| // SPDX-License-Identifier: GPL-2.0-only |
| /* Copyright (C) 2015 - 2016 Thomas Körper, esd electronic system design gmbh |
| * Copyright (C) 2017 - 2023 Stefan Mätje, esd electronics gmbh |
| */ |
| |
| #include "esdacc.h" |
| |
| #include <linux/bitfield.h> |
| #include <linux/delay.h> |
| #include <linux/io.h> |
| #include <linux/ktime.h> |
| |
| /* esdACC ID register layout */ |
| #define ACC_ID_ID_MASK GENMASK(28, 0) |
| #define ACC_ID_EFF_FLAG BIT(29) |
| |
| /* esdACC DLC register layout */ |
| #define ACC_DLC_DLC_MASK GENMASK(3, 0) |
| #define ACC_DLC_RTR_FLAG BIT(4) |
| #define ACC_DLC_SSTX_FLAG BIT(24) /* Single Shot TX */ |
| |
| /* esdACC DLC in struct acc_bmmsg_rxtxdone::acc_dlc.len only! */ |
| #define ACC_DLC_TXD_FLAG BIT(5) |
| |
| /* ecc value of esdACC equals SJA1000's ECC register */ |
| #define ACC_ECC_SEG 0x1f |
| #define ACC_ECC_DIR 0x20 |
| #define ACC_ECC_BIT 0x00 |
| #define ACC_ECC_FORM 0x40 |
| #define ACC_ECC_STUFF 0x80 |
| #define ACC_ECC_MASK 0xc0 |
| |
| /* esdACC Status Register bits. Unused bits not documented. */ |
| #define ACC_REG_STATUS_MASK_STATUS_ES BIT(17) |
| #define ACC_REG_STATUS_MASK_STATUS_EP BIT(18) |
| #define ACC_REG_STATUS_MASK_STATUS_BS BIT(19) |
| |
| /* esdACC Overview Module BM_IRQ_Mask register related defines */ |
| /* Two bit wide command masks to mask or unmask a single core IRQ */ |
| #define ACC_BM_IRQ_UNMASK BIT(0) |
| #define ACC_BM_IRQ_MASK (ACC_BM_IRQ_UNMASK << 1) |
| /* Command to unmask all IRQ sources. Created by shifting |
| * and oring the two bit wide ACC_BM_IRQ_UNMASK 16 times. |
| */ |
| #define ACC_BM_IRQ_UNMASK_ALL 0x55555555U |
| |
| static void acc_resetmode_enter(struct acc_core *core) |
| { |
| acc_set_bits(core, ACC_CORE_OF_CTRL, |
| ACC_REG_CTRL_MASK_RESETMODE); |
| |
| /* Read back reset mode bit to flush PCI write posting */ |
| acc_resetmode_entered(core); |
| } |
| |
| static void acc_resetmode_leave(struct acc_core *core) |
| { |
| acc_clear_bits(core, ACC_CORE_OF_CTRL, |
| ACC_REG_CTRL_MASK_RESETMODE); |
| |
| /* Read back reset mode bit to flush PCI write posting */ |
| acc_resetmode_entered(core); |
| } |
| |
| static void acc_txq_put(struct acc_core *core, u32 acc_id, u32 acc_dlc, |
| const void *data) |
| { |
| acc_write32_noswap(core, ACC_CORE_OF_TXFIFO_DATA_1, |
| *((const u32 *)(data + 4))); |
| acc_write32_noswap(core, ACC_CORE_OF_TXFIFO_DATA_0, |
| *((const u32 *)data)); |
| acc_write32(core, ACC_CORE_OF_TXFIFO_DLC, acc_dlc); |
| /* CAN id must be written at last. This write starts TX. */ |
| acc_write32(core, ACC_CORE_OF_TXFIFO_ID, acc_id); |
| } |
| |
| static u8 acc_tx_fifo_next(struct acc_core *core, u8 tx_fifo_idx) |
| { |
| ++tx_fifo_idx; |
| if (tx_fifo_idx >= core->tx_fifo_size) |
| tx_fifo_idx = 0U; |
| return tx_fifo_idx; |
| } |
| |
| /* Convert timestamp from esdACC time stamp ticks to ns |
| * |
| * The conversion factor ts2ns from time stamp counts to ns is basically |
