blob: ca0ce83e42b2cec52219b91f3c5d513c9f80d55e [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Murata SCA3300 3-axis industrial accelerometer
*
* Copyright (c) 2021 Vaisala Oyj. All rights reserved.
*/
#include <linux/bitops.h>
#include <linux/crc8.h>
#include <linux/delay.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spi/spi.h>
#include <linux/unaligned.h>
#include <linux/iio/buffer.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
#define SCA3300_ALIAS "sca3300"
#define SCA3300_CRC8_POLYNOMIAL 0x1d
/* Device mode register */
#define SCA3300_REG_MODE 0xd
#define SCA3300_MODE_SW_RESET 0x20
/* Last register in map */
#define SCA3300_REG_SELBANK 0x1f
/* Device status and mask */
#define SCA3300_REG_STATUS 0x6
#define SCA3300_STATUS_MASK GENMASK(8, 0)
/* Device ID */
#define SCA3300_REG_WHOAMI 0x10
#define SCA3300_WHOAMI_ID 0x51
#define SCL3300_WHOAMI_ID 0xC1
/* Device return status and mask */
#define SCA3300_VALUE_RS_ERROR 0x3
#define SCA3300_MASK_RS_STATUS GENMASK(1, 0)
#define SCL3300_REG_ANG_CTRL 0x0C
#define SCL3300_ANG_ENABLE 0x1F
enum sca3300_scan_indexes {
SCA3300_ACC_X = 0,
SCA3300_ACC_Y,
SCA3300_ACC_Z,
SCA3300_TEMP,
SCA3300_INCLI_X,
SCA3300_INCLI_Y,
SCA3300_INCLI_Z,
SCA3300_SCAN_MAX
};
/*
* Buffer size max case:
* Three accel channels, two bytes per channel.
* Temperature channel, two bytes.
* Three incli channels, two bytes per channel.
* Timestamp channel, eight bytes.
*/
#define SCA3300_MAX_BUFFER_SIZE (ALIGN(sizeof(s16) * SCA3300_SCAN_MAX, sizeof(s64)) + sizeof(s64))
#define SCA3300_ACCEL_CHANNEL(index, reg, axis) { \
.type = IIO_ACCEL, \
.address = reg, \
.modified = 1, \
.channel2 = IIO_MOD_##axis, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
.info_mask_shared_by_type = \
BIT(IIO_CHAN_INFO_SCALE) | \
BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), \
.info_mask_shared_by_type_available = \
BIT(IIO_CHAN_INFO_SCALE) | \
BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), \
.scan_index = index, \
.scan_type = { \
.sign = 's', \
.realbits = 16, \
.storagebits = 16, \
.endianness = IIO_CPU, \
}, \
}
#define SCA3300_INCLI_CHANNEL(index, reg, axis) { \
.type = IIO_INCLI, \
.address = reg, \
.modified = 1, \
.channel2 = IIO_MOD_##axis, \
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
.info_mask_shared_by_type_available = BIT(IIO_CHAN_INFO_SCALE), \
.scan_index = index, \
.scan_type = { \
.sign = 's', \
.realbits = 16, \
.storagebits = 16, \
.endianness = IIO_CPU, \
}, \
}
#define SCA3300_TEMP_CHANNEL(index, reg) { \
.type = IIO_TEMP, \
.address = reg, \
.scan_index = index, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
.scan_type = { \
.sign = 's', \
.realbits = 16, \
.storagebits = 16, \
.endianness = IIO_CPU, \
}, \
}
static const struct iio_chan_spec sca3300_channels[] = {
SCA3300_ACCEL_CHANNEL(SCA3300_ACC_X, 0x1, X),
SCA3300_ACCEL_CHANNEL(SCA3300_ACC_Y, 0x2, Y),
SCA3300_ACCEL_CHANNEL(SCA3300_ACC_Z, 0x3, Z),
SCA3300_TEMP_CHANNEL(SCA3300_TEMP, 0x05),
IIO_CHAN_SOFT_TIMESTAMP(4),
};
static const int sca3300_lp_freq[] = {70, 10};
static const int sca3300_lp_freq_map[] = {0, 0, 0, 1};
static const int scl3300_lp_freq[] = {40, 70, 10};
static const int scl3300_lp_freq_map[] = {0, 1, 2};
static const int sca3300_accel_scale[][2] = {{0, 370}, {0, 741}, {0, 185}};
static const int sca3300_accel_scale_map[] = {0, 1, 2, 2};
