| // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB |
| /* |
| * Copyright (c) 2016 Mellanox Technologies Ltd. All rights reserved. |
| * Copyright (c) 2015 System Fabric Works, Inc. All rights reserved. |
| */ |
| |
| #include <linux/skbuff.h> |
| |
| #include "rxe.h" |
| #include "rxe_loc.h" |
| #include "rxe_queue.h" |
| |
| static char *resp_state_name[] = { |
| [RESPST_NONE] = "NONE", |
| [RESPST_GET_REQ] = "GET_REQ", |
| [RESPST_CHK_PSN] = "CHK_PSN", |
| [RESPST_CHK_OP_SEQ] = "CHK_OP_SEQ", |
| [RESPST_CHK_OP_VALID] = "CHK_OP_VALID", |
| [RESPST_CHK_RESOURCE] = "CHK_RESOURCE", |
| [RESPST_CHK_LENGTH] = "CHK_LENGTH", |
| [RESPST_CHK_RKEY] = "CHK_RKEY", |
| [RESPST_EXECUTE] = "EXECUTE", |
| [RESPST_READ_REPLY] = "READ_REPLY", |
| [RESPST_ATOMIC_REPLY] = "ATOMIC_REPLY", |
| [RESPST_ATOMIC_WRITE_REPLY] = "ATOMIC_WRITE_REPLY", |
| [RESPST_PROCESS_FLUSH] = "PROCESS_FLUSH", |
| [RESPST_COMPLETE] = "COMPLETE", |
| [RESPST_ACKNOWLEDGE] = "ACKNOWLEDGE", |
| [RESPST_CLEANUP] = "CLEANUP", |
| [RESPST_DUPLICATE_REQUEST] = "DUPLICATE_REQUEST", |
| [RESPST_ERR_MALFORMED_WQE] = "ERR_MALFORMED_WQE", |
| [RESPST_ERR_UNSUPPORTED_OPCODE] = "ERR_UNSUPPORTED_OPCODE", |
| [RESPST_ERR_MISALIGNED_ATOMIC] = "ERR_MISALIGNED_ATOMIC", |
| [RESPST_ERR_PSN_OUT_OF_SEQ] = "ERR_PSN_OUT_OF_SEQ", |
| [RESPST_ERR_MISSING_OPCODE_FIRST] = "ERR_MISSING_OPCODE_FIRST", |
| [RESPST_ERR_MISSING_OPCODE_LAST_C] = "ERR_MISSING_OPCODE_LAST_C", |
| [RESPST_ERR_MISSING_OPCODE_LAST_D1E] = "ERR_MISSING_OPCODE_LAST_D1E", |
| [RESPST_ERR_TOO_MANY_RDMA_ATM_REQ] = "ERR_TOO_MANY_RDMA_ATM_REQ", |
| [RESPST_ERR_RNR] = "ERR_RNR", |
| [RESPST_ERR_RKEY_VIOLATION] = "ERR_RKEY_VIOLATION", |
| [RESPST_ERR_INVALIDATE_RKEY] = "ERR_INVALIDATE_RKEY_VIOLATION", |
| [RESPST_ERR_LENGTH] = "ERR_LENGTH", |
| [RESPST_ERR_CQ_OVERFLOW] = "ERR_CQ_OVERFLOW", |
| [RESPST_ERROR] = "ERROR", |
| [RESPST_DONE] = "DONE", |
| [RESPST_EXIT] = "EXIT", |
| }; |
| |
| /* rxe_recv calls here to add a request packet to the input queue */ |
| void rxe_resp_queue_pkt(struct rxe_qp *qp, struct sk_buff *skb) |
| { |
| skb_queue_tail(&qp->req_pkts, skb); |
| rxe_sched_task(&qp->recv_task); |
| } |
| |
| static inline enum resp_states get_req(struct rxe_qp *qp, |
| struct rxe_pkt_info **pkt_p) |
| { |
| struct sk_buff *skb; |
| |
| skb = skb_peek(&qp->req_pkts); |
| if (!skb) |
| return RESPST_EXIT; |
| |
| *pkt_p = SKB_TO_PKT(skb); |
| |
| return (qp->resp.res) ? RESPST_READ_REPLY : RESPST_CHK_PSN; |
| } |
| |
| static enum resp_states check_psn(struct rxe_qp *qp, |
| struct rxe_pkt_info *pkt) |
| { |
| int diff = psn_compare(pkt->psn, qp->resp.psn); |
| struct rxe_dev *rxe = to_rdev(qp->ibqp.device); |
| |
| switch (qp_type(qp)) { |
| case IB_QPT_RC: |
| if (diff > 0) { |
| if (qp->resp.sent_psn_nak) |
| return RESPST_CLEANUP; |
| |
| qp->resp.sent_psn_nak = 1; |
| rxe_counter_inc(rxe, RXE_CNT_OUT_OF_SEQ_REQ); |
| return RESPST_ERR_PSN_OUT_OF_SEQ; |
| |
| } else if (diff < 0) { |
| rxe_counter_inc(rxe, RXE_CNT_DUP_REQ); |
| return RESPST_DUPLICATE_REQUEST; |
| } |
| |
| if (qp->resp.sent_psn_nak) |
| qp->resp.sent_psn_nak = 0; |
| |
| break; |
| |
| case IB_QPT_UC: |
| if (qp->resp.drop_msg || diff != 0) { |
| if (pkt->mask & RXE_START_MASK) { |
| qp->resp.drop_msg = 0; |
| return RESPST_CHK_OP_SEQ; |
| } |
| |
| qp->resp.drop_msg = 1; |
| return RESPST_CLEANUP; |
| } |
| break; |
| default: |
| break; |
| } |
| |
| return RESPST_CHK_OP_SEQ; |
| } |
| |
| static enum resp_states check_op_seq(struct rxe_qp *qp, |
| struct rxe_pkt_info *pkt) |
| { |
| switch (qp_type(qp)) { |
| case IB_QPT_RC: |
| switch (qp->resp.opcode) { |
| case IB_OPCODE_RC_SEND_FIRST: |
| case IB_OPCODE_RC_SEND_MIDDLE: |
| switch (pkt->opcode) { |
| case IB_OPCODE_RC_SEND_MIDDLE: |
| case IB_OPCODE_RC_SEND_LAST: |
| case IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE: |
| case IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE: |
| return RESPST_CHK_OP_VALID; |
| default: |
| return RESPST_ERR_MISSING_OPCODE_LAST_C; |
| } |
| |
| case IB_OPCODE_RC_RDMA_WRITE_FIRST: |
| case IB_OPCODE_RC_RDMA_WRITE_MIDDLE: |
| switch (pkt->opcode) { |
| case IB_OPCODE_RC_RDMA_WRITE_MIDDLE: |
| case IB_OPCODE_RC_RDMA_WRITE_LAST: |
| case IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE: |
| return RESPST_CHK_OP_VALID; |
| default: |
| return RESPST_ERR_MISSING_OPCODE_LAST_C; |
| } |
| |
| default: |
| switch (pkt->opcode) { |
| case IB_OPCODE_RC_SEND_MIDDLE: |
| case IB_OPCODE_RC_SEND_LAST: |
| case IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE: |
| case IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE: |
| case IB_OPCODE_RC_RDMA_WRITE_MIDDLE: |
| case IB_OPCODE_RC_RDMA_WRITE_LAST: |
| case IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE: |
| return RESPST_ERR_MISSING_OPCODE_FIRST; |
| default: |
| return RESPST_CHK_OP_VALID; |
| } |
| } |
| break; |
| |
| case IB_QPT_UC: |
| switch (qp->resp.opcode) { |
| case IB_OPCODE_UC_SEND_FIRST: |
| case IB_OPCODE_UC_SEND_MIDDLE: |
| switch (pkt->opcode) { |
| case IB_OPCODE_UC_SEND_MIDDLE: |
| case IB_OPCODE_UC_SEND_LAST: |
| case IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE: |
| return RESPST_CHK_OP_VALID; |
| default: |
| return RESPST_ERR_MISSING_OPCODE_LAST_D1E; |
| } |
| |
| case IB_OPCODE_UC_RDMA_WRITE_FIRST: |
| case IB_OPCODE_UC_RDMA_WRITE_MIDDLE: |
| switch (pkt->opcode) { |
| case IB_OPCODE_UC_RDMA_WRITE_MIDDLE: |
| case IB_OPCODE_UC_RDMA_WRITE_LAST: |
| case IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE: |
| return RESPST_CHK_OP_VALID; |
| default: |
| return RESPST_ERR_MISSING_OPCODE_LAST_D1E; |
