
| #define RH_IBI_DATA_RING_BASE_LO 0x48 |
| #define RH_IBI_DATA_RING_BASE_HI 0x4c |
| |
| #define RH_CMD_RING_SG 0x50 /* Ring Scatter Gather Support */ |
| #define RH_RESP_RING_SG 0x54 |
| #define RH_IBI_STATUS_RING_SG 0x58 |
| #define RH_IBI_DATA_RING_SG 0x5c |
| #define RING_SG_BLP BIT(31) /* Buffer Vs. List Pointer */ |
| #define RING_SG_LIST_SIZE GENMASK(15, 0) |
| |
| /* |
| * Data Buffer Descriptor (in memory) |
| */ |
| |
| #define DATA_BUF_BLP BIT(31) /* Buffer Vs. List Pointer */ |
| #define DATA_BUF_IOC BIT(30) /* Interrupt on Completion */ |
| #define DATA_BUF_BLOCK_SIZE GENMASK(15, 0) |
| |
| |
| struct hci_rh_data { |
| void __iomem *regs; |
| void *xfer, *resp, *ibi_status, *ibi_data; |
| dma_addr_t xfer_dma, resp_dma, ibi_status_dma, ibi_data_dma; |
| unsigned int xfer_entries, ibi_status_entries, ibi_chunks_total; |
| unsigned int xfer_struct_sz, resp_struct_sz, ibi_status_sz, ibi_chunk_sz; |
| unsigned int done_ptr, ibi_chunk_ptr; |
| struct hci_xfer **src_xfers; |
| spinlock_t lock; |
| struct completion op_done; |
| }; |
| |
| struct hci_rings_data { |
| unsigned int total; |
| struct hci_rh_data headers[] __counted_by(total); |
| }; |
| |
| struct hci_dma_dev_ibi_data { |
| struct i3c_generic_ibi_pool *pool; |
| unsigned int max_len; |
| }; |
| |
| static void hci_dma_cleanup(struct i3c_hci *hci) |
| { |
| struct hci_rings_data *rings = hci->io_data; |
| struct hci_rh_data *rh; |
| unsigned int i; |
| |
| if (!rings) |
| return; |
| |
| for (i = 0; i < rings->total; i++) { |
| rh = &rings->headers[i]; |
| |
| rh_reg_write(RING_CONTROL, 0); |
| rh_reg_write(CR_SETUP, 0); |
| rh_reg_write(IBI_SETUP, 0); |
| rh_reg_write(INTR_SIGNAL_ENABLE, 0); |
| |
| if (rh->xfer) |
| dma_free_coherent(&hci->master.dev, |
| rh->xfer_struct_sz * rh->xfer_entries, |
| rh->xfer, rh->xfer_dma); |
| if (rh->resp) |
| dma_free_coherent(&hci->master.dev, |
| rh->resp_struct_sz * rh->xfer_entries, |
| rh->resp, rh->resp_dma); |
| kfree(rh->src_xfers); |
| if (rh->ibi_status) |
| dma_free_coherent(&hci->master.dev, |
| rh->ibi_status_sz * rh->ibi_status_entries, |
| rh->ibi_status, rh->ibi_status_dma); |
| if (rh->ibi_data_dma) |
| dma_unmap_single(&hci->master.dev, rh->ibi_data_dma, |
| rh->ibi_chunk_sz * rh->ibi_chunks_total, |
| DMA_FROM_DEVICE); |
| kfree(rh->ibi_data); |
| } |
| |
| rhs_reg_write(CONTROL, 0); |
| |
| kfree(rings); |
| hci->io_data = NULL; |
| } |
| |
| static int hci_dma_init(struct i3c_hci *hci) |
| { |
| struct hci_rings_data *rings; |
| struct hci_rh_data *rh; |
| u32 regval; |
| unsigned int i, nr_rings, xfers_sz, resps_sz; |
| unsigned int ibi_status_ring_sz, ibi_data_ring_sz; |
| int ret; |
| |
| regval = rhs_reg_read(CONTROL); |
| nr_rings = FIELD_GET(MAX_HEADER_COUNT_CAP, regval); |
| dev_info(&hci->master.dev, "%d DMA rings available\n", nr_rings); |
| if (unlikely(nr_rings > 8)) { |
| dev_err(&hci->master.dev, "number of rings should be <= 8\n"); |
| nr_rings = 8; |
| } |
| if (nr_rings > XFER_RINGS) |
