blob: 0b61f548fd188f64344ff67136c882a49598f6d3 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Faraday FTGMAC100 Gigabit Ethernet
*
* (C) Copyright 2009-2011 Faraday Technology
* Po-Yu Chuang <ratbert@faraday-tech.com>
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/clk.h>
#include <linux/dma-mapping.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/of.h>
#include <linux/of_mdio.h>
#include <linux/phy.h>
#include <linux/platform_device.h>
#include <linux/property.h>
#include <linux/crc32.h>
#include <linux/if_vlan.h>
#include <linux/of_net.h>
#include <linux/phy_fixed.h>
#include <net/ip.h>
#include <net/ncsi.h>
#include "ftgmac100.h"
#define DRV_NAME "ftgmac100"
/* Arbitrary values, I am not sure the HW has limits */
#define MAX_RX_QUEUE_ENTRIES 1024
#define MAX_TX_QUEUE_ENTRIES 1024
#define MIN_RX_QUEUE_ENTRIES 32
#define MIN_TX_QUEUE_ENTRIES 32
/* Defaults */
#define DEF_RX_QUEUE_ENTRIES 128
#define DEF_TX_QUEUE_ENTRIES 128
#define MAX_PKT_SIZE 1536
#define RX_BUF_SIZE MAX_PKT_SIZE /* must be smaller than 0x3fff */
/* Min number of tx ring entries before stopping queue */
#define TX_THRESHOLD (MAX_SKB_FRAGS + 1)
#define FTGMAC_100MHZ 100000000
#define FTGMAC_25MHZ 25000000
/* For NC-SI to register a fixed-link phy device */
static struct fixed_phy_status ncsi_phy_status = {
.link = 1,
.speed = SPEED_100,
.duplex = DUPLEX_FULL,
.pause = 0,
.asym_pause = 0
};
struct ftgmac100 {
/* Registers */
struct resource *res;
void __iomem *base;
/* Rx ring */
unsigned int rx_q_entries;
struct ftgmac100_rxdes *rxdes;
dma_addr_t rxdes_dma;
struct sk_buff **rx_skbs;
unsigned int rx_pointer;
u32 rxdes0_edorr_mask;
/* Tx ring */
unsigned int tx_q_entries;
struct ftgmac100_txdes *txdes;
dma_addr_t txdes_dma;
struct sk_buff **tx_skbs;
unsigned int tx_clean_pointer;
unsigned int tx_pointer;
u32 txdes0_edotr_mask;
/* Used to signal the reset task of ring change request */
unsigned int new_rx_q_entries;
unsigned int new_tx_q_entries;
/* Scratch page to use when rx skb alloc fails */
void *rx_scratch;
dma_addr_t rx_scratch_dma;
/* Component structures */
struct net_device *netdev;
struct device *dev;
struct ncsi_dev *ndev;
struct napi_struct napi;
struct work_struct reset_task;
struct mii_bus *mii_bus;
struct clk *clk;
/* AST2500/AST2600 RMII ref clock gate */
struct clk *rclk;
/* Link management */
int cur_speed;
int cur_duplex;
bool use_ncsi;
/* Multicast filter settings */
u32 maht0;
u32 maht1;
/* Flow control settings */
bool tx_pause;
bool rx_pause;
bool aneg_pause;
/* Misc */
bool need_mac_restart;
bool is_aspeed;
};
static int ftgmac100_reset_mac(struct ftgmac100 *priv, u32 maccr)
{
struct net_device *netdev = priv->netdev;
int i;
/* NOTE: reset clears all registers */
iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
iowrite32(maccr | FTGMAC100_MACCR_SW_RST,
priv->base + FTGMAC100_OFFSET_MACCR);
for (i = 0; i < 200; i++) {
unsigned int maccr;
maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
if (!(maccr & FTGMAC100_MACCR_SW_RST))
return 0;
udelay(1);
}
netdev_err(netdev, "Hardware reset failed\n");
return -EIO;
}
static int ftgmac100_reset_and_config_mac(struct ftgmac100 *priv)
{
u32 maccr = 0;
switch (priv->cur_speed) {
case SPEED_10:
case 0: /* no link */
break;
case SPEED_100:
maccr |= FTGMAC100_MACCR_FAST_MODE;
break;
case SPEED_1000:
maccr |= FTGMAC100_MACCR_GIGA_MODE;
break;
default:
netdev_err(priv->netdev, "Unknown speed %d !\n",
priv->cur_speed);
break;
}
/* (Re)initialize the queue pointers */
priv->rx_pointer = 0;
priv->tx_clean_pointer = 0;
priv->tx_pointer = 0;
/* The doc says reset twice with 10us interval */
if (ftgmac100_reset_mac(priv, maccr))
return -EIO;
usleep_range(10, 1000);
return ftgmac100_reset_mac(priv, maccr);
}
static void ftgmac100_write_mac_addr(struct ftgmac100 *priv, const u8 *mac)
{
unsigned int maddr = mac[0] << 8 | mac[1];
unsigned int laddr = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
iowrite32(maddr, priv->base + FTGMAC100_OFFSET_MAC_MADR);
iowrite32(laddr, priv->base + FTGMAC100_OFFSET_MAC_LADR);
}
static int ftgmac100_initial_mac(struct ftgmac100 *priv)
{
u8 mac[ETH_ALEN];
unsigned int m;
unsigned int l;
int err;
err = of_get_ethdev_address(priv->dev->of_node, priv->netdev);
if (err == -EPROBE_DEFER)
return err;
if (!err) {
dev_info(priv->dev, "Read MAC address %pM from device tree\n",
priv->netdev->dev_addr);
return 0;
}
m = ioread32(priv->base + FTGMAC100_OFFSET_MAC_MADR);
l = ioread32(priv->base + FTGMAC100_OFFSET_MAC_LADR);
mac[0] = (m >> 8) & 0xff;
mac[1] = m & 0xff;
mac[2] = (l >> 24) & 0xff;
mac[3] = (l >> 16) & 0xff;
mac[4] = (l >> 8) & 0xff;
mac[5] = l & 0xff;
if (is_valid_ether_addr(mac)) {
eth_hw_addr_set(priv->netdev, mac);
dev_info(priv->dev, "Read MAC address %pM from chip\n", mac);
} else {
eth_hw_addr_random(priv->netdev);
dev_info(priv->dev, "Generated random MAC address %pM\n",
priv->netdev->dev_addr);
}
return 0;
}
static int ftgmac100_set_mac_addr(struct net_device *dev, void *p)
{
int ret;
ret = eth_prepare_mac_addr_change(dev, p);
if (ret < 0)
return ret;
eth_commit_mac_addr_change(dev, p);
ftgmac100_write_mac_addr(netdev_priv(dev), dev->dev_addr);
return 0;
}
static void ftgmac100_config_pause(struct ftgmac100 *priv)
{
u32 fcr = FTGMAC100_FCR_PAUSE_TIME(16);
/* Throttle tx queue when receiving pause frames */
if (priv->rx_pause)
fcr |= FTGMAC100_FCR_FC_EN;
/* Enables sending pause frames when the RX queue is past a
* certain threshold.
*/
if (priv->tx_pause)
fcr |= FTGMAC100_FCR_FCTHR_EN;
iowrite32(fcr, priv->base + FTGMAC100_OFFSET_FCR);
}
static void ftgmac100_init_hw(struct ftgmac100 *priv)
{
u32 reg, rfifo_sz, tfifo_sz;
/* Clear stale interrupts */
reg = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
iowrite32(reg, priv->base + FTGMAC100_OFFSET_ISR);
/* Setup RX ring buffer base */
iowrite32(priv->rxdes_dma, priv->base + FTGMAC100_OFFSET_RXR_BADR);
/* Setup TX ring buffer base */
iowrite32(priv->txdes_dma, priv->base + FTGMAC100_OFFSET_NPTXR_BADR);
/* Configure RX buffer size */
iowrite32(FTGMAC100_RBSR_SIZE(RX_BUF_SIZE),
priv->base + FTGMAC100_OFFSET_RBSR);
/* Set RX descriptor autopoll */
iowrite32(FTGMAC100_APTC_RXPOLL_CNT(1),
priv->base + FTGMAC100_OFFSET_APTC);
/* Write MAC address */
ftgmac100_write_mac_addr(priv, priv->netdev->dev_addr);
/* Write multicast filter */
iowrite32(priv->maht0, priv->base + FTGMAC100_OFFSET_MAHT0);
iowrite32(priv->maht1, priv->base + FTGMAC100_OFFSET_MAHT1);
/* Configure descriptor sizes and increase burst sizes according
* to values in Aspeed SDK. The FIFO arbitration is enabled and
* the thresholds set based on the recommended values in the
* AST2400 specification.
