blob: 8208055d6e7fc59148f8c86d03b454c649234744 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2018, Intel Corporation. */
/* The driver transmit and receive code */
#include <linux/mm.h>
#include <linux/netdevice.h>
#include <linux/prefetch.h>
#include <linux/bpf_trace.h>
#include <net/dsfield.h>
#include <net/mpls.h>
#include <net/xdp.h>
#include "ice_txrx_lib.h"
#include "ice_lib.h"
#include "ice.h"
#include "ice_trace.h"
#include "ice_dcb_lib.h"
#include "ice_xsk.h"
#include "ice_eswitch.h"
#define ICE_RX_HDR_SIZE 256
#define FDIR_DESC_RXDID 0x40
#define ICE_FDIR_CLEAN_DELAY 10
/**
* ice_prgm_fdir_fltr - Program a Flow Director filter
* @vsi: VSI to send dummy packet
* @fdir_desc: flow director descriptor
* @raw_packet: allocated buffer for flow director
*/
int
ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc,
u8 *raw_packet)
{
struct ice_tx_buf *tx_buf, *first;
struct ice_fltr_desc *f_desc;
struct ice_tx_desc *tx_desc;
struct ice_tx_ring *tx_ring;
struct device *dev;
dma_addr_t dma;
u32 td_cmd;
u16 i;
/* VSI and Tx ring */
if (!vsi)
return -ENOENT;
tx_ring = vsi->tx_rings[0];
if (!tx_ring || !tx_ring->desc)
return -ENOENT;
dev = tx_ring->dev;
/* we are using two descriptors to add/del a filter and we can wait */
for (i = ICE_FDIR_CLEAN_DELAY; ICE_DESC_UNUSED(tx_ring) < 2; i--) {
if (!i)
return -EAGAIN;
msleep_interruptible(1);
}
dma = dma_map_single(dev, raw_packet, ICE_FDIR_MAX_RAW_PKT_SIZE,
DMA_TO_DEVICE);
if (dma_mapping_error(dev, dma))
return -EINVAL;
/* grab the next descriptor */
i = tx_ring->next_to_use;
first = &tx_ring->tx_buf[i];
f_desc = ICE_TX_FDIRDESC(tx_ring, i);
memcpy(f_desc, fdir_desc, sizeof(*f_desc));
i++;
i = (i < tx_ring->count) ? i : 0;
tx_desc = ICE_TX_DESC(tx_ring, i);
tx_buf = &tx_ring->tx_buf[i];
i++;
tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
memset(tx_buf, 0, sizeof(*tx_buf));
dma_unmap_len_set(tx_buf, len, ICE_FDIR_MAX_RAW_PKT_SIZE);
dma_unmap_addr_set(tx_buf, dma, dma);
tx_desc->buf_addr = cpu_to_le64(dma);
td_cmd = ICE_TXD_LAST_DESC_CMD | ICE_TX_DESC_CMD_DUMMY |
ICE_TX_DESC_CMD_RE;
tx_buf->type = ICE_TX_BUF_DUMMY;
tx_buf->raw_buf = raw_packet;
tx_desc->cmd_type_offset_bsz =
ice_build_ctob(td_cmd, 0, ICE_FDIR_MAX_RAW_PKT_SIZE, 0);
/* Force memory write to complete before letting h/w know
* there are new descriptors to fetch.
*/
wmb();
/* mark the data descriptor to be watched */
first->next_to_watch = tx_desc;
writel(tx_ring->next_to_use, tx_ring->tail);
return 0;
}
/**
* ice_unmap_and_free_tx_buf - Release a Tx buffer
* @ring: the ring that owns the buffer
* @tx_buf: the buffer to free
*/
static void
ice_unmap_and_free_tx_buf(struct ice_tx_ring *ring, struct ice_tx_buf *tx_buf)
{
if (dma_unmap_len(tx_buf, len))
dma_unmap_page(ring->dev,
dma_unmap_addr(tx_buf, dma),
dma_unmap_len(tx_buf, len),
DMA_TO_DEVICE);
switch (tx_buf->type) {
case ICE_TX_BUF_DUMMY:
devm_kfree(ring->dev, tx_buf->raw_buf);
break;
case ICE_TX_BUF_SKB:
dev_kfree_skb_any(tx_buf->skb);
break;
case ICE_TX_BUF_XDP_TX:
page_frag_free(tx_buf->raw_buf);
break;
case ICE_TX_BUF_XDP_XMIT:
xdp_return_frame(tx_buf->xdpf);
break;
}
tx_buf->next_to_watch = NULL;
tx_buf->type = ICE_TX_BUF_EMPTY;
dma_unmap_len_set(tx_buf, len, 0);
/* tx_buf must be completely set up in the transmit path */
}
static struct netdev_queue *txring_txq(const struct ice_tx_ring *ring)
{
return netdev_get_tx_queue(ring->netdev, ring->q_index);
}
/**
* ice_clean_tx_ring - Free any empty Tx buffers
* @tx_ring: ring to be cleaned
*/
void ice_clean_tx_ring(struct ice_tx_ring *tx_ring)
{
u32 size;
u16 i;
if (ice_ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
ice_xsk_clean_xdp_ring(tx_ring);
goto tx_skip_free;
}
/* ring already cleared, nothing to do */
if (!tx_ring->tx_buf)
return;
/* Free all the Tx ring sk_buffs */
for (i = 0; i < tx_ring->count; i++)
ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]);
tx_skip_free:
memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count);
size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
PAGE_SIZE);
/* Zero out the descriptor ring */
memset(tx_ring->desc, 0, size);
tx_ring->next_to_use = 0;
tx_ring->next_to_clean = 0;
if (!tx_ring->netdev)
return;
/* cleanup Tx queue statistics */
netdev_tx_reset_queue(txring_txq(tx_ring));
}
/**
* ice_free_tx_ring - Free Tx resources per queue
* @tx_ring: Tx descriptor ring for a specific queue
*
* Free all transmit software resources
*/
void ice_free_tx_ring(struct ice_tx_ring *tx_ring)
{
u32 size;
ice_clean_tx_ring(tx_ring);
devm_kfree(tx_ring->dev, tx_ring->tx_buf);
tx_ring->tx_buf = NULL;
if (tx_ring->desc) {
size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
PAGE_SIZE);
dmam_free_coherent(tx_ring->dev, size,
tx_ring->desc, tx_ring->dma);
tx_ring->desc = NULL;
}
}
/**
* ice_clean_tx_irq - Reclaim resources after transmit completes
* @tx_ring: Tx ring to clean
* @napi_budget: Used to determine if we are in netpoll
*
* Returns true if there's any budget left (e.g. the clean is finished)
*/
static bool ice_clean_tx_irq(struct ice_tx_ring *tx_ring, int napi_budget)
{
unsigned int total_bytes = 0, total_pkts = 0;
unsigned int budget = ICE_DFLT_IRQ_WORK;
struct ice_vsi *vsi = tx_ring->vsi;
s16 i = tx_ring->next_to_clean;
struct ice_tx_desc *tx_desc;
struct ice_tx_buf *tx_buf;
/* get the bql data ready */
netdev_txq_bql_complete_prefetchw(txring_txq(tx_ring));
tx_buf = &tx_ring->tx_buf[i];
tx_desc = ICE_TX_DESC(tx_ring, i);
i -= tx_ring->count;
prefetch(&vsi->state);
do {
struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
/* if next_to_watch is not set then there is no work pending */
if (!eop_desc)
break;
/* follow the guidelines of other drivers */
prefetchw(&tx_buf->skb->users);
smp_rmb(); /* prevent any other reads prior to eop_desc */
ice_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
/* if the descriptor isn't done, no work yet to do */
if (!(eop_desc->cmd_type_offset_bsz &
cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
break;
/* clear next_to_watch to prevent false hangs */
tx_buf->next_to_watch = NULL;
/* update the statistics for this packet */
total_bytes += tx_buf->bytecount;
total_pkts += tx_buf->gso_segs;
/* free the skb */
napi_consume_skb(tx_buf->skb, napi_budget);
/* unmap skb header data */
dma_unmap_single(tx_ring->dev,
dma_unmap_addr(tx_buf, dma),
dma_unmap_len(tx_buf, len),
DMA_TO_DEVICE);
/* clear tx_buf data */
tx_buf->type = ICE_TX_BUF_EMPTY;
dma_unmap_len_set(tx_buf, len, 0);
/* unmap remaining buffers */
while (tx_desc != eop_desc) {
ice_trace(clean_tx_irq_unmap, tx_ring, tx_desc, tx_buf);
tx_buf++;
tx_desc++;
i++;
if (unlikely(!i)) {
i -= tx_ring->count;
tx_buf = tx_ring->tx_buf;
tx_desc = ICE_TX_DESC(tx_ring, 0);
}
/* unmap any remaining paged data */
if (dma_unmap_len(tx_buf, len)) {
dma_unmap_page(tx_ring->dev,
dma_unmap_addr(tx_buf, dma),
dma_unmap_len(tx_buf, len),
DMA_TO_DEVICE);
dma_unmap_len_set(tx_buf, len, 0);
}
}
ice_trace(clean_tx_irq_unmap_eop, tx_ring, tx_desc, tx_buf);
/* move us one more past the eop_desc for start of next pkt */
tx_buf++;
tx_desc++;
i++;
if (unlikely(!i)) {
i -= tx_ring->count;
tx_buf = tx_ring->tx_buf;
tx_desc = ICE_TX_DESC(tx_ring, 0);
}
prefetch(tx_desc);
/* update budget accounting */
budget--;
} while (likely(budget));
i += tx_ring->count;
tx_ring->next_to_clean = i;
ice_update_tx_ring_stats(tx_ring, total_pkts, total_bytes);
netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts, total_bytes);
#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) &&
(ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
/* Make sure that anybody stopping the queue after this
* sees the new next_to_clean.
