| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Fast Ethernet Controller (ENET) PTP driver for MX6x. |
| * |
| * Copyright (C) 2012 Freescale Semiconductor, Inc. |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/string.h> |
| #include <linux/ptrace.h> |
| #include <linux/errno.h> |
| #include <linux/ioport.h> |
| #include <linux/slab.h> |
| #include <linux/interrupt.h> |
| #include <linux/pci.h> |
| #include <linux/delay.h> |
| #include <linux/netdevice.h> |
| #include <linux/etherdevice.h> |
| #include <linux/skbuff.h> |
| #include <linux/spinlock.h> |
| #include <linux/workqueue.h> |
| #include <linux/bitops.h> |
| #include <linux/io.h> |
| #include <linux/irq.h> |
| #include <linux/clk.h> |
| #include <linux/platform_device.h> |
| #include <linux/phy.h> |
| #include <linux/fec.h> |
| #include <linux/of.h> |
| #include <linux/of_gpio.h> |
| #include <linux/of_net.h> |
| |
| #include "fec.h" |
| |
| /* FEC 1588 register bits */ |
| #define FEC_T_CTRL_SLAVE 0x00002000 |
| #define FEC_T_CTRL_CAPTURE 0x00000800 |
| #define FEC_T_CTRL_RESTART 0x00000200 |
| #define FEC_T_CTRL_PERIOD_RST 0x00000030 |
| #define FEC_T_CTRL_PERIOD_EN 0x00000010 |
| #define FEC_T_CTRL_ENABLE 0x00000001 |
| |
| #define FEC_T_INC_MASK 0x0000007f |
| #define FEC_T_INC_OFFSET 0 |
| #define FEC_T_INC_CORR_MASK 0x00007f00 |
| #define FEC_T_INC_CORR_OFFSET 8 |
| |
| #define FEC_T_CTRL_PINPER 0x00000080 |
| #define FEC_T_TF0_MASK 0x00000001 |
| #define FEC_T_TF0_OFFSET 0 |
| #define FEC_T_TF1_MASK 0x00000002 |
| #define FEC_T_TF1_OFFSET 1 |
| #define FEC_T_TF2_MASK 0x00000004 |
| #define FEC_T_TF2_OFFSET 2 |
| #define FEC_T_TF3_MASK 0x00000008 |
| #define FEC_T_TF3_OFFSET 3 |
| #define FEC_T_TDRE_MASK 0x00000001 |
| #define FEC_T_TDRE_OFFSET 0 |
| #define FEC_T_TMODE_MASK 0x0000003C |
| #define FEC_T_TMODE_OFFSET 2 |
| #define FEC_T_TIE_MASK 0x00000040 |
| #define FEC_T_TIE_OFFSET 6 |
| #define FEC_T_TF_MASK 0x00000080 |
| #define FEC_T_TF_OFFSET 7 |
| |
| #define FEC_ATIME_CTRL 0x400 |
| #define FEC_ATIME 0x404 |
| #define FEC_ATIME_EVT_OFFSET 0x408 |
| #define FEC_ATIME_EVT_PERIOD 0x40c |
| #define FEC_ATIME_CORR 0x410 |
| #define FEC_ATIME_INC 0x414 |
| #define FEC_TS_TIMESTAMP 0x418 |
| |
| #define FEC_TGSR 0x604 |
| #define FEC_TCSR(n) (0x608 + n * 0x08) |
| #define FEC_TCCR(n) (0x60C + n * 0x08) |
| #define MAX_TIMER_CHANNEL 3 |
| #define FEC_TMODE_TOGGLE 0x05 |
| #define FEC_HIGH_PULSE 0x0F |
| |
| #define FEC_CC_MULT (1 << 31) |
| #define FEC_COUNTER_PERIOD (1 << 31) |
| #define PPS_OUPUT_RELOAD_PERIOD NSEC_PER_SEC |
| #define FEC_CHANNLE_0 0 |
| #define DEFAULT_PPS_CHANNEL FEC_CHANNLE_0 |
| |
| #define FEC_PTP_MAX_NSEC_PERIOD 4000000000ULL |
| #define FEC_PTP_MAX_NSEC_COUNTER 0x80000000ULL |
| |
| /** |
| * fec_ptp_read - read raw cycle counter (to be used by time counter) |
| * @cc: the cyclecounter structure |
| * |
| * this function reads the cyclecounter registers and is called by the |
| * cyclecounter structure used to construct a ns counter from the |
| * arbitrary fixed point registers |
| */ |
| static u64 fec_ptp_read(const struct cyclecounter *cc) |
| { |
| struct fec_enet_private *fep = |
| container_of(cc, struct fec_enet_private, cc); |
| u32 tempval; |
| |
| tempval = readl(fep->hwp + FEC_ATIME_CTRL); |