| * ts2ns = NSEC_PER_SEC / timestamp_frequency |
| * |
| * We handle here only a fixed timestamp frequency of 80MHz. The |
| * resulting ts2ns factor would be 12.5. |
| * |
| * At the end we multiply by 12 and add the half of the HW timestamp |
| * to get a multiplication by 12.5. This way any overflow is |
| * avoided until ktime_t itself overflows. |
| */ |
| #define ACC_TS_FACTOR (NSEC_PER_SEC / ACC_TS_FREQ_80MHZ) |
| #define ACC_TS_80MHZ_SHIFT 1 |
| |
| static ktime_t acc_ts2ktime(struct acc_ov *ov, u64 ts) |
| { |
| u64 ns; |
| |
| ns = (ts * ACC_TS_FACTOR) + (ts >> ACC_TS_80MHZ_SHIFT); |
| |
| return ns_to_ktime(ns); |
| } |
| |
| #undef ACC_TS_FACTOR |
| #undef ACC_TS_80MHZ_SHIFT |
| |
| void acc_init_ov(struct acc_ov *ov, struct device *dev) |
| { |
| u32 temp; |
| |
| temp = acc_ov_read32(ov, ACC_OV_OF_VERSION); |
| ov->version = temp; |
| ov->features = (temp >> 16); |
| |
| temp = acc_ov_read32(ov, ACC_OV_OF_INFO); |
| ov->total_cores = temp; |
| ov->active_cores = (temp >> 8); |
| |
| ov->core_frequency = acc_ov_read32(ov, ACC_OV_OF_CANCORE_FREQ); |
| ov->timestamp_frequency = acc_ov_read32(ov, ACC_OV_OF_TS_FREQ_LO); |
| |
| /* Depending on esdACC feature NEW_PSC enable the new prescaler |
| * or adjust core_frequency according to the implicit division by 2. |
| */ |
| if (ov->features & ACC_OV_REG_FEAT_MASK_NEW_PSC) { |
| acc_ov_set_bits(ov, ACC_OV_OF_MODE, |
| ACC_OV_REG_MODE_MASK_NEW_PSC_ENABLE); |
| } else { |
| ov->core_frequency /= 2; |
| } |
| |
| dev_dbg(dev, |
| "esdACC v%u, freq: %u/%u, feat/strap: 0x%x/0x%x, cores: %u/%u\n", |
| ov->version, ov->core_frequency, ov->timestamp_frequency, |
| ov->features, acc_ov_read32(ov, ACC_OV_OF_INFO) >> 16, |
| ov->active_cores, ov->total_cores); |
| } |
| |
| void acc_init_bm_ptr(struct acc_ov *ov, struct acc_core *cores, const void *mem) |
| { |
| unsigned int u; |
| |
| /* DMA buffer layout as follows where N is the number of CAN cores |
| * implemented in the FPGA, i.e. N = ov->total_cores |
| * |
| * Section Layout Section size |
| * ---------------------------------------------- |
| * FIFO Card/Overview ACC_CORE_DMABUF_SIZE |
| * FIFO Core0 ACC_CORE_DMABUF_SIZE |
| * ... ... |
| * FIFO CoreN ACC_CORE_DMABUF_SIZE |
| * irq_cnt Card/Overview sizeof(u32) |
| * irq_cnt Core0 sizeof(u32) |
| * ... ... |
| * irq_cnt CoreN sizeof(u32) |
| */ |
| ov->bmfifo.messages = mem; |
| ov->bmfifo.irq_cnt = mem + (ov->total_cores + 1U) * ACC_CORE_DMABUF_SIZE; |
| |
| for (u = 0U; u < ov->active_cores; u++) { |
| struct acc_core *core = &cores[u]; |
| |
| core->bmfifo.messages = mem + (u + 1U) * ACC_CORE_DMABUF_SIZE; |
| core->bmfifo.irq_cnt = ov->bmfifo.irq_cnt + (u + 1U); |
| } |
| } |
| |
| int acc_open(struct net_device *netdev) |
| { |
| struct acc_net_priv *priv = netdev_priv(netdev); |
| struct acc_core *core = priv->core; |
| u32 tx_fifo_status; |
| u32 ctrl; |
| int err; |
| |
| /* Retry to enter RESET mode if out of sync. */ |
| if (priv->can.state != CAN_STATE_STOPPED) { |