static const int scl3300_accel_scale[][2] = {{0, 167}, {0, 333}, {0, 83}};
static const int scl3300_accel_scale_map[] = {0, 1, 2};
static const int scl3300_incli_scale[][2] = {{0, 5495}};
static const int scl3300_incli_scale_map[] = {0, 0, 0};
static const int sca3300_avail_modes_map[] = {0, 1, 2, 3};
static const int scl3300_avail_modes_map[] = {0, 1, 3};
static const struct iio_chan_spec scl3300_channels[] = {
SCA3300_ACCEL_CHANNEL(SCA3300_ACC_X, 0x1, X),
SCA3300_ACCEL_CHANNEL(SCA3300_ACC_Y, 0x2, Y),
SCA3300_ACCEL_CHANNEL(SCA3300_ACC_Z, 0x3, Z),
SCA3300_TEMP_CHANNEL(SCA3300_TEMP, 0x05),
SCA3300_INCLI_CHANNEL(SCA3300_INCLI_X, 0x09, X),
SCA3300_INCLI_CHANNEL(SCA3300_INCLI_Y, 0x0A, Y),
SCA3300_INCLI_CHANNEL(SCA3300_INCLI_Z, 0x0B, Z),
IIO_CHAN_SOFT_TIMESTAMP(7),
};
static const unsigned long sca3300_scan_masks[] = {
BIT(SCA3300_ACC_X) | BIT(SCA3300_ACC_Y) | BIT(SCA3300_ACC_Z) |
BIT(SCA3300_TEMP),
0
};
static const unsigned long scl3300_scan_masks[] = {
BIT(SCA3300_ACC_X) | BIT(SCA3300_ACC_Y) | BIT(SCA3300_ACC_Z) |
BIT(SCA3300_TEMP) |
BIT(SCA3300_INCLI_X) | BIT(SCA3300_INCLI_Y) | BIT(SCA3300_INCLI_Z),
0
};
struct sca3300_chip_info {
const char *name;
const unsigned long *scan_masks;
const struct iio_chan_spec *channels;
u8 num_channels;
u8 num_accel_scales;
const int (*accel_scale)[2];
const int *accel_scale_map;
const int (*incli_scale)[2];
const int *incli_scale_map;
u8 num_incli_scales;
u8 num_freqs;
const int *freq_table;
const int *freq_map;
const int *avail_modes_table;
u8 num_avail_modes;
u8 chip_id;
bool angle_supported;
};
/**
* struct sca3300_data - device data
* @spi: SPI device structure
* @lock: Data buffer lock
* @chip: Sensor chip specific information
* @buffer: Triggered buffer:
* -SCA3300: 4 channel 16-bit data + 64-bit timestamp
* -SCL3300: 7 channel 16-bit data + 64-bit timestamp
* @txbuf: Transmit buffer
* @rxbuf: Receive buffer
*/
struct sca3300_data {
struct spi_device *spi;
struct mutex lock;
const struct sca3300_chip_info *chip;
u8 buffer[SCA3300_MAX_BUFFER_SIZE] __aligned(sizeof(s64));
u8 txbuf[4] __aligned(IIO_DMA_MINALIGN);
u8 rxbuf[4];
};
static const struct sca3300_chip_info sca3300_chip_tbl[] = {
{
.name = "sca3300",
.scan_masks = sca3300_scan_masks,
.channels = sca3300_channels,
.num_channels = ARRAY_SIZE(sca3300_channels),
.num_accel_scales = ARRAY_SIZE(sca3300_accel_scale)*2,
.accel_scale = sca3300_accel_scale,
.accel_scale_map = sca3300_accel_scale_map,
.num_freqs = ARRAY_SIZE(sca3300_lp_freq),
.freq_table = sca3300_lp_freq,
.freq_map = sca3300_lp_freq_map,
.avail_modes_table = sca3300_avail_modes_map,
.num_avail_modes = 4,
.chip_id = SCA3300_WHOAMI_ID,
.angle_supported = false,
},
{
.name = "scl3300",
.scan_masks = scl3300_scan_masks,
.channels = scl3300_channels,
.num_channels = ARRAY_SIZE(scl3300_channels),
.num_accel_scales = ARRAY_SIZE(scl3300_accel_scale)*2,
.accel_scale = scl3300_accel_scale,
.accel_scale_map = scl3300_accel_scale_map,
.incli_scale = scl3300_incli_scale,
.incli_scale_map = scl3300_incli_scale_map,
.num_incli_scales = ARRAY_SIZE(scl3300_incli_scale)*2,
.num_freqs = ARRAY_SIZE(scl3300_lp_freq),
.freq_table = scl3300_lp_freq,
.freq_map = scl3300_lp_freq_map,
.avail_modes_table = scl3300_avail_modes_map,
.num_avail_modes = 3,
.chip_id = SCL3300_WHOAMI_ID,
.angle_supported = true,
},
};
DECLARE_CRC8_TABLE(sca3300_crc_table);
static int sca3300_transfer(struct sca3300_data *sca_data, int *val)