| tempval |= FEC_T_CTRL_CAPTURE; |
| writel(tempval, fep->hwp + FEC_ATIME_CTRL); |
| |
| if (fep->quirks & FEC_QUIRK_BUG_CAPTURE) |
| udelay(1); |
| |
| return readl(fep->hwp + FEC_ATIME); |
| } |
| |
| /** |
| * fec_ptp_enable_pps |
| * @fep: the fec_enet_private structure handle |
| * @enable: enable the channel pps output |
| * |
| * This function enble the PPS ouput on the timer channel. |
| */ |
| static int fec_ptp_enable_pps(struct fec_enet_private *fep, uint enable) |
| { |
| unsigned long flags; |
| u32 val, tempval; |
| struct timespec64 ts; |
| u64 ns; |
| |
| spin_lock_irqsave(&fep->tmreg_lock, flags); |
| |
| if (fep->pps_enable == enable) { |
| spin_unlock_irqrestore(&fep->tmreg_lock, flags); |
| return 0; |
| } |
| |
| if (enable) { |
| /* clear capture or output compare interrupt status if have. |
| */ |
| writel(FEC_T_TF_MASK, fep->hwp + FEC_TCSR(fep->pps_channel)); |
| |
| /* It is recommended to double check the TMODE field in the |
| * TCSR register to be cleared before the first compare counter |
| * is written into TCCR register. Just add a double check. |
| */ |
| val = readl(fep->hwp + FEC_TCSR(fep->pps_channel)); |
| do { |
| val &= ~(FEC_T_TMODE_MASK); |
| writel(val, fep->hwp + FEC_TCSR(fep->pps_channel)); |
| val = readl(fep->hwp + FEC_TCSR(fep->pps_channel)); |
| } while (val & FEC_T_TMODE_MASK); |
| |
| /* Dummy read counter to update the counter */ |
| timecounter_read(&fep->tc); |
| /* We want to find the first compare event in the next |
| * second point. So we need to know what the ptp time |
| * is now and how many nanoseconds is ahead to get next second. |
| * The remaining nanosecond ahead before the next second would be |
| * NSEC_PER_SEC - ts.tv_nsec. Add the remaining nanoseconds |
| * to current timer would be next second. |
| */ |
| tempval = fec_ptp_read(&fep->cc); |
| /* Convert the ptp local counter to 1588 timestamp */ |
| ns = timecounter_cyc2time(&fep->tc, tempval); |
| ts = ns_to_timespec64(ns); |
| |
| /* The tempval is less than 3 seconds, and so val is less than |
| * 4 seconds. No overflow for 32bit calculation. |
| */ |
| val = NSEC_PER_SEC - (u32)ts.tv_nsec + tempval; |
| |
| /* Need to consider the situation that the current time is |
| * very close to the second point, which means NSEC_PER_SEC |
| * - ts.tv_nsec is close to be zero(For example 20ns); Since the timer |
| * is still running when we calculate the first compare event, it is |
| * possible that the remaining nanoseonds run out before the compare |
| * counter is calculated and written into TCCR register. To avoid |
| * this possibility, we will set the compare event to be the next |
| * of next second. The current setting is 31-bit timer and wrap |
| * around over 2 seconds. So it is okay to set the next of next |
| * seond for the timer. |
| */ |
| val += NSEC_PER_SEC; |
| |
| /* We add (2 * NSEC_PER_SEC - (u32)ts.tv_nsec) to current |
| * ptp counter, which maybe cause 32-bit wrap. Since the |
| * (NSEC_PER_SEC - (u32)ts.tv_nsec) is less than 2 second. |
| * We can ensure the wrap will not cause issue. If the offset |
| * is bigger than fep->cc.mask would be a error. |
| */ |
| val &= fep->cc.mask; |
| writel(val, fep->hwp + FEC_TCCR(fep->pps_channel)); |
| |