| } |
| |
| default: |
| switch (pkt->opcode) { |
| case IB_OPCODE_UC_SEND_MIDDLE: |
| case IB_OPCODE_UC_SEND_LAST: |
| case IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE: |
| case IB_OPCODE_UC_RDMA_WRITE_MIDDLE: |
| case IB_OPCODE_UC_RDMA_WRITE_LAST: |
| case IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE: |
| qp->resp.drop_msg = 1; |
| return RESPST_CLEANUP; |
| default: |
| return RESPST_CHK_OP_VALID; |
| } |
| } |
| break; |
| |
| default: |
| return RESPST_CHK_OP_VALID; |
| } |
| } |
| |
| static bool check_qp_attr_access(struct rxe_qp *qp, |
| struct rxe_pkt_info *pkt) |
| { |
| if (((pkt->mask & RXE_READ_MASK) && |
| !(qp->attr.qp_access_flags & IB_ACCESS_REMOTE_READ)) || |
| ((pkt->mask & (RXE_WRITE_MASK | RXE_ATOMIC_WRITE_MASK)) && |
| !(qp->attr.qp_access_flags & IB_ACCESS_REMOTE_WRITE)) || |
| ((pkt->mask & RXE_ATOMIC_MASK) && |
| !(qp->attr.qp_access_flags & IB_ACCESS_REMOTE_ATOMIC))) |
| return false; |
| |
| if (pkt->mask & RXE_FLUSH_MASK) { |
| u32 flush_type = feth_plt(pkt); |
| |
| if ((flush_type & IB_FLUSH_GLOBAL && |
| !(qp->attr.qp_access_flags & IB_ACCESS_FLUSH_GLOBAL)) || |
| (flush_type & IB_FLUSH_PERSISTENT && |
| !(qp->attr.qp_access_flags & IB_ACCESS_FLUSH_PERSISTENT))) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static enum resp_states check_op_valid(struct rxe_qp *qp, |
| struct rxe_pkt_info *pkt) |
| { |
| switch (qp_type(qp)) { |
| case IB_QPT_RC: |
| if (!check_qp_attr_access(qp, pkt)) |
| return RESPST_ERR_UNSUPPORTED_OPCODE; |
| |
| break; |
| |
| case IB_QPT_UC: |
| if ((pkt->mask & RXE_WRITE_MASK) && |
| !(qp->attr.qp_access_flags & IB_ACCESS_REMOTE_WRITE)) { |
| qp->resp.drop_msg = 1; |
| return RESPST_CLEANUP; |
| } |
| |
| break; |
| |
| case IB_QPT_UD: |
| case IB_QPT_GSI: |
| break; |
| |
| default: |
| WARN_ON_ONCE(1); |
| break; |
| } |
| |
| return RESPST_CHK_RESOURCE; |
| } |
| |
| static enum resp_states get_srq_wqe(struct rxe_qp *qp) |
| { |
| struct rxe_srq *srq = qp->srq; |
| struct rxe_queue *q = srq->rq.queue; |
| struct rxe_recv_wqe *wqe; |
| struct ib_event ev; |
| unsigned int count; |
| size_t size; |
| unsigned long flags; |
| |
| if (srq->error) |
| return RESPST_ERR_RNR; |
| |
| spin_lock_irqsave(&srq->rq.consumer_lock, flags); |
| |
| wqe = queue_head(q, QUEUE_TYPE_FROM_CLIENT); |
| if (!wqe) { |
| spin_unlock_irqrestore(&srq->rq.consumer_lock, flags); |
| return RESPST_ERR_RNR; |
| } |
| |
| /* don't trust user space data */ |
| if (unlikely(wqe->dma.num_sge > srq->rq.max_sge)) { |
| spin_unlock_irqrestore(&srq->rq.consumer_lock, flags); |
| rxe_dbg_qp(qp, "invalid num_sge in SRQ entry\n"); |
| return RESPST_ERR_MALFORMED_WQE; |
| } |
| size = sizeof(*wqe) + wqe->dma.num_sge*sizeof(struct rxe_sge); |
| memcpy(&qp->resp.srq_wqe, wqe, size); |
| |
| qp->resp.wqe = &qp->resp.srq_wqe.wqe; |
| queue_advance_consumer(q, QUEUE_TYPE_FROM_CLIENT); |
| count = queue_count(q, QUEUE_TYPE_FROM_CLIENT); |
| |
| if (srq->limit && srq->ibsrq.event_handler && (count < srq->limit)) { |
| srq->limit = 0; |
| goto event; |
| } |
| |
| spin_unlock_irqrestore(&srq->rq.consumer_lock, flags); |
| return RESPST_CHK_LENGTH; |
| |
| event: |
| spin_unlock_irqrestore(&srq->rq.consumer_lock, flags); |
| ev.device = qp->ibqp.device; |
| ev.element.srq = qp->ibqp.srq; |
| ev.event = IB_EVENT_SRQ_LIMIT_REACHED; |
| srq->ibsrq.event_handler(&ev, srq->ibsrq.srq_context); |
| return RESPST_CHK_LENGTH; |
| } |
| |
| static enum resp_states check_resource(struct rxe_qp *qp, |
| struct rxe_pkt_info *pkt) |
| { |
| struct rxe_srq *srq = qp->srq; |
| |
| if (pkt->mask & (RXE_READ_OR_ATOMIC_MASK | RXE_ATOMIC_WRITE_MASK)) { |
| /* it is the requesters job to not send |
| * too many read/atomic ops, we just |
| * recycle the responder resource queue |
| */ |
| if (likely(qp->attr.max_dest_rd_atomic > 0)) |
| return RESPST_CHK_LENGTH; |
| else |
| return RESPST_ERR_TOO_MANY_RDMA_ATM_REQ; |
| } |
| |
| if (pkt->mask & RXE_RWR_MASK) { |
| if (srq) |
| return get_srq_wqe(qp); |
| |
| qp->resp.wqe = queue_head(qp->rq.queue, |
| QUEUE_TYPE_FROM_CLIENT); |
| return (qp->resp.wqe) ? RESPST_CHK_LENGTH : RESPST_ERR_RNR; |
| } |
| |
| return RESPST_CHK_LENGTH; |
| } |
| |
| static enum resp_states rxe_resp_check_length(struct rxe_qp *qp, |
| struct rxe_pkt_info *pkt) |
| { |
| /* |
| * See IBA C9-92 |
| * For UD QPs we only check if the packet will fit in the |
| * receive buffer later. For RDMA operations additional |
| * length checks are performed in check_rkey. |
| */ |
| if ((qp_type(qp) == IB_QPT_GSI) || (qp_type(qp) == IB_QPT_UD)) { |
| unsigned int payload = payload_size(pkt); |
| unsigned int recv_buffer_len = 0; |
| int i; |
| |
| for (i = 0; i < qp->resp.wqe->dma.num_sge; i++) |
| recv_buffer_len += qp->resp.wqe->dma.sge[i].length; |
| if (payload + sizeof(union rdma_network_hdr) > recv_buffer_len) { |
| rxe_dbg_qp(qp, "The receive buffer is too small for this UD packet.\n"); |
| return RESPST_ERR_LENGTH; |
| } |
| } |
| |
| if (pkt->mask & RXE_PAYLOAD_MASK && ((qp_type(qp) == IB_QPT_RC) || |
| (qp_type(qp) == IB_QPT_UC))) { |
| unsigned int mtu = qp->mtu; |
| unsigned int payload = payload_size(pkt); |
| |
| if ((pkt->mask & RXE_START_MASK) && |
| (pkt->mask & RXE_END_MASK)) { |
| if (unlikely(payload > mtu)) { |
| rxe_dbg_qp(qp, "only packet too long\n"); |
| return RESPST_ERR_LENGTH; |
| } |
| } else if ((pkt->mask & RXE_START_MASK) || |
| (pkt->mask & RXE_MIDDLE_MASK)) { |
| if (unlikely(payload != mtu)) { |
| rxe_dbg_qp(qp, "first or middle packet not mtu\n"); |
| return RESPST_ERR_LENGTH; |
| } |
| } else if (pkt->mask & RXE_END_MASK) { |