| netdev_warn(netdev, "Entered %s() with bad can.state: %s\n", |
| __func__, can_get_state_str(priv->can.state)); |
| acc_resetmode_enter(core); |
| priv->can.state = CAN_STATE_STOPPED; |
| } |
| |
| err = open_candev(netdev); |
| if (err) |
| return err; |
| |
| ctrl = ACC_REG_CTRL_MASK_IE_RXTX | |
| ACC_REG_CTRL_MASK_IE_TXERROR | |
| ACC_REG_CTRL_MASK_IE_ERRWARN | |
| ACC_REG_CTRL_MASK_IE_OVERRUN | |
| ACC_REG_CTRL_MASK_IE_ERRPASS; |
| |
| if (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) |
| ctrl |= ACC_REG_CTRL_MASK_IE_BUSERR; |
| |
| if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) |
| ctrl |= ACC_REG_CTRL_MASK_LOM; |
| |
| acc_set_bits(core, ACC_CORE_OF_CTRL, ctrl); |
| |
| acc_resetmode_leave(core); |
| priv->can.state = CAN_STATE_ERROR_ACTIVE; |
| |
| /* Resync TX FIFO indices to HW state after (re-)start. */ |
| tx_fifo_status = acc_read32(core, ACC_CORE_OF_TXFIFO_STATUS); |
| core->tx_fifo_head = tx_fifo_status & 0xff; |
| core->tx_fifo_tail = (tx_fifo_status >> 8) & 0xff; |
| |
| netif_start_queue(netdev); |
| return 0; |
| } |
| |
| int acc_close(struct net_device *netdev) |
| { |
| struct acc_net_priv *priv = netdev_priv(netdev); |
| struct acc_core *core = priv->core; |
| |
| acc_clear_bits(core, ACC_CORE_OF_CTRL, |
| ACC_REG_CTRL_MASK_IE_RXTX | |
| ACC_REG_CTRL_MASK_IE_TXERROR | |
| ACC_REG_CTRL_MASK_IE_ERRWARN | |
| ACC_REG_CTRL_MASK_IE_OVERRUN | |
| ACC_REG_CTRL_MASK_IE_ERRPASS | |
| ACC_REG_CTRL_MASK_IE_BUSERR); |
| |
| netif_stop_queue(netdev); |
| acc_resetmode_enter(core); |
| priv->can.state = CAN_STATE_STOPPED; |
| |
| /* Mark pending TX requests to be aborted after controller restart. */ |
| acc_write32(core, ACC_CORE_OF_TX_ABORT_MASK, 0xffff); |
| |
| /* ACC_REG_CTRL_MASK_LOM is only accessible in RESET mode */ |
| acc_clear_bits(core, ACC_CORE_OF_CTRL, |
| ACC_REG_CTRL_MASK_LOM); |
| |
| close_candev(netdev); |
| return 0; |
| } |
| |
| netdev_tx_t acc_start_xmit(struct sk_buff *skb, struct net_device *netdev) |
| { |
| struct acc_net_priv *priv = netdev_priv(netdev); |
| struct acc_core *core = priv->core; |
| struct can_frame *cf = (struct can_frame *)skb->data; |
| u8 tx_fifo_head = core->tx_fifo_head; |
| int fifo_usage; |
| u32 acc_id; |
| u32 acc_dlc; |
| |
| if (can_dropped_invalid_skb(netdev, skb)) |
| return NETDEV_TX_OK; |
| |
| /* Access core->tx_fifo_tail only once because it may be changed |
| * from the interrupt level. |
| */ |
| fifo_usage = tx_fifo_head - core->tx_fifo_tail; |
| if (fifo_usage < 0) |
| fifo_usage += core->tx_fifo_size; |
| |
| if (fifo_usage >= core->tx_fifo_size - 1) { |
| netdev_err(core->netdev, |
| "BUG: TX ring full when queue awake!\n"); |
| netif_stop_queue(netdev); |
| return NETDEV_TX_BUSY; |
| } |
| |
| if (fifo_usage == core->tx_fifo_size - 2) |
| netif_stop_queue(netdev); |
| |
| acc_dlc = can_get_cc_dlc(cf, priv->can.ctrlmode); |
| if (cf->can_id & CAN_RTR_FLAG) |
| acc_dlc |= ACC_DLC_RTR_FLAG; |