| /* Calculate the second the compare event timestamp */ |
| fep->next_counter = (val + fep->reload_period) & fep->cc.mask; |
| |
| /* * Enable compare event when overflow */ |
| val = readl(fep->hwp + FEC_ATIME_CTRL); |
| val |= FEC_T_CTRL_PINPER; |
| writel(val, fep->hwp + FEC_ATIME_CTRL); |
| |
| /* Compare channel setting. */ |
| val = readl(fep->hwp + FEC_TCSR(fep->pps_channel)); |
| val |= (1 << FEC_T_TF_OFFSET | 1 << FEC_T_TIE_OFFSET); |
| val &= ~(1 << FEC_T_TDRE_OFFSET); |
| val &= ~(FEC_T_TMODE_MASK); |
| val |= (FEC_HIGH_PULSE << FEC_T_TMODE_OFFSET); |
| writel(val, fep->hwp + FEC_TCSR(fep->pps_channel)); |
| |
| /* Write the second compare event timestamp and calculate |
| * the third timestamp. Refer the TCCR register detail in the spec. |
| */ |
| writel(fep->next_counter, fep->hwp + FEC_TCCR(fep->pps_channel)); |
| fep->next_counter = (fep->next_counter + fep->reload_period) & fep->cc.mask; |
| } else { |
| writel(0, fep->hwp + FEC_TCSR(fep->pps_channel)); |
| } |
| |
| fep->pps_enable = enable; |
| spin_unlock_irqrestore(&fep->tmreg_lock, flags); |
| |
| return 0; |
| } |
| |
| static int fec_ptp_pps_perout(struct fec_enet_private *fep) |
| { |
| u32 compare_val, ptp_hc, temp_val; |
| u64 curr_time; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&fep->tmreg_lock, flags); |
| |
| /* Update time counter */ |
| timecounter_read(&fep->tc); |
| |
| /* Get the current ptp hardware time counter */ |
| ptp_hc = fec_ptp_read(&fep->cc); |
| |
| /* Convert the ptp local counter to 1588 timestamp */ |
| curr_time = timecounter_cyc2time(&fep->tc, ptp_hc); |
| |
| /* If the pps start time less than current time add 100ms, just return. |
| * Because the software might not able to set the comparison time into |
| * the FEC_TCCR register in time and missed the start time. |
| */ |
| if (fep->perout_stime < curr_time + 100 * NSEC_PER_MSEC) { |
| dev_err(&fep->pdev->dev, "Current time is too close to the start time!\n"); |
| spin_unlock_irqrestore(&fep->tmreg_lock, flags); |
| return -1; |
| } |
| |
| compare_val = fep->perout_stime - curr_time + ptp_hc; |
| compare_val &= fep->cc.mask; |
| |
| writel(compare_val, fep->hwp + FEC_TCCR(fep->pps_channel)); |
| fep->next_counter = (compare_val + fep->reload_period) & fep->cc.mask; |
| |
| /* Enable compare event when overflow */ |
| temp_val = readl(fep->hwp + FEC_ATIME_CTRL); |
| temp_val |= FEC_T_CTRL_PINPER; |
| writel(temp_val, fep->hwp + FEC_ATIME_CTRL); |
| |
| /* Compare channel setting. */ |
| temp_val = readl(fep->hwp + FEC_TCSR(fep->pps_channel)); |
| temp_val |= (1 << FEC_T_TF_OFFSET | 1 << FEC_T_TIE_OFFSET); |
| temp_val &= ~(1 << FEC_T_TDRE_OFFSET); |
| temp_val &= ~(FEC_T_TMODE_MASK); |
| temp_val |= (FEC_TMODE_TOGGLE << FEC_T_TMODE_OFFSET); |
| writel(temp_val, fep->hwp + FEC_TCSR(fep->pps_channel)); |
| |
| /* Write the second compare event timestamp and calculate |
| * the third timestamp. Refer the TCCR register detail in the spec. |
| */ |
| writel(fep->next_counter, fep->hwp + FEC_TCCR(fep->pps_channel)); |
| fep->next_counter = (fep->next_counter + fep->reload_period) & fep->cc.mask; |
| spin_unlock_irqrestore(&fep->tmreg_lock, flags); |
| |
| return 0; |
| } |
| |
| static enum hrtimer_restart fec_ptp_pps_perout_handler(struct hrtimer *timer) |