| nr_rings = XFER_RINGS; |
| rings = kzalloc(struct_size(rings, headers, nr_rings), GFP_KERNEL); |
| if (!rings) |
| return -ENOMEM; |
| hci->io_data = rings; |
| rings->total = nr_rings; |
| |
| regval = FIELD_PREP(MAX_HEADER_COUNT, rings->total); |
| rhs_reg_write(CONTROL, regval); |
| |
| for (i = 0; i < rings->total; i++) { |
| u32 offset = rhs_reg_read(RHn_OFFSET(i)); |
| |
| dev_info(&hci->master.dev, "Ring %d at offset %#x\n", i, offset); |
| ret = -EINVAL; |
| if (!offset) |
| goto err_out; |
| rh = &rings->headers[i]; |
| rh->regs = hci->base_regs + offset; |
| spin_lock_init(&rh->lock); |
| init_completion(&rh->op_done); |
| |
| rh->xfer_entries = XFER_RING_ENTRIES; |
| |
| regval = rh_reg_read(CR_SETUP); |
| rh->xfer_struct_sz = FIELD_GET(CR_XFER_STRUCT_SIZE, regval); |
| rh->resp_struct_sz = FIELD_GET(CR_RESP_STRUCT_SIZE, regval); |
| DBG("xfer_struct_sz = %d, resp_struct_sz = %d", |
| rh->xfer_struct_sz, rh->resp_struct_sz); |
| xfers_sz = rh->xfer_struct_sz * rh->xfer_entries; |
| resps_sz = rh->resp_struct_sz * rh->xfer_entries; |
| |
| rh->xfer = dma_alloc_coherent(&hci->master.dev, xfers_sz, |
| &rh->xfer_dma, GFP_KERNEL); |
| rh->resp = dma_alloc_coherent(&hci->master.dev, resps_sz, |
| &rh->resp_dma, GFP_KERNEL); |
| rh->src_xfers = |
| kmalloc_array(rh->xfer_entries, sizeof(*rh->src_xfers), |
| GFP_KERNEL); |
| ret = -ENOMEM; |
| if (!rh->xfer || !rh->resp || !rh->src_xfers) |
| goto err_out; |
| |
| rh_reg_write(CMD_RING_BASE_LO, lower_32_bits(rh->xfer_dma)); |
| rh_reg_write(CMD_RING_BASE_HI, upper_32_bits(rh->xfer_dma)); |
| rh_reg_write(RESP_RING_BASE_LO, lower_32_bits(rh->resp_dma)); |
| rh_reg_write(RESP_RING_BASE_HI, upper_32_bits(rh->resp_dma)); |
| |
| regval = FIELD_PREP(CR_RING_SIZE, rh->xfer_entries); |
| rh_reg_write(CR_SETUP, regval); |
| |
| rh_reg_write(INTR_STATUS_ENABLE, 0xffffffff); |
| rh_reg_write(INTR_SIGNAL_ENABLE, INTR_IBI_READY | |
| INTR_TRANSFER_COMPLETION | |
| INTR_RING_OP | |
| INTR_TRANSFER_ERR | |
| INTR_WARN_INS_STOP_MODE | |
| INTR_IBI_RING_FULL | |
| INTR_TRANSFER_ABORT); |
| |
| /* IBIs */ |
| |
| if (i >= IBI_RINGS) |
| goto ring_ready; |
| |
| regval = rh_reg_read(IBI_SETUP); |
| rh->ibi_status_sz = FIELD_GET(IBI_STATUS_STRUCT_SIZE, regval); |
| rh->ibi_status_entries = IBI_STATUS_RING_ENTRIES; |
| rh->ibi_chunks_total = IBI_CHUNK_POOL_SIZE; |
| |
| rh->ibi_chunk_sz = dma_get_cache_alignment(); |
| rh->ibi_chunk_sz *= IBI_CHUNK_CACHELINES; |
| /* |
| * Round IBI data chunk size to number of bytes supported by |
| * the HW. Chunk size can be 2^n number of DWORDs which is the |
| * same as 2^(n+2) bytes, where n is 0..6. |
| */ |
| rh->ibi_chunk_sz = umax(4, rh->ibi_chunk_sz); |
| rh->ibi_chunk_sz = roundup_pow_of_two(rh->ibi_chunk_sz); |
| if (rh->ibi_chunk_sz > 256) { |
| ret = -EINVAL; |
| goto err_out; |
| } |
| |
| ibi_status_ring_sz = rh->ibi_status_sz * rh->ibi_status_entries; |
| ibi_data_ring_sz = rh->ibi_chunk_sz * rh->ibi_chunks_total; |
| |
| rh->ibi_status = |