{
/* Consecutive requests min. 10 us delay (Datasheet section 5.1.2) */
struct spi_delay delay = { .value = 10, .unit = SPI_DELAY_UNIT_USECS };
int32_t ret;
int rs;
u8 crc;
struct spi_transfer xfers[2] = {
{
.tx_buf = sca_data->txbuf,
.len = ARRAY_SIZE(sca_data->txbuf),
.delay = delay,
.cs_change = 1,
},
{
.rx_buf = sca_data->rxbuf,
.len = ARRAY_SIZE(sca_data->rxbuf),
.delay = delay,
}
};
/* inverted crc value as described in device data sheet */
crc = ~crc8(sca3300_crc_table, &sca_data->txbuf[0], 3, CRC8_INIT_VALUE);
sca_data->txbuf[3] = crc;
ret = spi_sync_transfer(sca_data->spi, xfers, ARRAY_SIZE(xfers));
if (ret) {
dev_err(&sca_data->spi->dev,
"transfer error, error: %d\n", ret);
return -EIO;
}
crc = ~crc8(sca3300_crc_table, &sca_data->rxbuf[0], 3, CRC8_INIT_VALUE);
if (sca_data->rxbuf[3] != crc) {
dev_err(&sca_data->spi->dev, "CRC checksum mismatch");
return -EIO;
}
/* get return status */
rs = sca_data->rxbuf[0] & SCA3300_MASK_RS_STATUS;
if (rs == SCA3300_VALUE_RS_ERROR)
ret = -EINVAL;
*val = sign_extend32(get_unaligned_be16(&sca_data->rxbuf[1]), 15);
return ret;
}
static int sca3300_error_handler(struct sca3300_data *sca_data)
{
int ret;
int val;
mutex_lock(&sca_data->lock);
sca_data->txbuf[0] = SCA3300_REG_STATUS << 2;
ret = sca3300_transfer(sca_data, &val);
mutex_unlock(&sca_data->lock);
/*
* Return status error is cleared after reading status register once,
* expect EINVAL here.
*/
if (ret != -EINVAL) {
dev_err(&sca_data->spi->dev,
"error reading device status: %d\n", ret);
return ret;
}
dev_err(&sca_data->spi->dev, "device status: 0x%lx\n",
val & SCA3300_STATUS_MASK);
return 0;
}
static int sca3300_read_reg(struct sca3300_data *sca_data, u8 reg, int *val)
{
int ret;
mutex_lock(&sca_data->lock);
sca_data->txbuf[0] = reg << 2;
ret = sca3300_transfer(sca_data, val);
mutex_unlock(&sca_data->lock);
if (ret != -EINVAL)
return ret;
return sca3300_error_handler(sca_data);
}
static int sca3300_write_reg(struct sca3300_data *sca_data, u8 reg, int val)
{
int reg_val = 0;
int ret;
mutex_lock(&sca_data->lock);
/* BIT(7) for write operation */
sca_data->txbuf[0] = BIT(7) | (reg << 2);
put_unaligned_be16(val, &sca_data->txbuf[1]);
ret = sca3300_transfer(sca_data, &reg_val);
mutex_unlock(&sca_data->lock);
if (ret != -EINVAL)
return ret;
return sca3300_error_handler(sca_data);
}
static int sca3300_set_op_mode(struct sca3300_data *sca_data, int index)
{
if ((index < 0) || (index >= sca_data->chip->num_avail_modes))
return -EINVAL;
return sca3300_write_reg(sca_data, SCA3300_REG_MODE,
sca_data->chip->avail_modes_table[index]);
}
static int sca3300_get_op_mode(struct sca3300_data *sca_data, int *index)
{
int reg_val;
int ret;
int i;
ret = sca3300_read_reg(sca_data, SCA3300_REG_MODE, &reg_val);
if (ret)
return ret;
for (i = 0; i < sca_data->chip->num_avail_modes; i++) {
if (sca_data->chip->avail_modes_table[i] == reg_val)
break;
}
if (i == sca_data->chip->num_avail_modes)
return -EINVAL;
*index = i;
return 0;
}
static int sca3300_set_frequency(struct sca3300_data *data, int val)
{
const struct sca3300_chip_info *chip = data->chip;
unsigned int index;
int *opmode_scale;
int *new_scale;
unsigned int i;
if (sca3300_get_op_mode(data, &index))
return -EINVAL;
/*
* Find a mode in which the requested sampling frequency is available
* and the scaling currently set is retained.