*/
smp_mb();
if (netif_tx_queue_stopped(txring_txq(tx_ring)) &&
!test_bit(ICE_VSI_DOWN, vsi->state)) {
netif_tx_wake_queue(txring_txq(tx_ring));
++tx_ring->ring_stats->tx_stats.restart_q;
}
}
return !!budget;
}
/**
* ice_setup_tx_ring - Allocate the Tx descriptors
* @tx_ring: the Tx ring to set up
*
* Return 0 on success, negative on error
*/
int ice_setup_tx_ring(struct ice_tx_ring *tx_ring)
{
struct device *dev = tx_ring->dev;
u32 size;
if (!dev)
return -ENOMEM;
/* warn if we are about to overwrite the pointer */
WARN_ON(tx_ring->tx_buf);
tx_ring->tx_buf =
devm_kcalloc(dev, sizeof(*tx_ring->tx_buf), tx_ring->count,
GFP_KERNEL);
if (!tx_ring->tx_buf)
return -ENOMEM;
/* round up to nearest page */
size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
PAGE_SIZE);
tx_ring->desc = dmam_alloc_coherent(dev, size, &tx_ring->dma,
GFP_KERNEL);
if (!tx_ring->desc) {
dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
size);
goto err;
}
tx_ring->next_to_use = 0;
tx_ring->next_to_clean = 0;
tx_ring->ring_stats->tx_stats.prev_pkt = -1;
return 0;
err:
devm_kfree(dev, tx_ring->tx_buf);
tx_ring->tx_buf = NULL;
return -ENOMEM;
}
/**
* ice_clean_rx_ring - Free Rx buffers
* @rx_ring: ring to be cleaned
*/
void ice_clean_rx_ring(struct ice_rx_ring *rx_ring)
{
struct xdp_buff *xdp = &rx_ring->xdp;
struct device *dev = rx_ring->dev;
u32 size;
u16 i;
/* ring already cleared, nothing to do */
if (!rx_ring->rx_buf)
return;
if (rx_ring->xsk_pool) {
ice_xsk_clean_rx_ring(rx_ring);
goto rx_skip_free;
}
if (xdp->data) {
xdp_return_buff(xdp);
xdp->data = NULL;
}
/* Free all the Rx ring sk_buffs */
for (i = 0; i < rx_ring->count; i++) {
struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i];
if (!rx_buf->page)
continue;
/* Invalidate cache lines that may have been written to by
* device so that we avoid corrupting memory.
*/
dma_sync_single_range_for_cpu(dev, rx_buf->dma,
rx_buf->page_offset,
rx_ring->rx_buf_len,
DMA_FROM_DEVICE);
/* free resources associated with mapping */
dma_unmap_page_attrs(dev, rx_buf->dma, ice_rx_pg_size(rx_ring),
DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
rx_buf->page = NULL;
rx_buf->page_offset = 0;
}
rx_skip_free:
if (rx_ring->xsk_pool)
memset(rx_ring->xdp_buf, 0, array_size(rx_ring->count, sizeof(*rx_ring->xdp_buf)));
else
memset(rx_ring->rx_buf, 0, array_size(rx_ring->count, sizeof(*rx_ring->rx_buf)));
/* Zero out the descriptor ring */
size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
PAGE_SIZE);
memset(rx_ring->desc, 0, size);
rx_ring->next_to_alloc = 0;
rx_ring->next_to_clean = 0;
rx_ring->first_desc = 0;
rx_ring->next_to_use = 0;
}
/**
* ice_free_rx_ring - Free Rx resources
* @rx_ring: ring to clean the resources from
*
* Free all receive software resources
*/
void ice_free_rx_ring(struct ice_rx_ring *rx_ring)
{
u32 size;
ice_clean_rx_ring(rx_ring);
if (rx_ring->vsi->type == ICE_VSI_PF)
if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
WRITE_ONCE(rx_ring->xdp_prog, NULL);
if (rx_ring->xsk_pool) {
kfree(rx_ring->xdp_buf);
rx_ring->xdp_buf = NULL;
} else {
kfree(rx_ring->rx_buf);
rx_ring->rx_buf = NULL;
}
if (rx_ring->desc) {
size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
PAGE_SIZE);
dmam_free_coherent(rx_ring->dev, size,
rx_ring->desc, rx_ring->dma);
rx_ring->desc = NULL;
}
}
/**
* ice_setup_rx_ring - Allocate the Rx descriptors
* @rx_ring: the Rx ring to set up
*
* Return 0 on success, negative on error
*/
int ice_setup_rx_ring(struct ice_rx_ring *rx_ring)
{
struct device *dev = rx_ring->dev;
u32 size;
if (!dev)
return -ENOMEM;
/* warn if we are about to overwrite the pointer */
WARN_ON(rx_ring->rx_buf);
rx_ring->rx_buf =
kcalloc(rx_ring->count, sizeof(*rx_ring->rx_buf), GFP_KERNEL);
if (!rx_ring->rx_buf)
return -ENOMEM;
/* round up to nearest page */
size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
PAGE_SIZE);
rx_ring->desc = dmam_alloc_coherent(dev, size, &rx_ring->dma,
GFP_KERNEL);
if (!rx_ring->desc) {
dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
size);
goto err;
}
rx_ring->next_to_use = 0;
rx_ring->next_to_clean = 0;
rx_ring->first_desc = 0;
if (ice_is_xdp_ena_vsi(rx_ring->vsi))
WRITE_ONCE(rx_ring->xdp_prog, rx_ring->vsi->xdp_prog);
return 0;
err:
kfree(rx_ring->rx_buf);
rx_ring->rx_buf = NULL;
return -ENOMEM;
}
/**
* ice_run_xdp - Executes an XDP program on initialized xdp_buff
* @rx_ring: Rx ring
* @xdp: xdp_buff used as input to the XDP program
* @xdp_prog: XDP program to run
* @xdp_ring: ring to be used for XDP_TX action
* @rx_buf: Rx buffer to store the XDP action
* @eop_desc: Last descriptor in packet to read metadata from
*
* Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
*/
static void
ice_run_xdp(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp,
struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring,
struct ice_rx_buf *rx_buf, union ice_32b_rx_flex_desc *eop_desc)
{
unsigned int ret = ICE_XDP_PASS;
u32 act;
if (!xdp_prog)
goto exit;
ice_xdp_meta_set_desc(xdp, eop_desc);
act = bpf_prog_run_xdp(xdp_prog, xdp);
switch (act) {
case XDP_PASS:
break;
case XDP_TX:
if (static_branch_unlikely(&ice_xdp_locking_key))
spin_lock(&xdp_ring->tx_lock);
ret = __ice_xmit_xdp_ring(xdp, xdp_ring, false);
if (static_branch_unlikely(&ice_xdp_locking_key))
spin_unlock(&xdp_ring->tx_lock);
if (ret == ICE_XDP_CONSUMED)
goto out_failure;
break;
case XDP_REDIRECT:
if (xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog))
goto out_failure;
ret = ICE_XDP_REDIR;
break;
default:
bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
fallthrough;
case XDP_ABORTED:
out_failure:
trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
fallthrough;
case XDP_DROP:
ret = ICE_XDP_CONSUMED;
}
exit:
ice_set_rx_bufs_act(xdp, rx_ring, ret);
}
/**
* ice_xmit_xdp_ring - submit frame to XDP ring for transmission
* @xdpf: XDP frame that will be converted to XDP buff
* @xdp_ring: XDP ring for transmission
*/
static int ice_xmit_xdp_ring(const struct xdp_frame *xdpf,
struct ice_tx_ring *xdp_ring)
{
struct xdp_buff xdp;
xdp.data_hard_start = (void *)xdpf;
xdp.data = xdpf->data;
xdp.data_end = xdp.data + xdpf->len;
xdp.frame_sz = xdpf->frame_sz;
xdp.flags = xdpf->flags;
return __ice_xmit_xdp_ring(&xdp, xdp_ring, true);
}
/**
* ice_xdp_xmit - submit packets to XDP ring for transmission
* @dev: netdev
* @n: number of XDP frames to be transmitted
* @frames: XDP frames to be transmitted
* @flags: transmit flags
*
* Returns number of frames successfully sent. Failed frames
* will be free'ed by XDP core.
* For error cases, a negative errno code is returned and no-frames
* are transmitted (caller must handle freeing frames).
*/
int
ice_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
u32 flags)
{
struct ice_netdev_priv *np = netdev_priv(dev);
unsigned int queue_index = smp_processor_id();
struct ice_vsi *vsi = np->vsi;
struct ice_tx_ring *xdp_ring;
struct ice_tx_buf *tx_buf;
int nxmit = 0, i;
if (test_bit(ICE_VSI_DOWN, vsi->state))
return -ENETDOWN;
if (!ice_is_xdp_ena_vsi(vsi))
return -ENXIO;
if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
return -EINVAL;
if (static_branch_unlikely(&ice_xdp_locking_key)) {
queue_index %= vsi->num_xdp_txq;
xdp_ring = vsi->xdp_rings[queue_index];
spin_lock(&xdp_ring->tx_lock);
} else {
/* Generally, should not happen */
if (unlikely(queue_index >= vsi->num_xdp_txq))
return -ENXIO;
xdp_ring = vsi->xdp_rings[queue_index];
}
tx_buf = &xdp_ring->tx_buf[xdp_ring->next_to_use];
for (i = 0; i < n; i++) {
const struct xdp_frame *xdpf = frames[i];
int err;
err = ice_xmit_xdp_ring(xdpf, xdp_ring);
if (err != ICE_XDP_TX)
break;
nxmit++;
}
tx_buf->rs_idx = ice_set_rs_bit(xdp_ring);
if (unlikely(flags & XDP_XMIT_FLUSH))
ice_xdp_ring_update_tail(xdp_ring);
if (static_branch_unlikely(&ice_xdp_locking_key))
spin_unlock(&xdp_ring->tx_lock);
return nxmit;
}
/**
* ice_alloc_mapped_page - recycle or make a new page
* @rx_ring: ring to use
* @bi: rx_buf struct to modify
*
* Returns true if the page was successfully allocated or
* reused.