| if (priv->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT) |
| acc_dlc |= ACC_DLC_SSTX_FLAG; |
| |
| if (cf->can_id & CAN_EFF_FLAG) { |
| acc_id = cf->can_id & CAN_EFF_MASK; |
| acc_id |= ACC_ID_EFF_FLAG; |
| } else { |
| acc_id = cf->can_id & CAN_SFF_MASK; |
| } |
| |
| can_put_echo_skb(skb, netdev, core->tx_fifo_head, 0); |
| |
| core->tx_fifo_head = acc_tx_fifo_next(core, tx_fifo_head); |
| |
| acc_txq_put(core, acc_id, acc_dlc, cf->data); |
| |
| return NETDEV_TX_OK; |
| } |
| |
| int acc_get_berr_counter(const struct net_device *netdev, |
| struct can_berr_counter *bec) |
| { |
| struct acc_net_priv *priv = netdev_priv(netdev); |
| u32 core_status = acc_read32(priv->core, ACC_CORE_OF_STATUS); |
| |
| bec->txerr = (core_status >> 8) & 0xff; |
| bec->rxerr = core_status & 0xff; |
| |
| return 0; |
| } |
| |
| int acc_set_mode(struct net_device *netdev, enum can_mode mode) |
| { |
| struct acc_net_priv *priv = netdev_priv(netdev); |
| |
| switch (mode) { |
| case CAN_MODE_START: |
| /* Paranoid FIFO index check. */ |
| { |
| const u32 tx_fifo_status = |
| acc_read32(priv->core, ACC_CORE_OF_TXFIFO_STATUS); |
| const u8 hw_fifo_head = tx_fifo_status; |
| |
| if (hw_fifo_head != priv->core->tx_fifo_head || |
| hw_fifo_head != priv->core->tx_fifo_tail) { |
| netdev_warn(netdev, |
| "TX FIFO mismatch: T %2u H %2u; TFHW %#08x\n", |
| priv->core->tx_fifo_tail, |
| priv->core->tx_fifo_head, |
| tx_fifo_status); |
| } |
| } |
| acc_resetmode_leave(priv->core); |
| /* To leave the bus-off state the esdACC controller begins |
| * here a grace period where it counts 128 "idle conditions" (each |
| * of 11 consecutive recessive bits) on the bus as required |
| * by the CAN spec. |
| * |
| * During this time the TX FIFO may still contain already |
| * aborted "zombie" frames that are only drained from the FIFO |
| * at the end of the grace period. |
| * |
| * To not to interfere with this drain process we don't |
| * call netif_wake_queue() here. When the controller reaches |
| * the error-active state again, it informs us about that |
| * with an acc_bmmsg_errstatechange message. Then |
| * netif_wake_queue() is called from |
| * handle_core_msg_errstatechange() instead. |
| */ |
| break; |
| |
| default: |
| return -EOPNOTSUPP; |
| } |
| |
| return 0; |
| } |
| |
| int acc_set_bittiming(struct net_device *netdev) |
| { |
| struct acc_net_priv *priv = netdev_priv(netdev); |
| const struct can_bittiming *bt = &priv->can.bittiming; |
| u32 brp; |
| u32 btr; |
| |
| if (priv->ov->features & ACC_OV_REG_FEAT_MASK_CANFD) { |
| u32 fbtr = 0; |
| |
| netdev_dbg(netdev, "bit timing: brp %u, prop %u, ph1 %u ph2 %u, sjw %u\n", |
| bt->brp, bt->prop_seg, |
| bt->phase_seg1, bt->phase_seg2, bt->sjw); |
| |
| brp = FIELD_PREP(ACC_REG_BRP_FD_MASK_BRP, bt->brp - 1); |
| |
| btr = FIELD_PREP(ACC_REG_BTR_FD_MASK_TSEG1, bt->phase_seg1 + bt->prop_seg - 1); |
| btr |= FIELD_PREP(ACC_REG_BTR_FD_MASK_TSEG2, bt->phase_seg2 - 1); |