*/
iowrite32(FTGMAC100_DBLAC_RXDES_SIZE(2) | /* 2*8 bytes RX descs */
FTGMAC100_DBLAC_TXDES_SIZE(2) | /* 2*8 bytes TX descs */
FTGMAC100_DBLAC_RXBURST_SIZE(3) | /* 512 bytes max RX bursts */
FTGMAC100_DBLAC_TXBURST_SIZE(3) | /* 512 bytes max TX bursts */
FTGMAC100_DBLAC_RX_THR_EN | /* Enable fifo threshold arb */
FTGMAC100_DBLAC_RXFIFO_HTHR(6) | /* 6/8 of FIFO high threshold */
FTGMAC100_DBLAC_RXFIFO_LTHR(2), /* 2/8 of FIFO low threshold */
priv->base + FTGMAC100_OFFSET_DBLAC);
/* Interrupt mitigation configured for 1 interrupt/packet. HW interrupt
* mitigation doesn't seem to provide any benefit with NAPI so leave
* it at that.
*/
iowrite32(FTGMAC100_ITC_RXINT_THR(1) |
FTGMAC100_ITC_TXINT_THR(1),
priv->base + FTGMAC100_OFFSET_ITC);
/* Configure FIFO sizes in the TPAFCR register */
reg = ioread32(priv->base + FTGMAC100_OFFSET_FEAR);
rfifo_sz = reg & 0x00000007;
tfifo_sz = (reg >> 3) & 0x00000007;
reg = ioread32(priv->base + FTGMAC100_OFFSET_TPAFCR);
reg &= ~0x3f000000;
reg |= (tfifo_sz << 27);
reg |= (rfifo_sz << 24);
iowrite32(reg, priv->base + FTGMAC100_OFFSET_TPAFCR);
}
static void ftgmac100_start_hw(struct ftgmac100 *priv)
{
u32 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
/* Keep the original GMAC and FAST bits */
maccr &= (FTGMAC100_MACCR_FAST_MODE | FTGMAC100_MACCR_GIGA_MODE);
/* Add all the main enable bits */
maccr |= FTGMAC100_MACCR_TXDMA_EN |
FTGMAC100_MACCR_RXDMA_EN |
FTGMAC100_MACCR_TXMAC_EN |
FTGMAC100_MACCR_RXMAC_EN |
FTGMAC100_MACCR_CRC_APD |
FTGMAC100_MACCR_PHY_LINK_LEVEL |
FTGMAC100_MACCR_RX_RUNT |
FTGMAC100_MACCR_RX_BROADPKT;
/* Add other bits as needed */
if (priv->cur_duplex == DUPLEX_FULL)
maccr |= FTGMAC100_MACCR_FULLDUP;
if (priv->netdev->flags & IFF_PROMISC)
maccr |= FTGMAC100_MACCR_RX_ALL;
if (priv->netdev->flags & IFF_ALLMULTI)
maccr |= FTGMAC100_MACCR_RX_MULTIPKT;
else if (netdev_mc_count(priv->netdev))
maccr |= FTGMAC100_MACCR_HT_MULTI_EN;
/* Vlan filtering enabled */
if (priv->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
maccr |= FTGMAC100_MACCR_RM_VLAN;
/* Hit the HW */
iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
}
static void ftgmac100_stop_hw(struct ftgmac100 *priv)
{
iowrite32(0, priv->base + FTGMAC100_OFFSET_MACCR);
}
static void ftgmac100_calc_mc_hash(struct ftgmac100 *priv)
{
struct netdev_hw_addr *ha;
priv->maht1 = 0;
priv->maht0 = 0;
netdev_for_each_mc_addr(ha, priv->netdev) {
u32 crc_val = ether_crc_le(ETH_ALEN, ha->addr);
crc_val = (~(crc_val >> 2)) & 0x3f;
if (crc_val >= 32)
priv->maht1 |= 1ul << (crc_val - 32);
else
priv->maht0 |= 1ul << (crc_val);
}
}
static void ftgmac100_set_rx_mode(struct net_device *netdev)
{
struct ftgmac100 *priv = netdev_priv(netdev);
/* Setup the hash filter */
ftgmac100_calc_mc_hash(priv);
/* Interface down ? that's all there is to do */
if (!netif_running(netdev))
return;
/* Update the HW */
iowrite32(priv->maht0, priv->base + FTGMAC100_OFFSET_MAHT0);
iowrite32(priv->maht1, priv->base + FTGMAC100_OFFSET_MAHT1);
/* Reconfigure MACCR */
ftgmac100_start_hw(priv);
}
static int ftgmac100_alloc_rx_buf(struct ftgmac100 *priv, unsigned int entry,
struct ftgmac100_rxdes *rxdes, gfp_t gfp)
{
struct net_device *netdev = priv->netdev;
struct sk_buff *skb;
dma_addr_t map;
int err = 0;
skb = netdev_alloc_skb_ip_align(netdev, RX_BUF_SIZE);
if (unlikely(!skb)) {
if (net_ratelimit())
netdev_warn(netdev, "failed to allocate rx skb\n");
err = -ENOMEM;
map = priv->rx_scratch_dma;
} else {
map = dma_map_single(priv->dev, skb->data, RX_BUF_SIZE,
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(priv->dev, map))) {
if (net_ratelimit())
netdev_err(netdev, "failed to map rx page\n");
dev_kfree_skb_any(skb);
map = priv->rx_scratch_dma;
skb = NULL;
err = -ENOMEM;
}
}
/* Store skb */
priv->rx_skbs[entry] = skb;
/* Store DMA address into RX desc */
rxdes->rxdes3 = cpu_to_le32(map);
/* Ensure the above is ordered vs clearing the OWN bit */
dma_wmb();
/* Clean status (which resets own bit) */
if (entry == (priv->rx_q_entries - 1))
rxdes->rxdes0 = cpu_to_le32(priv->rxdes0_edorr_mask);
else
rxdes->rxdes0 = 0;
return err;
}
static unsigned int ftgmac100_next_rx_pointer(struct ftgmac100 *priv,
unsigned int pointer)
{
return (pointer + 1) & (priv->rx_q_entries - 1);
}
static void ftgmac100_rx_packet_error(struct ftgmac100 *priv, u32 status)
{
struct net_device *netdev = priv->netdev;
if (status & FTGMAC100_RXDES0_RX_ERR)
netdev->stats.rx_errors++;
if (status & FTGMAC100_RXDES0_CRC_ERR)
netdev->stats.rx_crc_errors++;
if (status & (FTGMAC100_RXDES0_FTL |
FTGMAC100_RXDES0_RUNT |
FTGMAC100_RXDES0_RX_ODD_NB))
netdev->stats.rx_length_errors++;
}
static bool ftgmac100_rx_packet(struct ftgmac100 *priv, int *processed)
{
struct net_device *netdev = priv->netdev;
struct ftgmac100_rxdes *rxdes;
struct sk_buff *skb;
unsigned int pointer, size;
u32 status, csum_vlan;
dma_addr_t map;
/* Grab next RX descriptor */
pointer = priv->rx_pointer;
rxdes = &priv->rxdes[pointer];
/* Grab descriptor status */
status = le32_to_cpu(rxdes->rxdes0);
/* Do we have a packet ? */
if (!(status & FTGMAC100_RXDES0_RXPKT_RDY))
return false;
/* Order subsequent reads with the test for the ready bit */
dma_rmb();
/* We don't cope with fragmented RX packets */
if (unlikely(!(status & FTGMAC100_RXDES0_FRS) ||
!(status & FTGMAC100_RXDES0_LRS)))
goto drop;
/* Grab received size and csum vlan field in the descriptor */
size = status & FTGMAC100_RXDES0_VDBC;
csum_vlan = le32_to_cpu(rxdes->rxdes1);
/* Any error (other than csum offload) flagged ? */
if (unlikely(status & RXDES0_ANY_ERROR)) {
/* Correct for incorrect flagging of runt packets
* with vlan tags... Just accept a runt packet that
* has been flagged as vlan and whose size is at
* least 60 bytes.