*/
static bool
ice_alloc_mapped_page(struct ice_rx_ring *rx_ring, struct ice_rx_buf *bi)
{
struct page *page = bi->page;
dma_addr_t dma;
/* since we are recycling buffers we should seldom need to alloc */
if (likely(page))
return true;
/* alloc new page for storage */
page = dev_alloc_pages(ice_rx_pg_order(rx_ring));
if (unlikely(!page)) {
rx_ring->ring_stats->rx_stats.alloc_page_failed++;
return false;
}
/* map page for use */
dma = dma_map_page_attrs(rx_ring->dev, page, 0, ice_rx_pg_size(rx_ring),
DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
/* if mapping failed free memory back to system since
* there isn't much point in holding memory we can't use
*/
if (dma_mapping_error(rx_ring->dev, dma)) {
__free_pages(page, ice_rx_pg_order(rx_ring));
rx_ring->ring_stats->rx_stats.alloc_page_failed++;
return false;
}
bi->dma = dma;
bi->page = page;
bi->page_offset = rx_ring->rx_offset;
page_ref_add(page, USHRT_MAX - 1);
bi->pagecnt_bias = USHRT_MAX;
return true;
}
/**
* ice_alloc_rx_bufs - Replace used receive buffers
* @rx_ring: ring to place buffers on
* @cleaned_count: number of buffers to replace
*
* Returns false if all allocations were successful, true if any fail. Returning
* true signals to the caller that we didn't replace cleaned_count buffers and
* there is more work to do.
*
* First, try to clean "cleaned_count" Rx buffers. Then refill the cleaned Rx
* buffers. Then bump tail at most one time. Grouping like this lets us avoid
* multiple tail writes per call.
*/
bool ice_alloc_rx_bufs(struct ice_rx_ring *rx_ring, unsigned int cleaned_count)
{
union ice_32b_rx_flex_desc *rx_desc;
u16 ntu = rx_ring->next_to_use;
struct ice_rx_buf *bi;
/* do nothing if no valid netdev defined */
if ((!rx_ring->netdev && rx_ring->vsi->type != ICE_VSI_CTRL) ||
!cleaned_count)
return false;
/* get the Rx descriptor and buffer based on next_to_use */
rx_desc = ICE_RX_DESC(rx_ring, ntu);
bi = &rx_ring->rx_buf[ntu];
do {
/* if we fail here, we have work remaining */
if (!ice_alloc_mapped_page(rx_ring, bi))
break;
/* sync the buffer for use by the device */
dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
bi->page_offset,
rx_ring->rx_buf_len,
DMA_FROM_DEVICE);
/* Refresh the desc even if buffer_addrs didn't change
* because each write-back erases this info.
*/
rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
rx_desc++;
bi++;
ntu++;
if (unlikely(ntu == rx_ring->count)) {
rx_desc = ICE_RX_DESC(rx_ring, 0);
bi = rx_ring->rx_buf;
ntu = 0;
}
/* clear the status bits for the next_to_use descriptor */
rx_desc->wb.status_error0 = 0;
cleaned_count--;
} while (cleaned_count);
if (rx_ring->next_to_use != ntu)
ice_release_rx_desc(rx_ring, ntu);
return !!cleaned_count;
}
/**
* ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse
* @rx_buf: Rx buffer to adjust
* @size: Size of adjustment
*
* Update the offset within page so that Rx buf will be ready to be reused.
* For systems with PAGE_SIZE < 8192 this function will flip the page offset
* so the second half of page assigned to Rx buffer will be used, otherwise
* the offset is moved by "size" bytes
*/
static void
ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size)
{
#if (PAGE_SIZE < 8192)
/* flip page offset to other buffer */
rx_buf->page_offset ^= size;
#else
/* move offset up to the next cache line */
rx_buf->page_offset += size;
#endif
}
/**
* ice_can_reuse_rx_page - Determine if page can be reused for another Rx
* @rx_buf: buffer containing the page
*
* If page is reusable, we have a green light for calling ice_reuse_rx_page,
* which will assign the current buffer to the buffer that next_to_alloc is
* pointing to; otherwise, the DMA mapping needs to be destroyed and
* page freed
*/
static bool
ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf)
{
unsigned int pagecnt_bias = rx_buf->pagecnt_bias;
struct page *page = rx_buf->page;
/* avoid re-using remote and pfmemalloc pages */
if (!dev_page_is_reusable(page))
return false;
/* if we are only owner of page we can reuse it */
if (unlikely(rx_buf->pgcnt - pagecnt_bias > 1))
return false;
#if (PAGE_SIZE >= 8192)
#define ICE_LAST_OFFSET \
(SKB_WITH_OVERHEAD(PAGE_SIZE) - ICE_RXBUF_3072)
if (rx_buf->page_offset > ICE_LAST_OFFSET)
return false;
#endif /* PAGE_SIZE >= 8192) */
/* If we have drained the page fragment pool we need to update
* the pagecnt_bias and page count so that we fully restock the
* number of references the driver holds.
*/
if (unlikely(pagecnt_bias == 1)) {
page_ref_add(page, USHRT_MAX - 1);
rx_buf->pagecnt_bias = USHRT_MAX;
}
return true;
}
/**
* ice_add_xdp_frag - Add contents of Rx buffer to xdp buf as a frag
* @rx_ring: Rx descriptor ring to transact packets on
* @xdp: xdp buff to place the data into
* @rx_buf: buffer containing page to add
* @size: packet length from rx_desc
*
* This function will add the data contained in rx_buf->page to the xdp buf.
* It will just attach the page as a frag.
*/
static int
ice_add_xdp_frag(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp,
struct ice_rx_buf *rx_buf, const unsigned int size)
{
struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
if (!size)
return 0;
if (!xdp_buff_has_frags(xdp)) {
sinfo->nr_frags = 0;
sinfo->xdp_frags_size = 0;
xdp_buff_set_frags_flag(xdp);
}
if (unlikely(sinfo->nr_frags == MAX_SKB_FRAGS)) {
ice_set_rx_bufs_act(xdp, rx_ring, ICE_XDP_CONSUMED);
return -ENOMEM;
}
__skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++, rx_buf->page,
rx_buf->page_offset, size);
sinfo->xdp_frags_size += size;
/* remember frag count before XDP prog execution; bpf_xdp_adjust_tail()
* can pop off frags but driver has to handle it on its own
*/
rx_ring->nr_frags = sinfo->nr_frags;
if (page_is_pfmemalloc(rx_buf->page))
xdp_buff_set_frag_pfmemalloc(xdp);
return 0;
}
/**
* ice_reuse_rx_page - page flip buffer and store it back on the ring
* @rx_ring: Rx descriptor ring to store buffers on
* @old_buf: donor buffer to have page reused
*
* Synchronizes page for reuse by the adapter
*/
static void
ice_reuse_rx_page(struct ice_rx_ring *rx_ring, struct ice_rx_buf *old_buf)
{
u16 nta = rx_ring->next_to_alloc;
struct ice_rx_buf *new_buf;
new_buf = &rx_ring->rx_buf[nta];
/* update, and store next to alloc */
nta++;
rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
/* Transfer page from old buffer to new buffer.
* Move each member individually to avoid possible store
* forwarding stalls and unnecessary copy of skb.
*/
new_buf->dma = old_buf->dma;
new_buf->page = old_buf->page;
new_buf->page_offset = old_buf->page_offset;
new_buf->pagecnt_bias = old_buf->pagecnt_bias;
}
/**
* ice_get_rx_buf - Fetch Rx buffer and synchronize data for use
* @rx_ring: Rx descriptor ring to transact packets on
* @size: size of buffer to add to skb
* @ntc: index of next to clean element
*
* This function will pull an Rx buffer from the ring and synchronize it
* for use by the CPU.
*/
static struct ice_rx_buf *
ice_get_rx_buf(struct ice_rx_ring *rx_ring, const unsigned int size,
const unsigned int ntc)
{
struct ice_rx_buf *rx_buf;
rx_buf = &rx_ring->rx_buf[ntc];
rx_buf->pgcnt = page_count(rx_buf->page);
prefetchw(rx_buf->page);
if (!size)
return rx_buf;
/* we are reusing so sync this buffer for CPU use */
dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma,
rx_buf->page_offset, size,
DMA_FROM_DEVICE);
/* We have pulled a buffer for use, so decrement pagecnt_bias */
rx_buf->pagecnt_bias--;
return rx_buf;
}
/**
* ice_build_skb - Build skb around an existing buffer
* @rx_ring: Rx descriptor ring to transact packets on
* @xdp: xdp_buff pointing to the data
*
* This function builds an skb around an existing XDP buffer, taking care
* to set up the skb correctly and avoid any memcpy overhead. Driver has
* already combined frags (if any) to skb_shared_info.
*/
static struct sk_buff *
ice_build_skb(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp)
{
u8 metasize = xdp->data - xdp->data_meta;
struct skb_shared_info *sinfo = NULL;
unsigned int nr_frags;
struct sk_buff *skb;
if (unlikely(xdp_buff_has_frags(xdp))) {
sinfo = xdp_get_shared_info_from_buff(xdp);
nr_frags = sinfo->nr_frags;
}
/* Prefetch first cache line of first page. If xdp->data_meta
* is unused, this points exactly as xdp->data, otherwise we
* likely have a consumer accessing first few bytes of meta
* data, and then actual data.