| dma_alloc_coherent(&hci->master.dev, ibi_status_ring_sz, |
| &rh->ibi_status_dma, GFP_KERNEL); |
| rh->ibi_data = kmalloc(ibi_data_ring_sz, GFP_KERNEL); |
| ret = -ENOMEM; |
| if (!rh->ibi_status || !rh->ibi_data) |
| goto err_out; |
| rh->ibi_data_dma = |
| dma_map_single(&hci->master.dev, rh->ibi_data, |
| ibi_data_ring_sz, DMA_FROM_DEVICE); |
| if (dma_mapping_error(&hci->master.dev, rh->ibi_data_dma)) { |
| rh->ibi_data_dma = 0; |
| ret = -ENOMEM; |
| goto err_out; |
| } |
| |
| rh_reg_write(IBI_STATUS_RING_BASE_LO, lower_32_bits(rh->ibi_status_dma)); |
| rh_reg_write(IBI_STATUS_RING_BASE_HI, upper_32_bits(rh->ibi_status_dma)); |
| rh_reg_write(IBI_DATA_RING_BASE_LO, lower_32_bits(rh->ibi_data_dma)); |
| rh_reg_write(IBI_DATA_RING_BASE_HI, upper_32_bits(rh->ibi_data_dma)); |
| |
| regval = FIELD_PREP(IBI_STATUS_RING_SIZE, |
| rh->ibi_status_entries) | |
| FIELD_PREP(IBI_DATA_CHUNK_SIZE, |
| ilog2(rh->ibi_chunk_sz) - 2) | |
| FIELD_PREP(IBI_DATA_CHUNK_COUNT, |
| rh->ibi_chunks_total); |
| rh_reg_write(IBI_SETUP, regval); |
| |
| regval = rh_reg_read(INTR_SIGNAL_ENABLE); |
| regval |= INTR_IBI_READY; |
| rh_reg_write(INTR_SIGNAL_ENABLE, regval); |
| |
| ring_ready: |
| rh_reg_write(RING_CONTROL, RING_CTRL_ENABLE | |
| RING_CTRL_RUN_STOP); |
| } |
| |
| return 0; |
| |
| err_out: |
| hci_dma_cleanup(hci); |
| return ret; |
| } |
| |
| static void hci_dma_unmap_xfer(struct i3c_hci *hci, |
| struct hci_xfer *xfer_list, unsigned int n) |
| { |
| struct hci_xfer *xfer; |
| unsigned int i; |
| |
| for (i = 0; i < n; i++) { |
| xfer = xfer_list + i; |
| if (!xfer->data) |
| continue; |
| dma_unmap_single(&hci->master.dev, |
| xfer->data_dma, xfer->data_len, |
| xfer->rnw ? DMA_FROM_DEVICE : DMA_TO_DEVICE); |
| } |
| } |
| |
| static int hci_dma_queue_xfer(struct i3c_hci *hci, |
| struct hci_xfer *xfer_list, int n) |
| { |
| struct hci_rings_data *rings = hci->io_data; |
| struct hci_rh_data *rh; |
| unsigned int i, ring, enqueue_ptr; |
| u32 op1_val, op2_val; |
| void *buf; |
| |
| /* For now we only use ring 0 */ |
| ring = 0; |
| rh = &rings->headers[ring]; |
| |
| op1_val = rh_reg_read(RING_OPERATION1); |
| enqueue_ptr = FIELD_GET(RING_OP1_CR_ENQ_PTR, op1_val); |
| for (i = 0; i < n; i++) { |
| struct hci_xfer *xfer = xfer_list + i; |
| u32 *ring_data = rh->xfer + rh->xfer_struct_sz * enqueue_ptr; |
| |
| /* store cmd descriptor */ |
| *ring_data++ = xfer->cmd_desc[0]; |
| *ring_data++ = xfer->cmd_desc[1]; |
| if (hci->cmd == &mipi_i3c_hci_cmd_v2) { |
| *ring_data++ = xfer->cmd_desc[2]; |
| *ring_data++ = xfer->cmd_desc[3]; |
| } |
| |
| /* first word of Data Buffer Descriptor Structure */ |
| if (!xfer->data) |
| xfer->data_len = 0; |
| *ring_data++ = |
| FIELD_PREP(DATA_BUF_BLOCK_SIZE, xfer->data_len) | |
| ((i == n - 1) ? DATA_BUF_IOC : 0); |
| |
| /* 2nd and 3rd words of Data Buffer Descriptor Structure */ |
| if (xfer->data) { |
| buf = xfer->bounce_buf ? xfer->bounce_buf : xfer->data; |
| xfer->data_dma = |
| dma_map_single(&hci->master.dev, |