| { |
| struct fec_enet_private *fep = container_of(timer, |
| struct fec_enet_private, perout_timer); |
| |
| fec_ptp_pps_perout(fep); |
| |
| return HRTIMER_NORESTART; |
| } |
| |
| /** |
| * fec_ptp_start_cyclecounter - create the cycle counter from hw |
| * @ndev: network device |
| * |
| * this function initializes the timecounter and cyclecounter |
| * structures for use in generated a ns counter from the arbitrary |
| * fixed point cycles registers in the hardware. |
| */ |
| void fec_ptp_start_cyclecounter(struct net_device *ndev) |
| { |
| struct fec_enet_private *fep = netdev_priv(ndev); |
| unsigned long flags; |
| int inc; |
| |
| inc = 1000000000 / fep->cycle_speed; |
| |
| /* grab the ptp lock */ |
| spin_lock_irqsave(&fep->tmreg_lock, flags); |
| |
| /* 1ns counter */ |
| writel(inc << FEC_T_INC_OFFSET, fep->hwp + FEC_ATIME_INC); |
| |
| /* use 31-bit timer counter */ |
| writel(FEC_COUNTER_PERIOD, fep->hwp + FEC_ATIME_EVT_PERIOD); |
| |
| writel(FEC_T_CTRL_ENABLE | FEC_T_CTRL_PERIOD_RST, |
| fep->hwp + FEC_ATIME_CTRL); |
| |
| memset(&fep->cc, 0, sizeof(fep->cc)); |
| fep->cc.read = fec_ptp_read; |
| fep->cc.mask = CLOCKSOURCE_MASK(31); |
| fep->cc.shift = 31; |
| fep->cc.mult = FEC_CC_MULT; |
| |
| /* reset the ns time counter */ |
| timecounter_init(&fep->tc, &fep->cc, 0); |
| |
| spin_unlock_irqrestore(&fep->tmreg_lock, flags); |
| } |
| |
| /** |
| * fec_ptp_adjfine - adjust ptp cycle frequency |
| * @ptp: the ptp clock structure |
| * @scaled_ppm: scaled parts per million adjustment from base |
| * |
| * Adjust the frequency of the ptp cycle counter by the |
| * indicated amount from the base frequency. |
| * |
| * Scaled parts per million is ppm with a 16-bit binary fractional field. |
| * |
| * Because ENET hardware frequency adjust is complex, |
| * using software method to do that. |
| */ |
| static int fec_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm) |
| { |
| s32 ppb = scaled_ppm_to_ppb(scaled_ppm); |
| unsigned long flags; |
| int neg_adj = 0; |
| u32 i, tmp; |
| u32 corr_inc, corr_period; |
| u32 corr_ns; |
| u64 lhs, rhs; |
| |
| struct fec_enet_private *fep = |
| container_of(ptp, struct fec_enet_private, ptp_caps); |
| |
| if (ppb == 0) |
| return 0; |
| |
| if (ppb < 0) { |
| ppb = -ppb; |
| neg_adj = 1; |
| } |
| |
| /* In theory, corr_inc/corr_period = ppb/NSEC_PER_SEC; |
| * Try to find the corr_inc between 1 to fep->ptp_inc to |
| * meet adjustment requirement. |
| */ |
| lhs = NSEC_PER_SEC; |
| rhs = (u64)ppb * (u64)fep->ptp_inc; |
| for (i = 1; i <= fep->ptp_inc; i++) { |
| if (lhs >= rhs) { |
| corr_inc = i; |
| corr_period = div_u64(lhs, rhs); |
| break; |
| } |
| lhs += NSEC_PER_SEC; |
| } |
| /* Not found? Set it to high value - double speed |
| * correct in every clock step. |
| */ |
| if (i > fep->ptp_inc) { |
| corr_inc = fep->ptp_inc; |
| corr_period = 1; |
| } |
| |
| if (neg_adj) |
| corr_ns = fep->ptp_inc - corr_inc; |
| else |
| corr_ns = fep->ptp_inc + corr_inc; |
| |
| spin_lock_irqsave(&fep->tmreg_lock, flags); |
| |
| tmp = readl(fep->hwp + FEC_ATIME_INC) & FEC_T_INC_MASK; |
| tmp |= corr_ns << FEC_T_INC_CORR_OFFSET; |
| writel(tmp, fep->hwp + FEC_ATIME_INC); |
| corr_period = corr_period > 1 ? corr_period - 1 : corr_period; |