| if (unlikely((payload == 0) || (payload > mtu))) { |
| rxe_dbg_qp(qp, "last packet zero or too long\n"); |
| return RESPST_ERR_LENGTH; |
| } |
| } |
| } |
| |
| /* See IBA C9-94 */ |
| if (pkt->mask & RXE_RETH_MASK) { |
| if (reth_len(pkt) > (1U << 31)) { |
| rxe_dbg_qp(qp, "dma length too long\n"); |
| return RESPST_ERR_LENGTH; |
| } |
| } |
| |
| if (pkt->mask & RXE_RDMA_OP_MASK) |
| return RESPST_CHK_RKEY; |
| else |
| return RESPST_EXECUTE; |
| } |
| |
| /* if the reth length field is zero we can assume nothing |
| * about the rkey value and should not validate or use it. |
| * Instead set qp->resp.rkey to 0 which is an invalid rkey |
| * value since the minimum index part is 1. |
| */ |
| static void qp_resp_from_reth(struct rxe_qp *qp, struct rxe_pkt_info *pkt) |
| { |
| unsigned int length = reth_len(pkt); |
| |
| qp->resp.va = reth_va(pkt); |
| qp->resp.offset = 0; |
| qp->resp.resid = length; |
| qp->resp.length = length; |
| if (pkt->mask & RXE_READ_OR_WRITE_MASK && length == 0) |
| qp->resp.rkey = 0; |
| else |
| qp->resp.rkey = reth_rkey(pkt); |
| } |
| |
| static void qp_resp_from_atmeth(struct rxe_qp *qp, struct rxe_pkt_info *pkt) |
| { |
| qp->resp.va = atmeth_va(pkt); |
| qp->resp.offset = 0; |
| qp->resp.rkey = atmeth_rkey(pkt); |
| qp->resp.resid = sizeof(u64); |
| } |
| |
| /* resolve the packet rkey to qp->resp.mr or set qp->resp.mr to NULL |
| * if an invalid rkey is received or the rdma length is zero. For middle |
| * or last packets use the stored value of mr. |
| */ |
| static enum resp_states check_rkey(struct rxe_qp *qp, |
| struct rxe_pkt_info *pkt) |
| { |
| struct rxe_mr *mr = NULL; |
| struct rxe_mw *mw = NULL; |
| u64 va; |
| u32 rkey; |
| u32 resid; |
| u32 pktlen; |
| int mtu = qp->mtu; |
| enum resp_states state; |
| int access = 0; |
| |
| /* parse RETH or ATMETH header for first/only packets |
| * for va, length, rkey, etc. or use current value for |
| * middle/last packets. |
| */ |
| if (pkt->mask & (RXE_READ_OR_WRITE_MASK | RXE_ATOMIC_WRITE_MASK)) { |
| if (pkt->mask & RXE_RETH_MASK) |
| qp_resp_from_reth(qp, pkt); |
| |
| access = (pkt->mask & RXE_READ_MASK) ? IB_ACCESS_REMOTE_READ |
| : IB_ACCESS_REMOTE_WRITE; |
| } else if (pkt->mask & RXE_FLUSH_MASK) { |
| u32 flush_type = feth_plt(pkt); |
| |
| if (pkt->mask & RXE_RETH_MASK) |
| qp_resp_from_reth(qp, pkt); |
| |
| if (flush_type & IB_FLUSH_GLOBAL) |
| access |= IB_ACCESS_FLUSH_GLOBAL; |
| if (flush_type & IB_FLUSH_PERSISTENT) |
| access |= IB_ACCESS_FLUSH_PERSISTENT; |
| } else if (pkt->mask & RXE_ATOMIC_MASK) { |
| qp_resp_from_atmeth(qp, pkt); |
| access = IB_ACCESS_REMOTE_ATOMIC; |
| } else { |
| /* shouldn't happen */ |
| WARN_ON(1); |
| } |
| |
| /* A zero-byte read or write op is not required to |
| * set an addr or rkey. See C9-88 |
| */ |
| if ((pkt->mask & RXE_READ_OR_WRITE_MASK) && |
| (pkt->mask & RXE_RETH_MASK) && reth_len(pkt) == 0) { |
| qp->resp.mr = NULL; |
| return RESPST_EXECUTE; |
| } |
| |
| va = qp->resp.va; |
| rkey = qp->resp.rkey; |
| resid = qp->resp.resid; |
| pktlen = payload_size(pkt); |
| |
| if (rkey_is_mw(rkey)) { |
| mw = rxe_lookup_mw(qp, access, rkey); |
| if (!mw) { |
| rxe_dbg_qp(qp, "no MW matches rkey %#x\n", rkey); |
| state = RESPST_ERR_RKEY_VIOLATION; |
| goto err; |
| } |
| |
| mr = mw->mr; |
| if (!mr) { |
| rxe_dbg_qp(qp, "MW doesn't have an MR\n"); |
| state = RESPST_ERR_RKEY_VIOLATION; |
| goto err; |
| } |
| |
| if (mw->access & IB_ZERO_BASED) |
| qp->resp.offset = mw->addr; |
| |
| rxe_get(mr); |
| rxe_put(mw); |
| mw = NULL; |
| } else { |
| mr = lookup_mr(qp->pd, access, rkey, RXE_LOOKUP_REMOTE); |
| if (!mr) { |
| rxe_dbg_qp(qp, "no MR matches rkey %#x\n", rkey); |
| state = RESPST_ERR_RKEY_VIOLATION; |
| goto err; |
| } |
| } |
| |
| if (pkt->mask & RXE_FLUSH_MASK) { |
| /* FLUSH MR may not set va or resid |
| * no need to check range since we will flush whole mr |
| */ |
| if (feth_sel(pkt) == IB_FLUSH_MR) |
| goto skip_check_range; |
| } |
| |
| if (mr_check_range(mr, va + qp->resp.offset, resid)) { |
| state = RESPST_ERR_RKEY_VIOLATION; |
| goto err; |
| } |
| |
| skip_check_range: |
| if (pkt->mask & (RXE_WRITE_MASK | RXE_ATOMIC_WRITE_MASK)) { |
| if (resid > mtu) { |
| if (pktlen != mtu || bth_pad(pkt)) { |
| state = RESPST_ERR_LENGTH; |
| goto err; |
| } |
| } else { |
| if (pktlen != resid) { |
| state = RESPST_ERR_LENGTH; |
| goto err; |
| } |
| if ((bth_pad(pkt) != (0x3 & (-resid)))) { |
| /* This case may not be exactly that |
| * but nothing else fits. |
| */ |
| state = RESPST_ERR_LENGTH; |
| goto err; |
| } |
| } |
| } |
| |
| WARN_ON_ONCE(qp->resp.mr); |
| |
| qp->resp.mr = mr; |
| return RESPST_EXECUTE; |
| |
| err: |
| qp->resp.mr = NULL; |
| if (mr) |
| rxe_put(mr); |
| if (mw) |
| rxe_put(mw); |
| |
| return state; |
| } |
| |
| static enum resp_states send_data_in(struct rxe_qp *qp, void *data_addr, |
| int data_len) |
| { |
| int err; |
| |
| err = copy_data(qp->pd, IB_ACCESS_LOCAL_WRITE, &qp->resp.wqe->dma, |
| data_addr, data_len, RXE_TO_MR_OBJ); |
| if (unlikely(err)) |
| return (err == -ENOSPC) ? RESPST_ERR_LENGTH |
| : RESPST_ERR_MALFORMED_WQE; |
| |
| return RESPST_NONE; |
| } |
| |
| static enum resp_states write_data_in(struct rxe_qp *qp, |
| struct rxe_pkt_info *pkt) |
| { |
| enum resp_states rc = RESPST_NONE; |
| int err; |
| int data_len = payload_size(pkt); |
| |
| err = rxe_mr_copy(qp->resp.mr, qp->resp.va + qp->resp.offset, |
| payload_addr(pkt), data_len, RXE_TO_MR_OBJ); |
| if (err) { |
| rc = RESPST_ERR_RKEY_VIOLATION; |
| goto out; |
| } |
| |
| qp->resp.va += data_len; |
| qp->resp.resid -= data_len; |