*/
if ((status & FTGMAC100_RXDES0_RUNT) &&
(csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL) &&
(size >= 60))
status &= ~FTGMAC100_RXDES0_RUNT;
/* Any error still in there ? */
if (status & RXDES0_ANY_ERROR) {
ftgmac100_rx_packet_error(priv, status);
goto drop;
}
}
/* If the packet had no skb (failed to allocate earlier)
* then try to allocate one and skip
*/
skb = priv->rx_skbs[pointer];
if (!unlikely(skb)) {
ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
goto drop;
}
if (unlikely(status & FTGMAC100_RXDES0_MULTICAST))
netdev->stats.multicast++;
/* If the HW found checksum errors, bounce it to software.
*
* If we didn't, we need to see if the packet was recognized
* by HW as one of the supported checksummed protocols before
* we accept the HW test results.
*/
if (netdev->features & NETIF_F_RXCSUM) {
u32 err_bits = FTGMAC100_RXDES1_TCP_CHKSUM_ERR |
FTGMAC100_RXDES1_UDP_CHKSUM_ERR |
FTGMAC100_RXDES1_IP_CHKSUM_ERR;
if ((csum_vlan & err_bits) ||
!(csum_vlan & FTGMAC100_RXDES1_PROT_MASK))
skb->ip_summed = CHECKSUM_NONE;
else
skb->ip_summed = CHECKSUM_UNNECESSARY;
}
/* Transfer received size to skb */
skb_put(skb, size);
/* Extract vlan tag */
if ((netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
(csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL))
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
csum_vlan & 0xffff);
/* Tear down DMA mapping, do necessary cache management */
map = le32_to_cpu(rxdes->rxdes3);
#if defined(CONFIG_ARM) && !defined(CONFIG_ARM_DMA_USE_IOMMU)
/* When we don't have an iommu, we can save cycles by not
* invalidating the cache for the part of the packet that
* wasn't received.
*/
dma_unmap_single(priv->dev, map, size, DMA_FROM_DEVICE);
#else
dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
#endif
/* Resplenish rx ring */
ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer);
skb->protocol = eth_type_trans(skb, netdev);
netdev->stats.rx_packets++;
netdev->stats.rx_bytes += size;
/* push packet to protocol stack */
if (skb->ip_summed == CHECKSUM_NONE)
netif_receive_skb(skb);
else
napi_gro_receive(&priv->napi, skb);
(*processed)++;
return true;
drop:
/* Clean rxdes0 (which resets own bit) */
rxdes->rxdes0 = cpu_to_le32(status & priv->rxdes0_edorr_mask);
priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer);
netdev->stats.rx_dropped++;
return true;
}
static u32 ftgmac100_base_tx_ctlstat(struct ftgmac100 *priv,
unsigned int index)
{
if (index == (priv->tx_q_entries - 1))
return priv->txdes0_edotr_mask;
else
return 0;
}
static unsigned int ftgmac100_next_tx_pointer(struct ftgmac100 *priv,
unsigned int pointer)
{
return (pointer + 1) & (priv->tx_q_entries - 1);
}
static u32 ftgmac100_tx_buf_avail(struct ftgmac100 *priv)
{
/* Returns the number of available slots in the TX queue
*
* This always leaves one free slot so we don't have to
* worry about empty vs. full, and this simplifies the
* test for ftgmac100_tx_buf_cleanable() below
*/
return (priv->tx_clean_pointer - priv->tx_pointer - 1) &
(priv->tx_q_entries - 1);
}
static bool ftgmac100_tx_buf_cleanable(struct ftgmac100 *priv)
{
return priv->tx_pointer != priv->tx_clean_pointer;
}
static void ftgmac100_free_tx_packet(struct ftgmac100 *priv,
unsigned int pointer,
struct sk_buff *skb,
struct ftgmac100_txdes *txdes,
u32 ctl_stat)
{
dma_addr_t map = le32_to_cpu(txdes->txdes3);
size_t len;
if (ctl_stat & FTGMAC100_TXDES0_FTS) {
len = skb_headlen(skb);
dma_unmap_single(priv->dev, map, len, DMA_TO_DEVICE);
} else {
len = FTGMAC100_TXDES0_TXBUF_SIZE(ctl_stat);
dma_unmap_page(priv->dev, map, len, DMA_TO_DEVICE);
}
/* Free SKB on last segment */
if (ctl_stat & FTGMAC100_TXDES0_LTS)
dev_kfree_skb(skb);
priv->tx_skbs[pointer] = NULL;
}
static bool ftgmac100_tx_complete_packet(struct ftgmac100 *priv)
{
struct net_device *netdev = priv->netdev;
struct ftgmac100_txdes *txdes;
struct sk_buff *skb;
unsigned int pointer;
u32 ctl_stat;
pointer = priv->tx_clean_pointer;
txdes = &priv->txdes[pointer];
ctl_stat = le32_to_cpu(txdes->txdes0);
if (ctl_stat & FTGMAC100_TXDES0_TXDMA_OWN)
return false;
skb = priv->tx_skbs[pointer];
netdev->stats.tx_packets++;
netdev->stats.tx_bytes += skb->len;
ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
/* Ensure the descriptor config is visible before setting the tx
* pointer.
*/
smp_wmb();
priv->tx_clean_pointer = ftgmac100_next_tx_pointer(priv, pointer);
return true;
}
static void ftgmac100_tx_complete(struct ftgmac100 *priv)
{
struct net_device *netdev = priv->netdev;
/* Process all completed packets */
while (ftgmac100_tx_buf_cleanable(priv) &&
ftgmac100_tx_complete_packet(priv))
;
/* Restart queue if needed */
smp_mb();
if (unlikely(netif_queue_stopped(netdev) &&
ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)) {
struct netdev_queue *txq;
txq = netdev_get_tx_queue(netdev, 0);
__netif_tx_lock(txq, smp_processor_id());
if (netif_queue_stopped(netdev) &&
ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
netif_wake_queue(netdev);
__netif_tx_unlock(txq);
}
}
static bool ftgmac100_prep_tx_csum(struct sk_buff *skb, u32 *csum_vlan)
{
if (skb->protocol == cpu_to_be16(ETH_P_IP)) {
u8 ip_proto = ip_hdr(skb)->protocol;
*csum_vlan |= FTGMAC100_TXDES1_IP_CHKSUM;
switch(ip_proto) {
case IPPROTO_TCP:
*csum_vlan |= FTGMAC100_TXDES1_TCP_CHKSUM;
return true;
case IPPROTO_UDP:
*csum_vlan |= FTGMAC100_TXDES1_UDP_CHKSUM;
return true;
case IPPROTO_IP:
return true;
}
}
return skb_checksum_help(skb) == 0;
}
static netdev_tx_t ftgmac100_hard_start_xmit(struct sk_buff *skb,
struct net_device *netdev)
{
struct ftgmac100 *priv = netdev_priv(netdev);
struct ftgmac100_txdes *txdes, *first;
unsigned int pointer, nfrags, len, i, j;
u32 f_ctl_stat, ctl_stat, csum_vlan;
dma_addr_t map;
/* The HW doesn't pad small frames */
if (eth_skb_pad(skb)) {
netdev->stats.tx_dropped++;
return NETDEV_TX_OK;
}
/* Reject oversize packets */
if (unlikely(skb->len > MAX_PKT_SIZE)) {
if (net_ratelimit())
netdev_dbg(netdev, "tx packet too big\n");
goto drop;
}
/* Do we have a limit on #fragments ? I yet have to get a reply
* from Aspeed. If there's one I haven't hit it.