| writel(corr_period, fep->hwp + FEC_ATIME_CORR); |
| /* dummy read to update the timer. */ |
| timecounter_read(&fep->tc); |
| |
| spin_unlock_irqrestore(&fep->tmreg_lock, flags); |
| |
| return 0; |
| } |
| |
| /** |
| * fec_ptp_adjtime |
| * @ptp: the ptp clock structure |
| * @delta: offset to adjust the cycle counter by |
| * |
| * adjust the timer by resetting the timecounter structure. |
| */ |
| static int fec_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) |
| { |
| struct fec_enet_private *fep = |
| container_of(ptp, struct fec_enet_private, ptp_caps); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&fep->tmreg_lock, flags); |
| timecounter_adjtime(&fep->tc, delta); |
| spin_unlock_irqrestore(&fep->tmreg_lock, flags); |
| |
| return 0; |
| } |
| |
| /** |
| * fec_ptp_gettime |
| * @ptp: the ptp clock structure |
| * @ts: timespec structure to hold the current time value |
| * |
| * read the timecounter and return the correct value on ns, |
| * after converting it into a struct timespec. |
| */ |
| static int fec_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts) |
| { |
| struct fec_enet_private *fep = |
| container_of(ptp, struct fec_enet_private, ptp_caps); |
| u64 ns; |
| unsigned long flags; |
| |
| mutex_lock(&fep->ptp_clk_mutex); |
| /* Check the ptp clock */ |
| if (!fep->ptp_clk_on) { |
| mutex_unlock(&fep->ptp_clk_mutex); |
| return -EINVAL; |
| } |
| spin_lock_irqsave(&fep->tmreg_lock, flags); |
| ns = timecounter_read(&fep->tc); |
| spin_unlock_irqrestore(&fep->tmreg_lock, flags); |
| mutex_unlock(&fep->ptp_clk_mutex); |
| |
| *ts = ns_to_timespec64(ns); |
| |
| return 0; |
| } |
| |
| /** |
| * fec_ptp_settime |
| * @ptp: the ptp clock structure |
| * @ts: the timespec containing the new time for the cycle counter |
| * |
| * reset the timecounter to use a new base value instead of the kernel |
| * wall timer value. |
| */ |
| static int fec_ptp_settime(struct ptp_clock_info *ptp, |
| const struct timespec64 *ts) |
| { |
| struct fec_enet_private *fep = |
| container_of(ptp, struct fec_enet_private, ptp_caps); |
| |
| u64 ns; |
| unsigned long flags; |
| u32 counter; |
| |
| mutex_lock(&fep->ptp_clk_mutex); |
| /* Check the ptp clock */ |
| if (!fep->ptp_clk_on) { |
| mutex_unlock(&fep->ptp_clk_mutex); |
| return -EINVAL; |
| } |
| |
| ns = timespec64_to_ns(ts); |
| /* Get the timer value based on timestamp. |
| * Update the counter with the masked value. |
| */ |
| counter = ns & fep->cc.mask; |
| |
| spin_lock_irqsave(&fep->tmreg_lock, flags); |
| writel(counter, fep->hwp + FEC_ATIME); |
| timecounter_init(&fep->tc, &fep->cc, ns); |
| spin_unlock_irqrestore(&fep->tmreg_lock, flags); |
| mutex_unlock(&fep->ptp_clk_mutex); |
| return 0; |
| } |
| |
| static int fec_ptp_pps_disable(struct fec_enet_private *fep, uint channel) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&fep->tmreg_lock, flags); |
| writel(0, fep->hwp + FEC_TCSR(channel)); |
| spin_unlock_irqrestore(&fep->tmreg_lock, flags); |
| |
| return 0; |
| } |
| |
| /** |
| * fec_ptp_enable |
| * @ptp: the ptp clock structure |
| * @rq: the requested feature to change |
| * @on: whether to enable or disable the feature |
| * |
| */ |
| static int fec_ptp_enable(struct ptp_clock_info *ptp, |