*/
net_prefetch(xdp->data_meta);
/* build an skb around the page buffer */
skb = napi_build_skb(xdp->data_hard_start, xdp->frame_sz);
if (unlikely(!skb))
return NULL;
/* must to record Rx queue, otherwise OS features such as
* symmetric queue won't work
*/
skb_record_rx_queue(skb, rx_ring->q_index);
/* update pointers within the skb to store the data */
skb_reserve(skb, xdp->data - xdp->data_hard_start);
__skb_put(skb, xdp->data_end - xdp->data);
if (metasize)
skb_metadata_set(skb, metasize);
if (unlikely(xdp_buff_has_frags(xdp)))
xdp_update_skb_shared_info(skb, nr_frags,
sinfo->xdp_frags_size,
nr_frags * xdp->frame_sz,
xdp_buff_is_frag_pfmemalloc(xdp));
return skb;
}
/**
* ice_construct_skb - Allocate skb and populate it
* @rx_ring: Rx descriptor ring to transact packets on
* @xdp: xdp_buff pointing to the data
*
* This function allocates an skb. It then populates it with the page
* data from the current receive descriptor, taking care to set up the
* skb correctly.
*/
static struct sk_buff *
ice_construct_skb(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp)
{
unsigned int size = xdp->data_end - xdp->data;
struct skb_shared_info *sinfo = NULL;
struct ice_rx_buf *rx_buf;
unsigned int nr_frags = 0;
unsigned int headlen;
struct sk_buff *skb;
/* prefetch first cache line of first page */
net_prefetch(xdp->data);
if (unlikely(xdp_buff_has_frags(xdp))) {
sinfo = xdp_get_shared_info_from_buff(xdp);
nr_frags = sinfo->nr_frags;
}
/* allocate a skb to store the frags */
skb = napi_alloc_skb(&rx_ring->q_vector->napi, ICE_RX_HDR_SIZE);
if (unlikely(!skb))
return NULL;
rx_buf = &rx_ring->rx_buf[rx_ring->first_desc];
skb_record_rx_queue(skb, rx_ring->q_index);
/* Determine available headroom for copy */
headlen = size;
if (headlen > ICE_RX_HDR_SIZE)
headlen = eth_get_headlen(skb->dev, xdp->data, ICE_RX_HDR_SIZE);
/* align pull length to size of long to optimize memcpy performance */
memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen,
sizeof(long)));
/* if we exhaust the linear part then add what is left as a frag */
size -= headlen;
if (size) {
/* besides adding here a partial frag, we are going to add
* frags from xdp_buff, make sure there is enough space for
* them
*/
if (unlikely(nr_frags >= MAX_SKB_FRAGS - 1)) {
dev_kfree_skb(skb);
return NULL;
}
skb_add_rx_frag(skb, 0, rx_buf->page,
rx_buf->page_offset + headlen, size,
xdp->frame_sz);
} else {
/* buffer is unused, change the act that should be taken later
* on; data was copied onto skb's linear part so there's no
* need for adjusting page offset and we can reuse this buffer
* as-is
*/
rx_buf->act = ICE_SKB_CONSUMED;
}
if (unlikely(xdp_buff_has_frags(xdp))) {
struct skb_shared_info *skinfo = skb_shinfo(skb);
memcpy(&skinfo->frags[skinfo->nr_frags], &sinfo->frags[0],
sizeof(skb_frag_t) * nr_frags);
xdp_update_skb_shared_info(skb, skinfo->nr_frags + nr_frags,
sinfo->xdp_frags_size,
nr_frags * xdp->frame_sz,
xdp_buff_is_frag_pfmemalloc(xdp));
}
return skb;
}
/**
* ice_put_rx_buf - Clean up used buffer and either recycle or free
* @rx_ring: Rx descriptor ring to transact packets on
* @rx_buf: Rx buffer to pull data from
*
* This function will clean up the contents of the rx_buf. It will either
* recycle the buffer or unmap it and free the associated resources.
*/
static void
ice_put_rx_buf(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf)
{
if (!rx_buf)
return;
if (ice_can_reuse_rx_page(rx_buf)) {
/* hand second half of page back to the ring */
ice_reuse_rx_page(rx_ring, rx_buf);
} else {
/* we are not reusing the buffer so unmap it */
dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma,
ice_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
ICE_RX_DMA_ATTR);
__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
}
/* clear contents of buffer_info */
rx_buf->page = NULL;
}
/**
* ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
* @rx_ring: Rx descriptor ring to transact packets on
* @budget: Total limit on number of packets to process
*
* This function provides a "bounce buffer" approach to Rx interrupt
* processing. The advantage to this is that on systems that have
* expensive overhead for IOMMU access this provides a means of avoiding
* it by maintaining the mapping of the page to the system.
*
* Returns amount of work completed
*/
int ice_clean_rx_irq(struct ice_rx_ring *rx_ring, int budget)
{
unsigned int total_rx_bytes = 0, total_rx_pkts = 0;
unsigned int offset = rx_ring->rx_offset;
struct xdp_buff *xdp = &rx_ring->xdp;
u32 cached_ntc = rx_ring->first_desc;
struct ice_tx_ring *xdp_ring = NULL;
struct bpf_prog *xdp_prog = NULL;
u32 ntc = rx_ring->next_to_clean;
u32 cnt = rx_ring->count;
u32 xdp_xmit = 0;
u32 cached_ntu;
bool failure;
u32 first;
xdp_prog = READ_ONCE(rx_ring->xdp_prog);
if (xdp_prog) {
xdp_ring = rx_ring->xdp_ring;
cached_ntu = xdp_ring->next_to_use;
}
/* start the loop to process Rx packets bounded by 'budget' */
while (likely(total_rx_pkts < (unsigned int)budget)) {
union ice_32b_rx_flex_desc *rx_desc;
struct ice_rx_buf *rx_buf;
struct sk_buff *skb;
unsigned int size;
u16 stat_err_bits;
u16 vlan_tci;
/* get the Rx desc from Rx ring based on 'next_to_clean' */
rx_desc = ICE_RX_DESC(rx_ring, ntc);
/* status_error_len will always be zero for unused descriptors
* because it's cleared in cleanup, and overlaps with hdr_addr
* which is always zero because packet split isn't used, if the
* hardware wrote DD then it will be non-zero
*/
stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits))
break;
/* This memory barrier is needed to keep us from reading
* any other fields out of the rx_desc until we know the
* DD bit is set.
*/
dma_rmb();
ice_trace(clean_rx_irq, rx_ring, rx_desc);
if (rx_desc->wb.rxdid == FDIR_DESC_RXDID || !rx_ring->netdev) {
struct ice_vsi *ctrl_vsi = rx_ring->vsi;
if (rx_desc->wb.rxdid == FDIR_DESC_RXDID &&
ctrl_vsi->vf)
ice_vc_fdir_irq_handler(ctrl_vsi, rx_desc);
if (++ntc == cnt)
ntc = 0;
rx_ring->first_desc = ntc;
continue;
}
size = le16_to_cpu(rx_desc->wb.pkt_len) &
ICE_RX_FLX_DESC_PKT_LEN_M;
/* retrieve a buffer from the ring */
rx_buf = ice_get_rx_buf(rx_ring, size, ntc);
if (!xdp->data) {
void *hard_start;
hard_start = page_address(rx_buf->page) + rx_buf->page_offset -
offset;
xdp_prepare_buff(xdp, hard_start, offset, size, !!offset);
xdp_buff_clear_frags_flag(xdp);
} else if (ice_add_xdp_frag(rx_ring, xdp, rx_buf, size)) {
break;
}
if (++ntc == cnt)
ntc = 0;
/* skip if it is NOP desc */
if (ice_is_non_eop(rx_ring, rx_desc))
continue;
ice_run_xdp(rx_ring, xdp, xdp_prog, xdp_ring, rx_buf, rx_desc);
if (rx_buf->act == ICE_XDP_PASS)
goto construct_skb;
total_rx_bytes += xdp_get_buff_len(xdp);
total_rx_pkts++;
xdp->data = NULL;
rx_ring->first_desc = ntc;
rx_ring->nr_frags = 0;
continue;
construct_skb:
if (likely(ice_ring_uses_build_skb(rx_ring)))
skb = ice_build_skb(rx_ring, xdp);
else
skb = ice_construct_skb(rx_ring, xdp);
/* exit if we failed to retrieve a buffer */
if (!skb) {
rx_ring->ring_stats->rx_stats.alloc_page_failed++;
rx_buf->act = ICE_XDP_CONSUMED;
if (unlikely(xdp_buff_has_frags(xdp)))
ice_set_rx_bufs_act(xdp, rx_ring,
ICE_XDP_CONSUMED);
xdp->data = NULL;
rx_ring->first_desc = ntc;
rx_ring->nr_frags = 0;
break;
}
xdp->data = NULL;
rx_ring->first_desc = ntc;
rx_ring->nr_frags = 0;
stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S);
if (unlikely(ice_test_staterr(rx_desc->wb.status_error0,
stat_err_bits))) {
dev_kfree_skb_any(skb);
continue;
}
vlan_tci = ice_get_vlan_tci(rx_desc);
/* pad the skb if needed, to make a valid ethernet frame */
if (eth_skb_pad(skb))
continue;
/* probably a little skewed due to removing CRC */
total_rx_bytes += skb->len;
/* populate checksum, VLAN, and protocol */
ice_process_skb_fields(rx_ring, rx_desc, skb);
ice_trace(clean_rx_irq_indicate, rx_ring, rx_desc, skb);
/* send completed skb up the stack */
ice_receive_skb(rx_ring, skb, vlan_tci);
/* update budget accounting */
total_rx_pkts++;
}
first = rx_ring->first_desc;
while (cached_ntc != first) {
struct ice_rx_buf *buf = &rx_ring->rx_buf[cached_ntc];
if (buf->act & (ICE_XDP_TX | ICE_XDP_REDIR)) {
ice_rx_buf_adjust_pg_offset(buf, xdp->frame_sz);
xdp_xmit |= buf->act;
} else if (buf->act & ICE_XDP_CONSUMED) {
buf->pagecnt_bias++;
} else if (buf->act == ICE_XDP_PASS) {
ice_rx_buf_adjust_pg_offset(buf, xdp->frame_sz);
}
ice_put_rx_buf(rx_ring, buf);
if (++cached_ntc >= cnt)
cached_ntc = 0;
}
rx_ring->next_to_clean = ntc;
/* return up to cleaned_count buffers to hardware */
failure = ice_alloc_rx_bufs(rx_ring, ICE_RX_DESC_UNUSED(rx_ring));
if (xdp_xmit)
ice_finalize_xdp_rx(xdp_ring, xdp_xmit, cached_ntu);
if (rx_ring->ring_stats)
ice_update_rx_ring_stats(rx_ring, total_rx_pkts,
total_rx_bytes);
/* guarantee a trip back through this routine if there was a failure */
return failure ? budget : (int)total_rx_pkts;
}
static void __ice_update_sample(struct ice_q_vector *q_vector,
struct ice_ring_container *rc,
struct dim_sample *sample,
bool is_tx)
{
u64 packets = 0, bytes = 0;
if (is_tx) {
struct ice_tx_ring *tx_ring;
ice_for_each_tx_ring(tx_ring, *rc) {
struct ice_ring_stats *ring_stats;
ring_stats = tx_ring->ring_stats;
if (!ring_stats)
continue;
packets += ring_stats->stats.pkts;
bytes += ring_stats->stats.bytes;
}
} else {
struct ice_rx_ring *rx_ring;
ice_for_each_rx_ring(rx_ring, *rc) {
struct ice_ring_stats *ring_stats;
ring_stats = rx_ring->ring_stats;
if (!ring_stats)
continue;
packets += ring_stats->stats.pkts;
bytes += ring_stats->stats.bytes;
}
}
dim_update_sample(q_vector->total_events, packets, bytes, sample);
sample->comp_ctr = 0;
/* if dim settings get stale, like when not updated for 1
* second or longer, force it to start again. This addresses the
* frequent case of an idle queue being switched to by the
* scheduler. The 1,000 here means 1,000 milliseconds.