*/
nfrags = skb_shinfo(skb)->nr_frags;
/* Setup HW checksumming */
csum_vlan = 0;
if (skb->ip_summed == CHECKSUM_PARTIAL &&
!ftgmac100_prep_tx_csum(skb, &csum_vlan))
goto drop;
/* Add VLAN tag */
if (skb_vlan_tag_present(skb)) {
csum_vlan |= FTGMAC100_TXDES1_INS_VLANTAG;
csum_vlan |= skb_vlan_tag_get(skb) & 0xffff;
}
/* Get header len */
len = skb_headlen(skb);
/* Map the packet head */
map = dma_map_single(priv->dev, skb->data, len, DMA_TO_DEVICE);
if (dma_mapping_error(priv->dev, map)) {
if (net_ratelimit())
netdev_err(netdev, "map tx packet head failed\n");
goto drop;
}
/* Grab the next free tx descriptor */
pointer = priv->tx_pointer;
txdes = first = &priv->txdes[pointer];
/* Setup it up with the packet head. Don't write the head to the
* ring just yet
*/
priv->tx_skbs[pointer] = skb;
f_ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
f_ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
f_ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
f_ctl_stat |= FTGMAC100_TXDES0_FTS;
if (nfrags == 0)
f_ctl_stat |= FTGMAC100_TXDES0_LTS;
txdes->txdes3 = cpu_to_le32(map);
txdes->txdes1 = cpu_to_le32(csum_vlan);
/* Next descriptor */
pointer = ftgmac100_next_tx_pointer(priv, pointer);
/* Add the fragments */
for (i = 0; i < nfrags; i++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
len = skb_frag_size(frag);
/* Map it */
map = skb_frag_dma_map(priv->dev, frag, 0, len,
DMA_TO_DEVICE);
if (dma_mapping_error(priv->dev, map))
goto dma_err;
/* Setup descriptor */
priv->tx_skbs[pointer] = skb;
txdes = &priv->txdes[pointer];
ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
if (i == (nfrags - 1))
ctl_stat |= FTGMAC100_TXDES0_LTS;
txdes->txdes0 = cpu_to_le32(ctl_stat);
txdes->txdes1 = 0;
txdes->txdes3 = cpu_to_le32(map);
/* Next one */
pointer = ftgmac100_next_tx_pointer(priv, pointer);
}
/* Order the previous packet and descriptor udpates
* before setting the OWN bit on the first descriptor.
*/
dma_wmb();
first->txdes0 = cpu_to_le32(f_ctl_stat);
/* Ensure the descriptor config is visible before setting the tx
* pointer.
*/
smp_wmb();
/* Update next TX pointer */
priv->tx_pointer = pointer;
/* If there isn't enough room for all the fragments of a new packet
* in the TX ring, stop the queue. The sequence below is race free
* vs. a concurrent restart in ftgmac100_poll()
*/
if (unlikely(ftgmac100_tx_buf_avail(priv) < TX_THRESHOLD)) {
netif_stop_queue(netdev);
/* Order the queue stop with the test below */
smp_mb();
if (ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
netif_wake_queue(netdev);
}
/* Poke transmitter to read the updated TX descriptors */
iowrite32(1, priv->base + FTGMAC100_OFFSET_NPTXPD);
return NETDEV_TX_OK;
dma_err:
if (net_ratelimit())
netdev_err(netdev, "map tx fragment failed\n");
/* Free head */
pointer = priv->tx_pointer;
ftgmac100_free_tx_packet(priv, pointer, skb, first, f_ctl_stat);
first->txdes0 = cpu_to_le32(f_ctl_stat & priv->txdes0_edotr_mask);
/* Then all fragments */
for (j = 0; j < i; j++) {
pointer = ftgmac100_next_tx_pointer(priv, pointer);
txdes = &priv->txdes[pointer];
ctl_stat = le32_to_cpu(txdes->txdes0);
ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
}
/* This cannot be reached if we successfully mapped the
* last fragment, so we know ftgmac100_free_tx_packet()
* hasn't freed the skb yet.
*/
drop:
/* Drop the packet */
dev_kfree_skb_any(skb);
netdev->stats.tx_dropped++;
return NETDEV_TX_OK;
}
static void ftgmac100_free_buffers(struct ftgmac100 *priv)
{
int i;
/* Free all RX buffers */
for (i = 0; i < priv->rx_q_entries; i++) {
struct ftgmac100_rxdes *rxdes = &priv->rxdes[i];
struct sk_buff *skb = priv->rx_skbs[i];
dma_addr_t map = le32_to_cpu(rxdes->rxdes3);
if (!skb)
continue;
priv->rx_skbs[i] = NULL;
dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
dev_kfree_skb_any(skb);
}
/* Free all TX buffers */
for (i = 0; i < priv->tx_q_entries; i++) {
struct ftgmac100_txdes *txdes = &priv->txdes[i];
struct sk_buff *skb = priv->tx_skbs[i];
if (!skb)
continue;
ftgmac100_free_tx_packet(priv, i, skb, txdes,
le32_to_cpu(txdes->txdes0));
}
}
static void ftgmac100_free_rings(struct ftgmac100 *priv)
{
/* Free skb arrays */
kfree(priv->rx_skbs);
kfree(priv->tx_skbs);
/* Free descriptors */
if (priv->rxdes)
dma_free_coherent(priv->dev, MAX_RX_QUEUE_ENTRIES *
sizeof(struct ftgmac100_rxdes),
priv->rxdes, priv->rxdes_dma);
priv->rxdes = NULL;
if (priv->txdes)
dma_free_coherent(priv->dev, MAX_TX_QUEUE_ENTRIES *
sizeof(struct ftgmac100_txdes),
priv->txdes, priv->txdes_dma);
priv->txdes = NULL;
/* Free scratch packet buffer */
if (priv->rx_scratch)
dma_free_coherent(priv->dev, RX_BUF_SIZE,
priv->rx_scratch, priv->rx_scratch_dma);
}
static int ftgmac100_alloc_rings(struct ftgmac100 *priv)
{
/* Allocate skb arrays */
priv->rx_skbs = kcalloc(MAX_RX_QUEUE_ENTRIES, sizeof(void *),
GFP_KERNEL);
if (!priv->rx_skbs)
return -ENOMEM;
priv->tx_skbs = kcalloc(MAX_TX_QUEUE_ENTRIES, sizeof(void *),
GFP_KERNEL);
if (!priv->tx_skbs)
return -ENOMEM;
/* Allocate descriptors */
priv->rxdes = dma_alloc_coherent(priv->dev,
MAX_RX_QUEUE_ENTRIES * sizeof(struct ftgmac100_rxdes),
&priv->rxdes_dma, GFP_KERNEL);
if (!priv->rxdes)
return -ENOMEM;
priv->txdes = dma_alloc_coherent(priv->dev,
MAX_TX_QUEUE_ENTRIES * sizeof(struct ftgmac100_txdes),
&priv->txdes_dma, GFP_KERNEL);
if (!priv->txdes)
return -ENOMEM;
/* Allocate scratch packet buffer */
priv->rx_scratch = dma_alloc_coherent(priv->dev,
RX_BUF_SIZE,
&priv->rx_scratch_dma,
GFP_KERNEL);
if (!priv->rx_scratch)
return -ENOMEM;
return 0;
}
static void ftgmac100_init_rings(struct ftgmac100 *priv)
{
struct ftgmac100_rxdes *rxdes = NULL;
struct ftgmac100_txdes *txdes = NULL;
int i;
/* Update entries counts */
priv->rx_q_entries = priv->new_rx_q_entries;
priv->tx_q_entries = priv->new_tx_q_entries;
if (WARN_ON(priv->rx_q_entries < MIN_RX_QUEUE_ENTRIES))
return;
/* Initialize RX ring */
for (i = 0; i < priv->rx_q_entries; i++) {
rxdes = &priv->rxdes[i];
rxdes->rxdes0 = 0;
rxdes->rxdes3 = cpu_to_le32(priv->rx_scratch_dma);
}
/* Mark the end of the ring */
rxdes->rxdes0 |= cpu_to_le32(priv->rxdes0_edorr_mask);
if (WARN_ON(priv->tx_q_entries < MIN_RX_QUEUE_ENTRIES))
return;
/* Initialize TX ring */
for (i = 0; i < priv->tx_q_entries; i++) {
txdes = &priv->txdes[i];
txdes->txdes0 = 0;
}
txdes->txdes0 |= cpu_to_le32(priv->txdes0_edotr_mask);
}
static int ftgmac100_alloc_rx_buffers(struct ftgmac100 *priv)
{
int i;
for (i = 0; i < priv->rx_q_entries; i++) {
struct ftgmac100_rxdes *rxdes = &priv->rxdes[i];
if (ftgmac100_alloc_rx_buf(priv, i, rxdes, GFP_KERNEL))
return -ENOMEM;
}
return 0;
}
static int ftgmac100_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
{
struct net_device *netdev = bus->priv;
struct ftgmac100 *priv = netdev_priv(netdev);
unsigned int phycr;
int i;
phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
/* preserve MDC cycle threshold */
phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;
phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
FTGMAC100_PHYCR_REGAD(regnum) |
FTGMAC100_PHYCR_MIIRD;
iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);
for (i = 0; i < 10; i++) {
phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
if ((phycr & FTGMAC100_PHYCR_MIIRD) == 0) {
int data;
data = ioread32(priv->base + FTGMAC100_OFFSET_PHYDATA);
return FTGMAC100_PHYDATA_MIIRDATA(data);
}
udelay(100);
}
netdev_err(netdev, "mdio read timed out\n");
return -EIO;
}
static int ftgmac100_mdiobus_write(struct mii_bus *bus, int phy_addr,
int regnum, u16 value)
{
struct net_device *netdev = bus->priv;
struct ftgmac100 *priv = netdev_priv(netdev);
unsigned int phycr;
int data;
int i;
phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
/* preserve MDC cycle threshold */
phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;
phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
FTGMAC100_PHYCR_REGAD(regnum) |
FTGMAC100_PHYCR_MIIWR;
data = FTGMAC100_PHYDATA_MIIWDATA(value);
iowrite32(data, priv->base + FTGMAC100_OFFSET_PHYDATA);
iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);
for (i = 0; i < 10; i++) {
phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
if ((phycr & FTGMAC100_PHYCR_MIIWR) == 0)
return 0;
udelay(100);
}
netdev_err(netdev, "mdio write timed out\n");
return -EIO;
}
static void ftgmac100_get_drvinfo(struct net_device *netdev,
struct ethtool_drvinfo *info)
{
strscpy(info->driver, DRV_NAME, sizeof(info->driver));
strscpy(info->bus_info, dev_name(&netdev->dev), sizeof(info->bus_info));
}
static void
ftgmac100_get_ringparam(struct net_device *netdev,
struct ethtool_ringparam *ering,
struct kernel_ethtool_ringparam *kernel_ering,
struct netlink_ext_ack *extack)
{
struct ftgmac100 *priv = netdev_priv(netdev);
memset(ering, 0, sizeof(*ering));
ering->rx_max_pending = MAX_RX_QUEUE_ENTRIES;
ering->tx_max_pending = MAX_TX_QUEUE_ENTRIES;
ering->rx_pending = priv->rx_q_entries;
ering->tx_pending = priv->tx_q_entries;
}
static int
ftgmac100_set_ringparam(struct net_device *netdev,
struct ethtool_ringparam *ering,
struct kernel_ethtool_ringparam *kernel_ering,
struct netlink_ext_ack *extack)
{
struct ftgmac100 *priv = netdev_priv(netdev);
if (ering->rx_pending > MAX_RX_QUEUE_ENTRIES ||
ering->tx_pending > MAX_TX_QUEUE_ENTRIES ||
ering->rx_pending < MIN_RX_QUEUE_ENTRIES ||
ering->tx_pending < MIN_TX_QUEUE_ENTRIES ||
!is_power_of_2(ering->rx_pending) ||
!is_power_of_2(ering->tx_pending))
return -EINVAL;
priv->new_rx_q_entries = ering->rx_pending;
priv->new_tx_q_entries = ering->tx_pending;
if (netif_running(netdev))
schedule_work(&priv->reset_task);
return 0;
}
static void ftgmac100_get_pauseparam(struct net_device *netdev,
struct ethtool_pauseparam *pause)
{
struct ftgmac100 *priv = netdev_priv(netdev);
pause->autoneg = priv->aneg_pause;
pause->tx_pause = priv->tx_pause;
pause->rx_pause = priv->rx_pause;
}
static int ftgmac100_set_pauseparam(struct net_device *netdev,
struct ethtool_pauseparam *pause)
{
struct ftgmac100 *priv = netdev_priv(netdev);
struct phy_device *phydev = netdev->phydev;
priv->aneg_pause = pause->autoneg;
priv->tx_pause = pause->tx_pause;
priv->rx_pause = pause->rx_pause;
if (phydev)
phy_set_asym_pause(phydev, pause->rx_pause, pause->tx_pause);
if (netif_running(netdev)) {
if (!(phydev && priv->aneg_pause))
ftgmac100_config_pause(priv);
}
return 0;
}
static const struct ethtool_ops ftgmac100_ethtool_ops = {
.get_drvinfo = ftgmac100_get_drvinfo,
.get_link = ethtool_op_get_link,
.get_link_ksettings = phy_ethtool_get_link_ksettings,
.set_link_ksettings = phy_ethtool_set_link_ksettings,
.nway_reset = phy_ethtool_nway_reset,
.get_ringparam = ftgmac100_get_ringparam,
.set_ringparam = ftgmac100_set_ringparam,
.get_pauseparam = ftgmac100_get_pauseparam,
.set_pauseparam = ftgmac100_set_pauseparam,
};
static irqreturn_t ftgmac100_interrupt(int irq, void *dev_id)
{
struct net_device *netdev = dev_id;
struct ftgmac100 *priv = netdev_priv(netdev);
unsigned int status, new_mask = FTGMAC100_INT_BAD;
/* Fetch and clear interrupt bits, process abnormal ones */
status = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
iowrite32(status, priv->base + FTGMAC100_OFFSET_ISR);
if (unlikely(status & FTGMAC100_INT_BAD)) {
/* RX buffer unavailable */
if (status & FTGMAC100_INT_NO_RXBUF)
netdev->stats.rx_over_errors++;
/* received packet lost due to RX FIFO full */
if (status & FTGMAC100_INT_RPKT_LOST)
netdev->stats.rx_fifo_errors++;
/* sent packet lost due to excessive TX collision */
if (status & FTGMAC100_INT_XPKT_LOST)
netdev->stats.tx_fifo_errors++;
/* AHB error -> Reset the chip */
if (status & FTGMAC100_INT_AHB_ERR) {
if (net_ratelimit())
netdev_warn(netdev,
"AHB bus error ! Resetting chip.\n");
iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
schedule_work(&priv->reset_task);
return IRQ_HANDLED;
}
/* We may need to restart the MAC after such errors, delay
* this until after we have freed some Rx buffers though
*/
priv->need_mac_restart = true;
/* Disable those errors until we restart */
new_mask &= ~status;
}
/* Only enable "bad" interrupts while NAPI is on */
iowrite32(new_mask, priv->base + FTGMAC100_OFFSET_IER);
/* Schedule NAPI bh */
napi_schedule_irqoff(&priv->napi);
return IRQ_HANDLED;
}
static bool ftgmac100_check_rx(struct ftgmac100 *priv)
{
struct ftgmac100_rxdes *rxdes = &priv->rxdes[priv->rx_pointer];
/* Do we have a packet ? */
return !!(rxdes->rxdes0 & cpu_to_le32(FTGMAC100_RXDES0_RXPKT_RDY));
}
static int ftgmac100_poll(struct napi_struct *napi, int budget)
{
struct ftgmac100 *priv = container_of(napi, struct ftgmac100, napi);
int work_done = 0;
bool more;
/* Handle TX completions */
if (ftgmac100_tx_buf_cleanable(priv))
ftgmac100_tx_complete(priv);
/* Handle RX packets */
do {
more = ftgmac100_rx_packet(priv, &work_done);
} while (more && work_done < budget);
/* The interrupt is telling us to kick the MAC back to life
* after an RX overflow
*/
if (unlikely(priv->need_mac_restart)) {
ftgmac100_start_hw(priv);
priv->need_mac_restart = false;
/* Re-enable "bad" interrupts */
iowrite32(FTGMAC100_INT_BAD,
priv->base + FTGMAC100_OFFSET_IER);
}
/* As long as we are waiting for transmit packets to be
* completed we keep NAPI going
*/
if (ftgmac100_tx_buf_cleanable(priv))
work_done = budget;
if (work_done < budget) {
/* We are about to re-enable all interrupts. However
* the HW has been latching RX/TX packet interrupts while
* they were masked. So we clear them first, then we need
* to re-check if there's something to process
*/
iowrite32(FTGMAC100_INT_RXTX,
priv->base + FTGMAC100_OFFSET_ISR);
/* Push the above (and provides a barrier vs. subsequent
* reads of the descriptor).