| btr |= FIELD_PREP(ACC_REG_BTR_FD_MASK_SJW, bt->sjw - 1); |
| |
| /* Keep order of accesses to ACC_CORE_OF_BRP and ACC_CORE_OF_BTR. */ |
| acc_write32(priv->core, ACC_CORE_OF_BRP, brp); |
| acc_write32(priv->core, ACC_CORE_OF_BTR, btr); |
| |
| netdev_dbg(netdev, "esdACC: BRP %u, NBTR 0x%08x, DBTR 0x%08x", |
| brp, btr, fbtr); |
| } else { |
| netdev_dbg(netdev, "bit timing: brp %u, prop %u, ph1 %u ph2 %u, sjw %u\n", |
| bt->brp, bt->prop_seg, |
| bt->phase_seg1, bt->phase_seg2, bt->sjw); |
| |
| brp = FIELD_PREP(ACC_REG_BRP_CL_MASK_BRP, bt->brp - 1); |
| |
| btr = FIELD_PREP(ACC_REG_BTR_CL_MASK_TSEG1, bt->phase_seg1 + bt->prop_seg - 1); |
| btr |= FIELD_PREP(ACC_REG_BTR_CL_MASK_TSEG2, bt->phase_seg2 - 1); |
| btr |= FIELD_PREP(ACC_REG_BTR_CL_MASK_SJW, bt->sjw - 1); |
| |
| /* Keep order of accesses to ACC_CORE_OF_BRP and ACC_CORE_OF_BTR. */ |
| acc_write32(priv->core, ACC_CORE_OF_BRP, brp); |
| acc_write32(priv->core, ACC_CORE_OF_BTR, btr); |
| |
| netdev_dbg(netdev, "esdACC: BRP %u, BTR 0x%08x", brp, btr); |
| } |
| |
| return 0; |
| } |
| |
| static void handle_core_msg_rxtxdone(struct acc_core *core, |
| const struct acc_bmmsg_rxtxdone *msg) |
| { |
| struct acc_net_priv *priv = netdev_priv(core->netdev); |
| struct net_device_stats *stats = &core->netdev->stats; |
| struct sk_buff *skb; |
| |
| if (msg->acc_dlc.len & ACC_DLC_TXD_FLAG) { |
| u8 tx_fifo_tail = core->tx_fifo_tail; |
| |
| if (core->tx_fifo_head == tx_fifo_tail) { |
| netdev_warn(core->netdev, |
| "TX interrupt, but queue is empty!?\n"); |
| return; |
| } |
| |
| /* Direct access echo skb to attach HW time stamp. */ |
| skb = priv->can.echo_skb[tx_fifo_tail]; |
| if (skb) { |
| skb_hwtstamps(skb)->hwtstamp = |
| acc_ts2ktime(priv->ov, msg->ts); |
| } |
| |
| stats->tx_packets++; |
| stats->tx_bytes += can_get_echo_skb(core->netdev, tx_fifo_tail, |
| NULL); |
| |
| core->tx_fifo_tail = acc_tx_fifo_next(core, tx_fifo_tail); |
| |
| netif_wake_queue(core->netdev); |
| |
| } else { |
| struct can_frame *cf; |
| |
| skb = alloc_can_skb(core->netdev, &cf); |
| if (!skb) { |
| stats->rx_dropped++; |
| return; |
| } |
| |
| cf->can_id = msg->id & ACC_ID_ID_MASK; |
| if (msg->id & ACC_ID_EFF_FLAG) |
| cf->can_id |= CAN_EFF_FLAG; |
| |
| can_frame_set_cc_len(cf, msg->acc_dlc.len & ACC_DLC_DLC_MASK, |
| priv->can.ctrlmode); |
| |
| if (msg->acc_dlc.len & ACC_DLC_RTR_FLAG) { |
| cf->can_id |= CAN_RTR_FLAG; |
| } else { |
| memcpy(cf->data, msg->data, cf->len); |
| stats->rx_bytes += cf->len; |
| } |
| stats->rx_packets++; |
| |
| skb_hwtstamps(skb)->hwtstamp = acc_ts2ktime(priv->ov, msg->ts); |
| |
| netif_rx(skb); |
| } |
| } |
| |
| static void handle_core_msg_txabort(struct acc_core *core, |
| const struct acc_bmmsg_txabort *msg) |
| { |
| struct net_device_stats *stats = &core->netdev->stats; |
| u8 tx_fifo_tail = core->tx_fifo_tail; |
| u32 abort_mask = msg->abort_mask; /* u32 extend to avoid warnings later */ |
| |