| buf, |
| xfer->data_len, |
| xfer->rnw ? |
| DMA_FROM_DEVICE : |
| DMA_TO_DEVICE); |
| if (dma_mapping_error(&hci->master.dev, |
| xfer->data_dma)) { |
| hci_dma_unmap_xfer(hci, xfer_list, i); |
| return -ENOMEM; |
| } |
| *ring_data++ = lower_32_bits(xfer->data_dma); |
| *ring_data++ = upper_32_bits(xfer->data_dma); |
| } else { |
| *ring_data++ = 0; |
| *ring_data++ = 0; |
| } |
| |
| /* remember corresponding xfer struct */ |
| rh->src_xfers[enqueue_ptr] = xfer; |
| /* remember corresponding ring/entry for this xfer structure */ |
| xfer->ring_number = ring; |
| xfer->ring_entry = enqueue_ptr; |
| |
| enqueue_ptr = (enqueue_ptr + 1) % rh->xfer_entries; |
| |
| /* |
| * We may update the hardware view of the enqueue pointer |
| * only if we didn't reach its dequeue pointer. |
| */ |
| op2_val = rh_reg_read(RING_OPERATION2); |
| if (enqueue_ptr == FIELD_GET(RING_OP2_CR_DEQ_PTR, op2_val)) { |
| /* the ring is full */ |
| hci_dma_unmap_xfer(hci, xfer_list, i + 1); |
| return -EBUSY; |
| } |
| } |
| |
| /* take care to update the hardware enqueue pointer atomically */ |
| spin_lock_irq(&rh->lock); |
| op1_val = rh_reg_read(RING_OPERATION1); |
| op1_val &= ~RING_OP1_CR_ENQ_PTR; |
| op1_val |= FIELD_PREP(RING_OP1_CR_ENQ_PTR, enqueue_ptr); |
| rh_reg_write(RING_OPERATION1, op1_val); |
| spin_unlock_irq(&rh->lock); |
| |
| return 0; |
| } |
| |
| static bool hci_dma_dequeue_xfer(struct i3c_hci *hci, |
| struct hci_xfer *xfer_list, int n) |
| { |
| struct hci_rings_data *rings = hci->io_data; |
| struct hci_rh_data *rh = &rings->headers[xfer_list[0].ring_number]; |
| unsigned int i; |
| bool did_unqueue = false; |
| |
| /* stop the ring */ |
| rh_reg_write(RING_CONTROL, RING_CTRL_ABORT); |
| if (wait_for_completion_timeout(&rh->op_done, HZ) == 0) { |
| /* |
| * We're deep in it if ever this condition is ever met. |
| * Hardware might still be writing to memory, etc. |
| */ |
| dev_crit(&hci->master.dev, "unable to abort the ring\n"); |
| WARN_ON(1); |
| } |
| |
| for (i = 0; i < n; i++) { |
| struct hci_xfer *xfer = xfer_list + i; |
| int idx = xfer->ring_entry; |
| |
| /* |
| * At the time the abort happened, the xfer might have |
| * completed already. If not then replace corresponding |
| * descriptor entries with a no-op. |
| */ |
| if (idx >= 0) { |
| u32 *ring_data = rh->xfer + rh->xfer_struct_sz * idx; |
| |
| /* store no-op cmd descriptor */ |
| *ring_data++ = FIELD_PREP(CMD_0_ATTR, 0x7); |
| *ring_data++ = 0; |
| if (hci->cmd == &mipi_i3c_hci_cmd_v2) { |
| *ring_data++ = 0; |
| *ring_data++ = 0; |
| } |
| |
| /* disassociate this xfer struct */ |
| rh->src_xfers[idx] = NULL; |
| |
| /* and unmap it */ |
| hci_dma_unmap_xfer(hci, xfer, 1); |
| |
| did_unqueue = true; |
| } |
| } |
| |
| /* restart the ring */ |
| rh_reg_write(RING_CONTROL, RING_CTRL_ENABLE); |
| |
| return did_unqueue; |
| } |
| |
| static void hci_dma_xfer_done(struct i3c_hci *hci, struct hci_rh_data *rh) |
| { |
| u32 op1_val, op2_val, resp, *ring_resp; |