*/
opmode_scale = (int *)chip->accel_scale[chip->accel_scale_map[index]];
for (i = 0; i < chip->num_avail_modes; i++) {
new_scale = (int *)chip->accel_scale[chip->accel_scale_map[i]];
if ((val == chip->freq_table[chip->freq_map[i]]) &&
(opmode_scale[1] == new_scale[1]) &&
(opmode_scale[0] == new_scale[0]))
break;
}
if (i == chip->num_avail_modes)
return -EINVAL;
return sca3300_set_op_mode(data, i);
}
static int sca3300_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
struct sca3300_data *data = iio_priv(indio_dev);
int index;
int i;
switch (mask) {
case IIO_CHAN_INFO_SCALE:
if (chan->type != IIO_ACCEL)
return -EINVAL;
/*
* Letting scale take priority over sampling frequency.
* That makes sense given we can only ever end up increasing
* the sampling frequency which is unlikely to be a problem.
*/
for (i = 0; i < data->chip->num_avail_modes; i++) {
index = data->chip->accel_scale_map[i];
if ((val == data->chip->accel_scale[index][0]) &&
(val2 == data->chip->accel_scale[index][1]))
return sca3300_set_op_mode(data, i);
}
return -EINVAL;
case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
return sca3300_set_frequency(data, val);
default:
return -EINVAL;
}
}
static int sca3300_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
struct sca3300_data *data = iio_priv(indio_dev);
int index;
int ret;
switch (mask) {
case IIO_CHAN_INFO_RAW:
ret = sca3300_read_reg(data, chan->address, val);
if (ret)
return ret;
return IIO_VAL_INT;
case IIO_CHAN_INFO_SCALE:
ret = sca3300_get_op_mode(data, &index);
if (ret)
return ret;
switch (chan->type) {
case IIO_INCLI:
index = data->chip->incli_scale_map[index];
*val = data->chip->incli_scale[index][0];
*val2 = data->chip->incli_scale[index][1];
return IIO_VAL_INT_PLUS_MICRO;
case IIO_ACCEL:
index = data->chip->accel_scale_map[index];
*val = data->chip->accel_scale[index][0];
*val2 = data->chip->accel_scale[index][1];
return IIO_VAL_INT_PLUS_MICRO;
default:
return -EINVAL;
}
case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
ret = sca3300_get_op_mode(data, &index);
if (ret)
return ret;
index = data->chip->freq_map[index];
*val = data->chip->freq_table[index];
return IIO_VAL_INT;
default:
return -EINVAL;
}
}
static irqreturn_t sca3300_trigger_handler(int irq, void *p)
{
struct iio_poll_func *pf = p;
struct iio_dev *indio_dev = pf->indio_dev;
struct sca3300_data *data = iio_priv(indio_dev);
int bit, ret, val, i = 0;
s16 *channels = (s16 *)data->buffer;
iio_for_each_active_channel(indio_dev, bit) {
ret = sca3300_read_reg(data, indio_dev->channels[bit].address, &val);
if (ret) {
dev_err_ratelimited(&data->spi->dev,
"failed to read register, error: %d\n", ret);
/* handled, but bailing out due to errors */
goto out;
}
channels[i++] = val;
}
iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
iio_get_time_ns(indio_dev));
out:
iio_trigger_notify_done(indio_dev->trig);
return IRQ_HANDLED;
}
/*
* sca3300_init - Device init sequence. See datasheet rev 2 section
* 4.2 Start-Up Sequence for details.
*/
static int sca3300_init(struct sca3300_data *sca_data,
struct iio_dev *indio_dev)
{
int value = 0;
int ret;
int i;
ret = sca3300_write_reg(sca_data, SCA3300_REG_MODE,
SCA3300_MODE_SW_RESET);
if (ret)
return ret;
/*
* Wait 1ms after SW-reset command.