*/
if (ktime_ms_delta(sample->time, rc->dim.start_sample.time) >= 1000)
rc->dim.state = DIM_START_MEASURE;
}
/**
* ice_net_dim - Update net DIM algorithm
* @q_vector: the vector associated with the interrupt
*
* Create a DIM sample and notify net_dim() so that it can possibly decide
* a new ITR value based on incoming packets, bytes, and interrupts.
*
* This function is a no-op if the ring is not configured to dynamic ITR.
*/
static void ice_net_dim(struct ice_q_vector *q_vector)
{
struct ice_ring_container *tx = &q_vector->tx;
struct ice_ring_container *rx = &q_vector->rx;
if (ITR_IS_DYNAMIC(tx)) {
struct dim_sample dim_sample;
__ice_update_sample(q_vector, tx, &dim_sample, true);
net_dim(&tx->dim, dim_sample);
}
if (ITR_IS_DYNAMIC(rx)) {
struct dim_sample dim_sample;
__ice_update_sample(q_vector, rx, &dim_sample, false);
net_dim(&rx->dim, dim_sample);
}
}
/**
* ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register
* @itr_idx: interrupt throttling index
* @itr: interrupt throttling value in usecs
*/
static u32 ice_buildreg_itr(u16 itr_idx, u16 itr)
{
/* The ITR value is reported in microseconds, and the register value is
* recorded in 2 microsecond units. For this reason we only need to
* shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this
* granularity as a shift instead of division. The mask makes sure the
* ITR value is never odd so we don't accidentally write into the field
* prior to the ITR field.
*/
itr &= ICE_ITR_MASK;
return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
(itr_idx << GLINT_DYN_CTL_ITR_INDX_S) |
(itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S));
}
/**
* ice_enable_interrupt - re-enable MSI-X interrupt
* @q_vector: the vector associated with the interrupt to enable
*
* If the VSI is down, the interrupt will not be re-enabled. Also,
* when enabling the interrupt always reset the wb_on_itr to false
* and trigger a software interrupt to clean out internal state.
*/
static void ice_enable_interrupt(struct ice_q_vector *q_vector)
{
struct ice_vsi *vsi = q_vector->vsi;
bool wb_en = q_vector->wb_on_itr;
u32 itr_val;
if (test_bit(ICE_DOWN, vsi->state))
return;
/* trigger an ITR delayed software interrupt when exiting busy poll, to
* make sure to catch any pending cleanups that might have been missed
* due to interrupt state transition. If busy poll or poll isn't
* enabled, then don't update ITR, and just enable the interrupt.
*/
if (!wb_en) {
itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0);
} else {
q_vector->wb_on_itr = false;
/* do two things here with a single write. Set up the third ITR
* index to be used for software interrupt moderation, and then
* trigger a software interrupt with a rate limit of 20K on
* software interrupts, this will help avoid high interrupt
* loads due to frequently polling and exiting polling.
*/
itr_val = ice_buildreg_itr(ICE_IDX_ITR2, ICE_ITR_20K);
itr_val |= GLINT_DYN_CTL_SWINT_TRIG_M |
ICE_IDX_ITR2 << GLINT_DYN_CTL_SW_ITR_INDX_S |
GLINT_DYN_CTL_SW_ITR_INDX_ENA_M;
}
wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val);
}
/**
* ice_set_wb_on_itr - set WB_ON_ITR for this q_vector
* @q_vector: q_vector to set WB_ON_ITR on
*
* We need to tell hardware to write-back completed descriptors even when
* interrupts are disabled. Descriptors will be written back on cache line
* boundaries without WB_ON_ITR enabled, but if we don't enable WB_ON_ITR
* descriptors may not be written back if they don't fill a cache line until
* the next interrupt.
*
* This sets the write-back frequency to whatever was set previously for the
* ITR indices. Also, set the INTENA_MSK bit to make sure hardware knows we
* aren't meddling with the INTENA_M bit.
*/
static void ice_set_wb_on_itr(struct ice_q_vector *q_vector)
{
struct ice_vsi *vsi = q_vector->vsi;
/* already in wb_on_itr mode no need to change it */
if (q_vector->wb_on_itr)
return;
/* use previously set ITR values for all of the ITR indices by
* specifying ICE_ITR_NONE, which will vary in adaptive (AIM) mode and
* be static in non-adaptive mode (user configured)
*/
wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx),
FIELD_PREP(GLINT_DYN_CTL_ITR_INDX_M, ICE_ITR_NONE) |
FIELD_PREP(GLINT_DYN_CTL_INTENA_MSK_M, 1) |
FIELD_PREP(GLINT_DYN_CTL_WB_ON_ITR_M, 1));
q_vector->wb_on_itr = true;
}
/**
* ice_napi_poll - NAPI polling Rx/Tx cleanup routine
* @napi: napi struct with our devices info in it
* @budget: amount of work driver is allowed to do this pass, in packets
*
* This function will clean all queues associated with a q_vector.
*
* Returns the amount of work done
*/
int ice_napi_poll(struct napi_struct *napi, int budget)
{
struct ice_q_vector *q_vector =
container_of(napi, struct ice_q_vector, napi);
struct ice_tx_ring *tx_ring;
struct ice_rx_ring *rx_ring;
bool clean_complete = true;
int budget_per_ring;
int work_done = 0;
/* Since the actual Tx work is minimal, we can give the Tx a larger
* budget and be more aggressive about cleaning up the Tx descriptors.
*/
ice_for_each_tx_ring(tx_ring, q_vector->tx) {
struct xsk_buff_pool *xsk_pool = READ_ONCE(tx_ring->xsk_pool);
bool wd;
if (xsk_pool)
wd = ice_xmit_zc(tx_ring, xsk_pool);
else if (ice_ring_is_xdp(tx_ring))
wd = true;
else
wd = ice_clean_tx_irq(tx_ring, budget);
if (!wd)
clean_complete = false;
}
/* Handle case where we are called by netpoll with a budget of 0 */
if (unlikely(budget <= 0))
return budget;
/* normally we have 1 Rx ring per q_vector */
if (unlikely(q_vector->num_ring_rx > 1))
/* We attempt to distribute budget to each Rx queue fairly, but
* don't allow the budget to go below 1 because that would exit
* polling early.
*/
budget_per_ring = max_t(int, budget / q_vector->num_ring_rx, 1);
else
/* Max of 1 Rx ring in this q_vector so give it the budget */
budget_per_ring = budget;
ice_for_each_rx_ring(rx_ring, q_vector->rx) {
struct xsk_buff_pool *xsk_pool = READ_ONCE(rx_ring->xsk_pool);
int cleaned;
/* A dedicated path for zero-copy allows making a single
* comparison in the irq context instead of many inside the
* ice_clean_rx_irq function and makes the codebase cleaner.
*/
cleaned = rx_ring->xsk_pool ?
ice_clean_rx_irq_zc(rx_ring, xsk_pool, budget_per_ring) :
ice_clean_rx_irq(rx_ring, budget_per_ring);
work_done += cleaned;
/* if we clean as many as budgeted, we must not be done */
if (cleaned >= budget_per_ring)
clean_complete = false;
}
/* If work not completed, return budget and polling will return */
if (!clean_complete) {
/* Set the writeback on ITR so partial completions of
* cache-lines will still continue even if we're polling.