| unsigned int tid, done_ptr = rh->done_ptr; |
| struct hci_xfer *xfer; |
| |
| for (;;) { |
| op2_val = rh_reg_read(RING_OPERATION2); |
| if (done_ptr == FIELD_GET(RING_OP2_CR_DEQ_PTR, op2_val)) |
| break; |
| |
| ring_resp = rh->resp + rh->resp_struct_sz * done_ptr; |
| resp = *ring_resp; |
| tid = RESP_TID(resp); |
| DBG("resp = 0x%08x", resp); |
| |
| xfer = rh->src_xfers[done_ptr]; |
| if (!xfer) { |
| DBG("orphaned ring entry"); |
| } else { |
| hci_dma_unmap_xfer(hci, xfer, 1); |
| xfer->ring_entry = -1; |
| xfer->response = resp; |
| if (tid != xfer->cmd_tid) { |
| dev_err(&hci->master.dev, |
| "response tid=%d when expecting %d\n", |
| tid, xfer->cmd_tid); |
| /* TODO: do something about it? */ |
| } |
| if (xfer->completion) |
| complete(xfer->completion); |
| } |
| |
| done_ptr = (done_ptr + 1) % rh->xfer_entries; |
| rh->done_ptr = done_ptr; |
| } |
| |
| /* take care to update the software dequeue pointer atomically */ |
| spin_lock(&rh->lock); |
| op1_val = rh_reg_read(RING_OPERATION1); |
| op1_val &= ~RING_OP1_CR_SW_DEQ_PTR; |
| op1_val |= FIELD_PREP(RING_OP1_CR_SW_DEQ_PTR, done_ptr); |
| rh_reg_write(RING_OPERATION1, op1_val); |
| spin_unlock(&rh->lock); |
| } |
| |
| static int hci_dma_request_ibi(struct i3c_hci *hci, struct i3c_dev_desc *dev, |
| const struct i3c_ibi_setup *req) |
| { |
| struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev); |
| struct i3c_generic_ibi_pool *pool; |
| struct hci_dma_dev_ibi_data *dev_ibi; |
| |
| dev_ibi = kmalloc(sizeof(*dev_ibi), GFP_KERNEL); |
| if (!dev_ibi) |
| return -ENOMEM; |
| pool = i3c_generic_ibi_alloc_pool(dev, req); |
| if (IS_ERR(pool)) { |
| kfree(dev_ibi); |
| return PTR_ERR(pool); |
| } |
| dev_ibi->pool = pool; |
| dev_ibi->max_len = req->max_payload_len; |
| dev_data->ibi_data = dev_ibi; |
| return 0; |
| } |
| |
| static void hci_dma_free_ibi(struct i3c_hci *hci, struct i3c_dev_desc *dev) |
| { |
| struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev); |
| struct hci_dma_dev_ibi_data *dev_ibi = dev_data->ibi_data; |
| |
| dev_data->ibi_data = NULL; |
| i3c_generic_ibi_free_pool(dev_ibi->pool); |
| kfree(dev_ibi); |
| } |
| |
| static void hci_dma_recycle_ibi_slot(struct i3c_hci *hci, |
| struct i3c_dev_desc *dev, |
| struct i3c_ibi_slot *slot) |
| { |
| struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev); |
| struct hci_dma_dev_ibi_data *dev_ibi = dev_data->ibi_data; |
| |
| i3c_generic_ibi_recycle_slot(dev_ibi->pool, slot); |
| } |
| |
| static void hci_dma_process_ibi(struct i3c_hci *hci, struct hci_rh_data *rh) |
| { |
| struct i3c_dev_desc *dev; |
| struct i3c_hci_dev_data *dev_data; |
| struct hci_dma_dev_ibi_data *dev_ibi; |
| struct i3c_ibi_slot *slot; |
| u32 op1_val, op2_val, ibi_status_error; |
| unsigned int ptr, enq_ptr, deq_ptr; |
| unsigned int ibi_size, ibi_chunks, ibi_data_offset, first_part; |
| int ibi_addr, last_ptr; |
| void *ring_ibi_data; |
| dma_addr_t ring_ibi_data_dma; |
| |
| op1_val = rh_reg_read(RING_OPERATION1); |