| |
| out: |
| return rc; |
| } |
| |
| static struct resp_res *rxe_prepare_res(struct rxe_qp *qp, |
| struct rxe_pkt_info *pkt, |
| int type) |
| { |
| struct resp_res *res; |
| u32 pkts; |
| |
| res = &qp->resp.resources[qp->resp.res_head]; |
| rxe_advance_resp_resource(qp); |
| free_rd_atomic_resource(res); |
| |
| res->type = type; |
| res->replay = 0; |
| |
| switch (type) { |
| case RXE_READ_MASK: |
| res->read.va = qp->resp.va + qp->resp.offset; |
| res->read.va_org = qp->resp.va + qp->resp.offset; |
| res->read.resid = qp->resp.resid; |
| res->read.length = qp->resp.resid; |
| res->read.rkey = qp->resp.rkey; |
| |
| pkts = max_t(u32, (reth_len(pkt) + qp->mtu - 1)/qp->mtu, 1); |
| res->first_psn = pkt->psn; |
| res->cur_psn = pkt->psn; |
| res->last_psn = (pkt->psn + pkts - 1) & BTH_PSN_MASK; |
| |
| res->state = rdatm_res_state_new; |
| break; |
| case RXE_ATOMIC_MASK: |
| case RXE_ATOMIC_WRITE_MASK: |
| res->first_psn = pkt->psn; |
| res->last_psn = pkt->psn; |
| res->cur_psn = pkt->psn; |
| break; |
| case RXE_FLUSH_MASK: |
| res->flush.va = qp->resp.va + qp->resp.offset; |
| res->flush.length = qp->resp.length; |
| res->flush.type = feth_plt(pkt); |
| res->flush.level = feth_sel(pkt); |
| } |
| |
| return res; |
| } |
| |
| static enum resp_states process_flush(struct rxe_qp *qp, |
| struct rxe_pkt_info *pkt) |
| { |
| u64 length, start; |
| struct rxe_mr *mr = qp->resp.mr; |
| struct resp_res *res = qp->resp.res; |
| |
| /* oA19-14, oA19-15 */ |
| if (res && res->replay) |
| return RESPST_ACKNOWLEDGE; |
| else if (!res) { |
| res = rxe_prepare_res(qp, pkt, RXE_FLUSH_MASK); |
| qp->resp.res = res; |
| } |
| |
| if (res->flush.level == IB_FLUSH_RANGE) { |
| start = res->flush.va; |
| length = res->flush.length; |
| } else { /* level == IB_FLUSH_MR */ |
| start = mr->ibmr.iova; |
| length = mr->ibmr.length; |
| } |
| |
| if (res->flush.type & IB_FLUSH_PERSISTENT) { |
| if (rxe_flush_pmem_iova(mr, start, length)) |
| return RESPST_ERR_RKEY_VIOLATION; |
| /* Make data persistent. */ |
| wmb(); |
| } else if (res->flush.type & IB_FLUSH_GLOBAL) { |
| /* Make data global visibility. */ |
| wmb(); |
| } |
| |
| qp->resp.msn++; |
| |
| /* next expected psn, read handles this separately */ |
| qp->resp.psn = (pkt->psn + 1) & BTH_PSN_MASK; |
| qp->resp.ack_psn = qp->resp.psn; |
| |
| qp->resp.opcode = pkt->opcode; |
| qp->resp.status = IB_WC_SUCCESS; |
| |
| return RESPST_ACKNOWLEDGE; |
| } |
| |
| static enum resp_states atomic_reply(struct rxe_qp *qp, |
| struct rxe_pkt_info *pkt) |
| { |
| struct rxe_mr *mr = qp->resp.mr; |
| struct resp_res *res = qp->resp.res; |
| int err; |
| |
| if (!res) { |
| res = rxe_prepare_res(qp, pkt, RXE_ATOMIC_MASK); |
| qp->resp.res = res; |
| } |
| |
| if (!res->replay) { |
| u64 iova = qp->resp.va + qp->resp.offset; |
| |
| err = rxe_mr_do_atomic_op(mr, iova, pkt->opcode, |
| atmeth_comp(pkt), |
| atmeth_swap_add(pkt), |
| &res->atomic.orig_val); |
| if (err) |
| return err; |
| |
| qp->resp.msn++; |
| |
| /* next expected psn, read handles this separately */ |
| qp->resp.psn = (pkt->psn + 1) & BTH_PSN_MASK; |
| qp->resp.ack_psn = qp->resp.psn; |
| |
| qp->resp.opcode = pkt->opcode; |
| qp->resp.status = IB_WC_SUCCESS; |
| } |
| |
| return RESPST_ACKNOWLEDGE; |
| } |
| |
| static enum resp_states atomic_write_reply(struct rxe_qp *qp, |
| struct rxe_pkt_info *pkt) |
| { |
| struct resp_res *res = qp->resp.res; |
| struct rxe_mr *mr; |
| u64 value; |
| u64 iova; |
| int err; |
| |
| if (!res) { |
| res = rxe_prepare_res(qp, pkt, RXE_ATOMIC_WRITE_MASK); |
| qp->resp.res = res; |
| } |
| |
| if (res->replay) |
| return RESPST_ACKNOWLEDGE; |
| |
| mr = qp->resp.mr; |
| value = *(u64 *)payload_addr(pkt); |
| iova = qp->resp.va + qp->resp.offset; |
| |
| err = rxe_mr_do_atomic_write(mr, iova, value); |
| if (err) |
| return err; |
| |
| qp->resp.resid = 0; |
| qp->resp.msn++; |
| |
| /* next expected psn, read handles this separately */ |
| qp->resp.psn = (pkt->psn + 1) & BTH_PSN_MASK; |
| qp->resp.ack_psn = qp->resp.psn; |
| |
| qp->resp.opcode = pkt->opcode; |
| qp->resp.status = IB_WC_SUCCESS; |
| |
| return RESPST_ACKNOWLEDGE; |
| } |
| |
| static struct sk_buff *prepare_ack_packet(struct rxe_qp *qp, |
| struct rxe_pkt_info *ack, |
| int opcode, |
| int payload, |
| u32 psn, |
| u8 syndrome) |
| { |
| struct rxe_dev *rxe = to_rdev(qp->ibqp.device); |
| struct sk_buff *skb; |
| int paylen; |
| int pad; |
| int err; |
| |
| /* |
| * allocate packet |
| */ |
| pad = (-payload) & 0x3; |
| paylen = rxe_opcode[opcode].length + payload + pad + RXE_ICRC_SIZE; |
| |
| skb = rxe_init_packet(rxe, &qp->pri_av, paylen, ack); |
| if (!skb) |
| return NULL; |
| |
| ack->qp = qp; |
| ack->opcode = opcode; |
| ack->mask = rxe_opcode[opcode].mask; |
| ack->paylen = paylen; |
| ack->psn = psn; |
| |
| bth_init(ack, opcode, 0, 0, pad, IB_DEFAULT_PKEY_FULL, |
| qp->attr.dest_qp_num, 0, psn); |
| |
| if (ack->mask & RXE_AETH_MASK) { |
| aeth_set_syn(ack, syndrome); |
| aeth_set_msn(ack, qp->resp.msn); |
| } |
| |
| if (ack->mask & RXE_ATMACK_MASK) |
| atmack_set_orig(ack, qp->resp.res->atomic.orig_val); |
| |
| err = rxe_prepare(&qp->pri_av, ack, skb); |
| if (err) { |
| kfree_skb(skb); |
| return NULL; |
| } |
| |
| return skb; |
| } |
| |
| /** |
| * rxe_recheck_mr - revalidate MR from rkey and get a reference |
| * @qp: the qp |
| * @rkey: the rkey |
| * |
| * This code allows the MR to be invalidated or deregistered or |
| * the MW if one was used to be invalidated or deallocated. |
| * It is assumed that the access permissions if originally good |