| /* The abort_mask shows which frames were aborted in esdACC's FIFO. */ |
| while (tx_fifo_tail != core->tx_fifo_head && (abort_mask)) { |
| const u32 tail_mask = (1U << tx_fifo_tail); |
| |
| if (!(abort_mask & tail_mask)) |
| break; |
| abort_mask &= ~tail_mask; |
| |
| can_free_echo_skb(core->netdev, tx_fifo_tail, NULL); |
| stats->tx_dropped++; |
| stats->tx_aborted_errors++; |
| |
| tx_fifo_tail = acc_tx_fifo_next(core, tx_fifo_tail); |
| } |
| core->tx_fifo_tail = tx_fifo_tail; |
| if (abort_mask) |
| netdev_warn(core->netdev, "Unhandled aborted messages\n"); |
| |
| if (!acc_resetmode_entered(core)) |
| netif_wake_queue(core->netdev); |
| } |
| |
| static void handle_core_msg_overrun(struct acc_core *core, |
| const struct acc_bmmsg_overrun *msg) |
| { |
| struct acc_net_priv *priv = netdev_priv(core->netdev); |
| struct net_device_stats *stats = &core->netdev->stats; |
| struct can_frame *cf; |
| struct sk_buff *skb; |
| |
| /* lost_cnt may be 0 if not supported by esdACC version */ |
| if (msg->lost_cnt) { |
| stats->rx_errors += msg->lost_cnt; |
| stats->rx_over_errors += msg->lost_cnt; |
| } else { |
| stats->rx_errors++; |
| stats->rx_over_errors++; |
| } |
| |
| skb = alloc_can_err_skb(core->netdev, &cf); |
| if (!skb) |
| return; |
| |
| cf->can_id |= CAN_ERR_CRTL; |
| cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW; |
| |
| skb_hwtstamps(skb)->hwtstamp = acc_ts2ktime(priv->ov, msg->ts); |
| |
| netif_rx(skb); |
| } |
| |
| static void handle_core_msg_buserr(struct acc_core *core, |
| const struct acc_bmmsg_buserr *msg) |
| { |
| struct acc_net_priv *priv = netdev_priv(core->netdev); |
| struct net_device_stats *stats = &core->netdev->stats; |
| struct can_frame *cf; |
| struct sk_buff *skb; |
| const u32 reg_status = msg->reg_status; |
| const u8 rxerr = reg_status; |
| const u8 txerr = (reg_status >> 8); |
| u8 can_err_prot_type = 0U; |
| |
| priv->can.can_stats.bus_error++; |
| |
| /* Error occurred during transmission? */ |
| if (msg->ecc & ACC_ECC_DIR) { |
| stats->rx_errors++; |
| } else { |
| can_err_prot_type |= CAN_ERR_PROT_TX; |
| stats->tx_errors++; |
| } |
| /* Determine error type */ |
| switch (msg->ecc & ACC_ECC_MASK) { |
| case ACC_ECC_BIT: |
| can_err_prot_type |= CAN_ERR_PROT_BIT; |
| break; |
| case ACC_ECC_FORM: |
| can_err_prot_type |= CAN_ERR_PROT_FORM; |
| break; |
| case ACC_ECC_STUFF: |
| can_err_prot_type |= CAN_ERR_PROT_STUFF; |
| break; |
| default: |
| can_err_prot_type |= CAN_ERR_PROT_UNSPEC; |
| break; |
| } |
| |
| skb = alloc_can_err_skb(core->netdev, &cf); |
| if (!skb) |
| return; |
| |
| cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR | CAN_ERR_CNT; |
| |
| /* Set protocol error type */ |
| cf->data[2] = can_err_prot_type; |
| /* Set error location */ |
| cf->data[3] = msg->ecc & ACC_ECC_SEG; |
| |
| /* Insert CAN TX and RX error counters. */ |
| cf->data[6] = txerr; |
| cf->data[7] = rxerr; |
| |
| skb_hwtstamps(skb)->hwtstamp = acc_ts2ktime(priv->ov, msg->ts); |