* Wait for the settling of signal paths,
* 15ms for SCA3300 and 25ms for SCL3300,
*/
usleep_range(26e3, 50e3);
ret = sca3300_read_reg(sca_data, SCA3300_REG_WHOAMI, &value);
if (ret)
return ret;
for (i = 0; i < ARRAY_SIZE(sca3300_chip_tbl); i++) {
if (sca3300_chip_tbl[i].chip_id == value)
break;
}
if (i == ARRAY_SIZE(sca3300_chip_tbl)) {
dev_err(&sca_data->spi->dev, "unknown chip id %x\n", value);
return -ENODEV;
}
sca_data->chip = &sca3300_chip_tbl[i];
if (sca_data->chip->angle_supported) {
ret = sca3300_write_reg(sca_data, SCL3300_REG_ANG_CTRL,
SCL3300_ANG_ENABLE);
if (ret)
return ret;
}
return 0;
}
static int sca3300_debugfs_reg_access(struct iio_dev *indio_dev,
unsigned int reg, unsigned int writeval,
unsigned int *readval)
{
struct sca3300_data *data = iio_priv(indio_dev);
int value;
int ret;
if (reg > SCA3300_REG_SELBANK)
return -EINVAL;
if (!readval)
return sca3300_write_reg(data, reg, writeval);
ret = sca3300_read_reg(data, reg, &value);
if (ret)
return ret;
*readval = value;
return 0;
}
static int sca3300_read_avail(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
const int **vals, int *type, int *length,
long mask)
{
struct sca3300_data *data = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_SCALE:
switch (chan->type) {
case IIO_INCLI:
*vals = (const int *)data->chip->incli_scale;
*length = data->chip->num_incli_scales;
*type = IIO_VAL_INT_PLUS_MICRO;
return IIO_AVAIL_LIST;
case IIO_ACCEL:
*vals = (const int *)data->chip->accel_scale;
*length = data->chip->num_accel_scales;
*type = IIO_VAL_INT_PLUS_MICRO;
return IIO_AVAIL_LIST;
default:
return -EINVAL;
}
case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
*vals = (const int *)data->chip->freq_table;
*length = data->chip->num_freqs;
*type = IIO_VAL_INT;
return IIO_AVAIL_LIST;
default:
return -EINVAL;
}
}
static const struct iio_info sca3300_info = {
.read_raw = sca3300_read_raw,
.write_raw = sca3300_write_raw,
.debugfs_reg_access = &sca3300_debugfs_reg_access,
.read_avail = sca3300_read_avail,
};
static int sca3300_probe(struct spi_device *spi)
{
struct sca3300_data *sca_data;
struct iio_dev *indio_dev;
int ret;
indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*sca_data));
if (!indio_dev)
return -ENOMEM;
sca_data = iio_priv(indio_dev);
mutex_init(&sca_data->lock);
sca_data->spi = spi;
crc8_populate_msb(sca3300_crc_table, SCA3300_CRC8_POLYNOMIAL);
indio_dev->info = &sca3300_info;
ret = sca3300_init(sca_data, indio_dev);
if (ret) {
dev_err(&spi->dev, "failed to init device, error: %d\n", ret);
return ret;
}
indio_dev->name = sca_data->chip->name;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->channels = sca_data->chip->channels;
indio_dev->num_channels = sca_data->chip->num_channels;
indio_dev->available_scan_masks = sca_data->chip->scan_masks;
ret = devm_iio_triggered_buffer_setup(&spi->dev, indio_dev,
iio_pollfunc_store_time,
sca3300_trigger_handler, NULL);
if (ret) {
dev_err(&spi->dev,
"iio triggered buffer setup failed, error: %d\n", ret);
return ret;
}
ret = devm_iio_device_register(&spi->dev, indio_dev);
if (ret) {
dev_err(&spi->dev, "iio device register failed, error: %d\n",
ret);
}
return ret;
}
static const struct of_device_id sca3300_dt_ids[] = {
{ .compatible = "murata,sca3300"},
{ .compatible = "murata,scl3300"},
{}
};
MODULE_DEVICE_TABLE(of, sca3300_dt_ids);
static const struct spi_device_id sca3300_ids[] = {
{ "sca3300" },
{ "scl3300" },
{}
};
MODULE_DEVICE_TABLE(spi, sca3300_ids);
static struct spi_driver sca3300_driver = {
.driver = {
.name = SCA3300_ALIAS,
.of_match_table = sca3300_dt_ids,
},
.probe = sca3300_probe,
.id_table = sca3300_ids,
};
module_spi_driver(sca3300_driver);
MODULE_AUTHOR("Tomas Melin <tomas.melin@vaisala.com>");
MODULE_DESCRIPTION("Murata SCA3300 SPI Accelerometer");
MODULE_LICENSE("GPL v2");