| * are OK and the mappings to be unchanged. |
| * |
| * TODO: If someone reregisters an MR to change its size or |
| * access permissions during the processing of an RDMA read |
| * we should kill the responder resource and complete the |
| * operation with an error. |
| * |
| * Return: mr on success else NULL |
| */ |
| static struct rxe_mr *rxe_recheck_mr(struct rxe_qp *qp, u32 rkey) |
| { |
| struct rxe_dev *rxe = to_rdev(qp->ibqp.device); |
| struct rxe_mr *mr; |
| struct rxe_mw *mw; |
| |
| if (rkey_is_mw(rkey)) { |
| mw = rxe_pool_get_index(&rxe->mw_pool, rkey >> 8); |
| if (!mw) |
| return NULL; |
| |
| mr = mw->mr; |
| if (mw->rkey != rkey || mw->state != RXE_MW_STATE_VALID || |
| !mr || mr->state != RXE_MR_STATE_VALID) { |
| rxe_put(mw); |
| return NULL; |
| } |
| |
| rxe_get(mr); |
| rxe_put(mw); |
| |
| return mr; |
| } |
| |
| mr = rxe_pool_get_index(&rxe->mr_pool, rkey >> 8); |
| if (!mr) |
| return NULL; |
| |
| if (mr->rkey != rkey || mr->state != RXE_MR_STATE_VALID) { |
| rxe_put(mr); |
| return NULL; |
| } |
| |
| return mr; |
| } |
| |
| /* RDMA read response. If res is not NULL, then we have a current RDMA request |
| * being processed or replayed. |
| */ |
| static enum resp_states read_reply(struct rxe_qp *qp, |
| struct rxe_pkt_info *req_pkt) |
| { |
| struct rxe_pkt_info ack_pkt; |
| struct sk_buff *skb; |
| int mtu = qp->mtu; |
| enum resp_states state; |
| int payload; |
| int opcode; |
| int err; |
| struct resp_res *res = qp->resp.res; |
| struct rxe_mr *mr; |
| |
| if (!res) { |
| res = rxe_prepare_res(qp, req_pkt, RXE_READ_MASK); |
| qp->resp.res = res; |
| } |
| |
| if (res->state == rdatm_res_state_new) { |
| if (!res->replay || qp->resp.length == 0) { |
| /* if length == 0 mr will be NULL (is ok) |
| * otherwise qp->resp.mr holds a ref on mr |
| * which we transfer to mr and drop below. |
| */ |
| mr = qp->resp.mr; |
| qp->resp.mr = NULL; |
| } else { |
| mr = rxe_recheck_mr(qp, res->read.rkey); |
| if (!mr) |
| return RESPST_ERR_RKEY_VIOLATION; |
| } |
| |
| if (res->read.resid <= mtu) |
| opcode = IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY; |
| else |
| opcode = IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST; |
| } else { |
| /* re-lookup mr from rkey on all later packets. |
| * length will be non-zero. This can fail if someone |
| * modifies or destroys the mr since the first packet. |
| */ |
| mr = rxe_recheck_mr(qp, res->read.rkey); |
| if (!mr) |
| return RESPST_ERR_RKEY_VIOLATION; |
| |
| if (res->read.resid > mtu) |
| opcode = IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE; |
| else |
| opcode = IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST; |
| } |
| |
| res->state = rdatm_res_state_next; |
| |
| payload = min_t(int, res->read.resid, mtu); |
| |
| skb = prepare_ack_packet(qp, &ack_pkt, opcode, payload, |
| res->cur_psn, AETH_ACK_UNLIMITED); |
| if (!skb) { |
| state = RESPST_ERR_RNR; |
| goto err_out; |
| } |
| |
| err = rxe_mr_copy(mr, res->read.va, payload_addr(&ack_pkt), |
| payload, RXE_FROM_MR_OBJ); |
| if (err) { |
| kfree_skb(skb); |
| state = RESPST_ERR_RKEY_VIOLATION; |
| goto err_out; |
| } |
| |
| if (bth_pad(&ack_pkt)) { |
| u8 *pad = payload_addr(&ack_pkt) + payload; |
| |
| memset(pad, 0, bth_pad(&ack_pkt)); |
| } |
| |
| /* rxe_xmit_packet always consumes the skb */ |
| err = rxe_xmit_packet(qp, &ack_pkt, skb); |
| if (err) { |
| state = RESPST_ERR_RNR; |
| goto err_out; |
| } |
| |
| res->read.va += payload; |
| res->read.resid -= payload; |
| res->cur_psn = (res->cur_psn + 1) & BTH_PSN_MASK; |
| |
| if (res->read.resid > 0) { |
| state = RESPST_DONE; |
| } else { |
| qp->resp.res = NULL; |
| if (!res->replay) |
| qp->resp.opcode = -1; |
| if (psn_compare(res->cur_psn, qp->resp.psn) >= 0) |
| qp->resp.psn = res->cur_psn; |
| state = RESPST_CLEANUP; |
| } |
| |
| err_out: |
| if (mr) |
| rxe_put(mr); |
| return state; |
| } |
| |
| static int invalidate_rkey(struct rxe_qp *qp, u32 rkey) |
| { |
| if (rkey_is_mw(rkey)) |
| return rxe_invalidate_mw(qp, rkey); |
| else |
| return rxe_invalidate_mr(qp, rkey); |
| } |
| |
| /* Executes a new request. A retried request never reach that function (send |
| * and writes are discarded, and reads and atomics are retried elsewhere. |
| */ |
| static enum resp_states execute(struct rxe_qp *qp, struct rxe_pkt_info *pkt) |
| { |
| enum resp_states err; |
| struct sk_buff *skb = PKT_TO_SKB(pkt); |
| union rdma_network_hdr hdr; |
| |
| if (pkt->mask & RXE_SEND_MASK) { |
| if (qp_type(qp) == IB_QPT_UD || |
| qp_type(qp) == IB_QPT_GSI) { |
| if (skb->protocol == htons(ETH_P_IP)) { |
| memset(&hdr.reserved, 0, |
| sizeof(hdr.reserved)); |
| memcpy(&hdr.roce4grh, ip_hdr(skb), |
| sizeof(hdr.roce4grh)); |
| err = send_data_in(qp, &hdr, sizeof(hdr)); |
| } else { |
| err = send_data_in(qp, ipv6_hdr(skb), |
| sizeof(hdr)); |
| } |
| if (err) |
| return err; |
| } |
| err = send_data_in(qp, payload_addr(pkt), payload_size(pkt)); |
| if (err) |
| return err; |
| } else if (pkt->mask & RXE_WRITE_MASK) { |
| err = write_data_in(qp, pkt); |
| if (err) |
| return err; |
| } else if (pkt->mask & RXE_READ_MASK) { |
| /* For RDMA Read we can increment the msn now. See C9-148. */ |
| qp->resp.msn++; |
| return RESPST_READ_REPLY; |
| } else if (pkt->mask & RXE_ATOMIC_MASK) { |
| return RESPST_ATOMIC_REPLY; |
| } else if (pkt->mask & RXE_ATOMIC_WRITE_MASK) { |
| return RESPST_ATOMIC_WRITE_REPLY; |
| } else if (pkt->mask & RXE_FLUSH_MASK) { |
| return RESPST_PROCESS_FLUSH; |
| } else { |
| /* Unreachable */ |
| WARN_ON_ONCE(1); |
| } |
| |
| if (pkt->mask & RXE_IETH_MASK) { |