| |
| netif_rx(skb); |
| } |
| |
| static void |
| handle_core_msg_errstatechange(struct acc_core *core, |
| const struct acc_bmmsg_errstatechange *msg) |
| { |
| struct acc_net_priv *priv = netdev_priv(core->netdev); |
| struct can_frame *cf = NULL; |
| struct sk_buff *skb; |
| const u32 reg_status = msg->reg_status; |
| const u8 rxerr = reg_status; |
| const u8 txerr = (reg_status >> 8); |
| enum can_state new_state; |
| |
| if (reg_status & ACC_REG_STATUS_MASK_STATUS_BS) { |
| new_state = CAN_STATE_BUS_OFF; |
| } else if (reg_status & ACC_REG_STATUS_MASK_STATUS_EP) { |
| new_state = CAN_STATE_ERROR_PASSIVE; |
| } else if (reg_status & ACC_REG_STATUS_MASK_STATUS_ES) { |
| new_state = CAN_STATE_ERROR_WARNING; |
| } else { |
| new_state = CAN_STATE_ERROR_ACTIVE; |
| if (priv->can.state == CAN_STATE_BUS_OFF) { |
| /* See comment in acc_set_mode() for CAN_MODE_START */ |
| netif_wake_queue(core->netdev); |
| } |
| } |
| |
| skb = alloc_can_err_skb(core->netdev, &cf); |
| |
| if (new_state != priv->can.state) { |
| enum can_state tx_state, rx_state; |
| |
| tx_state = (txerr >= rxerr) ? |
| new_state : CAN_STATE_ERROR_ACTIVE; |
| rx_state = (rxerr >= txerr) ? |
| new_state : CAN_STATE_ERROR_ACTIVE; |
| |
| /* Always call can_change_state() to update the state |
| * even if alloc_can_err_skb() may have failed. |
| * can_change_state() can cope with a NULL cf pointer. |
| */ |
| can_change_state(core->netdev, cf, tx_state, rx_state); |
| } |
| |
| if (skb) { |
| cf->can_id |= CAN_ERR_CNT; |
| cf->data[6] = txerr; |
| cf->data[7] = rxerr; |
| |
| skb_hwtstamps(skb)->hwtstamp = acc_ts2ktime(priv->ov, msg->ts); |
| |
| netif_rx(skb); |
| } |
| |
| if (new_state == CAN_STATE_BUS_OFF) { |
| acc_write32(core, ACC_CORE_OF_TX_ABORT_MASK, 0xffff); |
| can_bus_off(core->netdev); |
| } |
| } |
| |
| static void handle_core_interrupt(struct acc_core *core) |
| { |
| u32 msg_fifo_head = core->bmfifo.local_irq_cnt & 0xff; |
| |
| while (core->bmfifo.msg_fifo_tail != msg_fifo_head) { |
| const union acc_bmmsg *msg = |
| &core->bmfifo.messages[core->bmfifo.msg_fifo_tail]; |
| |
| switch (msg->msg_id) { |
| case BM_MSG_ID_RXTXDONE: |
| handle_core_msg_rxtxdone(core, &msg->rxtxdone); |
| break; |
| |
| case BM_MSG_ID_TXABORT: |
| handle_core_msg_txabort(core, &msg->txabort); |
| break; |
| |
| case BM_MSG_ID_OVERRUN: |
| handle_core_msg_overrun(core, &msg->overrun); |
| break; |
| |
| case BM_MSG_ID_BUSERR: |
| handle_core_msg_buserr(core, &msg->buserr); |
| break; |
| |
| case BM_MSG_ID_ERRPASSIVE: |
| case BM_MSG_ID_ERRWARN: |
| handle_core_msg_errstatechange(core, |
| &msg->errstatechange); |
| break; |
| |
| default: |
| /* Ignore all other BM messages (like the CAN-FD messages) */ |
| break; |
| } |
| |
| core->bmfifo.msg_fifo_tail = |
| (core->bmfifo.msg_fifo_tail + 1) & 0xff; |
| } |
| } |
| |
| /** |
| * acc_card_interrupt() - handle the interrupts of an esdACC FPGA |
| * |
| * @ov: overview module structure |