*/
ice_set_wb_on_itr(q_vector);
return budget;
}
/* Exit the polling mode, but don't re-enable interrupts if stack might
* poll us due to busy-polling
*/
if (napi_complete_done(napi, work_done)) {
ice_net_dim(q_vector);
ice_enable_interrupt(q_vector);
} else {
ice_set_wb_on_itr(q_vector);
}
return min_t(int, work_done, budget - 1);
}
/**
* __ice_maybe_stop_tx - 2nd level check for Tx stop conditions
* @tx_ring: the ring to be checked
* @size: the size buffer we want to assure is available
*
* Returns -EBUSY if a stop is needed, else 0
*/
static int __ice_maybe_stop_tx(struct ice_tx_ring *tx_ring, unsigned int size)
{
netif_tx_stop_queue(txring_txq(tx_ring));
/* Memory barrier before checking head and tail */
smp_mb();
/* Check again in a case another CPU has just made room available. */
if (likely(ICE_DESC_UNUSED(tx_ring) < size))
return -EBUSY;
/* A reprieve! - use start_queue because it doesn't call schedule */
netif_tx_start_queue(txring_txq(tx_ring));
++tx_ring->ring_stats->tx_stats.restart_q;
return 0;
}
/**
* ice_maybe_stop_tx - 1st level check for Tx stop conditions
* @tx_ring: the ring to be checked
* @size: the size buffer we want to assure is available
*
* Returns 0 if stop is not needed
*/
static int ice_maybe_stop_tx(struct ice_tx_ring *tx_ring, unsigned int size)
{
if (likely(ICE_DESC_UNUSED(tx_ring) >= size))
return 0;
return __ice_maybe_stop_tx(tx_ring, size);
}
/**
* ice_tx_map - Build the Tx descriptor
* @tx_ring: ring to send buffer on
* @first: first buffer info buffer to use
* @off: pointer to struct that holds offload parameters
*
* This function loops over the skb data pointed to by *first
* and gets a physical address for each memory location and programs
* it and the length into the transmit descriptor.
*/
static void
ice_tx_map(struct ice_tx_ring *tx_ring, struct ice_tx_buf *first,
struct ice_tx_offload_params *off)
{
u64 td_offset, td_tag, td_cmd;
u16 i = tx_ring->next_to_use;
unsigned int data_len, size;
struct ice_tx_desc *tx_desc;
struct ice_tx_buf *tx_buf;
struct sk_buff *skb;
skb_frag_t *frag;
dma_addr_t dma;
bool kick;
td_tag = off->td_l2tag1;
td_cmd = off->td_cmd;
td_offset = off->td_offset;
skb = first->skb;
data_len = skb->data_len;
size = skb_headlen(skb);
tx_desc = ICE_TX_DESC(tx_ring, i);
if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) {
td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1;
td_tag = first->vid;
}
dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
tx_buf = first;
for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
if (dma_mapping_error(tx_ring->dev, dma))
goto dma_error;
/* record length, and DMA address */
dma_unmap_len_set(tx_buf, len, size);
dma_unmap_addr_set(tx_buf, dma, dma);
/* align size to end of page */
max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1);
tx_desc->buf_addr = cpu_to_le64(dma);
/* account for data chunks larger than the hardware
* can handle
*/
while (unlikely(size > ICE_MAX_DATA_PER_TXD)) {
tx_desc->cmd_type_offset_bsz =
ice_build_ctob(td_cmd, td_offset, max_data,
td_tag);
tx_desc++;
i++;
if (i == tx_ring->count) {
tx_desc = ICE_TX_DESC(tx_ring, 0);
i = 0;
}
dma += max_data;
size -= max_data;
max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
tx_desc->buf_addr = cpu_to_le64(dma);
}
if (likely(!data_len))
break;
tx_desc->cmd_type_offset_bsz = ice_build_ctob(td_cmd, td_offset,
size, td_tag);
tx_desc++;
i++;
if (i == tx_ring->count) {
tx_desc = ICE_TX_DESC(tx_ring, 0);
i = 0;
}
size = skb_frag_size(frag);
data_len -= size;
dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
DMA_TO_DEVICE);
tx_buf = &tx_ring->tx_buf[i];
tx_buf->type = ICE_TX_BUF_FRAG;
}
/* record SW timestamp if HW timestamp is not available */
skb_tx_timestamp(first->skb);
i++;
if (i == tx_ring->count)
i = 0;
/* write last descriptor with RS and EOP bits */
td_cmd |= (u64)ICE_TXD_LAST_DESC_CMD;
tx_desc->cmd_type_offset_bsz =
ice_build_ctob(td_cmd, td_offset, size, td_tag);
/* Force memory writes to complete before letting h/w know there
* are new descriptors to fetch.
*
* We also use this memory barrier to make certain all of the
* status bits have been updated before next_to_watch is written.
*/
wmb();
/* set next_to_watch value indicating a packet is present */
first->next_to_watch = tx_desc;
tx_ring->next_to_use = i;
ice_maybe_stop_tx(tx_ring, DESC_NEEDED);
/* notify HW of packet */
kick = __netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount,
netdev_xmit_more());
if (kick)
/* notify HW of packet */
writel(i, tx_ring->tail);
return;
dma_error:
/* clear DMA mappings for failed tx_buf map */
for (;;) {
tx_buf = &tx_ring->tx_buf[i];
ice_unmap_and_free_tx_buf(tx_ring, tx_buf);
if (tx_buf == first)
break;
if (i == 0)
i = tx_ring->count;
i--;
}
tx_ring->next_to_use = i;
}
/**
* ice_tx_csum - Enable Tx checksum offloads
* @first: pointer to the first descriptor
* @off: pointer to struct that holds offload parameters
*
* Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise.
*/
static
int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
{
u32 l4_len = 0, l3_len = 0, l2_len = 0;
struct sk_buff *skb = first->skb;
union {
struct iphdr *v4;
struct ipv6hdr *v6;
unsigned char *hdr;
} ip;
union {
struct tcphdr *tcp;
unsigned char *hdr;
} l4;
__be16 frag_off, protocol;
unsigned char *exthdr;
u32 offset, cmd = 0;
u8 l4_proto = 0;
if (skb->ip_summed != CHECKSUM_PARTIAL)
return 0;
protocol = vlan_get_protocol(skb);
if (eth_p_mpls(protocol)) {
ip.hdr = skb_inner_network_header(skb);
l4.hdr = skb_checksum_start(skb);
} else {
ip.hdr = skb_network_header(skb);
l4.hdr = skb_transport_header(skb);
}
/* compute outer L2 header size */
l2_len = ip.hdr - skb->data;
offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S;
/* set the tx_flags to indicate the IP protocol type. this is
* required so that checksum header computation below is accurate.
*/
if (ip.v4->version == 4)
first->tx_flags |= ICE_TX_FLAGS_IPV4;
else if (ip.v6->version == 6)
first->tx_flags |= ICE_TX_FLAGS_IPV6;
if (skb->encapsulation) {
bool gso_ena = false;
u32 tunnel = 0;
/* define outer network header type */
if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
tunnel |= (first->tx_flags & ICE_TX_FLAGS_TSO) ?
ICE_TX_CTX_EIPT_IPV4 :
ICE_TX_CTX_EIPT_IPV4_NO_CSUM;
l4_proto = ip.v4->protocol;
} else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
int ret;
tunnel |= ICE_TX_CTX_EIPT_IPV6;
exthdr = ip.hdr + sizeof(*ip.v6);
l4_proto = ip.v6->nexthdr;
ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
&l4_proto, &frag_off);
if (ret < 0)
return -1;
}
/* define outer transport */
switch (l4_proto) {
case IPPROTO_UDP:
tunnel |= ICE_TXD_CTX_UDP_TUNNELING;
first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
break;
case IPPROTO_GRE:
tunnel |= ICE_TXD_CTX_GRE_TUNNELING;
first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
break;
case IPPROTO_IPIP:
case IPPROTO_IPV6:
first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
l4.hdr = skb_inner_network_header(skb);
break;
default:
if (first->tx_flags & ICE_TX_FLAGS_TSO)
return -1;
skb_checksum_help(skb);
return 0;
}
/* compute outer L3 header size */
tunnel |= ((l4.hdr - ip.hdr) / 4) <<
ICE_TXD_CTX_QW0_EIPLEN_S;
/* switch IP header pointer from outer to inner header */
ip.hdr = skb_inner_network_header(skb);
/* compute tunnel header size */
tunnel |= ((ip.hdr - l4.hdr) / 2) <<
ICE_TXD_CTX_QW0_NATLEN_S;
gso_ena = skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL;
/* indicate if we need to offload outer UDP header */
if ((first->tx_flags & ICE_TX_FLAGS_TSO) && !gso_ena &&
(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
tunnel |= ICE_TXD_CTX_QW0_L4T_CS_M;
/* record tunnel offload values */
off->cd_tunnel_params |= tunnel;
/* set DTYP=1 to indicate that it's an Tx context descriptor
* in IPsec tunnel mode with Tx offloads in Quad word 1
*/
off->cd_qw1 |= (u64)ICE_TX_DESC_DTYPE_CTX;
/* switch L4 header pointer from outer to inner */
l4.hdr = skb_inner_transport_header(skb);
l4_proto = 0;
/* reset type as we transition from outer to inner headers */
first->tx_flags &= ~(ICE_TX_FLAGS_IPV4 | ICE_TX_FLAGS_IPV6);
if (ip.v4->version == 4)
first->tx_flags |= ICE_TX_FLAGS_IPV4;
if (ip.v6->version == 6)
first->tx_flags |= ICE_TX_FLAGS_IPV6;
}
/* Enable IP checksum offloads */
if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
l4_proto = ip.v4->protocol;
/* the stack computes the IP header already, the only time we
* need the hardware to recompute it is in the case of TSO.