| deq_ptr = FIELD_GET(RING_OP1_IBI_DEQ_PTR, op1_val); |
| |
| op2_val = rh_reg_read(RING_OPERATION2); |
| enq_ptr = FIELD_GET(RING_OP2_IBI_ENQ_PTR, op2_val); |
| |
| ibi_status_error = 0; |
| ibi_addr = -1; |
| ibi_chunks = 0; |
| ibi_size = 0; |
| last_ptr = -1; |
| |
| /* let's find all we can about this IBI */ |
| for (ptr = deq_ptr; ptr != enq_ptr; |
| ptr = (ptr + 1) % rh->ibi_status_entries) { |
| u32 ibi_status, *ring_ibi_status; |
| unsigned int chunks; |
| |
| ring_ibi_status = rh->ibi_status + rh->ibi_status_sz * ptr; |
| ibi_status = *ring_ibi_status; |
| DBG("status = %#x", ibi_status); |
| |
| if (ibi_status_error) { |
| /* we no longer care */ |
| } else if (ibi_status & IBI_ERROR) { |
| ibi_status_error = ibi_status; |
| } else if (ibi_addr == -1) { |
| ibi_addr = FIELD_GET(IBI_TARGET_ADDR, ibi_status); |
| } else if (ibi_addr != FIELD_GET(IBI_TARGET_ADDR, ibi_status)) { |
| /* the address changed unexpectedly */ |
| ibi_status_error = ibi_status; |
| } |
| |
| chunks = FIELD_GET(IBI_CHUNKS, ibi_status); |
| ibi_chunks += chunks; |
| if (!(ibi_status & IBI_LAST_STATUS)) { |
| ibi_size += chunks * rh->ibi_chunk_sz; |
| } else { |
| ibi_size += FIELD_GET(IBI_DATA_LENGTH, ibi_status); |
| last_ptr = ptr; |
| break; |
| } |
| } |
| |
| /* validate what we've got */ |
| |
| if (last_ptr == -1) { |
| /* this IBI sequence is not yet complete */ |
| DBG("no LAST_STATUS available (e=%d d=%d)", enq_ptr, deq_ptr); |
| return; |
| } |
| deq_ptr = last_ptr + 1; |
| deq_ptr %= rh->ibi_status_entries; |
| |
| if (ibi_status_error) { |
| dev_err(&hci->master.dev, "IBI error from %#x\n", ibi_addr); |
| goto done; |
| } |
| |
| /* determine who this is for */ |
| dev = i3c_hci_addr_to_dev(hci, ibi_addr); |
| if (!dev) { |
| dev_err(&hci->master.dev, |
| "IBI for unknown device %#x\n", ibi_addr); |
| goto done; |
| } |
| |
| dev_data = i3c_dev_get_master_data(dev); |
| dev_ibi = dev_data->ibi_data; |
| if (ibi_size > dev_ibi->max_len) { |
| dev_err(&hci->master.dev, "IBI payload too big (%d > %d)\n", |
| ibi_size, dev_ibi->max_len); |
| goto done; |
| } |
| |
| /* |
| * This ring model is not suitable for zero-copy processing of IBIs. |
| * We have the data chunk ring wrap-around to deal with, meaning |
| * that the payload might span multiple chunks beginning at the |
| * end of the ring and wrap to the start of the ring. Furthermore |
| * there is no guarantee that those chunks will be released in order |
| * and in a timely manner by the upper driver. So let's just copy |
| * them to a discrete buffer. In practice they're supposed to be |
| * small anyway. |
| */ |
| slot = i3c_generic_ibi_get_free_slot(dev_ibi->pool); |
| if (!slot) { |
| dev_err(&hci->master.dev, "no free slot for IBI\n"); |
| goto done; |
| } |
| |
| /* copy first part of the payload */ |
| ibi_data_offset = rh->ibi_chunk_sz * rh->ibi_chunk_ptr; |
| ring_ibi_data = rh->ibi_data + ibi_data_offset; |
| ring_ibi_data_dma = rh->ibi_data_dma + ibi_data_offset; |