| * @cores: array of core structures |
| * |
| * This function handles all interrupts pending for the overview module and the |
| * CAN cores of the esdACC FPGA. |
| * |
| * It examines for all cores (the overview module core and the CAN cores) |
| * the bmfifo.irq_cnt and compares it with the previously saved |
| * bmfifo.local_irq_cnt. An IRQ is pending if they differ. The esdACC FPGA |
| * updates the bmfifo.irq_cnt values by DMA. |
| * |
| * The pending interrupts are masked by writing to the IRQ mask register at |
| * ACC_OV_OF_BM_IRQ_MASK. This register has for each core a two bit command |
| * field evaluated as follows: |
| * |
| * Define, bit pattern: meaning |
| * 00: no action |
| * ACC_BM_IRQ_UNMASK, 01: unmask interrupt |
| * ACC_BM_IRQ_MASK, 10: mask interrupt |
| * 11: no action |
| * |
| * For each CAN core with a pending IRQ handle_core_interrupt() handles all |
| * busmaster messages from the message FIFO. The last handled message (FIFO |
| * index) is written to the CAN core to acknowledge its handling. |
| * |
| * Last step is to unmask all interrupts in the FPGA using |
| * ACC_BM_IRQ_UNMASK_ALL. |
| * |
| * Return: |
| * IRQ_HANDLED, if card generated an interrupt that was handled |
| * IRQ_NONE, if the interrupt is not ours |
| */ |
| irqreturn_t acc_card_interrupt(struct acc_ov *ov, struct acc_core *cores) |
| { |
| u32 irqmask; |
| int i; |
| |
| /* First we look for whom interrupts are pending, card/overview |
| * or any of the cores. Two bits in irqmask are used for each; |
| * Each two bit field is set to ACC_BM_IRQ_MASK if an IRQ is |
| * pending. |
| */ |
| irqmask = 0U; |
| if (READ_ONCE(*ov->bmfifo.irq_cnt) != ov->bmfifo.local_irq_cnt) { |
| irqmask |= ACC_BM_IRQ_MASK; |
| ov->bmfifo.local_irq_cnt = READ_ONCE(*ov->bmfifo.irq_cnt); |
| } |
| |
| for (i = 0; i < ov->active_cores; i++) { |
| struct acc_core *core = &cores[i]; |
| |
| if (READ_ONCE(*core->bmfifo.irq_cnt) != core->bmfifo.local_irq_cnt) { |
| irqmask |= (ACC_BM_IRQ_MASK << (2 * (i + 1))); |
| core->bmfifo.local_irq_cnt = READ_ONCE(*core->bmfifo.irq_cnt); |
| } |
| } |
| |
| if (!irqmask) |
| return IRQ_NONE; |
| |
| /* At second we tell the card we're working on them by writing irqmask, |
| * call handle_{ov|core}_interrupt and then acknowledge the |
| * interrupts by writing irq_cnt: |
| */ |
| acc_ov_write32(ov, ACC_OV_OF_BM_IRQ_MASK, irqmask); |
| |
| if (irqmask & ACC_BM_IRQ_MASK) { |
| /* handle_ov_interrupt(); - no use yet. */ |
| acc_ov_write32(ov, ACC_OV_OF_BM_IRQ_COUNTER, |
| ov->bmfifo.local_irq_cnt); |
| } |
| |
| for (i = 0; i < ov->active_cores; i++) { |
| struct acc_core *core = &cores[i]; |
| |
| if (irqmask & (ACC_BM_IRQ_MASK << (2 * (i + 1)))) { |
| handle_core_interrupt(core); |
| acc_write32(core, ACC_OV_OF_BM_IRQ_COUNTER, |
| core->bmfifo.local_irq_cnt); |
| } |
| } |
| |
| acc_ov_write32(ov, ACC_OV_OF_BM_IRQ_MASK, ACC_BM_IRQ_UNMASK_ALL); |
| |
| return IRQ_HANDLED; |
| } |