*/
if (first->tx_flags & ICE_TX_FLAGS_TSO)
cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
else
cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
} else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
exthdr = ip.hdr + sizeof(*ip.v6);
l4_proto = ip.v6->nexthdr;
if (l4.hdr != exthdr)
ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto,
&frag_off);
} else {
return -1;
}
/* compute inner L3 header size */
l3_len = l4.hdr - ip.hdr;
offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S;
/* Enable L4 checksum offloads */
switch (l4_proto) {
case IPPROTO_TCP:
/* enable checksum offloads */
cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
l4_len = l4.tcp->doff;
offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
break;
case IPPROTO_UDP:
/* enable UDP checksum offload */
cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
l4_len = (sizeof(struct udphdr) >> 2);
offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
break;
case IPPROTO_SCTP:
/* enable SCTP checksum offload */
cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP;
l4_len = sizeof(struct sctphdr) >> 2;
offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
break;
default:
if (first->tx_flags & ICE_TX_FLAGS_TSO)
return -1;
skb_checksum_help(skb);
return 0;
}
off->td_cmd |= cmd;
off->td_offset |= offset;
return 1;
}
/**
* ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW
* @tx_ring: ring to send buffer on
* @first: pointer to struct ice_tx_buf
*
* Checks the skb and set up correspondingly several generic transmit flags
* related to VLAN tagging for the HW, such as VLAN, DCB, etc.
*/
static void
ice_tx_prepare_vlan_flags(struct ice_tx_ring *tx_ring, struct ice_tx_buf *first)
{
struct sk_buff *skb = first->skb;
/* nothing left to do, software offloaded VLAN */
if (!skb_vlan_tag_present(skb) && eth_type_vlan(skb->protocol))
return;
/* the VLAN ethertype/tpid is determined by VSI configuration and netdev
* feature flags, which the driver only allows either 802.1Q or 802.1ad
* VLAN offloads exclusively so we only care about the VLAN ID here
*/
if (skb_vlan_tag_present(skb)) {
first->vid = skb_vlan_tag_get(skb);
if (tx_ring->flags & ICE_TX_FLAGS_RING_VLAN_L2TAG2)
first->tx_flags |= ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN;
else
first->tx_flags |= ICE_TX_FLAGS_HW_VLAN;
}
ice_tx_prepare_vlan_flags_dcb(tx_ring, first);
}
/**
* ice_tso - computes mss and TSO length to prepare for TSO
* @first: pointer to struct ice_tx_buf
* @off: pointer to struct that holds offload parameters
*
* Returns 0 or error (negative) if TSO can't happen, 1 otherwise.
*/
static
int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
{
struct sk_buff *skb = first->skb;
union {
struct iphdr *v4;
struct ipv6hdr *v6;
unsigned char *hdr;
} ip;
union {
struct tcphdr *tcp;
struct udphdr *udp;
unsigned char *hdr;
} l4;
u64 cd_mss, cd_tso_len;
__be16 protocol;
u32 paylen;
u8 l4_start;
int err;
if (skb->ip_summed != CHECKSUM_PARTIAL)
return 0;
if (!skb_is_gso(skb))
return 0;
err = skb_cow_head(skb, 0);
if (err < 0)
return err;
protocol = vlan_get_protocol(skb);
if (eth_p_mpls(protocol))
ip.hdr = skb_inner_network_header(skb);
else
ip.hdr = skb_network_header(skb);
l4.hdr = skb_checksum_start(skb);
/* initialize outer IP header fields */
if (ip.v4->version == 4) {
ip.v4->tot_len = 0;
ip.v4->check = 0;
} else {
ip.v6->payload_len = 0;
}
if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
SKB_GSO_GRE_CSUM |
SKB_GSO_IPXIP4 |
SKB_GSO_IPXIP6 |
SKB_GSO_UDP_TUNNEL |
SKB_GSO_UDP_TUNNEL_CSUM)) {
if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
l4.udp->len = 0;
/* determine offset of outer transport header */
l4_start = (u8)(l4.hdr - skb->data);
/* remove payload length from outer checksum */
paylen = skb->len - l4_start;
csum_replace_by_diff(&l4.udp->check,
(__force __wsum)htonl(paylen));
}
/* reset pointers to inner headers */
ip.hdr = skb_inner_network_header(skb);
l4.hdr = skb_inner_transport_header(skb);
/* initialize inner IP header fields */
if (ip.v4->version == 4) {
ip.v4->tot_len = 0;
ip.v4->check = 0;
} else {
ip.v6->payload_len = 0;
}
}
/* determine offset of transport header */
l4_start = (u8)(l4.hdr - skb->data);
/* remove payload length from checksum */
paylen = skb->len - l4_start;
if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
csum_replace_by_diff(&l4.udp->check,
(__force __wsum)htonl(paylen));
/* compute length of UDP segmentation header */
off->header_len = (u8)sizeof(l4.udp) + l4_start;
} else {
csum_replace_by_diff(&l4.tcp->check,
(__force __wsum)htonl(paylen));
/* compute length of TCP segmentation header */
off->header_len = (u8)((l4.tcp->doff * 4) + l4_start);
}
/* update gso_segs and bytecount */
first->gso_segs = skb_shinfo(skb)->gso_segs;
first->bytecount += (first->gso_segs - 1) * off->header_len;
cd_tso_len = skb->len - off->header_len;
cd_mss = skb_shinfo(skb)->gso_size;
/* record cdesc_qw1 with TSO parameters */
off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
(ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) |
(cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
(cd_mss << ICE_TXD_CTX_QW1_MSS_S));
first->tx_flags |= ICE_TX_FLAGS_TSO;
return 1;
}
/**
* ice_txd_use_count - estimate the number of descriptors needed for Tx
* @size: transmit request size in bytes
*
* Due to hardware alignment restrictions (4K alignment), we need to
* assume that we can have no more than 12K of data per descriptor, even
* though each descriptor can take up to 16K - 1 bytes of aligned memory.
* Thus, we need to divide by 12K. But division is slow! Instead,
* we decompose the operation into shifts and one relatively cheap
* multiply operation.
*
* To divide by 12K, we first divide by 4K, then divide by 3:
* To divide by 4K, shift right by 12 bits
* To divide by 3, multiply by 85, then divide by 256
* (Divide by 256 is done by shifting right by 8 bits)
* Finally, we add one to round up. Because 256 isn't an exact multiple of
* 3, we'll underestimate near each multiple of 12K. This is actually more
* accurate as we have 4K - 1 of wiggle room that we can fit into the last
* segment. For our purposes this is accurate out to 1M which is orders of
* magnitude greater than our largest possible GSO size.
*
* This would then be implemented as:
* return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR;
*
* Since multiplication and division are commutative, we can reorder
* operations into:
* return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
*/
static unsigned int ice_txd_use_count(unsigned int size)
{
return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
}
/**
* ice_xmit_desc_count - calculate number of Tx descriptors needed
* @skb: send buffer
*
* Returns number of data descriptors needed for this skb.
*/
static unsigned int ice_xmit_desc_count(struct sk_buff *skb)
{
const skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
unsigned int count = 0, size = skb_headlen(skb);
for (;;) {
count += ice_txd_use_count(size);
if (!nr_frags--)
break;
size = skb_frag_size(frag++);
}
return count;
}
/**
* __ice_chk_linearize - Check if there are more than 8 buffers per packet
* @skb: send buffer
*
* Note: This HW can't DMA more than 8 buffers to build a packet on the wire
* and so we need to figure out the cases where we need to linearize the skb.
*
* For TSO we need to count the TSO header and segment payload separately.
* As such we need to check cases where we have 7 fragments or more as we
* can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
* the segment payload in the first descriptor, and another 7 for the
* fragments.
*/
static bool __ice_chk_linearize(struct sk_buff *skb)
{
const skb_frag_t *frag, *stale;
int nr_frags, sum;
/* no need to check if number of frags is less than 7 */
nr_frags = skb_shinfo(skb)->nr_frags;
if (nr_frags < (ICE_MAX_BUF_TXD - 1))
return false;
/* We need to walk through the list and validate that each group
* of 6 fragments totals at least gso_size.
*/
nr_frags -= ICE_MAX_BUF_TXD - 2;
frag = &skb_shinfo(skb)->frags[0];
/* Initialize size to the negative value of gso_size minus 1. We
* use this as the worst case scenario in which the frag ahead
* of us only provides one byte which is why we are limited to 6
* descriptors for a single transmit as the header and previous
* fragment are already consuming 2 descriptors.
*/
sum = 1 - skb_shinfo(skb)->gso_size;
/* Add size of frags 0 through 4 to create our initial sum */
sum += skb_frag_size(frag++);
sum += skb_frag_size(frag++);
sum += skb_frag_size(frag++);
sum += skb_frag_size(frag++);
sum += skb_frag_size(frag++);
/* Walk through fragments adding latest fragment, testing it, and
* then removing stale fragments from the sum.
*/
for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
int stale_size = skb_frag_size(stale);
sum += skb_frag_size(frag++);
/* The stale fragment may present us with a smaller
* descriptor than the actual fragment size. To account
* for that we need to remove all the data on the front and
* figure out what the remainder would be in the last
* descriptor associated with the fragment.
*/
if (stale_size > ICE_MAX_DATA_PER_TXD) {
int align_pad = -(skb_frag_off(stale)) &
(ICE_MAX_READ_REQ_SIZE - 1);
sum -= align_pad;
stale_size -= align_pad;
do {
sum -= ICE_MAX_DATA_PER_TXD_ALIGNED;
stale_size -= ICE_MAX_DATA_PER_TXD_ALIGNED;
} while (stale_size > ICE_MAX_DATA_PER_TXD);
}
/* if sum is negative we failed to make sufficient progress */
if (sum < 0)
return true;
if (!nr_frags--)
break;
sum -= stale_size;
}
return false;
}
/**
* ice_chk_linearize - Check if there are more than 8 fragments per packet
* @skb: send buffer
* @count: number of buffers used
*
* Note: Our HW can't scatter-gather more than 8 fragments to build
* a packet on the wire and so we need to figure out the cases where we
* need to linearize the skb.