*/
ioread32(priv->base + FTGMAC100_OFFSET_ISR);
/* Check RX and TX descriptors for more work to do */
if (ftgmac100_check_rx(priv) ||
ftgmac100_tx_buf_cleanable(priv))
return budget;
/* deschedule NAPI */
napi_complete(napi);
/* enable all interrupts */
iowrite32(FTGMAC100_INT_ALL,
priv->base + FTGMAC100_OFFSET_IER);
}
return work_done;
}
static int ftgmac100_init_all(struct ftgmac100 *priv, bool ignore_alloc_err)
{
int err = 0;
/* Re-init descriptors (adjust queue sizes) */
ftgmac100_init_rings(priv);
/* Realloc rx descriptors */
err = ftgmac100_alloc_rx_buffers(priv);
if (err && !ignore_alloc_err)
return err;
/* Reinit and restart HW */
ftgmac100_init_hw(priv);
ftgmac100_config_pause(priv);
ftgmac100_start_hw(priv);
/* Re-enable the device */
napi_enable(&priv->napi);
netif_start_queue(priv->netdev);
/* Enable all interrupts */
iowrite32(FTGMAC100_INT_ALL, priv->base + FTGMAC100_OFFSET_IER);
return err;
}
static void ftgmac100_reset(struct ftgmac100 *priv)
{
struct net_device *netdev = priv->netdev;
int err;
netdev_dbg(netdev, "Resetting NIC...\n");
/* Lock the world */
rtnl_lock();
if (netdev->phydev)
mutex_lock(&netdev->phydev->lock);
if (priv->mii_bus)
mutex_lock(&priv->mii_bus->mdio_lock);
/* Check if the interface is still up */
if (!netif_running(netdev))
goto bail;
/* Stop the network stack */
netif_trans_update(netdev);
napi_disable(&priv->napi);
netif_tx_disable(netdev);
/* Stop and reset the MAC */
ftgmac100_stop_hw(priv);
err = ftgmac100_reset_and_config_mac(priv);
if (err) {
/* Not much we can do ... it might come back... */
netdev_err(netdev, "attempting to continue...\n");
}
/* Free all rx and tx buffers */
ftgmac100_free_buffers(priv);
/* Setup everything again and restart chip */
ftgmac100_init_all(priv, true);
netdev_dbg(netdev, "Reset done !\n");
bail:
if (priv->mii_bus)
mutex_unlock(&priv->mii_bus->mdio_lock);
if (netdev->phydev)
mutex_unlock(&netdev->phydev->lock);
rtnl_unlock();
}
static void ftgmac100_reset_task(struct work_struct *work)
{
struct ftgmac100 *priv = container_of(work, struct ftgmac100,
reset_task);
ftgmac100_reset(priv);
}
static void ftgmac100_adjust_link(struct net_device *netdev)
{
struct ftgmac100 *priv = netdev_priv(netdev);
struct phy_device *phydev = netdev->phydev;
bool tx_pause, rx_pause;
int new_speed;
/* We store "no link" as speed 0 */
if (!phydev->link)
new_speed = 0;
else
new_speed = phydev->speed;
/* Grab pause settings from PHY if configured to do so */
if (priv->aneg_pause) {
rx_pause = tx_pause = phydev->pause;
if (phydev->asym_pause)
tx_pause = !rx_pause;
} else {
rx_pause = priv->rx_pause;
tx_pause = priv->tx_pause;
}
/* Link hasn't changed, do nothing */
if (phydev->speed == priv->cur_speed &&
phydev->duplex == priv->cur_duplex &&
rx_pause == priv->rx_pause &&
tx_pause == priv->tx_pause)
return;
/* Print status if we have a link or we had one and just lost it,
* don't print otherwise.
*/
if (new_speed || priv->cur_speed)
phy_print_status(phydev);
priv->cur_speed = new_speed;
priv->cur_duplex = phydev->duplex;
priv->rx_pause = rx_pause;
priv->tx_pause = tx_pause;
/* Link is down, do nothing else */
if (!new_speed)
return;
/* Disable all interrupts */
iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
/* Release phy lock to allow ftgmac100_reset to aquire it, keeping lock
* order consistent to prevent dead lock.
*/
if (netdev->phydev)
mutex_unlock(&netdev->phydev->lock);
ftgmac100_reset(priv);
if (netdev->phydev)
mutex_lock(&netdev->phydev->lock);
}
static int ftgmac100_mii_probe(struct net_device *netdev)
{
struct ftgmac100 *priv = netdev_priv(netdev);
struct platform_device *pdev = to_platform_device(priv->dev);
struct device_node *np = pdev->dev.of_node;
struct phy_device *phydev;
phy_interface_t phy_intf;
int err;
/* Default to RGMII. It's a gigabit part after all */
err = of_get_phy_mode(np, &phy_intf);
if (err)
phy_intf = PHY_INTERFACE_MODE_RGMII;
/* Aspeed only supports these. I don't know about other IP
* block vendors so I'm going to just let them through for
* now. Note that this is only a warning if for some obscure
* reason the DT really means to lie about it or it's a newer
* part we don't know about.
*
* On the Aspeed SoC there are additionally straps and SCU
* control bits that could tell us what the interface is
* (or allow us to configure it while the IP block is held
* in reset). For now I chose to keep this driver away from
* those SoC specific bits and assume the device-tree is
* right and the SCU has been configured properly by pinmux
* or the firmware.
*/
if (priv->is_aspeed && !(phy_interface_mode_is_rgmii(phy_intf))) {
netdev_warn(netdev,
"Unsupported PHY mode %s !\n",
phy_modes(phy_intf));
}
phydev = phy_find_first(priv->mii_bus);
if (!phydev) {
netdev_info(netdev, "%s: no PHY found\n", netdev->name);
return -ENODEV;
}
phydev = phy_connect(netdev, phydev_name(phydev),
&ftgmac100_adjust_link, phy_intf);
if (IS_ERR(phydev)) {
netdev_err(netdev, "%s: Could not attach to PHY\n", netdev->name);
return PTR_ERR(phydev);
}
/* Indicate that we support PAUSE frames (see comment in
* Documentation/networking/phy.rst)
*/
phy_support_asym_pause(phydev);
/* Display what we found */
phy_attached_info(phydev);
return 0;
}
static int ftgmac100_open(struct net_device *netdev)
{
struct ftgmac100 *priv = netdev_priv(netdev);
int err;
/* Allocate ring buffers */
err = ftgmac100_alloc_rings(priv);
if (err) {
netdev_err(netdev, "Failed to allocate descriptors\n");
return err;
}
/* When using NC-SI we force the speed to 100Mbit/s full duplex,
*
* Otherwise we leave it set to 0 (no link), the link
* message from the PHY layer will handle setting it up to
* something else if needed.
*/
if (priv->use_ncsi) {
priv->cur_duplex = DUPLEX_FULL;
priv->cur_speed = SPEED_100;
} else {
priv->cur_duplex = 0;
priv->cur_speed = 0;
}
/* Reset the hardware */
err = ftgmac100_reset_and_config_mac(priv);
if (err)
goto err_hw;
/* Initialize NAPI */
netif_napi_add(netdev, &priv->napi, ftgmac100_poll);
/* Grab our interrupt */
err = request_irq(netdev->irq, ftgmac100_interrupt, 0, netdev->name, netdev);
if (err) {
netdev_err(netdev, "failed to request irq %d\n", netdev->irq);
goto err_irq;
}
/* Start things up */
err = ftgmac100_init_all(priv, false);
if (err) {
netdev_err(netdev, "Failed to allocate packet buffers\n");
goto err_alloc;
}
if (netdev->phydev) {
/* If we have a PHY, start polling */
phy_start(netdev->phydev);
}
if (priv->use_ncsi) {
/* If using NC-SI, set our carrier on and start the stack */
netif_carrier_on(netdev);
/* Start the NCSI device */
err = ncsi_start_dev(priv->ndev);
if (err)
goto err_ncsi;
}
return 0;
err_ncsi:
phy_stop(netdev->phydev);
napi_disable(&priv->napi);
netif_stop_queue(netdev);
err_alloc:
ftgmac100_free_buffers(priv);
free_irq(netdev->irq, netdev);
err_irq:
netif_napi_del(&priv->napi);
err_hw:
iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
ftgmac100_free_rings(priv);
return err;
}
static int ftgmac100_stop(struct net_device *netdev)
{
struct ftgmac100 *priv = netdev_priv(netdev);
/* Note about the reset task: We are called with the rtnl lock
* held, so we are synchronized against the core of the reset
* task. We must not try to synchronously cancel it otherwise
* we can deadlock. But since it will test for netif_running()
* which has already been cleared by the net core, we don't
* anything special to do.