| first_part = (rh->ibi_chunks_total - rh->ibi_chunk_ptr) |
| * rh->ibi_chunk_sz; |
| if (first_part > ibi_size) |
| first_part = ibi_size; |
| dma_sync_single_for_cpu(&hci->master.dev, ring_ibi_data_dma, |
| first_part, DMA_FROM_DEVICE); |
| memcpy(slot->data, ring_ibi_data, first_part); |
| |
| /* copy second part if any */ |
| if (ibi_size > first_part) { |
| /* we wrap back to the start and copy remaining data */ |
| ring_ibi_data = rh->ibi_data; |
| ring_ibi_data_dma = rh->ibi_data_dma; |
| dma_sync_single_for_cpu(&hci->master.dev, ring_ibi_data_dma, |
| ibi_size - first_part, DMA_FROM_DEVICE); |
| memcpy(slot->data + first_part, ring_ibi_data, |
| ibi_size - first_part); |
| } |
| |
| /* submit it */ |
| slot->dev = dev; |
| slot->len = ibi_size; |
| i3c_master_queue_ibi(dev, slot); |
| |
| done: |
| /* take care to update the ibi dequeue pointer atomically */ |
| spin_lock(&rh->lock); |
| op1_val = rh_reg_read(RING_OPERATION1); |
| op1_val &= ~RING_OP1_IBI_DEQ_PTR; |
| op1_val |= FIELD_PREP(RING_OP1_IBI_DEQ_PTR, deq_ptr); |
| rh_reg_write(RING_OPERATION1, op1_val); |
| spin_unlock(&rh->lock); |
| |
| /* update the chunk pointer */ |
| rh->ibi_chunk_ptr += ibi_chunks; |
| rh->ibi_chunk_ptr %= rh->ibi_chunks_total; |
| |
| /* and tell the hardware about freed chunks */ |
| rh_reg_write(CHUNK_CONTROL, rh_reg_read(CHUNK_CONTROL) + ibi_chunks); |
| } |
| |
| static bool hci_dma_irq_handler(struct i3c_hci *hci, unsigned int mask) |
| { |
| struct hci_rings_data *rings = hci->io_data; |
| unsigned int i; |
| bool handled = false; |
| |
| for (i = 0; mask && i < rings->total; i++) { |
| struct hci_rh_data *rh; |
| u32 status; |
| |
| if (!(mask & BIT(i))) |
| continue; |
| mask &= ~BIT(i); |
| |
| rh = &rings->headers[i]; |
| status = rh_reg_read(INTR_STATUS); |
| DBG("rh%d status: %#x", i, status); |
| if (!status) |
| continue; |
| rh_reg_write(INTR_STATUS, status); |
| |
| if (status & INTR_IBI_READY) |
| hci_dma_process_ibi(hci, rh); |
| if (status & (INTR_TRANSFER_COMPLETION | INTR_TRANSFER_ERR)) |
| hci_dma_xfer_done(hci, rh); |
| if (status & INTR_RING_OP) |
| complete(&rh->op_done); |
| |
| if (status & INTR_TRANSFER_ABORT) { |
| dev_notice_ratelimited(&hci->master.dev, |
| "ring %d: Transfer Aborted\n", i); |
| mipi_i3c_hci_resume(hci); |
| } |
| if (status & INTR_WARN_INS_STOP_MODE) |
| dev_warn_ratelimited(&hci->master.dev, |
| "ring %d: Inserted Stop on Mode Change\n", i); |
| if (status & INTR_IBI_RING_FULL) |
| dev_err_ratelimited(&hci->master.dev, |
| "ring %d: IBI Ring Full Condition\n", i); |
| |
| handled = true; |
| } |
| |
| return handled; |
| } |
| |
| const struct hci_io_ops mipi_i3c_hci_dma = { |
| .init = hci_dma_init, |
| .cleanup = hci_dma_cleanup, |
| .queue_xfer = hci_dma_queue_xfer, |
| .dequeue_xfer = hci_dma_dequeue_xfer, |
| .irq_handler = hci_dma_irq_handler, |
| .request_ibi = hci_dma_request_ibi, |
| .free_ibi = hci_dma_free_ibi, |
| .recycle_ibi_slot = hci_dma_recycle_ibi_slot, |
| }; |