*/
static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count)
{
/* Both TSO and single send will work if count is less than 8 */
if (likely(count < ICE_MAX_BUF_TXD))
return false;
if (skb_is_gso(skb))
return __ice_chk_linearize(skb);
/* we can support up to 8 data buffers for a single send */
return count != ICE_MAX_BUF_TXD;
}
/**
* ice_tstamp - set up context descriptor for hardware timestamp
* @tx_ring: pointer to the Tx ring to send buffer on
* @skb: pointer to the SKB we're sending
* @first: Tx buffer
* @off: Tx offload parameters
*/
static void
ice_tstamp(struct ice_tx_ring *tx_ring, struct sk_buff *skb,
struct ice_tx_buf *first, struct ice_tx_offload_params *off)
{
s8 idx;
/* only timestamp the outbound packet if the user has requested it */
if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
return;
/* Tx timestamps cannot be sampled when doing TSO */
if (first->tx_flags & ICE_TX_FLAGS_TSO)
return;
/* Grab an open timestamp slot */
idx = ice_ptp_request_ts(tx_ring->tx_tstamps, skb);
if (idx < 0) {
tx_ring->vsi->back->ptp.tx_hwtstamp_skipped++;
return;
}
off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
(ICE_TX_CTX_DESC_TSYN << ICE_TXD_CTX_QW1_CMD_S) |
((u64)idx << ICE_TXD_CTX_QW1_TSO_LEN_S));
first->tx_flags |= ICE_TX_FLAGS_TSYN;
}
/**
* ice_xmit_frame_ring - Sends buffer on Tx ring
* @skb: send buffer
* @tx_ring: ring to send buffer on
*
* Returns NETDEV_TX_OK if sent, else an error code
*/
static netdev_tx_t
ice_xmit_frame_ring(struct sk_buff *skb, struct ice_tx_ring *tx_ring)
{
struct ice_tx_offload_params offload = { 0 };
struct ice_vsi *vsi = tx_ring->vsi;
struct ice_tx_buf *first;
struct ethhdr *eth;
unsigned int count;
int tso, csum;
ice_trace(xmit_frame_ring, tx_ring, skb);
if (unlikely(ipv6_hopopt_jumbo_remove(skb)))
goto out_drop;
count = ice_xmit_desc_count(skb);
if (ice_chk_linearize(skb, count)) {
if (__skb_linearize(skb))
goto out_drop;
count = ice_txd_use_count(skb->len);
tx_ring->ring_stats->tx_stats.tx_linearize++;
}
/* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD,
* + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD,
* + 4 desc gap to avoid the cache line where head is,
* + 1 desc for context descriptor,
* otherwise try next time
*/
if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE +
ICE_DESCS_FOR_CTX_DESC)) {
tx_ring->ring_stats->tx_stats.tx_busy++;
return NETDEV_TX_BUSY;
}
/* prefetch for bql data which is infrequently used */
netdev_txq_bql_enqueue_prefetchw(txring_txq(tx_ring));
offload.tx_ring = tx_ring;
/* record the location of the first descriptor for this packet */
first = &tx_ring->tx_buf[tx_ring->next_to_use];
first->skb = skb;
first->type = ICE_TX_BUF_SKB;
first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
first->gso_segs = 1;
first->tx_flags = 0;
/* prepare the VLAN tagging flags for Tx */
ice_tx_prepare_vlan_flags(tx_ring, first);
if (first->tx_flags & ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN) {
offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
(ICE_TX_CTX_DESC_IL2TAG2 <<
ICE_TXD_CTX_QW1_CMD_S));
offload.cd_l2tag2 = first->vid;
}
/* set up TSO offload */
tso = ice_tso(first, &offload);
if (tso < 0)
goto out_drop;
/* always set up Tx checksum offload */
csum = ice_tx_csum(first, &offload);
if (csum < 0)
goto out_drop;
/* allow CONTROL frames egress from main VSI if FW LLDP disabled */
eth = (struct ethhdr *)skb_mac_header(skb);
if (unlikely((skb->priority == TC_PRIO_CONTROL ||
eth->h_proto == htons(ETH_P_LLDP)) &&
vsi->type == ICE_VSI_PF &&
vsi->port_info->qos_cfg.is_sw_lldp))
offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
ICE_TX_CTX_DESC_SWTCH_UPLINK <<
ICE_TXD_CTX_QW1_CMD_S);
ice_tstamp(tx_ring, skb, first, &offload);
if (ice_is_switchdev_running(vsi->back) && vsi->type != ICE_VSI_SF)
ice_eswitch_set_target_vsi(skb, &offload);
if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) {
struct ice_tx_ctx_desc *cdesc;
u16 i = tx_ring->next_to_use;
/* grab the next descriptor */
cdesc = ICE_TX_CTX_DESC(tx_ring, i);
i++;
tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
/* setup context descriptor */
cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params);
cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2);
cdesc->rsvd = cpu_to_le16(0);
cdesc->qw1 = cpu_to_le64(offload.cd_qw1);
}
ice_tx_map(tx_ring, first, &offload);
return NETDEV_TX_OK;
out_drop:
ice_trace(xmit_frame_ring_drop, tx_ring, skb);
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
/**
* ice_start_xmit - Selects the correct VSI and Tx queue to send buffer
* @skb: send buffer
* @netdev: network interface device structure
*
* Returns NETDEV_TX_OK if sent, else an error code
*/
netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev)
{
struct ice_netdev_priv *np = netdev_priv(netdev);
struct ice_vsi *vsi = np->vsi;
struct ice_tx_ring *tx_ring;
tx_ring = vsi->tx_rings[skb->queue_mapping];
/* hardware can't handle really short frames, hardware padding works
* beyond this point
*/
if (skb_put_padto(skb, ICE_MIN_TX_LEN))
return NETDEV_TX_OK;
return ice_xmit_frame_ring(skb, tx_ring);
}
/**
* ice_get_dscp_up - return the UP/TC value for a SKB
* @dcbcfg: DCB config that contains DSCP to UP/TC mapping
* @skb: SKB to query for info to determine UP/TC
*
* This function is to only be called when the PF is in L3 DSCP PFC mode
*/
static u8 ice_get_dscp_up(struct ice_dcbx_cfg *dcbcfg, struct sk_buff *skb)
{
u8 dscp = 0;
if (skb->protocol == htons(ETH_P_IP))
dscp = ipv4_get_dsfield(ip_hdr(skb)) >> 2;
else if (skb->protocol == htons(ETH_P_IPV6))
dscp = ipv6_get_dsfield(ipv6_hdr(skb)) >> 2;
return dcbcfg->dscp_map[dscp];
}
u16
ice_select_queue(struct net_device *netdev, struct sk_buff *skb,
struct net_device *sb_dev)
{
struct ice_pf *pf = ice_netdev_to_pf(netdev);
struct ice_dcbx_cfg *dcbcfg;
dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg;
if (dcbcfg->pfc_mode == ICE_QOS_MODE_DSCP)
skb->priority = ice_get_dscp_up(dcbcfg, skb);
return netdev_pick_tx(netdev, skb, sb_dev);
}
/**
* ice_clean_ctrl_tx_irq - interrupt handler for flow director Tx queue
* @tx_ring: tx_ring to clean
*/
void ice_clean_ctrl_tx_irq(struct ice_tx_ring *tx_ring)
{
struct ice_vsi *vsi = tx_ring->vsi;
s16 i = tx_ring->next_to_clean;
int budget = ICE_DFLT_IRQ_WORK;
struct ice_tx_desc *tx_desc;
struct ice_tx_buf *tx_buf;
tx_buf = &tx_ring->tx_buf[i];
tx_desc = ICE_TX_DESC(tx_ring, i);
i -= tx_ring->count;
do {
struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
/* if next_to_watch is not set then there is no pending work */
if (!eop_desc)
break;
/* prevent any other reads prior to eop_desc */
smp_rmb();
/* if the descriptor isn't done, no work to do */
if (!(eop_desc->cmd_type_offset_bsz &
cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
break;
/* clear next_to_watch to prevent false hangs */
tx_buf->next_to_watch = NULL;
tx_desc->buf_addr = 0;
tx_desc->cmd_type_offset_bsz = 0;
/* move past filter desc */
tx_buf++;
tx_desc++;
i++;
if (unlikely(!i)) {
i -= tx_ring->count;
tx_buf = tx_ring->tx_buf;
tx_desc = ICE_TX_DESC(tx_ring, 0);
}
/* unmap the data header */
if (dma_unmap_len(tx_buf, len))
dma_unmap_single(tx_ring->dev,
dma_unmap_addr(tx_buf, dma),
dma_unmap_len(tx_buf, len),
DMA_TO_DEVICE);
if (tx_buf->type == ICE_TX_BUF_DUMMY)
devm_kfree(tx_ring->dev, tx_buf->raw_buf);
/* clear next_to_watch to prevent false hangs */
tx_buf->type = ICE_TX_BUF_EMPTY;
tx_buf->tx_flags = 0;
tx_buf->next_to_watch = NULL;
dma_unmap_len_set(tx_buf, len, 0);
tx_desc->buf_addr = 0;
tx_desc->cmd_type_offset_bsz = 0;
/* move past eop_desc for start of next FD desc */
tx_buf++;
tx_desc++;
i++;
if (unlikely(!i)) {
i -= tx_ring->count;
tx_buf = tx_ring->tx_buf;
tx_desc = ICE_TX_DESC(tx_ring, 0);
}
budget--;
} while (likely(budget));
i += tx_ring->count;
tx_ring->next_to_clean = i;
/* re-enable interrupt if needed */
ice_irq_dynamic_ena(&vsi->back->hw, vsi, vsi->q_vectors[0]);
}