*/
/* disable all interrupts */
iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
netif_stop_queue(netdev);
napi_disable(&priv->napi);
netif_napi_del(&priv->napi);
if (netdev->phydev)
phy_stop(netdev->phydev);
if (priv->use_ncsi)
ncsi_stop_dev(priv->ndev);
ftgmac100_stop_hw(priv);
free_irq(netdev->irq, netdev);
ftgmac100_free_buffers(priv);
ftgmac100_free_rings(priv);
return 0;
}
static void ftgmac100_tx_timeout(struct net_device *netdev, unsigned int txqueue)
{
struct ftgmac100 *priv = netdev_priv(netdev);
/* Disable all interrupts */
iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
/* Do the reset outside of interrupt context */
schedule_work(&priv->reset_task);
}
static int ftgmac100_set_features(struct net_device *netdev,
netdev_features_t features)
{
struct ftgmac100 *priv = netdev_priv(netdev);
netdev_features_t changed = netdev->features ^ features;
if (!netif_running(netdev))
return 0;
/* Update the vlan filtering bit */
if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
u32 maccr;
maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
if (priv->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
maccr |= FTGMAC100_MACCR_RM_VLAN;
else
maccr &= ~FTGMAC100_MACCR_RM_VLAN;
iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
}
return 0;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void ftgmac100_poll_controller(struct net_device *netdev)
{
unsigned long flags;
local_irq_save(flags);
ftgmac100_interrupt(netdev->irq, netdev);
local_irq_restore(flags);
}
#endif
static const struct net_device_ops ftgmac100_netdev_ops = {
.ndo_open = ftgmac100_open,
.ndo_stop = ftgmac100_stop,
.ndo_start_xmit = ftgmac100_hard_start_xmit,
.ndo_set_mac_address = ftgmac100_set_mac_addr,
.ndo_validate_addr = eth_validate_addr,
.ndo_eth_ioctl = phy_do_ioctl,
.ndo_tx_timeout = ftgmac100_tx_timeout,
.ndo_set_rx_mode = ftgmac100_set_rx_mode,
.ndo_set_features = ftgmac100_set_features,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = ftgmac100_poll_controller,
#endif
.ndo_vlan_rx_add_vid = ncsi_vlan_rx_add_vid,
.ndo_vlan_rx_kill_vid = ncsi_vlan_rx_kill_vid,
};
static int ftgmac100_setup_mdio(struct net_device *netdev)
{
struct ftgmac100 *priv = netdev_priv(netdev);
struct platform_device *pdev = to_platform_device(priv->dev);
struct device_node *np = pdev->dev.of_node;
struct device_node *mdio_np;
int i, err = 0;
u32 reg;
/* initialize mdio bus */
priv->mii_bus = mdiobus_alloc();
if (!priv->mii_bus)
return -EIO;
if (of_device_is_compatible(np, "aspeed,ast2400-mac") ||
of_device_is_compatible(np, "aspeed,ast2500-mac")) {
/* The AST2600 has a separate MDIO controller */
/* For the AST2400 and AST2500 this driver only supports the
* old MDIO interface
*/
reg = ioread32(priv->base + FTGMAC100_OFFSET_REVR);
reg &= ~FTGMAC100_REVR_NEW_MDIO_INTERFACE;
iowrite32(reg, priv->base + FTGMAC100_OFFSET_REVR);
}
priv->mii_bus->name = "ftgmac100_mdio";
snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%d",
pdev->name, pdev->id);
priv->mii_bus->parent = priv->dev;
priv->mii_bus->priv = priv->netdev;
priv->mii_bus->read = ftgmac100_mdiobus_read;
priv->mii_bus->write = ftgmac100_mdiobus_write;
for (i = 0; i < PHY_MAX_ADDR; i++)
priv->mii_bus->irq[i] = PHY_POLL;
mdio_np = of_get_child_by_name(np, "mdio");
err = of_mdiobus_register(priv->mii_bus, mdio_np);
if (err) {
dev_err(priv->dev, "Cannot register MDIO bus!\n");
goto err_register_mdiobus;
}
of_node_put(mdio_np);
return 0;
err_register_mdiobus:
mdiobus_free(priv->mii_bus);
return err;
}
static void ftgmac100_phy_disconnect(struct net_device *netdev)
{
struct ftgmac100 *priv = netdev_priv(netdev);
if (!netdev->phydev)
return;
phy_disconnect(netdev->phydev);
if (of_phy_is_fixed_link(priv->dev->of_node))
of_phy_deregister_fixed_link(priv->dev->of_node);
if (priv->use_ncsi)
fixed_phy_unregister(netdev->phydev);
}
static void ftgmac100_destroy_mdio(struct net_device *netdev)
{
struct ftgmac100 *priv = netdev_priv(netdev);
if (!priv->mii_bus)
return;
mdiobus_unregister(priv->mii_bus);
mdiobus_free(priv->mii_bus);
}
static void ftgmac100_ncsi_handler(struct ncsi_dev *nd)
{
if (unlikely(nd->state != ncsi_dev_state_functional))
return;
netdev_dbg(nd->dev, "NCSI interface %s\n",
nd->link_up ? "up" : "down");
}
static int ftgmac100_setup_clk(struct ftgmac100 *priv)
{
struct clk *clk;
int rc;
clk = devm_clk_get(priv->dev, NULL /* MACCLK */);
if (IS_ERR(clk))
return PTR_ERR(clk);
priv->clk = clk;
rc = clk_prepare_enable(priv->clk);
if (rc)
return rc;
/* Aspeed specifies a 100MHz clock is required for up to
* 1000Mbit link speeds. As NCSI is limited to 100Mbit, 25MHz
* is sufficient
*/
rc = clk_set_rate(priv->clk, priv->use_ncsi ? FTGMAC_25MHZ :
FTGMAC_100MHZ);
if (rc)
goto cleanup_clk;
/* RCLK is for RMII, typically used for NCSI. Optional because it's not
* necessary if it's the AST2400 MAC, or the MAC is configured for
* RGMII, or the controller is not an ASPEED-based controller.