| u32 rkey = ieth_rkey(pkt); |
| |
| err = invalidate_rkey(qp, rkey); |
| if (err) |
| return RESPST_ERR_INVALIDATE_RKEY; |
| } |
| |
| if (pkt->mask & RXE_END_MASK) |
| /* We successfully processed this new request. */ |
| qp->resp.msn++; |
| |
| /* next expected psn, read handles this separately */ |
| qp->resp.psn = (pkt->psn + 1) & BTH_PSN_MASK; |
| qp->resp.ack_psn = qp->resp.psn; |
| |
| qp->resp.opcode = pkt->opcode; |
| qp->resp.status = IB_WC_SUCCESS; |
| |
| if (pkt->mask & RXE_COMP_MASK) |
| return RESPST_COMPLETE; |
| else if (qp_type(qp) == IB_QPT_RC) |
| return RESPST_ACKNOWLEDGE; |
| else |
| return RESPST_CLEANUP; |
| } |
| |
| static enum resp_states do_complete(struct rxe_qp *qp, |
| struct rxe_pkt_info *pkt) |
| { |
| struct rxe_cqe cqe; |
| struct ib_wc *wc = &cqe.ibwc; |
| struct ib_uverbs_wc *uwc = &cqe.uibwc; |
| struct rxe_recv_wqe *wqe = qp->resp.wqe; |
| struct rxe_dev *rxe = to_rdev(qp->ibqp.device); |
| unsigned long flags; |
| |
| if (!wqe) |
| goto finish; |
| |
| memset(&cqe, 0, sizeof(cqe)); |
| |
| if (qp->rcq->is_user) { |
| uwc->status = qp->resp.status; |
| uwc->qp_num = qp->ibqp.qp_num; |
| uwc->wr_id = wqe->wr_id; |
| } else { |
| wc->status = qp->resp.status; |
| wc->qp = &qp->ibqp; |
| wc->wr_id = wqe->wr_id; |
| } |
| |
| if (wc->status == IB_WC_SUCCESS) { |
| rxe_counter_inc(rxe, RXE_CNT_RDMA_RECV); |
| wc->opcode = (pkt->mask & RXE_IMMDT_MASK && |
| pkt->mask & RXE_WRITE_MASK) ? |
| IB_WC_RECV_RDMA_WITH_IMM : IB_WC_RECV; |
| wc->byte_len = (pkt->mask & RXE_IMMDT_MASK && |
| pkt->mask & RXE_WRITE_MASK) ? |
| qp->resp.length : wqe->dma.length - wqe->dma.resid; |
| |
| /* fields after byte_len are different between kernel and user |
| * space |
| */ |
| if (qp->rcq->is_user) { |
| uwc->wc_flags = IB_WC_GRH; |
| |
| if (pkt->mask & RXE_IMMDT_MASK) { |
| uwc->wc_flags |= IB_WC_WITH_IMM; |
| uwc->ex.imm_data = immdt_imm(pkt); |
| } |
| |
| if (pkt->mask & RXE_IETH_MASK) { |
| uwc->wc_flags |= IB_WC_WITH_INVALIDATE; |
| uwc->ex.invalidate_rkey = ieth_rkey(pkt); |
| } |
| |
| if (pkt->mask & RXE_DETH_MASK) |
| uwc->src_qp = deth_sqp(pkt); |
| |
| uwc->port_num = qp->attr.port_num; |
| } else { |
| struct sk_buff *skb = PKT_TO_SKB(pkt); |
| |
| wc->wc_flags = IB_WC_GRH | IB_WC_WITH_NETWORK_HDR_TYPE; |
| if (skb->protocol == htons(ETH_P_IP)) |
| wc->network_hdr_type = RDMA_NETWORK_IPV4; |
| else |
| wc->network_hdr_type = RDMA_NETWORK_IPV6; |
| |
| if (is_vlan_dev(skb->dev)) { |
| wc->wc_flags |= IB_WC_WITH_VLAN; |
| wc->vlan_id = vlan_dev_vlan_id(skb->dev); |
| } |
| |
| if (pkt->mask & RXE_IMMDT_MASK) { |
| wc->wc_flags |= IB_WC_WITH_IMM; |
| wc->ex.imm_data = immdt_imm(pkt); |
| } |
| |
| if (pkt->mask & RXE_IETH_MASK) { |
| wc->wc_flags |= IB_WC_WITH_INVALIDATE; |
| wc->ex.invalidate_rkey = ieth_rkey(pkt); |
| } |
| |
| if (pkt->mask & RXE_DETH_MASK) |
| wc->src_qp = deth_sqp(pkt); |
| |
| wc->port_num = qp->attr.port_num; |
| } |
| } else { |
| if (wc->status != IB_WC_WR_FLUSH_ERR) |
| rxe_err_qp(qp, "non-flush error status = %d\n", |
| wc->status); |
| } |
| |
| /* have copy for srq and reference for !srq */ |
| if (!qp->srq) |
| queue_advance_consumer(qp->rq.queue, QUEUE_TYPE_FROM_CLIENT); |
| |
| qp->resp.wqe = NULL; |
| |
| if (rxe_cq_post(qp->rcq, &cqe, pkt ? bth_se(pkt) : 1)) |
| return RESPST_ERR_CQ_OVERFLOW; |
| |
| finish: |
| spin_lock_irqsave(&qp->state_lock, flags); |
| if (unlikely(qp_state(qp) == IB_QPS_ERR)) { |
| spin_unlock_irqrestore(&qp->state_lock, flags); |
| return RESPST_CHK_RESOURCE; |
| } |
| spin_unlock_irqrestore(&qp->state_lock, flags); |
| |
| if (unlikely(!pkt)) |
| return RESPST_DONE; |
| if (qp_type(qp) == IB_QPT_RC) |
| return RESPST_ACKNOWLEDGE; |
| else |
| return RESPST_CLEANUP; |
| } |
| |
| |
| static int send_common_ack(struct rxe_qp *qp, u8 syndrome, u32 psn, |
| int opcode, const char *msg) |
| { |
| int err; |
| struct rxe_pkt_info ack_pkt; |
| struct sk_buff *skb; |
| |
| skb = prepare_ack_packet(qp, &ack_pkt, opcode, 0, psn, syndrome); |
| if (!skb) |
| return -ENOMEM; |
| |
| err = rxe_xmit_packet(qp, &ack_pkt, skb); |
| if (err) |
| rxe_dbg_qp(qp, "Failed sending %s\n", msg); |
| |
| return err; |
| } |
| |
| static int send_ack(struct rxe_qp *qp, u8 syndrome, u32 psn) |
| { |
| return send_common_ack(qp, syndrome, psn, |
| IB_OPCODE_RC_ACKNOWLEDGE, "ACK"); |
| } |
| |
| static int send_atomic_ack(struct rxe_qp *qp, u8 syndrome, u32 psn) |
| { |
| int ret = send_common_ack(qp, syndrome, psn, |
| IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE, "ATOMIC ACK"); |
| |
| /* have to clear this since it is used to trigger |
| * long read replies |
| */ |
| qp->resp.res = NULL; |
| return ret; |
| } |
| |
| static int send_read_response_ack(struct rxe_qp *qp, u8 syndrome, u32 psn) |
| { |
| int ret = send_common_ack(qp, syndrome, psn, |
| IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY, |
| "RDMA READ response of length zero ACK"); |
| |
| /* have to clear this since it is used to trigger |
| * long read replies |
| */ |
| qp->resp.res = NULL; |
| return ret; |
| } |
| |
| static enum resp_states acknowledge(struct rxe_qp *qp, |
| struct rxe_pkt_info *pkt) |
| { |
| if (qp_type(qp) != IB_QPT_RC) |
| return RESPST_CLEANUP; |
| |
| if (qp->resp.aeth_syndrome != AETH_ACK_UNLIMITED) |
| send_ack(qp, qp->resp.aeth_syndrome, pkt->psn); |
| else if (pkt->mask & RXE_ATOMIC_MASK) |
| send_atomic_ack(qp, AETH_ACK_UNLIMITED, pkt->psn); |
| else if (pkt->mask & (RXE_FLUSH_MASK | RXE_ATOMIC_WRITE_MASK)) |
| send_read_response_ack(qp, AETH_ACK_UNLIMITED, pkt->psn); |
| else if (bth_ack(pkt)) |