| struct ptp_clock_request *rq, int on) |
| { |
| struct fec_enet_private *fep = |
| container_of(ptp, struct fec_enet_private, ptp_caps); |
| ktime_t timeout; |
| struct timespec64 start_time, period; |
| u64 curr_time, delta, period_ns; |
| unsigned long flags; |
| int ret = 0; |
| |
| if (rq->type == PTP_CLK_REQ_PPS) { |
| fep->pps_channel = DEFAULT_PPS_CHANNEL; |
| fep->reload_period = PPS_OUPUT_RELOAD_PERIOD; |
| |
| ret = fec_ptp_enable_pps(fep, on); |
| |
| return ret; |
| } else if (rq->type == PTP_CLK_REQ_PEROUT) { |
| /* Reject requests with unsupported flags */ |
| if (rq->perout.flags) |
| return -EOPNOTSUPP; |
| |
| if (rq->perout.index != DEFAULT_PPS_CHANNEL) |
| return -EOPNOTSUPP; |
| |
| fep->pps_channel = DEFAULT_PPS_CHANNEL; |
| period.tv_sec = rq->perout.period.sec; |
| period.tv_nsec = rq->perout.period.nsec; |
| period_ns = timespec64_to_ns(&period); |
| |
| /* FEC PTP timer only has 31 bits, so if the period exceed |
| * 4s is not supported. |
| */ |
| if (period_ns > FEC_PTP_MAX_NSEC_PERIOD) { |
| dev_err(&fep->pdev->dev, "The period must equal to or less than 4s!\n"); |
| return -EOPNOTSUPP; |
| } |
| |
| fep->reload_period = div_u64(period_ns, 2); |
| if (on && fep->reload_period) { |
| /* Convert 1588 timestamp to ns*/ |
| start_time.tv_sec = rq->perout.start.sec; |
| start_time.tv_nsec = rq->perout.start.nsec; |
| fep->perout_stime = timespec64_to_ns(&start_time); |
| |
| mutex_lock(&fep->ptp_clk_mutex); |
| if (!fep->ptp_clk_on) { |
| dev_err(&fep->pdev->dev, "Error: PTP clock is closed!\n"); |
| mutex_unlock(&fep->ptp_clk_mutex); |
| return -EOPNOTSUPP; |
| } |
| spin_lock_irqsave(&fep->tmreg_lock, flags); |
| /* Read current timestamp */ |
| curr_time = timecounter_read(&fep->tc); |
| spin_unlock_irqrestore(&fep->tmreg_lock, flags); |
| mutex_unlock(&fep->ptp_clk_mutex); |
| |
| /* Calculate time difference */ |
| delta = fep->perout_stime - curr_time; |
| |
| if (fep->perout_stime <= curr_time) { |
| dev_err(&fep->pdev->dev, "Start time must larger than current time!\n"); |
| return -EINVAL; |
| } |
| |
| /* Because the timer counter of FEC only has 31-bits, correspondingly, |
| * the time comparison register FEC_TCCR also only low 31 bits can be |
| * set. If the start time of pps signal exceeds current time more than |
| * 0x80000000 ns, a software timer is used and the timer expires about |
| * 1 second before the start time to be able to set FEC_TCCR. |
| */ |
| if (delta > FEC_PTP_MAX_NSEC_COUNTER) { |
| timeout = ns_to_ktime(delta - NSEC_PER_SEC); |
| hrtimer_start(&fep->perout_timer, timeout, HRTIMER_MODE_REL); |
| } else { |
| return fec_ptp_pps_perout(fep); |
| } |
| } else { |
| fec_ptp_pps_disable(fep, fep->pps_channel); |
| } |
| |
| return 0; |
| } else { |
| return -EOPNOTSUPP; |
| } |
| } |
| |
| int fec_ptp_set(struct net_device *ndev, struct kernel_hwtstamp_config *config, |
| struct netlink_ext_ack *extack) |
| { |
| struct fec_enet_private *fep = netdev_priv(ndev); |
| |
| switch (config->tx_type) { |
| case HWTSTAMP_TX_OFF: |
| fep->hwts_tx_en = 0; |
| break; |
| case HWTSTAMP_TX_ON: |
| fep->hwts_tx_en = 1; |
| break; |
| default: |
| return -ERANGE; |
| } |
| |
| switch (config->rx_filter) { |
| case HWTSTAMP_FILTER_NONE: |