*/
priv->rclk = devm_clk_get_optional(priv->dev, "RCLK");
rc = clk_prepare_enable(priv->rclk);
if (!rc)
return 0;
cleanup_clk:
clk_disable_unprepare(priv->clk);
return rc;
}
static bool ftgmac100_has_child_node(struct device_node *np, const char *name)
{
struct device_node *child_np = of_get_child_by_name(np, name);
bool ret = false;
if (child_np) {
ret = true;
of_node_put(child_np);
}
return ret;
}
static int ftgmac100_probe(struct platform_device *pdev)
{
struct resource *res;
int irq;
struct net_device *netdev;
struct phy_device *phydev;
struct ftgmac100 *priv;
struct device_node *np;
int err = 0;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res)
return -ENXIO;
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
/* setup net_device */
netdev = alloc_etherdev(sizeof(*priv));
if (!netdev) {
err = -ENOMEM;
goto err_alloc_etherdev;
}
SET_NETDEV_DEV(netdev, &pdev->dev);
netdev->ethtool_ops = &ftgmac100_ethtool_ops;
netdev->netdev_ops = &ftgmac100_netdev_ops;
netdev->watchdog_timeo = 5 * HZ;
platform_set_drvdata(pdev, netdev);
/* setup private data */
priv = netdev_priv(netdev);
priv->netdev = netdev;
priv->dev = &pdev->dev;
INIT_WORK(&priv->reset_task, ftgmac100_reset_task);
/* map io memory */
priv->res = request_mem_region(res->start, resource_size(res),
dev_name(&pdev->dev));
if (!priv->res) {
dev_err(&pdev->dev, "Could not reserve memory region\n");
err = -ENOMEM;
goto err_req_mem;
}
priv->base = ioremap(res->start, resource_size(res));
if (!priv->base) {
dev_err(&pdev->dev, "Failed to ioremap ethernet registers\n");
err = -EIO;
goto err_ioremap;
}
netdev->irq = irq;
/* Enable pause */
priv->tx_pause = true;
priv->rx_pause = true;
priv->aneg_pause = true;
/* MAC address from chip or random one */
err = ftgmac100_initial_mac(priv);
if (err)
goto err_phy_connect;
np = pdev->dev.of_node;
if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac") ||
of_device_is_compatible(np, "aspeed,ast2500-mac") ||
of_device_is_compatible(np, "aspeed,ast2600-mac"))) {
priv->rxdes0_edorr_mask = BIT(30);
priv->txdes0_edotr_mask = BIT(30);
priv->is_aspeed = true;
} else {
priv->rxdes0_edorr_mask = BIT(15);
priv->txdes0_edotr_mask = BIT(15);
}
if (np && of_get_property(np, "use-ncsi", NULL)) {
if (!IS_ENABLED(CONFIG_NET_NCSI)) {
dev_err(&pdev->dev, "NCSI stack not enabled\n");
err = -EINVAL;
goto err_phy_connect;
}
dev_info(&pdev->dev, "Using NCSI interface\n");
priv->use_ncsi = true;
priv->ndev = ncsi_register_dev(netdev, ftgmac100_ncsi_handler);
if (!priv->ndev) {
err = -EINVAL;
goto err_phy_connect;
}
phydev = fixed_phy_register(PHY_POLL, &ncsi_phy_status, np);
if (IS_ERR(phydev)) {
dev_err(&pdev->dev, "failed to register fixed PHY device\n");
err = PTR_ERR(phydev);
goto err_phy_connect;
}
err = phy_connect_direct(netdev, phydev, ftgmac100_adjust_link,
PHY_INTERFACE_MODE_MII);
if (err) {
dev_err(&pdev->dev, "Connecting PHY failed\n");
goto err_phy_connect;
}
} else if (np && of_phy_is_fixed_link(np)) {
struct phy_device *phy;
err = of_phy_register_fixed_link(np);
if (err) {
dev_err(&pdev->dev, "Failed to register fixed PHY\n");
goto err_phy_connect;
}
phy = of_phy_get_and_connect(priv->netdev, np,
&ftgmac100_adjust_link);
if (!phy) {
dev_err(&pdev->dev, "Failed to connect to fixed PHY\n");
of_phy_deregister_fixed_link(np);
err = -EINVAL;
goto err_phy_connect;
}
/* Display what we found */
phy_attached_info(phy);
} else if (np && of_get_property(np, "phy-handle", NULL)) {
struct phy_device *phy;
/* Support "mdio"/"phy" child nodes for ast2400/2500 with
* an embedded MDIO controller. Automatically scan the DTS for
* available PHYs and register them.
*/
if (of_device_is_compatible(np, "aspeed,ast2400-mac") ||
of_device_is_compatible(np, "aspeed,ast2500-mac")) {
err = ftgmac100_setup_mdio(netdev);
if (err)
goto err_setup_mdio;
}
phy = of_phy_get_and_connect(priv->netdev, np,
&ftgmac100_adjust_link);
if (!phy) {
dev_err(&pdev->dev, "Failed to connect to phy\n");
err = -EINVAL;
goto err_phy_connect;
}
/* Indicate that we support PAUSE frames (see comment in
* Documentation/networking/phy.rst)
*/
phy_support_asym_pause(phy);
/* Display what we found */
phy_attached_info(phy);
} else if (np && !ftgmac100_has_child_node(np, "mdio")) {
/* Support legacy ASPEED devicetree descriptions that decribe a
* MAC with an embedded MDIO controller but have no "mdio"
* child node. Automatically scan the MDIO bus for available
* PHYs.
*/
priv->use_ncsi = false;
err = ftgmac100_setup_mdio(netdev);
if (err)
goto err_setup_mdio;
err = ftgmac100_mii_probe(netdev);
if (err) {
dev_err(priv->dev, "MII probe failed!\n");
goto err_ncsi_dev;
}
}
if (priv->is_aspeed) {
err = ftgmac100_setup_clk(priv);
if (err)
goto err_phy_connect;
/* Disable ast2600 problematic HW arbitration */
if (of_device_is_compatible(np, "aspeed,ast2600-mac"))
iowrite32(FTGMAC100_TM_DEFAULT,
priv->base + FTGMAC100_OFFSET_TM);
}
/* Default ring sizes */
priv->rx_q_entries = priv->new_rx_q_entries = DEF_RX_QUEUE_ENTRIES;
priv->tx_q_entries = priv->new_tx_q_entries = DEF_TX_QUEUE_ENTRIES;
/* Base feature set */
netdev->hw_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM |
NETIF_F_GRO | NETIF_F_SG | NETIF_F_HW_VLAN_CTAG_RX |
NETIF_F_HW_VLAN_CTAG_TX;
if (priv->use_ncsi)
netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
/* AST2400 doesn't have working HW checksum generation */
if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac")))
netdev->hw_features &= ~NETIF_F_HW_CSUM;
/* AST2600 tx checksum with NCSI is broken */
if (priv->use_ncsi && of_device_is_compatible(np, "aspeed,ast2600-mac"))
netdev->hw_features &= ~NETIF_F_HW_CSUM;
if (np && of_get_property(np, "no-hw-checksum", NULL))
netdev->hw_features &= ~(NETIF_F_HW_CSUM | NETIF_F_RXCSUM);
netdev->features |= netdev->hw_features;
/* register network device */
err = register_netdev(netdev);
if (err) {
dev_err(&pdev->dev, "Failed to register netdev\n");
goto err_register_netdev;
}
netdev_info(netdev, "irq %d, mapped at %p\n", netdev->irq, priv->base);
return 0;
err_register_netdev:
clk_disable_unprepare(priv->rclk);
clk_disable_unprepare(priv->clk);
err_phy_connect:
ftgmac100_phy_disconnect(netdev);
err_ncsi_dev:
if (priv->ndev)
ncsi_unregister_dev(priv->ndev);
ftgmac100_destroy_mdio(netdev);
err_setup_mdio:
iounmap(priv->base);
err_ioremap:
release_resource(priv->res);
err_req_mem:
free_netdev(netdev);
err_alloc_etherdev:
return err;
}
static void ftgmac100_remove(struct platform_device *pdev)
{
struct net_device *netdev;
struct ftgmac100 *priv;
netdev = platform_get_drvdata(pdev);
priv = netdev_priv(netdev);
if (priv->ndev)
ncsi_unregister_dev(priv->ndev);
unregister_netdev(netdev);
clk_disable_unprepare(priv->rclk);
clk_disable_unprepare(priv->clk);
/* There's a small chance the reset task will have been re-queued,
* during stop, make sure it's gone before we free the structure.
*/
cancel_work_sync(&priv->reset_task);
ftgmac100_phy_disconnect(netdev);
ftgmac100_destroy_mdio(netdev);
iounmap(priv->base);
release_resource(priv->res);
netif_napi_del(&priv->napi);
free_netdev(netdev);
}
static const struct of_device_id ftgmac100_of_match[] = {
{ .compatible = "faraday,ftgmac100" },
{ }
};
MODULE_DEVICE_TABLE(of, ftgmac100_of_match);
static struct platform_driver ftgmac100_driver = {
.probe = ftgmac100_probe,
.remove_new = ftgmac100_remove,
.driver = {
.name = DRV_NAME,
.of_match_table = ftgmac100_of_match,
},
};
module_platform_driver(ftgmac100_driver);
MODULE_AUTHOR("Po-Yu Chuang <ratbert@faraday-tech.com>");
MODULE_DESCRIPTION("FTGMAC100 driver");
MODULE_LICENSE("GPL");