| send_ack(qp, AETH_ACK_UNLIMITED, pkt->psn); |
| |
| return RESPST_CLEANUP; |
| } |
| |
| static enum resp_states cleanup(struct rxe_qp *qp, |
| struct rxe_pkt_info *pkt) |
| { |
| struct sk_buff *skb; |
| |
| if (pkt) { |
| skb = skb_dequeue(&qp->req_pkts); |
| rxe_put(qp); |
| kfree_skb(skb); |
| ib_device_put(qp->ibqp.device); |
| } |
| |
| if (qp->resp.mr) { |
| rxe_put(qp->resp.mr); |
| qp->resp.mr = NULL; |
| } |
| |
| return RESPST_DONE; |
| } |
| |
| static struct resp_res *find_resource(struct rxe_qp *qp, u32 psn) |
| { |
| int i; |
| |
| for (i = 0; i < qp->attr.max_dest_rd_atomic; i++) { |
| struct resp_res *res = &qp->resp.resources[i]; |
| |
| if (res->type == 0) |
| continue; |
| |
| if (psn_compare(psn, res->first_psn) >= 0 && |
| psn_compare(psn, res->last_psn) <= 0) { |
| return res; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| static enum resp_states duplicate_request(struct rxe_qp *qp, |
| struct rxe_pkt_info *pkt) |
| { |
| enum resp_states rc; |
| u32 prev_psn = (qp->resp.ack_psn - 1) & BTH_PSN_MASK; |
| |
| if (pkt->mask & RXE_SEND_MASK || |
| pkt->mask & RXE_WRITE_MASK) { |
| /* SEND. Ack again and cleanup. C9-105. */ |
| send_ack(qp, AETH_ACK_UNLIMITED, prev_psn); |
| return RESPST_CLEANUP; |
| } else if (pkt->mask & RXE_FLUSH_MASK) { |
| struct resp_res *res; |
| |
| /* Find the operation in our list of responder resources. */ |
| res = find_resource(qp, pkt->psn); |
| if (res) { |
| res->replay = 1; |
| res->cur_psn = pkt->psn; |
| qp->resp.res = res; |
| rc = RESPST_PROCESS_FLUSH; |
| goto out; |
| } |
| |
| /* Resource not found. Class D error. Drop the request. */ |
| rc = RESPST_CLEANUP; |
| goto out; |
| } else if (pkt->mask & RXE_READ_MASK) { |
| struct resp_res *res; |
| |
| res = find_resource(qp, pkt->psn); |
| if (!res) { |
| /* Resource not found. Class D error. Drop the |
| * request. |
| */ |
| rc = RESPST_CLEANUP; |
| goto out; |
| } else { |
| /* Ensure this new request is the same as the previous |
| * one or a subset of it. |
| */ |
| u64 iova = reth_va(pkt); |
| u32 resid = reth_len(pkt); |
| |
| if (iova < res->read.va_org || |
| resid > res->read.length || |
| (iova + resid) > (res->read.va_org + |
| res->read.length)) { |
| rc = RESPST_CLEANUP; |
| goto out; |
| } |
| |
| if (reth_rkey(pkt) != res->read.rkey) { |
| rc = RESPST_CLEANUP; |
| goto out; |
| } |
| |
| res->cur_psn = pkt->psn; |
| res->state = (pkt->psn == res->first_psn) ? |
| rdatm_res_state_new : |
| rdatm_res_state_replay; |
| res->replay = 1; |
| |
| /* Reset the resource, except length. */ |
| res->read.va_org = iova; |
| res->read.va = iova; |
| res->read.resid = resid; |
| |
| /* Replay the RDMA read reply. */ |
| qp->resp.res = res; |
| rc = RESPST_READ_REPLY; |
| goto out; |
| } |
| } else { |
| struct resp_res *res; |
| |
| /* Find the operation in our list of responder resources. */ |
| res = find_resource(qp, pkt->psn); |
| if (res) { |
| res->replay = 1; |
| res->cur_psn = pkt->psn; |
| qp->resp.res = res; |
| rc = pkt->mask & RXE_ATOMIC_MASK ? |
| RESPST_ATOMIC_REPLY : |
| RESPST_ATOMIC_WRITE_REPLY; |
| goto out; |
| } |
| |
| /* Resource not found. Class D error. Drop the request. */ |
| rc = RESPST_CLEANUP; |
| goto out; |
| } |
| out: |
| return rc; |
| } |
| |
| /* Process a class A or C. Both are treated the same in this implementation. */ |
| static void do_class_ac_error(struct rxe_qp *qp, u8 syndrome, |
| enum ib_wc_status status) |
| { |
| qp->resp.aeth_syndrome = syndrome; |
| qp->resp.status = status; |
| |
| /* indicate that we should go through the ERROR state */ |
| qp->resp.goto_error = 1; |
| } |
| |
| static enum resp_states do_class_d1e_error(struct rxe_qp *qp) |
| { |
| /* UC */ |
| if (qp->srq) { |
| /* Class E */ |
| qp->resp.drop_msg = 1; |
| if (qp->resp.wqe) { |
| qp->resp.status = IB_WC_REM_INV_REQ_ERR; |
| return RESPST_COMPLETE; |
| } else { |
| return RESPST_CLEANUP; |
| } |
| } else { |
| /* Class D1. This packet may be the start of a |
| * new message and could be valid. The previous |
| * message is invalid and ignored. reset the |
| * recv wr to its original state |
| */ |
| if (qp->resp.wqe) { |
| qp->resp.wqe->dma.resid = qp->resp.wqe->dma.length; |
| qp->resp.wqe->dma.cur_sge = 0; |
| qp->resp.wqe->dma.sge_offset = 0; |
| qp->resp.opcode = -1; |
| } |
| |
| if (qp->resp.mr) { |
| rxe_put(qp->resp.mr); |
| qp->resp.mr = NULL; |
| } |
| |
| return RESPST_CLEANUP; |
| } |
| } |
| |
| /* drain incoming request packet queue */ |
| static void drain_req_pkts(struct rxe_qp *qp) |
| { |
| struct sk_buff *skb; |
| |
| while ((skb = skb_dequeue(&qp->req_pkts))) { |
| rxe_put(qp); |
| kfree_skb(skb); |
| ib_device_put(qp->ibqp.device); |
| } |
| } |
| |
| /* complete receive wqe with flush error */ |
| static int flush_recv_wqe(struct rxe_qp *qp, struct rxe_recv_wqe *wqe) |
| { |
| struct rxe_cqe cqe = {}; |
| struct ib_wc *wc = &cqe.ibwc; |
| struct ib_uverbs_wc *uwc = &cqe.uibwc; |
| int err; |
| |
| if (qp->rcq->is_user) { |
| uwc->wr_id = wqe->wr_id; |
| uwc->status = IB_WC_WR_FLUSH_ERR; |
| uwc->qp_num = qp_num(qp); |
| } else { |
| wc->wr_id = wqe->wr_id; |
| wc->status = IB_WC_WR_FLUSH_ERR; |
| wc->qp = &qp->ibqp; |
| } |
| |
| err = rxe_cq_post(qp->rcq, &cqe, 0); |
| if (err) |
| rxe_dbg_cq(qp->rcq, "post cq failed err = %d\n", err); |
| |
| return err; |
| } |
| |
| /* drain and optionally complete the recive queue |
| * if unable to complete a wqe stop completing and |
| * just flush the remaining wqes |
| */ |
| static void flush_recv_queue(struct rxe_qp *qp, bool notify) |
| { |
| struct rxe_queue *q = qp->rq.queue; |
| struct rxe_recv_wqe *wqe; |