| fep->hwts_rx_en = 0; |
| break; |
| |
| default: |
| fep->hwts_rx_en = 1; |
| config->rx_filter = HWTSTAMP_FILTER_ALL; |
| break; |
| } |
| |
| return 0; |
| } |
| |
| void fec_ptp_get(struct net_device *ndev, struct kernel_hwtstamp_config *config) |
| { |
| struct fec_enet_private *fep = netdev_priv(ndev); |
| |
| config->flags = 0; |
| config->tx_type = fep->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; |
| config->rx_filter = (fep->hwts_rx_en ? |
| HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE); |
| } |
| |
| /* |
| * fec_time_keep - call timecounter_read every second to avoid timer overrun |
| * because ENET just support 32bit counter, will timeout in 4s |
| */ |
| static void fec_time_keep(struct work_struct *work) |
| { |
| struct delayed_work *dwork = to_delayed_work(work); |
| struct fec_enet_private *fep = container_of(dwork, struct fec_enet_private, time_keep); |
| unsigned long flags; |
| |
| mutex_lock(&fep->ptp_clk_mutex); |
| if (fep->ptp_clk_on) { |
| spin_lock_irqsave(&fep->tmreg_lock, flags); |
| timecounter_read(&fep->tc); |
| spin_unlock_irqrestore(&fep->tmreg_lock, flags); |
| } |
| mutex_unlock(&fep->ptp_clk_mutex); |
| |
| schedule_delayed_work(&fep->time_keep, HZ); |
| } |
| |
| /* This function checks the pps event and reloads the timer compare counter. */ |
| static irqreturn_t fec_pps_interrupt(int irq, void *dev_id) |
| { |
| struct net_device *ndev = dev_id; |
| struct fec_enet_private *fep = netdev_priv(ndev); |
| u32 val; |
| u8 channel = fep->pps_channel; |
| struct ptp_clock_event event; |
| |
| val = readl(fep->hwp + FEC_TCSR(channel)); |
| if (val & FEC_T_TF_MASK) { |
| /* Write the next next compare(not the next according the spec) |
| * value to the register |
| */ |
| writel(fep->next_counter, fep->hwp + FEC_TCCR(channel)); |
| do { |
| writel(val, fep->hwp + FEC_TCSR(channel)); |
| } while (readl(fep->hwp + FEC_TCSR(channel)) & FEC_T_TF_MASK); |
| |
| /* Update the counter; */ |
| fep->next_counter = (fep->next_counter + fep->reload_period) & |
| fep->cc.mask; |
| |
| event.type = PTP_CLOCK_PPS; |
| ptp_clock_event(fep->ptp_clock, &event); |
| return IRQ_HANDLED; |
| } |
| |
| return IRQ_NONE; |
| } |
| |
| /** |
| * fec_ptp_init |
| * @pdev: The FEC network adapter |
| * @irq_idx: the interrupt index |
| * |
| * This function performs the required steps for enabling ptp |
| * support. If ptp support has already been loaded it simply calls the |
| * cyclecounter init routine and exits. |
| */ |
| |
| void fec_ptp_init(struct platform_device *pdev, int irq_idx) |
| { |
| struct net_device *ndev = platform_get_drvdata(pdev); |
| struct fec_enet_private *fep = netdev_priv(ndev); |
| int irq; |
| int ret; |
| |
| fep->ptp_caps.owner = THIS_MODULE; |
| strscpy(fep->ptp_caps.name, "fec ptp", sizeof(fep->ptp_caps.name)); |
| |
| fep->ptp_caps.max_adj = 250000000; |
| fep->ptp_caps.n_alarm = 0; |
| fep->ptp_caps.n_ext_ts = 0; |
| fep->ptp_caps.n_per_out = 1; |
| fep->ptp_caps.n_pins = 0; |
| fep->ptp_caps.pps = 1; |
| fep->ptp_caps.adjfine = fec_ptp_adjfine; |
| fep->ptp_caps.adjtime = fec_ptp_adjtime; |
| fep->ptp_caps.gettime64 = fec_ptp_gettime; |
| fep->ptp_caps.settime64 = fec_ptp_settime; |
| fep->ptp_caps.enable = fec_ptp_enable; |