| int err; |
| |
| if (qp->srq) { |
| if (notify && qp->ibqp.event_handler) { |
| struct ib_event ev; |
| |
| ev.device = qp->ibqp.device; |
| ev.element.qp = &qp->ibqp; |
| ev.event = IB_EVENT_QP_LAST_WQE_REACHED; |
| qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); |
| } |
| return; |
| } |
| |
| /* recv queue not created. nothing to do. */ |
| if (!qp->rq.queue) |
| return; |
| |
| while ((wqe = queue_head(q, q->type))) { |
| if (notify) { |
| err = flush_recv_wqe(qp, wqe); |
| if (err) |
| notify = 0; |
| } |
| queue_advance_consumer(q, q->type); |
| } |
| |
| qp->resp.wqe = NULL; |
| } |
| |
| int rxe_receiver(struct rxe_qp *qp) |
| { |
| struct rxe_dev *rxe = to_rdev(qp->ibqp.device); |
| enum resp_states state; |
| struct rxe_pkt_info *pkt = NULL; |
| int ret; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&qp->state_lock, flags); |
| if (!qp->valid || qp_state(qp) == IB_QPS_ERR || |
| qp_state(qp) == IB_QPS_RESET) { |
| bool notify = qp->valid && (qp_state(qp) == IB_QPS_ERR); |
| |
| drain_req_pkts(qp); |
| flush_recv_queue(qp, notify); |
| spin_unlock_irqrestore(&qp->state_lock, flags); |
| goto exit; |
| } |
| spin_unlock_irqrestore(&qp->state_lock, flags); |
| |
| qp->resp.aeth_syndrome = AETH_ACK_UNLIMITED; |
| |
| state = RESPST_GET_REQ; |
| |
| while (1) { |
| rxe_dbg_qp(qp, "state = %s\n", resp_state_name[state]); |
| switch (state) { |
| case RESPST_GET_REQ: |
| state = get_req(qp, &pkt); |
| break; |
| case RESPST_CHK_PSN: |
| state = check_psn(qp, pkt); |
| break; |
| case RESPST_CHK_OP_SEQ: |
| state = check_op_seq(qp, pkt); |
| break; |
| case RESPST_CHK_OP_VALID: |
| state = check_op_valid(qp, pkt); |
| break; |
| case RESPST_CHK_RESOURCE: |
| state = check_resource(qp, pkt); |
| break; |
| case RESPST_CHK_LENGTH: |
| state = rxe_resp_check_length(qp, pkt); |
| break; |
| case RESPST_CHK_RKEY: |
| state = check_rkey(qp, pkt); |
| break; |
| case RESPST_EXECUTE: |
| state = execute(qp, pkt); |
| break; |
| case RESPST_COMPLETE: |
| state = do_complete(qp, pkt); |
| break; |
| case RESPST_READ_REPLY: |
| state = read_reply(qp, pkt); |
| break; |
| case RESPST_ATOMIC_REPLY: |
| state = atomic_reply(qp, pkt); |
| break; |
| case RESPST_ATOMIC_WRITE_REPLY: |
| state = atomic_write_reply(qp, pkt); |
| break; |
| case RESPST_PROCESS_FLUSH: |
| state = process_flush(qp, pkt); |
| break; |
| case RESPST_ACKNOWLEDGE: |
| state = acknowledge(qp, pkt); |
| break; |
| case RESPST_CLEANUP: |
| state = cleanup(qp, pkt); |
| break; |
| case RESPST_DUPLICATE_REQUEST: |
| state = duplicate_request(qp, pkt); |
| break; |
| case RESPST_ERR_PSN_OUT_OF_SEQ: |
| /* RC only - Class B. Drop packet. */ |
| send_ack(qp, AETH_NAK_PSN_SEQ_ERROR, qp->resp.psn); |
| state = RESPST_CLEANUP; |
| break; |
| |
| case RESPST_ERR_TOO_MANY_RDMA_ATM_REQ: |
| case RESPST_ERR_MISSING_OPCODE_FIRST: |
| case RESPST_ERR_MISSING_OPCODE_LAST_C: |
| case RESPST_ERR_UNSUPPORTED_OPCODE: |
| case RESPST_ERR_MISALIGNED_ATOMIC: |
| /* RC Only - Class C. */ |
| do_class_ac_error(qp, AETH_NAK_INVALID_REQ, |
| IB_WC_REM_INV_REQ_ERR); |
| state = RESPST_COMPLETE; |
| break; |
| |
| case RESPST_ERR_MISSING_OPCODE_LAST_D1E: |
| state = do_class_d1e_error(qp); |
| break; |
| case RESPST_ERR_RNR: |
| if (qp_type(qp) == IB_QPT_RC) { |
| rxe_counter_inc(rxe, RXE_CNT_SND_RNR); |
| /* RC - class B */ |
| send_ack(qp, AETH_RNR_NAK | |
| (~AETH_TYPE_MASK & |
| qp->attr.min_rnr_timer), |
| pkt->psn); |
| } else { |
| /* UD/UC - class D */ |
| qp->resp.drop_msg = 1; |
| } |
| state = RESPST_CLEANUP; |
| break; |
| |
| case RESPST_ERR_RKEY_VIOLATION: |
| if (qp_type(qp) == IB_QPT_RC) { |
| /* Class C */ |
| do_class_ac_error(qp, AETH_NAK_REM_ACC_ERR, |
| IB_WC_REM_ACCESS_ERR); |
| state = RESPST_COMPLETE; |
| } else { |
| qp->resp.drop_msg = 1; |
| if (qp->srq) { |
| /* UC/SRQ Class D */ |
| qp->resp.status = IB_WC_REM_ACCESS_ERR; |
| state = RESPST_COMPLETE; |
| } else { |
| /* UC/non-SRQ Class E. */ |
| state = RESPST_CLEANUP; |
| } |
| } |
| break; |
| |
| case RESPST_ERR_INVALIDATE_RKEY: |
| /* RC - Class J. */ |
| qp->resp.goto_error = 1; |
| qp->resp.status = IB_WC_REM_INV_REQ_ERR; |
| state = RESPST_COMPLETE; |
| break; |
| |
| case RESPST_ERR_LENGTH: |
| if (qp_type(qp) == IB_QPT_RC) { |
| /* Class C */ |
| do_class_ac_error(qp, AETH_NAK_INVALID_REQ, |
| IB_WC_REM_INV_REQ_ERR); |
| state = RESPST_COMPLETE; |
| } else if (qp->srq) { |
| /* UC/UD - class E */ |
| qp->resp.status = IB_WC_REM_INV_REQ_ERR; |
| state = RESPST_COMPLETE; |
| } else { |
| /* UC/UD - class D */ |
| qp->resp.drop_msg = 1; |
| state = RESPST_CLEANUP; |
| } |
| break; |
| |
| case RESPST_ERR_MALFORMED_WQE: |
| /* All, Class A. */ |
| do_class_ac_error(qp, AETH_NAK_REM_OP_ERR, |
| IB_WC_LOC_QP_OP_ERR); |
| state = RESPST_COMPLETE; |
| break; |
| |
| case RESPST_ERR_CQ_OVERFLOW: |
| /* All - Class G */ |
| state = RESPST_ERROR; |
| break; |
| |
| case RESPST_DONE: |
| if (qp->resp.goto_error) { |
| state = RESPST_ERROR; |
| break; |
| } |
| |
| goto done; |
| |
| case RESPST_EXIT: |
| if (qp->resp.goto_error) { |
| state = RESPST_ERROR; |
| break; |
| } |
| |
| goto exit; |
| |
| case RESPST_ERROR: |
| qp->resp.goto_error = 0; |
| rxe_dbg_qp(qp, "moved to error state\n"); |
| rxe_qp_error(qp); |
| goto exit; |
| |
| default: |
| WARN_ON_ONCE(1); |
| } |
| } |
| |
| /* A non-zero return value will cause rxe_do_task to |
| * exit its loop and end the work item. A zero return |
| * will continue looping and return to rxe_responder |
| */ |
| done: |
| ret = 0; |
| goto out; |
| exit: |
| ret = -EAGAIN; |
| out: |
| return ret; |
| } |