| |
| fep->cycle_speed = clk_get_rate(fep->clk_ptp); |
| if (!fep->cycle_speed) { |
| fep->cycle_speed = NSEC_PER_SEC; |
| dev_err(&fep->pdev->dev, "clk_ptp clock rate is zero\n"); |
| } |
| fep->ptp_inc = NSEC_PER_SEC / fep->cycle_speed; |
| |
| spin_lock_init(&fep->tmreg_lock); |
| |
| fec_ptp_start_cyclecounter(ndev); |
| |
| INIT_DELAYED_WORK(&fep->time_keep, fec_time_keep); |
| |
| hrtimer_init(&fep->perout_timer, CLOCK_REALTIME, HRTIMER_MODE_REL); |
| fep->perout_timer.function = fec_ptp_pps_perout_handler; |
| |
| irq = platform_get_irq_byname_optional(pdev, "pps"); |
| if (irq < 0) |
| irq = platform_get_irq_optional(pdev, irq_idx); |
| /* Failure to get an irq is not fatal, |
| * only the PTP_CLOCK_PPS clock events should stop |
| */ |
| if (irq >= 0) { |
| ret = devm_request_irq(&pdev->dev, irq, fec_pps_interrupt, |
| 0, pdev->name, ndev); |
| if (ret < 0) |
| dev_warn(&pdev->dev, "request for pps irq failed(%d)\n", |
| ret); |
| } |
| |
| fep->ptp_clock = ptp_clock_register(&fep->ptp_caps, &pdev->dev); |
| if (IS_ERR(fep->ptp_clock)) { |
| fep->ptp_clock = NULL; |
| dev_err(&pdev->dev, "ptp_clock_register failed\n"); |
| } |
| |
| schedule_delayed_work(&fep->time_keep, HZ); |
| } |
| |
| void fec_ptp_save_state(struct fec_enet_private *fep) |
| { |
| unsigned long flags; |
| u32 atime_inc_corr; |
| |
| spin_lock_irqsave(&fep->tmreg_lock, flags); |
| |
| fep->ptp_saved_state.pps_enable = fep->pps_enable; |
| |
| fep->ptp_saved_state.ns_phc = timecounter_read(&fep->tc); |
| fep->ptp_saved_state.ns_sys = ktime_get_ns(); |
| |
| fep->ptp_saved_state.at_corr = readl(fep->hwp + FEC_ATIME_CORR); |
| atime_inc_corr = readl(fep->hwp + FEC_ATIME_INC) & FEC_T_INC_CORR_MASK; |
| fep->ptp_saved_state.at_inc_corr = (u8)(atime_inc_corr >> FEC_T_INC_CORR_OFFSET); |
| |
| spin_unlock_irqrestore(&fep->tmreg_lock, flags); |
| } |
| |
| /* Restore PTP functionality after a reset */ |
| void fec_ptp_restore_state(struct fec_enet_private *fep) |
| { |
| u32 atime_inc = readl(fep->hwp + FEC_ATIME_INC) & FEC_T_INC_MASK; |
| unsigned long flags; |
| u32 counter; |
| u64 ns; |
| |
| spin_lock_irqsave(&fep->tmreg_lock, flags); |
| |
| /* Reset turned it off, so adjust our status flag */ |
| fep->pps_enable = 0; |
| |
| writel(fep->ptp_saved_state.at_corr, fep->hwp + FEC_ATIME_CORR); |
| atime_inc |= ((u32)fep->ptp_saved_state.at_inc_corr) << FEC_T_INC_CORR_OFFSET; |
| writel(atime_inc, fep->hwp + FEC_ATIME_INC); |
| |
| ns = ktime_get_ns() - fep->ptp_saved_state.ns_sys + fep->ptp_saved_state.ns_phc; |
| counter = ns & fep->cc.mask; |
| writel(counter, fep->hwp + FEC_ATIME); |
| timecounter_init(&fep->tc, &fep->cc, ns); |
| |
| spin_unlock_irqrestore(&fep->tmreg_lock, flags); |
| |
| /* Restart PPS if needed */ |
| if (fep->ptp_saved_state.pps_enable) { |
| /* Re-enable PPS */ |
| fec_ptp_enable_pps(fep, 1); |
| } |
| } |
| |
| void fec_ptp_stop(struct platform_device *pdev) |
| { |
| struct net_device *ndev = platform_get_drvdata(pdev); |
| struct fec_enet_private *fep = netdev_priv(ndev); |
| |
| if (fep->pps_enable) |
| fec_ptp_enable_pps(fep, 0); |
| |
| cancel_delayed_work_sync(&fep->time_keep); |
| hrtimer_cancel(&fep->perout_timer); |
| if (fep->ptp_clock) |
| ptp_clock_unregister(fep->ptp_clock); |
| } |